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1 Introduction

In this paper, we introduce a class of algebras B(Γ) related to a simply laced graphs Γ and study
their representation theory. Algebras B(Γ) depend on a system of parameters sij corresponding
to edges of the graph. They are generated by idempotents xi, numbered by the vertices of the
graph, which subject to relations:

• x2
i = xi, for every i in V (Γ),

• xixjxi = s2
ijxi, xjxixj = s2

ijxj, if i and j are adjacent in Γ,

• xixj = xjxi = 0, if i and j are not adjacent in Γ.

Our original motivation to consider algebras B(Γ) was the problem on classifying systems of
m Cartan subalgebras in Lie algebra sl(n,C), pairwise orthogonal with respect to Killing form.
This problem is related to representation theory of algebras B(Γm(n)), where Γm(n) is a graph
with vertices arranged in m rows, by n vertices in each row, such that vertices in different rows
are connected by edges and those in the same row are not. The problem on orthogonal Cartan
subalgebras can be interpreted as the problem on finding system of projectors satisfying the
conditions of unbiasedness. These conditions imply that projectors define a representation of
B(Γm(n)) for particular value of parameters sij = 1

n
.

The representation theory of algebras B(Γ) for other graphs are related to many classical
and modern problems in algebraic geometry: Poncelet porism and its generalizations, etc.

There is a unitary version for representation theory of B(Γ), when we consider representa-
tions in a Hermitian (or Euclidian) space and require that the generating idempotents in B(Γ)
are represented by Hermitian (resp. orthogonal) projectors. Classification of such representa-
tions includes the problem of classifying systems of lines in a a Hermitian vector space with
given angles between them. The above algebraic version of the problem can be considered as
the complexification of the Hermitian problem.

The Hermitian representations for B(Γm(n)) give mutually unbiased bases. The problem
of classifying such bases has recently attracted a lot of attention in the quantum information
theory due to its relevance to quantum encoding, decoding and quantum tomography. We
shortly described an instance of how mutually unbiased bases appear in this context in 3.3.
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Algebra B(Γ) is a quotient of Temperley-Lieb algebra and of Hecke algebra of the graph (see
4.2). Thus, the study of its representation theory can be viewed as the first step in studying
representation theory of Hecke algebras of complicated graphs. Note that there is an ample
representation theory of Hecke algebras of Dynkin and extended Dynkin graphs, but virtually
nothing is known about representations of Hecke algebras for graphs with say noncommutative
fundamental group.

The representation theory for B(Γ) is closely related to harmonic analysis of local systems on
the graph. The crucial fact is that the algebra B(Γ) can be obtained from Poincare groupoid
of the graph (see 4.3) by changing the multiplication via a (generalized) Laplacian of the
graph (see 4.4, 4.5). This construction implies a pair of homomorphism of B(Γ) into the
algebra of the Poincare groupoid of the graph. Representations of B(Γ) can be understood
from representations of the Poincare groupoid by push-forward and pull-back functors along
these homomorphisms. Since the representations of Poincare groupoid are identified with local
systems on the graph, the relevance of the harmonic analysis becomes clear. The Hermitian
(as well as Euclidian) version of the problem is related to the positivity of Laplace operator.

We consider general construction of modifying multiplication in an algebra A by means of
its element ∆. The modified multiplication is given by:

a · b = a∆b

Since the new algebra might not have a unit, we adjoin the unit to it.
We formalize suitable conditions on the element ∆ which imply good relation between repre-

sentation theory of the new algebra and that of A. Such elements we call well-tempered. (Gen-
eralized) Laplacians are examples of well-tempered elements. We show that well-temperedness
is the property of the double cosets with respect to the action of the group of invertible ele-
ments in A. We obtain an upper bound for Hochschild and global dimension for the algebra
with modified multiplication in terms of the same dimensions for A.

Note that the Poincare groupoid is isomorphic to the matrix algebra over the group algebras
of the fundamental group of the graph. Thus, for simply connected graph it is the matrix algebra
over a field. All nonzero elements in this algebra are well-tempered. It is interesting to address
the problem of classifying well-tempered elements in matrix algebras over other group algebras.

In section 6 we study the representation theory of algebras B(Γ). First, we describe proper-
ties of functors and natural transformations between the categories of representations of algebra
A and algebra B constructed from A via a well-tempered element. Second, we address the prob-
lem of coherence for B(Γ). We actually start with coherence of Poincare groupoid. We prove
theorem 47, which has an independent interest, that an algebra which is quasi-free relatively
over a commutative noetherian ring K is coherent. This result is easy when the ring K is a
field but requires more techniques in general case. Our proof is based on the Chase criterion
for coherence. As a consequence of this result, Poincare groupoid over a noetherian ring of any
finite graph is coherent. Then we prove theorem 48 which claims that if A is coherent and ∆ a
well-tempered element then B is coherent too. This allows us to consider a reasonable abelian
category of representations for B(Γ) with appropriate finiteness conditions, the category of
finitely represented modules.
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We also consider the derived categories and show that the derived category of representations
for B, Db(B − mod), has a semiorthogonal decomposition into categories Db(A − mod) and
Db(K − mod) and determine the gluing functor Db(A − mod) → Db(K − mod). The abelian
category B − mod is the heart of the t-structure which is obtained by gluing the standard
t-structures on the two semiorthogonal components.

We are particularly interested in the representations of B(Γ) that have minimal possible
(non-zero) dimension. If B(Γ) = B(Γm(n)), then the minimal dimension is n, and this is
exactly the case that corresponds to orthogonal Cartan subalgebras. Another good example is
when Γ is a cyclic graph with n vertices. Then the minimal possible representation of B(Γ)
has dimension n− 2 for suitable choice of parameters sij. The category B −mod for this case
is equivalent to the category of perverse sheaves on the complex rational curve with a double
point.

We are grateful to Alexander Kuznetsov for useful discussions. This work was supported
by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

2 Orthogonal Cartan subalgebras and algebraically un-

biased projectors

2.1 Orthogonal Cartan subalgebras

Consider a simple Lie algebra L over an algebraically closed field of characteristic zero. Let K
be the Killing form on L. In 1960, J.G.Thompson, in course of constructing integer quadratic
lattices with interesting properties, introduced the following definitions.

Definition. Two Cartan subalgebras H1 and H2 in L are said to be orthogonal if
K(h1, h2) = 0 for all h1 ∈ H1, h2 ∈ H2.

Definition. Decomposition of L into the direct sum of Cartan subalgebras L = ⊕h+1
i=1 Hi is

said to be orthogonal if Hi is orthogonal to Hj, for all i 6= j.
Intensive study of orthogonal decompositions has been undertaken since then (see the book

[KT] and references therein). For Lie algebra sl(n), A.I. Kostrikin et all arrived to the following
conjecture, called Winnie-the-Pooh Conjecture (cf. ibid. where, in particular, the name of the
conjecture is explained by a wordplay in the Milne’s book in Russian translation).

Conjecture 1. Lie algebra sl(n) has an orthogonal decomposition if and only if n = pm, for a
prime number p.

The conjecture has proved to be notoriously difficult. Even the non-existence of an orthog-
onal decomposition for sl(6), when n = 6 is the first number which is not a prime power is
still open. It is also important to find the maximal number of pairwise orthogonal Cartan
subalgebras in sl(n) for any given n as well as to classify them up to obvious symmetries.

We recall an interpretation and generalization of the problem in terms of systems of mini-
mal projectors and its relation to representation theory of Temperley-Lieb algebras and Hecke
algebras of some graphs. This was discovered by the first author about 25 years ago (cf. ibid.).
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2.2 Algebraically unbiased projectors

Let V be a n-dimensional space over a field of characteristic zero.
Two minimal (i.e. rank 1) projectors p and q in V are said to be algebraically unbiased if

tr(pq) =
1

n
(1)

Equivalently, this reads as one of the two (equivalent) algebraic relations:

pqp =
1

n
p, (2)

qpq =
1

n
q. (3)

We will also consider orthogonal projectors. Orthogonality of p and q is algebraically ex-
pressed as

pq = qp = 0 (4)

Two maximal (i.e. of cardinality n) sets of minimal orthogonal projectors (p1, ..., pn) and
(q1, ..., qn) are said to be algebraically unbiased if pi and qj are algebraically unbiased for all
pairs (i, j).

Let sl(V ) be the Lie algebra of traceless operators in V . Killing form is given by the trace
of product of operators. A Cartan subalgebra H in V defines a unique maximal set of minimal
orthogonal projectors in V . Indeed, H can be extended to the Cartan subalgebra H ′ in gl(V )
spanned by H and the identity operator E. Rank 1 projectors in H ′ are pairwise orthogonal
and comprise the required set. We say that these projectors are associated to H.

If p is a minimal projector in H ′, then trace of p is 1, hence, p− 1
n
E is in H. If projectors

p and q are associated to orthogonal Cartan subalgebras, then

Tr(p− 1

n
E)(q − 1

n
E) = 0,

which is equivalent to p and q to be algebraically unbiased.
Therefore, an orthogonal pair of Cartan subalgebras is in one-to-one correspondence with

two algebraically unbiased maximal sets of minimal orthogonal projectors. Similarly, orthogonal
decompositions of sl(n) correspond to n+ 1 of pairwise algebraically unbiased sets of minimal
orthogonal projectors. In the analysis of the problem, it is worthwhile to consider not only
maximal sets of orthogonal projectors, but also study mutual unbiasedness for various subsets
of maximal sets. Thus, we come to the problem of studying the sets of projectors where every
pair satisfies either conditions (2-3) or (4). This will lead us to the representation theory of
reduced Temperley-Lieb algebras which we study in the next section.

More explicitly, algebraic unbiasedness can be expressed as follows. Let projectors p and q
be given as

p = e⊗ x, q = f ⊗ y,
where e and f are in V and x and y are in V ∗. The equations p2 = p and q2 = q imply:

(e, x) = 1, (f, y) = 1, (5)
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where (−,−) stands for the pairing between vectors and covectors. Then the algebraic unbi-
asedness of p and q reads:

(x, f)(y, e) =
1

n
. (6)

Orthogonality conditions (4) reads:

(x, f) = 0, (y, e) = 0. (7)

2.3 Formulation of the problem in terms of graphs

The above discussion suggests to consider the following general problem on systems of projec-
tors.

Assume we are given a simply laced graph Γ with a finite number of vertices. Consider a
finite dimensional vector space V . Assign a rank 1 projector in V to every vertex of the graph.
If two vertices are related by an edge, then we require the corresponding two projectors to be
algebraically unbiased. If there is no edge between the vertices, then we require the projectors
to be orthogonal. The problem is to classify, for a given graph, all possible systems of projectors
satisfying the required conditions modulo automorphisms of V .

The problem enjoys a duality which exchanges the roles of the space V and its dual V ∗.
Indeed, equations (2), (3), (4) are invariant under the operation of assigning to the vertices the
adjoint projectors in the dual space V ∗:

p 7→ p∗. (8)

Thus, having a configuration in the space V , we obtain a dual configuration in V ∗ and vice
versa.

Rank 1 projectors are parameterized by the variety P(V ) × P(V ∗) \ D, where D is the
incidence divisor. Indeed, every projector p is given by p = e ⊗ x, for e a vector and x a
covector satisfying (e, x) = 1. The k∗-action e 7→ λe, x 7→ λ−1x, for λ ∈ k∗, identifies points
corresponding to the same projector. Note that this is an instance of symplectic reduction.
Indeed, V × V ∗ is endowed with the standard symplectic form. The equation (e, x) = 1 fixes
the value of the moment map for the above k∗-action. The induced symplectic structure on
the space of projectors coincides with Kostant-Kirillov-Lie bracket on the coadjoint orbit of Lie
algebra gl(V ).

We consider the moduli space of solutions to our problem. To be more precise the fine
moduli is clearly a stack, because every configuration of projectors has obvious automorphism
subgroup of k∗, the dilations. Under suitable conditions, there is no other automorphism for a
configuration.

Proposition 2. Let Γ be a connected graph. Assume that either the configuration of projectors
is such that the images of the projectors span the space V or the intersection of kernels of
projectors is trivial. Then the only automorphisms of the configuration are elements from
k∗(scalar operators).
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Proof. Assume that the images of projectors span the space V . An automorphism of the
configuration must preserve the image of every projector. If projectors p and q are algebraically
unbiased, then for a vector v in the image of p we have:

pqv =
1

n
v,

which shows, in particular, that qv is a nonzero vector in the image of q. By applying to
this equality any operator that commutes with p and q, we see that it acts on v and qv via
multiplication with the same scalar. Hence, it acts on the images of p and q by multiplication
with the same scalar. Since the graph is connected, the scalar is the same for images of all
projectors. As images of projectors span V , the statement follows. For the case when the
intersection of the kernels of the projectors is trivial, the statement follows due to duality.

We say that a configuration is minimal if the images of projectors span vector space V and
the intersection of kernels of all projectors is zero. Let M̃n(Γ) be the moduli stack of minimal
configurations in Cn. It follows from the proposition that it is a k∗-gerb. We denote byMn(Γ)
the coarse moduli space of this stack. Clearly, it is the quotient of a subvariety in the cartesian
product of copies of P(V ) × P(V ∗) \ D, one copy for every vertex of the graph, modulo the
action of GL(V ). Note that this presentation is not particularly convenient for calculation.

To every configuration, we can assign in a canonical way a minimal configuration at the
price of reducing the dimension of the vector space. To this end, take the subspace generated
by the images of all projectors. There is a configuration subordinated to the same graph in
this subspace. If the intersection of the kernels for all projectors in the new configuration is
nontrivial, then mode out this subspace. The resulting configuration is minimal.

We say that two configurations are S-equivalent if the corresponding minimal configurations
are isomorphic. Consider the set M(Γ) of isomorphism classes of all minimal configurations
for all possible dimensions n. We will endow it with the structure of an affine variety. The
variety has a stratification by subvarieties, such that each stratum is isomorphic toMn(Γ), i.e.
it parameterizes minimal configurations of given dimension n:

M(Γ) =
⋃
n

Mn(Γ) (9)

Equivalently, this variety parameterizes S-equivalence classes of configurations in the vec-
tor space of dimension equal to the number of vertices in the graph. All this has a natural
interpretation in the representation theoretic context which we discuss below.

2.4 The moduli space of configurations as a torus

We will show that M(Γ) is in fact a k∗-torus. Let us describe a generating set of functions on
it. Consider a cyclic path γ of length s in the graph. Choose any orientation of the path and
take the product pγ = p1 . . . ps of projectors corresponding to the vertices of the path taken in
any full order compatible with the cyclic order defined by the orientation. The trace Tγ of the
resulting operator does not depend on the choice of full order. It gives a set, parameterized by
homotopy classes of cyclic paths, of regular function on the moduli space of solutions.
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Since the operator pγp1, if nonzero, has the same kernel and image as p1 has, it is propor-
tional to p1. By checking the trace, we obtain:

pγp1 = Tγp1.

Let γ̂ be the cyclic path γ with inverse orientation and pγ̂ = ps . . . p1, the operator which
corresponds to the full order inverse to the one chosen for γ. Then we have as above:

p1pγ̂ = Tγ̂p1.

Using this equalities, we obtain:

TγTγ̂p1 = pγp1pγ̂ =
1

ns
p1. (10)

The latter equality is seen by iteratively applying (2) and (3). Therefore:

TγTγ̂ =
1

ns
(11)

It is convenient to introduce normalized functions Sγ:

Sγ = n
1
2
|γ|Tγ, (12)

where |γ| is the length of the cyclic path γ, i.e. the number of edges in γ. Equation (11) reads
as a cancelation law:

SγSγ̂ = 1. (13)

Let us consider Γ as a topological space, a 1-dimensional CW-complex.

Theorem 3. (i) Sγ depends only on the homotopy class of the free loop γ;

(ii) The assignment γ 7→ Sγ extends to a homomorphism H1(Γ,Z)→ k∗;

(iii) Sγ does not depend on choice of representation in the S-equivalence class.

(iv) The map M(Γ)→ H1(Γ, k∗) defined by Sγ’s is bijective.

Proof. Given a cyclic path γ, there is a minimal free loop γ0 in the graph which represents the
homotopy class of γ. The cyclic path γ can be contracted to γ0 by elementary contraction,
i.e. contractions where only paths along an edge in one direction and then immediately back,
is contracted. Equations (2) and (3) imply that Sγ does not change under such contractions.
This proves(i).

It is more convenient for us to postpone the proof for the other statements until we develop
a more conceptional approach via Poincare groupoid (see ??).
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Let Γm(n) be the graph with m rows and n vertices in each row, such that any two ver-
tices from different rows are connected by an edge and any two vertices in the same row are
disconnected.

In view of what was explained in section 2.2, a configuration of projectors subordinated
to the graph Γm(n) in the vector space V of dimension n gives a configuration of m pairwise
orthogonal Cartan subalgebras in sl(n). The restriction on the dimension is crucial here. In the
above picture, this corresponds to distinguishing the stratum of the minimal dimension on the
torus. Moduli of configurations of orthogonal Cartan subalgebras is the quotient ofMn(Γm(n))
by the action of the product of m symmetric groups Sn that permute the vertices in the rows
of the graph.

2.5 Generalizations of the problem

It is natural to put the problem on projectors into a broader context. We can substitute the
constant 1

n
at the right hand side of (2) and (3) by arbitrary non-zero constant r ∈ k∗. We say

that two rank 1 projectors are r-unbiased if:

pqp = rp, (14)

or, equivalently,
qpq = rq. (15)

Further, when considering the problem on system of projectors subordinated to a graph, we
can make r to be dependent on the edge. Then the initial data is a graph Γ with labels rij ∈ k∗
assigned to edges (ij) in the graph. The relations are:

pipjpi = rijpi, (16)

pjpipj = rijpj, (17)

if there is an edge connecting i with j. We keep also the condition that pi and pj are orthogonal
projectors if there is no edge.

All what was said in the previous subsection holds true for this generalized version. Formula
(12) for Sγ then reads:

Sγ =
1√∏
rii+1

Tγ, (18)

where the product under the square root is taken over all edges in γ and Tγ is the trace of the
product of projectors along cyclic path γ. The rest goes mutatis mutandis.

The generalized version of Theorem (3) holds true with the same wording.
We can also generalize the problem by considering projectors of higher rank. Equations

(16) and (17) are not equivalent conditions for this case. We should pose them both. It follows
immediately from these equations that pi and pj have the same rank. Thus all projectors from
the system are of the same rank if the graph is connected. We will reformulate this problem
in terms of the representation theory of algebras Br(Γ), which we consider in the next section.
Similar to the homological interpretation for the case of rank 1 projectors, the higher rank case
is related to local systems of higher rank on Γ (regarded as a topological space).
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2.6 Generalized Hadamard matrices.

In this subsection, we will show how generalized Hadamard matrices are related to orthogonal
decompositions of sl(n).

Let M be the set of n× n matrices with non-zero entries. A matrix A = {aij} from M is
said to be a generalized Hadamard matrix if

n∑
j=1

aij
akj

= 0. (19)

for all i 6= k.
This condition can be recast by means of Hadamard involution h :M→M defined by

h : aij 7→
1

naji
. (20)

Proposition 4. A is a generalized Hadamard matrix if and only if A is invertible and h(A) =
A−1.

Proof. Indeed, (19) is equivalent to A · h(A) = 1.

For any two Cartan subalgebras in a simple Lie algebra, one is known to be always a con-
jugate for the other by an automorphism of the Lie algebra. For the case of sl(n), Cartan
subalgebras are conjugate by an element of GLn(k), i.e. if (H,H ′) is a pair of Cartan subalge-
bras, then we have an element A ∈ GLn(k) such that H ′ = AHA−1. The transition matrix A is
uniquely defined when we fix basis {ei} and {fi} such that H consists of diagonal matrices for
the first basis and H ′ does so for the second basis. The freedom of choice for one basis is given
by the normalizer in GLn(k) for one Cartan subalgebra, i.e. the group of monomial matrices.
Therefore, the transition matrix A is defined up to transformations

A′ = M1AM2, (21)

where M1 and M2 are invertible monomial matrices.

Proposition 5. [KT] Two Cartan subalgebras H and AHA−1 form an orthogonal pair of
Cartan subalgebras in sl(n) if and only if A is a generalized Hadamard matrix.

Recall that the problem on orthogonal pairs of Cartan subalgebras is governed by the graph
Γ2(n). Hence, the moduli space of configurations of rank 1 projectors in an n-dimensional space
subordinated to this graph is closely related to the variety of Hadamard matrices. According
to theorem 3, the moduli of configurations in all dimensions is a k∗-torus of dimension (n− 1)2

(rank of homology for graph Γ2(n)). This torus is identified with the quotient of M, the
torus of matrices with invertible entries, by the left and right actions of the torus of diagonal
matrices. Equations (19) are invariant under these left and right actions. They define the
minimal stratum of this torus, which corresponds to the case of n-dimensional configurations.
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3 The Hermitian case

3.1 Mutually unbiased bases and configurations of lines in a Hermi-
tian space

The terminology of unbiased bases first appeared in physics. It is a unitary version of the
algebraic unbiasedness introduced above. We will define it and explain on an example how
unbiased bases show up in quantum information theory.

Let V ba an n dimensional complex space with a fixed Hermitian metric 〈 , 〉. Two
orthonormal Hermitian bases {ei} and {fj} in V are mutually unbiased if, for all (i, j),

|〈ei, fj〉|2 =
1

n
(22)

Consider the orthogonal projectors pi and qj, corresponding to these bases, defined by:

pi(−) = ei ⊗ 〈−, ei〉, qj(−) = fj ⊗ 〈−, fj〉.

Then, the condition (6) is satisfied for them, hence they are algebraically unbiased. Note
that these operators are rank 1 Hermitian projectors, and, being such, are defined by non-zero
vectors in their images. We say that two rank 1 projectors are unbiased if they are algebraically
unbiased Hermitian projectors.

We can formulate a general problem about unbiased Hermitian projectors for graphs similar
to that for algebraically unbiased projectors. Since rank 1 Hermitian projectors are defined by
a line in V , the image of the projector, the problem concerns collections of points in PV , but
we will formulate it in terms of representing vectors of length 1 in V .

We again fix a simply laced graph Γ with a finite number of vertices and a finite dimensional
vector space V of dimension n, now endowed with a Hermitian form. Assign a length 1 vector
in V to every vertex in Γ. If two vertices are connected by an edge, then we put condition

|〈e, f〉|2 =
1

n
(23)

on vectors e and f corresponding to the vertices. If the vertices are disconnected, then we
require the vectors to be perpendicular. The problem is to classify all systems of vectors
modulo linear automorphisms of V and the products of U(1)’s corresponding to change of
phases of all vectors.

Similar to the case of the algebraic problem we have a generalization of the problem to
the case of Hermitian projectors. To this end, we consider a full graph Γ together with labels
rij, 0 ≤ rij ≤ 1, on edges (ij). The problem is to find all, up to linear automorphisms of V ,
configurations of lines labeled by vertices of the graph and satisfying

|〈ei, ej〉|2 = rij, (24)

for any choice of length 1 vectors ei and ej in the lines corresponding to vertices i and j of the
graph. Vanishing rij = 0 corresponds to the absence of edge between i and j in the graph in
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the algebraic version of the problem (in which case the condition was given by two equations
(7), instead of one in the Hermitian case).

Note that all our conditions are just to fix particular angles between lines in the configura-
tion. More generally, we can consider subspaces of fixed dimension in the Hermitian space V
and fix angles between them. This corresponds to considering higher rank representations of
the algebra Br(Γ) (see below).

3.2 Moduli of configurations of lines

We can regard algebraic unbiasedness as the complexification of unbiasedness. To be more
precise, consider the space M(Γ) of all configurations of projectors satisfying the problem for
graph Γ on systems of algebraically unbiased projectors in a space V . It is an algebraic variety
in cartesian product of copies of P(V )× P(V ∗) \D, one copy for every vertex of Γ.

Now fix a Hermitian form on V . The Hermitian involution gives a new duality on the set
of algebraic configurations:

pi 7→ p†i (25)

The duality induces an involution on M(Γ). The involution takes Sγ into S̄γ̂. Since M(Γ) =
H1(Γ,C∗), this is an anti-holomorphic involution on M(Γ). Clearly, the involution takes a
minimal configuration into a minimal one. Hence, it preserves all strataMn(Γ). It follows that
For a Hermitian configuration, pi = p̄i. Hence

on S which takes every projector to its Hermitian conjugate. Clearly, this involution pre-
serves S.

Since mutually unbiased bases are algebraically unbiased, they are related to orthogonal
Cartan subalgebras in sl(n). Given m pairwise mutually unbiased bases B1,B2, ...,Bm in a
Hermitian space V , we obtain m Cartan subalgebras H1, H2, ..., Hm in sl(n) which are pairwise
orthogonal with respect to the Killing form. In particular, a collection of n+1 mutually unbiased
bases in a Hermitian vector space of dimension n gives rise to an orthogonal decomposition of
sl(n). This fact was noticed by P.Oscar Boykin, Pham Huu Tiep, Meera Sitharam and Pawel
Wocjan in [BTSW].

Let B an orthonormal basis in Cn. Matrix A = (aij) is said to be complex Hadamard if
bases B and A(B) are mutually unbiased. Let A and C be a complex Hadamard matrices. We
will say that A is equivalent to C if A = M1CM2 for some unitary monomial matrices M1,M2.

There exists the following relation between complex Hadamard matrices and generalized
Hadamard ones: A is a complex Hadamard if and only if A is a generalized Hadamard and
|aij| = 1.

3.3 Protocols of quantum information transition

Consider a finite dimensional quantum mechanical system for which V is the space of states.
States of the system are vectors in V (considered up to multiplication by a non-zero constant),
while observables are Hermitian operators. Choose an observable which is diagonal in the basis
of ei’s and has pairwise distinct real eigenvalues λi’s. Due to the basic quantum mechanical
principles, the measurement of this observable when the system is in the state f , normalized
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to be of Hermitian norm one, returns us one of the eigenvalue of the Hermitian operator and
the probability to have eigenvalue λi as the result of measuring the observable is |〈ei, f〉|2. The
state of the system after the measurement is the eigenvector ei.

The condition (22) frequently appears in the Quantum Information Theory problems. Here
is one of possible ways how this happens.

Let Alice transmits quantum information to Bob using a quantum system in the space
V . A protocol for transmitting quantum information is a set of pairwise mutually unbiased
bases in V . Alice and Bob has arranged the sequence of pairwise mutually unbiased bases
which they will use in their communication, say {ei}, {fj}, {gk}, etc. Alice sends states of
the systems: firstly, one of the vector of the basis {ei}, then a vector of the basis {fj}, etc.
Possible transmitted string might look as (e2, f5, g3, . . . ). The actual information is contained
in the indices 2, 5, 3, . . . . Assume also the presence of an eavesdropper, Eve. Since the protocol
is open information, Eve knows the set of bases but she does not know the sequence that Alice
and Bob arranged among themselves. Eve will get no information even probabilistically if she
uses a wrong basis from the protocol to determine a transmitted state. Indeed, if Alice sends
one of the ei’s and Eve measures an observable which, as a Hermitian operator, is diagonal in
the basis {fj}, then she will get one of the eigenvalues of this observable with equal probability
1
n
. Clearly, the more is the number of mutually unbiased bases, the more secure is the protocol,

whence the relevance of the Winnie-the-Pooh problem to Quantum Information Theory.
There are other instances when mutually unbiased bases appear in physics, see [?], [?].

4 Algebras B(Γ), Hecke algebras and Poincare groupoids

of graphs.

4.1 Algebra B(Γ).

The above discussion of the problem on configurations of projectors motivates the study of
representation theory for algebras B(Γ), which we introduce here. Under some specialization
of parameters, these algebras become quotients of more familiar Temperley-Lieb algebras of
graphs. The latter are, in their turn, quotients of Hecke algebras of graphs.

Let Γ be a simply laced graph with no loop (i.e. no edge with coinciding ends). Denote
by V (Γ) and E(Γ) the sets of vertices and edges of the graph. Let K be a commutative ring
and {sij}, where (ij) runs over the set of edges of the graph (i.e. sij = sji), a set of invertible
elements in K. For example, one can take the universal ring K = k[{sij}, {s−1

ij }], where k is a
field of characteristic zero. We define algebra B(Γ) as a unital algebra over Generators xi of
B(Γ), except for 1, are numbered by all vertices i of Γ. They subject relations:

• x2
i = xi, for every i in V (Γ),

• xixjxi = s2
ijxi, xjxixj = s2

ijxj, if i and j are adjacent in Γ,

• xixj = xjxi = 0, if there is no edge connecting i and j in Γ.
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We define B+(Γ) as the augmentation ideal in B(Γ) generated by all xi’s. Note that automor-
phisms of the graph induce automorphisms of B(Γ).

A configuration of projectors pi’s considered in section 2 can be understood as a represen-
tation of B(Γ):

xi 7→ pi.

Clearly, we have
rij = s2

ij.

It will be convenient for us to keep the square roots of rij as basic parameters.
A path in the graph is a sequence of vertices

γ = (i0, . . . , it),

where il = il+1 or (ilil+1) ∈ E(Γ), for 0 ≤ l ≤ t − 1. To such a path, we assign an element xγ
in B(Γ):

xγ = xi0 . . . xit .

We assign 1 to the empty path.
Path γ is said to be contracted if il 6= il+1, for all 0 ≤ l ≤ t − 1, and il 6= il+2, for all

0 ≤ l ≤ t− 2, or if it is an empty path. If γ is not contracted, i.e. il = il+1 or il = il+2 for some
l, then we define its elementary contraction as a new path with vertex il+1 or, respectively,
two vertices il+1 and il+2 removed from γ. We can obtain other contractions of the path by
iterating minimal contractions. Note that all contractions of γ are homotopic to γ in the class
of pats with the same start and end point as γ. Every homotopy class of paths with fixed start
and end point contains a unique contracted path, called minimal contraction for paths in the
homotopy class. The contraction for a given path can be achieved by a sequence of elementary
contractions.

Proposition 6. The set of elements xγ where γ runs over the set of all contracted paths in Γ,
is a K-basis of B(Γ).

Proof. The defining relations forB(Γ) imply that xγ remains the same up to invertible multiplier
after an elementary contraction and that the K-linear span of xγ’s is B(Γ). Hence, xγ’s, where
γ runs over all contracted paths, span B(Γ).

It remains to show that these elements are linearly independent. To this end, note that any
element in the ideal of relations in B(Γ) among xi’s is a K-linear combination of two classes of
relations:

• xi1 . . . xit = 0 when, for some l, the pair (il, il+1) is not an edge of the graph.

• xγ = λγγ′xγ′ where γ′ is an elementary contraction of γ and λγγ′ ∈ K∗;

The first class shows that it is enough to consider only monomials corresponding to paths in
the graph. The second class of relations are divided into groups, where each group consists
of relations among monomials xγ where γ is in a homotopy class of paths with fixed starting
and ending points. Hence, it is enough to check that monomials from every homotopy class of
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paths span a 1-dimensional space in B(Γ). Denote by qij the difference between multiplicities
of edge (ij) in γ and its contraction γ′.Then one can easily check by induction on the number
of elementary contractions that lead from γ to γ′ the formula:

xγ =
∏

s
qij
ij xγ′ .

Taking γ′ = γo, the minimal contraction in the homotopy class of γ, we get that all monomials
have an expression as the monomial of the contracted path with a unique invertible multiplier.
Thus, the space spanned by the monomials from a homotopy class is indeed 1-dimensional.

When we need to specify the values of sij or rij, we will write Bs(Γ) or B(r)(Γ) for the
algebra with specified parameters s = {sij} and r = {rij}. We shall consider the representation
theory of these algebras in the next section.

4.2 Temperley-Lieb algebras and Hecke algebras of graphs

Consider the special case when sij = s for all edges (ij) of the graph. To describe the relation
to Hecke algebra, note that the standard Temperley-Lieb algebra TL(Γ) is defined similarly
with the last relation replaced by xixj = xjxi when there is no edge connecting i and j. Hence,
algebra B(Γ) for the case sij = s is a quotient of TL(Γ).

Recall that Hecke algebra H(Γ) of graph Γ is the unital algebra over k[q, q−1] generated by
elements Ti, i ∈ V (Γ) subject the following relations:

• TiTjTi = TjTiTj, if (i, j) ∈ E(Γ),

• TiTj = TjTi, otherwise,

• (Ti + 1)(Ti − q) = 0 for any i.

We obtain Hq(Γ), an algebra over k, by specializing q to a non-zero value. For the case Γ is
Dynkin graph of type An H(Γ) is known to be a q-deformation of the group algebra for Sn+1.
Its representation theory is useful in constructing polynomial invariants of knots (cf. [?]). If q
is not a root of unity, H(Γ) is isomorphic to the group algebra of for Sn+1.

There is a homomorphism H(Γ)→ B(Γ)[q], where B(Γ) is extended by the central element
q, a root of the equation:

q + 2 + q−1 = s−2.

The homomorphism is defined by mapping:

Ti 7→ (q + 1)xi − 1.

One can easily see that via this homomorphism B(Γ) becomes isomorphic to the quotient
of H(Γ) by relations:

• −1 + Ti + Tj − TiTj − TjTi + TiTjTi = 0, if (i, j) is an edge;

• −1 + Ti + Tj − TiTj = 0, otherwise.
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To give the idea about how much we quotient out when passing from H(Γ) to B(Γ), let us
note that if Γ is a graph of type An and q is not a root of unity, algebra B(Γ), as a quotient
of H(Γ) is a direct sum of the matrix algebra, the operators in the standard n-dimensional
representation of the permutation group Sn+1, and the trivial 1-dimensional representation k.
Thus the representation theory of B(Γ) is very simple for this graph. The reason is that the
homology of the graph is trivial. Real complications appear for graphs which are not trees.

4.3 Poincare groupoids of graphs

It turns out that the representation theory of B(Γ) is closely related to that of Poincare groupoid
of the graph.

Let again Γ be a simply-laced graph with no loop. Consider it as a topological space. Let
P(Γ) be the Poincare groupoid of graph Γ, i.e. a category with objects vertices of the graph and
morphisms homotopic classes of paths. Composition of morphisms is given by concatenation
of paths.

Let K be a commutative ring. Denote by KΓ the algebra over K with a free K-basis
numbered by morphisms in P(Γ) and multiplication induced by concatenation of paths (when
it makes sense, and zero when it does not). Let ei be the element of KΓ which is the constant
path in vertex i. Any oriented edge (ij) can be interpreted as a morphism in P(Γ), hence it
gives an element lij in KΓ. Defining relations are:

• eiej = δijei, eiljk = δijlik, ljkei = δkiljk;

• lijlji = ei, ljilij = ej, lijlkm = 0, if j 6= k.

We consider KΓ as an algebra with unit:

1 =
∑
i∈V (Γ)

ei.

Let γ ∈ P(Γ) be a path in Γ. Denote by lγ the element in KΓ corresponding to this path.
There is an involutive anti-isomorphism σ : KΓ→ KΓopp defined by

σ(lγ) = lγ̂, (26)

where γ̂ is the path inverse to γ. It implies a duality, i.e. an involutive anti-equivalence,
D : KΓ − modfd ' KΓ − modoppfd , on the category KΓ − modfd of finite dimensional KΓ-
representations, if K = k is a field. If ρ : kΓ → End(V ) is a representation, then the dual
representation D(ρ) : kΓ→ End(V ∗) is defined, for l ∈ kΓ, by:

D(ρ)(l) = ρ(σ(l))∗. (27)

Let Γ be in addition a connected graph. Then the category of representations for Poincare
groupoid and that for the fundamental group of the graph are equivalent. To see this, fix
t ∈ V (Γ). Denote by K[π(Γ, t)] the group algebra of the fundamental group π(Γ, t). Consider
projective KΓ - module Pt = KΓet. Clearly, Pt is a KΓ - K[π(Γ, t)] - bimodule. Note that Pt are
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isomorphic as left KΓ-modules for all choices of the vertex t. Indeed, the right multiplication by
an element corresponding to a path starting at t1 and ending at t2 would give an isomorphism
of Pt1 with Pt2 .

Proposition 7. Bimodule Pt induces a Morita equivalence between KΓ and K[π(Γ, t)]. Thus,
the categories KΓ−mod and K[π(Γ, t)]−mod are equivalent. Moreover, algebra KΓ is isomor-
phic to the matrix algebra over K[π(Γ, t)], with size of (square) matrices equal to |V (Γ)|.

The functors that induce equivalence between categories KΓ − mod and K[π(Γ, t)] − mod
are:

V 7→ Pt ⊗K[π(Γ,t)] V, W 7→ HomKΓ(Pt,W ). (28)

In order to define an isomorphism KΓ → Matn(K[π(Γ, t)]), fix a system of paths {γi}
connecting the vertex t with every vertex i. For any element π ∈ K[π(Γ, t)] consider an element
γ−1
i πγj in KΓ. The homomorphism is defined be the assignment:

γ−1
i πγj 7→ π · Eij,

where Eij stands for the elementary matrix with the only nontrivial entry 1 at (ij)-th place.
This is clearly a well-defined ring isomorphism.

Let K = k be again a field. Since the fundamental group π(Γ, t) is free, the equivalence
implies that homological dimension of category kΓ−mod is 0 if graph is a tree and 1 otherwise.

The equivalence takes the duality functor (27) for kΓ − mod into the standard duality
W 7→ W ∗ for representations of the group π(Γ, t).

4.4 A formal construction of a new algebra by an element in an
algebra

We shall use the following general algebraic construction. Let A be an algebra over a commuta-
tive ring K and ∆ an element in A. Consider the non-unital algebra, A∆, with the same space
as A but with new multiplication defined by:

a ·∆ b = a∆b. (29)

By adjoining the identity element to algebra A∆, we get a unital algebra Â∆ = K · 1 ⊕ A∆.
Define two homomorphisms:

ψ1, ψ2 : A∆ → A, (30)

by assigning:
ψ1 : a 7→ a∆, ψ2 : a 7→ ∆a. (31)

Note that
Imψ1 = A∆, Imψ2 = ∆A, (32)

i.e. the images of the non-unital algebra A∆ are the one-sided ideals in A generated by ∆. We
use the same notation ψ1 and ψ2 for the extensions to homomorphisms of unital algebras:

ψ1, ψ2 : Â∆ → A,
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Note that A∆ is the augmentation ideal, and hence Â∆ - bimodule. Left multiplication in A
commutes with right multiplication in A∆ and vice versa. We use left and right multiplication
in A to endow A∆ with the structure of A-bimodule. Clearly, as a right or left A-module, A∆

is free of rank 1. The left Â∆-module structure on A∆ coincides with the structure obtained by
pull back of the left A-module structure along morphism ψ1. Similarly, the right Â∆-module
structure coincides with structure obtained by pull back of the right A-module structure along
morphism ψ2.

Denote by ψi
Aψj

the B - bimodule structure on A with left module structure defined by ψi
and right module structure defined by ψj. The identification of B+ with A gives an isomorphism
of B-bimodules :

B+ ∼= ψ1Aψ2 (33)

For that reason, we shall consider A to be endowed always with left B-module structure coming
from ψ1 and right B-module structure coming from ψ2.

If ∆ is an invertible element in A, then ψ1 and ψ2 are isomorphisms. Thus, A∆ is a unital
algebra with the unit ∆−1. Â∆ is obtained from a unital algebra, isomorphic to A, by adjoining
a new unit 1B. In this case, algebra Â∆ is isomorphic to the direct sum of algebras A∆ ' A and
K. Algebra A∆ is already embedded into Â∆, and K is embedded into Â∆ via K(1B −∆−1)(in
order to annihilate A∆). So the construction is interesting only when ∆ is not invertible.

4.5 Laplace operator on the graph and construction of B(Γ) via
Poincare groupoid.

Let K be a ring with a set of invertible elements {sij}. A universal choice is K = k[{sij}, {s−1
ij }].

For our purposes we need an element ∆ in algebra KΓ:

∆ = 1 +
∑

sijlij, (34)

where sum is taken over all oriented edges. We call it (generalized) Laplace operator of the
graph.

Consider algebra KΓ∆ obtained from algebra KΓ of Poincare groupoid and the element ∆
via the above construction. Denote by xi’s the elements in KΓ∆ that correspond to ei’s in KΓ.
An important relation between algebras B(Γ) and KΓ is established by the following

Theorem 8. There is a unique isomorphism of non-unital algebras:

B+(Γ) ∼= KΓ∆, (35)

and hence, an isomorphism of unital algebras:

B(Γ) ∼= K̂Γ∆ (36)

that takes xi into ei.
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Proof. Firstly,
x2
i = ei ·∆ ei = ei∆ei = ei = xi.

Further, we have:
xixj = ei ·∆ ej = ei∆ej = sijlij,

for (ij) ∈ E(Γ) and
xixj = 0, (37)

when (ij) is not an edge of Γ.
We also have:

lij ·∆ ljk = lijljk (38)

whenever (ij) ∈ E(Γ) and (jk) ∈ E(Γ). Hence,

xixjxi = s2
ijlijlji = s2

ijxi. (39)

Thus, we have checked the defining relations for B(Γ). In other words, we constructed a
homomorphism

B(Γ)→ K̂Γ∆,

which we need to show to be an isomorphism. The above equations imply that for every path
γ = (i1 . . . il), l ≥ 2, in the graph we have

xi1 . . . xil = xi1x
2
i2
. . . x2

il−1
xil = si1i2 . . . sil−1illi1i2·∆ · · ··∆ lil−1il = si1i2 . . . sil−1illi1i2 . . . lil−1il . (40)

where we consider multiplication in KΓ∆ at the left hand side and that in KΓ at the right hand
side. To get the last equality we use iteratively (38) and the fact that left multiplication in
KΓ∆ commutes with right multiplication in KΓ (or the explicit formula for multiplication).

Since the set of elements li1i2 . . . lil−1il where (i1, . . . , il) run over all contracted paths in Γ is
a K-basis in KΓ, bijectivity of the homomorphism follows from proposition 6.

A tail is a vertex in the graph with valency 1.

Proposition 9. Let Γ be a non-empty connected graph with no tail and K a commutative ring
with no zero divisor. Then ∆ is neither left nor right zero divisor in KΓ.

Proof. Assume that z ∈ KΓ is such that z∆ = 0. Since KΓ is a direct sum of right modules
Pt, where t runs over all vertices of the graph, every component zt of z in this direct sum
decomposition satisfies zt∆ = 0. Thus, we reduced the problem to the case when z ∈ Pt for
some t ∈ V (Γ). Consider the universal covering graph Γ̃ with a lift t̃ ∈ V (Γ̃) of the vertex t.
Then we have a unique lift z̃ ∈ KΓ̃ of z in the groupoid algebra of the universal cover. Clearly,
z̃∆̃ = 0, where ∆̃ is the Laplace operator for the universal cover. Note that H1(Γ,Z) 6= 0,
because the graph with zero homology is a tree and tree always has a tail. This implies that Γ̃
is infinite. Thus the sum in (34) for ∆̃ is infinite, but z̃∆̃ is a finite element, because z̃ has an
expression as a finite sum

z̃ =
∑

λγlγ, (41)
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where γ runs over some finite set of contracted paths in Γ̃ (with start at t̃), and λγ 6= 0. Let
γo is a contracted path in this sum with maximal length, and i is the ending vertex of this
path. Because the vertex is not a tail, there is an edge lij incident to this vertex, which is not
contained in γo. Decomposition of z̃∆̃ into linear combination of contracted paths will contain
a non-zero summand λγosijlγolij (no other terms than λγolγo from (41) can contribute to it).

Since z̃∆ = z̃∆̃, we got a contradiction. The absence of right zero divisors for ∆ is proven
similarly.

One can easily find graphs with tails for which ∆ is a zero divisor.
Consider the homomorphisms: ψi : B(Γ)→ KΓ, i = 1, 2. They map the generators of B(Γ)

as follows:
ψ1 : xi 7→ ei +

∑
j

sijlij, (42)

ψ2 : xi 7→ ei +
∑
j

sjilji. (43)

Corollary 10. Let Γ be a non-empty connected graph with no tail and K a commutative ring
with no zero divisor. Then homomorphisms ψi : B(Γ)→ KΓ, for i = 1, 2, are injective.

The last remark we would like to make is about the parameters sij which enter the definition
of Laplace operator. We can consider a symmetric square matrix S = {sij} with invertible
elements at the diagonal and define Laplace operator by:

∆ =
∑

siiei +
∑

sijlij.

The corresponding algebra KΓ∆ will have generators xi, corresponding to point paths in the
groupoid, which are not projectors. But they can be normalized by a nonzero scalar to be
projectors. Multiplication of xi by λ corresponds to multiplication of the elements in i-th line
and i-th row of the matrix S by λ. These multiplications allow to reduce to the case when
diagonal entries of the matrix are ones, which we considered. The combinatorial structure of
the graph encodes the places with nonzero entries in the matrix S.

4.6 Properties of Poincare groupoid as a module over B(Γ)

We shall prove several useful facts about KΓ which reflect its properties as a (bi)module over
B(Γ).

Proposition 11. The isomorphism in theorem 8 identifies B(Γ)xi with ψ1Pi = ψ1(KΓei)
(i.e. with Pi with left B(Γ)-module structure induced by ψ1) and xiB(Γ) with (eiKΓ)ψ2 (i.e.
with eiKΓ with right B(Γ)-module structure induced by ψ2). We have an isomorphism of left
B(Γ)-modules:

B+(Γ) = ⊕i B(Γ)xi (44)

and an isomorphism of right B(Γ)-modules

B+(Γ) = ⊕i xiB(Γ) (45)
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Proof. Formulas (37) and (40) show that B(Γ)xi coincides with KΓei and xiB(Γ) does with
eiKΓ. Since the left B(Γ)-module structure on KΓ comes via ψ1 and the right module structure
does via ψ2 the identifications follow. The decompositions

KΓ = ⊕i KΓei, KΓ = ⊕i eiKΓ

imply the decompositions for B+(Γ).

Since KΓ is isomorphic to B+(Γ), this proposition is applicable to KΓ when we consider it
as a left or right module over B(Γ).

Corollary 12. B+(Γ) (hence, KΓ) is projective as left and right B(Γ)-module.

Proof. Since, xi is an idempotent, we have a decomposition:

B(Γ) = B(Γ)xi ⊕B(Γ)(1− xi).

Being a direct summand of a free module, module B(Γ)xi is projective. Hence B+(Γ) is so.

In the framework of algebra A with a fixed element ∆, the multiplication map defines an
A-bimodule homomorphism A⊗Â∆

A→ A.

Proposition 13. Multiplication map in B+(Γ) defines an isomorphism of KΓ-bimodules:

KΓ⊗B(Γ) KΓ = KΓ. (46)

Proof. KΓ is identified with B+(Γ) as a left and right B(Γ)-module. Thus we need to show
that B+(Γ)⊗B(Γ) B

+(Γ) = B+(Γ). Every element in B+(Γ) has the form

b =
∑

xibi,

for some bi ∈ B+, in particular, for b = xi, we have xi = xixi. This implies that b is the image
of xi ⊗ bi under multiplication map, i.e. the map is surjective. Also, this implies that every
element p ∈ B+(Γ)⊗B(Γ) B

+(Γ) can be presented in the form

p =
∑

xi ⊗ ci.

If the image of p under multiplication is zero, then∑
xici = 0

By proposition 11 this implies that xici = 0 for all i. Then, xi ⊗ ci = x2
i ⊗ ci = xi ⊗ xici = 0,

i.e. p = 0. Hence, multiplication map is also injective.

5 Â∆ for well-tempered ∆

Given an algebra A over a commutative ring K and a fixed element ∆, we formalize suitable
conditions on this element which imply properties of B(Γ) described in the previous subsection.
We call elements satisfying these conditions well-tempered. They provide a good framework
for studying representation theory of a class of algebras whom B(Γ) belongs to.

20



5.1 Well-tempered elements

When considering algebras over a commutative ring K, we always assume them to be free as
modules over K. By default, tensor products are assumed to be over K.

Recall a bit of noncommutative differential geometry. Let B be a unital algebra over K.
Then B-bimodule Ω1

B of noncommutative 1-forms is defined as the kernel of the multiplication
map: B ⊗B → B. Thus, we have a short exact sequence:

0→ Ω1
B → B ⊗B → B → 0. (47)

The universal derivation B → Ω1
B is defined by the formula:

db = b⊗ 1− 1⊗ b,

for b ∈ B.
Let M be a left module over algebra B. We say that ∇ : M → Ω1

B ⊗B M is a connection
on M if it satisfies the condition:

∇(bm) = (db)m+ b∇(m),

for all b ∈ B and m ∈M .

Lemma 14. [CQ1] Module M is projective if and only if there exists a connection upon it.

Proof. Taking tensor product over B of sequence (47) with M gives a short exact sequence:

0→ Ω1
B ⊗B M → B ⊗M →M → 0,

because TorB1 (B,M) = 0. Since B ⊗M is a free B-module, projectiveness of M is equivalent
to splitting of this sequence, i.e. existence of a B-module homomorphism B ⊗M → Ω1

B ⊗BM
which is a retraction on Ω1

B ⊗B M . When composed with the embedding M → B ⊗M , where
m 7→ 1⊗m this retraction is nothing but a connection on M .

Note that Ω1
B is projective as both left and right B-module. The splitting of the sequence

(47) as of left (respectively, right) B-modules is given by map B → B⊗B defined by b 7→ b⊗1B
(respectively, b 7→ 1B ⊗ b).

Let B be an augmented unital algebra with augmentation ideal B+. We shall use the short
exact sequence given by the augmentation:

0→ B+ → B → K→ 0. (48)

Lemma 15. We have an isomorphism of left B-modules:

Ω1
B = B ⊗B+,

and an isomorphism of right B-modules:

Ω1
B = B+ ⊗B,
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Proof. By definition of Ω1
B, we have an embedding Ω1

B → B ⊗ B. Composite of this map
with the projection B ⊗ B → B ⊗ B+ that kills B ⊗ 1B gives the required isomorphism for
left B-modules. The projection B ⊗ B → B+ ⊗ B that kills 1B ⊗ B does the case for right
B-modules.

Now we consider M = B+ as a left or right B-module.

Proposition 16. Assume that multiplication map B+ ⊗ B+ → B+ is epimorphic. Then the
following are equivalent:

(i) B+ is projective as a left (respectively, right) B-module,

(ii) there is a left (respectively, right) B-module homomorphism which is a section to the map
B+ ⊗B+ → B+ given by multiplication in B+,

(iii) left B-submodule Ω1
BB

+ in Ω1
B is a direct summand (respectively, right B-submodule

B+Ω1
B in Ω1

B is a direct summand).

Proof. Left projectiveness of B+ is equivalent to the existence of a left B-module homomor-
phism s : B+ → B ⊗ B+, a section to the multiplication map B ⊗ B+ → B+. By assumption,
every element b ∈ B+ has a decomposition b =

∑
bici with bi, ci ∈ B+. Since s is a B-module

homomorphism, we got that s(b) =
∑
bis(ci) ∈ B+ ⊗ B+, i.e. the image of s lies in B+ ⊗ B+.

Thus, we can consider s as a section required in (ii). This proves equivalence of (i) and (ii).
Apply functor Ω1

B ⊗B (−) to the augmentation sequence (48). Since Ω1
B is projective as a

right B-module, it is also flat. Thus we get a short exact sequence:

0→ Ω1
B ⊗B B+ → Ω1

B → Ω1
B ⊗B K→ 0.

The image of the first homomorphism is Ω1
BB

+. In view of lemma 15, we have isomorphisms of
left B-modules Ω1

B = B⊗B+. Applying functor (−)⊗B K to (47), we get that Ω1
B ⊗B K = B+

as a left B-module. Easy calculation shows that, under this identifications, the homomorphism
Ω1
B → Ω1

B ⊗B K in the above short exact sequence coincides up to sign with the morphism
B⊗B+ → B+ given by multiplication. Thus the kernel of the multiplication map B⊗B+ → B+

is isomorphic to Ω1
BB

+. This map has a section if and only if B+ is a projective left B-module.
Therefore Ω1

BB
+ is a direct summand in Ω1

B exactly when B+ is projective.

Given an element ∆ in an algebra A, let B = Â∆ and B+ = A∆ the augmentation ideal in
B.

Consider complex K∆:

· · · → A⊗n → · · · → A⊗3 → A⊗2 → A→ 0 (49)

with differential d : A⊗n+1 → A⊗n defined by:

d(a0 ⊗ · · · ⊗ an) =
∑

(−1)ia0 ⊗ · · · ⊗ ai∆ai+1 ⊗ · · · ⊗ an.

This is the bar-complex for B+ expressed in terms of A. It might not be exact in general,
because B+ is not a unital algebra.
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Lemma 17. Complex of A-bimodules K∆ is isomorphic to K∆′ with

∆′ = c∆d,

where c and d are any invertible elements in A.

Proof. The isomorphism of complexes K∆′ ' K∆ is given by:

a0 ⊗ · · · ⊗ ai ⊗ · · · ⊗ an 7→ a0c⊗ · · · ⊗ daic⊗ · · · ⊗ dan. (50)

Definition. An element ∆ in algebra A is said to be well-tempered if the multiplication
map B+ ⊗B+ → B+ is an epimorphism and B+ is projective as left and right B-module.

By the previous subsection, Laplace operators are well-tempered elements in KΓ.

Lemma 18. If algebra A is a commutative, then ∆ is well-tempered if and only if it is invertible.

Proof. Note that the image of the multiplication map B+ ⊗ B+ → B+, in terms of A, is the
two-sided ideal A∆A. Therefore, if A is a commutative and ∆ is well-tempered, then ∆A = A,
i.e. ∆ is invertible. Conversely, if ∆ is invertible, then the multiplication map is epimorphic,
and we can define the left (respectively, right) B-module section to it by mapping b 7→ b⊗∆−1

(respectively, ∆−1 ⊗ b).

As we have seen, this implies that there is an isomorphism of algebras B ' A ⊕ K for the
commutative case.

According to proposition 16, ∆ is well-tempered if and only if the most right differential
A ⊗ A → A in the complex K∆ is epimorphic and allows sections which are left and right
B-module homomorphism.

Lemma 19. Let c and d be any invertible elements in A. Element ∆ is well-tempered if and
only if ∆′ = c∆d is so.

Proof. Left B-module structure on K∆ is the pull-back along ψ1 of the left A-module structure
and right B-module structure on K∆ is the pull-back along ψ2 of the right A-module structure.
Hence isomorphism (50) of complexes K∆ and K∆′ is a morphism of B-bimodules. Thus, the
property to have a left or right B-module section for the most right differential is preserved by
the isomorphism of complexes.

Proposition 20. If ∆ is well-tempered, then complex K∆ is exact.

Proof. As we already mentioned, complex K∆ coincides with bar-complex for B+:

· · · → (B+)⊗i → · · · → B+ ⊗B+ → B+.

Let h : B+ → B+⊗B+ be a homomorphism of right B-modules and a section to the most right
differential in the complex. It exists by proposition 16. Consider homotopy in this complex
defined by :

h(b1 ⊗ b2 ⊗ b2 ⊗ · · · ⊗ bn) = h(b1)⊗ b2 ⊗ · · · ⊗ bn.
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One can easily check that it satisfies the equation:

dh+ hd = id

Hence the complex is exact.

Note that we used only one-sided projectiveness of B+ in the proof of this proposition.

Corollary 21. If ∆ is well-tempered, then multiplication in B+ gives an isomorphism of A-
bimodules:

B+ ⊗B B+ = B+. (51)

Proof. Indeed, the quotient of (B+)⊗2 by the image of the differential (B+)⊗3 → (B+)⊗2 is
isomorphic to B+ ⊗B B+. Since there is no homology of K∆ in the terms B+ ⊗ B+ and B+,
then this quotient is identified with B+.

Consider the homomorphism of A-bimodules

A→ HomB(A,A) (52)

that takes a ∈ A to the homomorphism A→ A of left B-modules defined by right multiplication
with a in A. To make it compatible with multiplication in the endomorphisms ring of A we
need to take the opposite multiplication in the algebra A at the left hand side.

Proposition 22. Let ∆ ∈ A is well-tempered, and B = Â∆. Then map (52) defines an
isomorphism of algebras and of A-bimodules:

Aopp = HomB(A,A) (53)

Proof. Recall that B+ = A as an A-bimodule. It is a straightforward check that (52) defines
a homomorphism of algebras and of A-bimodules. Apply functor Hom(−, A) to isomorphism
(51). It gives:

A = HomA(A,A) = HomA(A⊗B A,A) = HomB(A,A).

Again, it is straightforward to check that this isomorphism coincides with the one we consider.

Since Laplace operator is a well-tempered element in KΓ, this proposition implies

Corollary 23. We have an isomorphism of algebras and of KΓ-bimodules:

KΓopp = HomB(Γ)(KΓ,KΓ) (54)

There is a morphism of left A-modules

A→ HomB(A,B) (55)

that takes an element a ∈ A to the composite of the operator of right multiplication by a,
Ra : A→ A = B+, with embedding B+ → B.
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Proposition 24. Let ∆ ∈ A is well-tempered, and B = Â∆. Morphism (55) is an isomorphism
of left A-modules:

A = HomB(A,B)

Proof. Apply functor HomB(A,−) to the short exact sequence (48). We obtain:

0→ HomB(A,B+)→ HomB(A,B)→ HomB(A,K)→ (56)

The first term in this sequence is isomorphic to A by the previous proposition. The last term
is zero, because any homomorphism from A = B+ to the trivial B-module K must annihilate
the image of the multiplication map B+ ⊗B+ → B+, which is epimorphic by the definition of
well-tempered elements.

Corollary 25. We have an isomorphism of left KΓ-modules:

KΓ = HomB(Γ)(KΓ, B(Γ))

The finite generation for B+ as a B-module that we have seen to hold for B(Γ) is also true
in general for algebras B constructed from a well-tempered elements. More precisely, we have

Lemma 26. Let B = Â∆ is such that the multiplication map B+ ⊗ B+ → B+ is epimorphic.
Then B+ is finitely generated as a right and left B-module.

Proof. The multiplication map for B+ is epimorphic if two-sided ideal A∆A is A. Therefore,
we have a decomposition for the unit in A:

1A =
∑

xi∆yi.

It implies that any b ∈ B+ = A has a decomposition:

b =
∑

bxi∆yi =
∑

(bxi) ·B yi,

where ·B is multiplication in B. Therefore, B+ is left generated by the finite set {yi}. Similarly,
it is right generated by the set {xi}.

5.2 Hochschild and global dimension of Â∆

Hochschild dimension of a K-algebra B is defined as projective dimension of B as a B-bimodule,
i.e. as a module over B ⊗ Bopp (note that the tensor product is taken over K). We denote it
by HdimB. It is invariant under Morita equivalences. In more general approach, when B is a
DG-algebra, it is called smooth if B is a perfect B ⊗ Bopp-bimodule. Smoothness is a derived
Morita invariant property, but Hochschild dimension might not be preserved under derived
equivalences. For a genuine algebra B, smoothness is equivalent to finiteness of Hochschild
dimension.
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Lemma 27. Let ∆ be a well-tempered element in algebra A and B = Â∆. If P is a projective
A-bimodule, then ψ1Pψ2 is a projective B-bimodule.

Proof. Since B+ is projective as a left and right B-module, then B+ ⊗ B+opp is projective as
a B ⊗ Bopp-module. Projective A ⊗ Aopp-module P is a direct summand in a free A ⊗ Aopp-
module A ⊗ U ⊗ Aopp, where U is a free K-module. Therefore, ψ1Pψ2 is a direct summand in

ψ1A ⊗ U ⊗ A
opp
ψ2

= B+ ⊗ U ⊗ B+opp, which is a projective B ⊗ Bopp-module. Therefore, it is
projective itself.

Theorem 28. Let ∆ be a well-tempered element in algebra A and B = Â∆. Then HdimB is
less than or equal to max(HdimA, 2).

Proof. Since A has a projective resolution of length HdimA as A ⊗ Aopp-bimodule, then B+,
which is isomorphic to ψ1Aψ2 , has a projective resolution of the same length as B ⊗ Bopp-
bimodule, by the above lemma.

The trivial module K has the following resolution of length 2 by projective B⊗Bopp-modules:

0→ B+ ⊗B+ → (B ⊗B+)⊕ (B+ ⊗B)→ B ⊗B → K→ 0.

The augmentation exact sequence (48) implies that projective B ⊗Bopp-dimension of B is not
greater than maximum of projective dimensions of B+ and of K.

Thus, we see that the smoothness of A in the DG-sense implies smoothness of B.

Corollary 29. Hochschild dimension of B(Γ) is less than or equal to 2.

Proof. By proposition 7, algebra KΓ is Morita equivalent to a matrix algebra over K[π(Γ), t].
Since the fundamental group of Γ is free, algebra K[π(Γ), t] is quasi-free (relatively over K) in
the sense of Cuntz and Quillen [CQ1], hence Hochschild dimension of KΓ is ≤ 1. As Hochschild
dimension is Morita invariant, the above theorem gives the required upper bound for Hochschild
dimension of B(Γ).

Recall that left (respectively, right) global dimension of an algebra is the maximum of
projective dimensions of left (respectively, right) modules over the algebra. For an algebra B,
we denote its left global dimension by gldimlB and right global dimension by gldimrB.

As a consequence of the above theorem, we obtain

Theorem 30. Let ∆ be a well-tempered element in algebra A and B = Â∆. Then we have
inequalities for left and right global dimensions of B:

gldimlB ≤ max(HdimA, 2) + gldimlK,

gldimrB ≤ max(HdimA, 2) + gldimrK.

Proof. Let M and N be any two left (or right) A-modules. We have spectral sequence with the
sheet E2:

Eij
2 = ExtiA−A(A,ExtjK(M,N)) (57)

that converges to Exti+jA (M,N). Thus, we get an upper bound for (left or right) global dimen-
sion of B from the upper bound on Hochschild dimension obtained in the previous theorem
and from the upper bound on j for non-zero ExtjK by global dimension of K.
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Corollary 31. If K = k is a field, then global dimension of the category of B(Γ)-modules is
not higher than 2.

6 Representation theory for B(Γ).

6.1 Functors between categories A−mod and Â∆ −mod.

Assume again that we have a unital algebra A, a fixed element ∆ in A , a non-unital algebra
B+ = A∆ and its unital extension, algebra B = Â∆. We do not assume in this subsection that
∆ is well-tempered.

By restricting the module structure along ψ1 and ψ2, we define push-forward functors on
the categories of left modules:

ψ1∗ : A−mod→ B −mod, ψ2∗ : A−mod→ B −mod.

We use notations for these functors that are compatible with the viewpoint of Noncommutative
Algebraic Geometry, where homomorphisms ψ1 and ψ2 are assumed to define geometric maps
between noncommutative affine spectra of unital algebras: SpecA→ SpecB. The noncommu-
tative affine spectrum of an algebra is understood as an object of the category opposite to the
category of associative algebras. Modules are understood as sheaves on the affine spectra.

There is a natural transformation of functors:

λ : ψ1∗ → ψ2∗, (58)

For a representation ρ : A→ EndV and v ∈ V , it is defined by

λ(v) = ρ(∆)v. (59)

It is a straightforward check that this formula defines a natural transformation.
We say that a B-module is B+-trivial, if B+ acts by zero on it.

Lemma 32. Let W be an A-module. Then the kernel and cokernel of λW are B+-trivial
modules. Moreover, we have an exact sequence with the middle morphism λW :

0→ (ψ1∗W )B
+ → ψ1∗W → ψ2∗W → ψ2∗W/(B

+ψ2∗W )→ 0. (60)

Proof. The map λW is given by the action of ∆ on the representation space. This implies that
the action of ψ1(b) = b∆ on the kernel of λW is zero for any b ∈ B+. Taking b = 1A, we see
that the kernel is exactly the submodule in ψ1∗W which contains all elements on which B+ acts
trivially. Hence it is (ψ1∗W )B

+
.

The image of λW is the image of the action of ∆. It contains the image of the action of
ψ2(b) = ∆b, for any b ∈ B+, and, in fact, coincides with B+ · ψ2∗W (again, consider b = 1A).
Thus the quotient of ψ2∗W by the image is the space of co-invariants for B+-action.
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Functors ψ1∗ and ψ2∗ have right adjoints ψ!
1, ψ

!
2 : B −mod→ A−mod defined by:

ψ!
1, ψ

!
2 : V 7→ HomB(A, V ), (61)

where A is endowed with the structure of left B-module via ψ1 or ψ2 respectively.
Also functors ψ1∗ and ψ2∗ have left adjoints ψ∗1, ψ

∗
2 : B −mod→ A−mod defined by:

ψ∗1, ψ
∗
2 : V 7→ A⊗B V, (62)

where A is endowed with right B-module structure via ψ1 or ψ2 respectively.
In order to distinguish the multiplication in A from that in B+, we denote it by ·A. Let

ρ : B → End(V ) be a representation of B. Consider map

µV : A⊗B V → HomB(A, V )

defined by:
a⊗ v 7→ φa⊗v ∈ HomB(A, V ), (63)

where
φa⊗v(a

′) = ρ(a′ ·A a)v (64)

Note that we used ψ2 to define A⊗B V and ψ1 to define HomB(A, V ).

Lemma 33. Formulas (63) and (64) define a natural transformation of functors:

µ : ψ∗2 → ψ!
1. (65)

Proof. There are several things that we need to check. First, morphism φ is indeed a homomor-
phism of left B-modules. Second, morphism µV is well-defined on A⊗BV . Third, morphism µV
is compatible with left A-module structures. Forth, morphisms µV are functorial with respect
V . All this is a straightforward check, which we leave to the reader.

By adjunction, we have a natural transformation:

χ : ψ1∗ψ
∗
2 → id.

Let V be a B-module with action of B given by ρ : B → EndV . Then ψ1∗ψ
∗
2V = A⊗ V and

χ(a⊗ v) = ρ(a)v,

where a is interpreted as an element in B+.
Denote the following adjunction morphisms by ε and δ:

ε : ψ1∗ψ
!
1 → id,

δ : id→ ψ2∗ψ
∗
2.

For a B-module V and ϕ ∈ HomB(A, V ) = ψ1∗ψ
!
1V , we have

εV (ϕ) = ϕ(1).

For v ∈ V , we have
δV (v) = 1⊗ v

as an element in A⊗B V = ψ2∗ψ
∗
2V .
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Lemma 34. The kernel and cokernel of both ε and δ evaluated on any B-module V are B+-
trivial modules.

Proof. We denote by ρ the action of B on V . Let ϕ ∈ HomB(A, V ) = ψ1∗ψ
!
1V . If ϕ belongs to

the kernel of εV , then ϕ(1) = 0 and

(b · ϕ)(a) = ϕ(a ·A b ·A ∆) = ρ(a ·A b)ϕ(1) = 0,

for any a ∈ A and b ∈ B+. Hence the kernel of ε is a B+-trivial B-module.
If v = ρ(b)u for some b ∈ B+ and u ∈ V , then define ϕ ∈ HomB(A, V ) by ϕ(a) = ρ(a ·A b)u.

This is indeed a homomorphism of B-modules and ϕ(1) = v. Hence the action by elements
from B+ on V has values in the image of ε, i.e. the cokernel of ε is a B+-trivial B-module.

Let a⊗ v be in A⊗B V = ψ2∗ψ
∗
2V and b ∈ B+. Then

b · (a⊗ v) = (∆ ·A b ·A a)⊗ v = 1⊗ ρ(b ·A a)v.

Thus cokernel of δV is a B+-trivial B-module.
If v ∈ V is such that δV (v) = 1⊗ v = 0 in A⊗B V = ψ2∗ψ

∗
2V . Using the fact that A⊗B V

is a left A-module, we get a ⊗ v = a(1 ⊗ v) = 0, for any a ∈ A. Now let us use the fact that
A⊗B V is the underlying vector space for ψ1∗ψ

∗
2V , though with a different B-module structure,

and apply χV : A⊗B V → V . We get:

χV (a⊗ v) = ρ(a)v = 0,

where a is now interpreted as an arbitrary element in B+. Therefore, the kernel of δV is a
B+-trivial B-module.

Lemma 35. Let V be a B-module. The composite of natural transformations:

ψ1∗ψ
!
1V

εV // V
δV // ψ2∗ψ

∗
2V

ψ2∗(µV )// ψ2∗ψ
!
1V (66)

coincides with λψ!
1V

.

Proof. This is a straightforward check.

Example. If A is a commutative algebra, then ψ1 = ψ2. Let A = k[t] be the algebra of

polynomial in one variable and ∆ = t2. Algebra B = Â∆ is the algebra of an affine curve with
a cusp:

B = k[x, y]/(x3 − y2).

The homomorphism ψ1 = ψ2 : B → A is the normalization map for the cusp curve given by:

x = t2, y = t3.

Take V = A as a B-module. Then easy calculation shows that

A⊗B A ' k[t]⊕ k[t]/t2,

and
HomB(A,A) ' k[t].

Thus µA is not an isomorphism.
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6.2 Calculations in the well-tempered case

Lemma 36. Let ∆ be a well-tempered element in A. Then functors ψ!
1 and ψ∗2 are exact.

Proof. Since B+ is projective as left B-module, then ψ!
1 is exact. Since B+ is projective, hence

flat, as right B-module, then ψ∗2 is exact.

Lemma 37. Let ∆ be well-tempered, W an A-module and V a B+-trivial B-module. Then

(i) Rψ!
1V = RHomB(A, V ) = 0;

(ii) Lψ∗2V = A⊗L
B V = 0;

(iii) Ext•B(ψ1∗W,V ) = 0;

(iv) Ext•B(V, ψ2∗W ) = 0.

Proof. First,
RHomB(A, V ) = RHomB(B+, V ) = HomB(B+, V ),

because B+ is a projective left B-module. Further any homomorphism from A = B+ to a
B+-trivial B-module must annihilate the image of the multiplication map B+ ⊗ B+ → B+.
This map is epimorphic by the definition of well-tempered elements. This implies (i).

We have by adjunction:

Ext•B(ψ1∗W,V ) = Ext•A(W,Rψ!
1V ) = 0.

which proves (iii).
Similarly,

A⊗L
B V = B+ ⊗L

B V = B+ ⊗B V = 0,

because every element b ∈ B+ has the form b =
∑
ai ·B bi, where ai, bi ∈ B+. Hence b ⊗ v =∑

ai ⊗ biv = 0 for any v ∈ V . This proves (ii) and implies

Ext•B(V, ψ2∗W ) = Ext•A(Lψ∗2V,W ) = Ext•A(A⊗L
B V,W ) = 0,

which proves (iv).

Proposition 38. The adjunction morphisms

ψ∗2ψ2∗ → id, id→ ψ!
1ψ1∗

are isomorphisms.

Proof. Let W be a left A-module. Since A is isomorphic B+, isomorphism (51) reads as
A⊗B A = A. Applying tensor product (−)⊗AW to it gives: A⊗BW = W , which implies that
the morphism ηW : ψ∗2ψ1∗W → W obtained from λW by adjunction is an isomorphism. Now
apply ψ∗2 to λW . By lemmas 32, 36 and 37(ii) we get that ψ∗2(λW ) : ψ∗2ψ1∗W → ψ∗2ψ2∗W is an
isomorphism. Since ηW is the composite of ψ∗2(λW ) and the adjunction morphism ψ∗2ψ2∗W →
W , we get that ψ∗2ψ2∗ → id is an isomorphism.

Now, applying tensor product (−)⊗AW to isomorphism (53) implies that id→ ψ!
1ψ1∗ is an

isomorphism.
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Proposition 39. Let ∆ be a well-tempered element in algebra A and B = Â∆. Then natural
transformation µ from (65) gives an isomorphism ψ∗2 ' ψ!

1 on the category B −mod.

Proof. Functor ψ∗2 takes rank 1 free B-module B to A and so does the functor ψ!
1 due to

proposition 24. Functors ψ∗2 and ψ!
1 are exact and commute with infinite direct sum. The

latter does, because A is a finitely generated left B-module due to proposition 26. Hence, a
presentation for a B-module V as a cokernel of a homomorphism of free B-modules implies
similar presentation for ψ∗2V and ψ!

1V as cokernels of a homomorphisms of free A-modules,
while µ induces an isomorphism of these presentations.

Proposition 40. Let ∆ be a well-tempered. For any two B+-trivial B-modules U and V and
any i ∈ Z, we have:

ExtiB(U, V ) = ExtiK(U, V ).

In particular, K is an exceptional object, i.e. HomB(K,K) = K and ExtiB(K,K) = 0, for i 6= 0.

Proof. Clearly, HomB(U, V ) = HomK(U, V ). Let F be a free K-module. Let us show that
Ext>0

B (F, V ) = 0, for any B+-module V . Applying functor (−)⊗ F to the augmentation exact
sequence (48) gives a short exact sequence of B-modules:

0→ B+ ⊗ F → B ⊗ F → F → 0

Apply functor ExtiB(−, V ) to it. Since B+ and B are projective B-modules, we get
Ext>1(F, V ) = 0 and an exact sequence:

0→ HomB(F, V )→ HomB(B ⊗ F, V )→ HomB(B+ ⊗ F, V )→ Ext1
B(F, V )→ 0

Since B+ = ψ1∗A, then HomB(B+, V ) = 0 by lemma 37(iii). Since F is free, we have:
HomB(B+ ⊗ F, V ) = 0 and, in view of the exact sequence, Ext1

B(F, V ) = 0, too. Calcula-
tion of ExtiB(U, V ) via free K-resolutions imply the required isomorphism wit ExtiK(U, V ).

Proposition 41. Let ∆ be well-tempered and W an A-module. Then we have an isomorphisms
of B-modules:

HomB(B+, ψ1∗W ) = ψ2∗W. (67)

Further, there is a quasi-isomorphism of complexes:

RHomB(K, ψ1∗W ) = { 0 // ψ1∗W
λW // ψ2∗W // 0 }, (68)

with two non-trivial components in degree 0 and 1.

Proof. We have an isomorphism of A-modules HomB(A,ψ1∗W ) = ψ!
1ψ1∗W = W by proposition

38. HomB(B+, ψ1∗W ) is the same vector space with the left action of B coming from its right
action on A, defined by ψ2. This proves (67).

Using augmentation sequence (48) as a projective resolution for left B-module K and the
above identification for HomB(B+, ψ1∗W ), we obtain (68).
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Lemma 42. Let ∆ be well-tempered and W an A-module. Then: HomB(K, ψ1∗W ) =
(ψ1∗W )B

+
, Ext1

B(K, ψ1∗W ) = ψ2∗W/B
+ψ2∗W , and Ext>1

B (K, ψ1∗W ) = 0. In particular,
HomB(K, B+) = {a ∈ A|∆a = 0}, Ext1

B(K, B+) = A/∆A and Ext>1
B (K, B+) = 0.

Proof. This follows from (68) and 60. The particular case is when we take W = A.

Proposition 43. Let ∆ be well-tempered, V a B-module and U a B+-trivial B-module. Then
ExtiB(V, U) = 0, for i > gldimK + 1.

Proof. By lemma 34 we have an exact sequence

0→ K → ψ1∗ψ
!
1V → V → Q→ 0 (69)

with K and Q B+-trivial B-modules. Consider the spectral sequence that calculates functor
Ext•B(−, U) on this exact sequence. Its E1-term has Ext-groups on top of terms of the sequence
and it converges to zero, because the sequence is exact. We have by adjunction:

Ext•B(ψ1∗ψ
!
1V, U) = Ext•A(ψ!

1V, ψ
!
1U),

because ψ!
1 is an exact functor by lemma 36. By lemma 37, ψ!

1U = 0. Therefore,
Ext•B(ψ1∗ψ

!
1V, U) = 0. Moreover, since K and Q are trivial modules, ExtiB(K,U) = 0 and

ExtiB(Q,U) = 0, for i > gldimK, by proposition 40. The spectral sequence immediately implies
that ExtiB(V, U) = 0, for i > gldimK + 1.

6.3 Coherence of algebras and categories of finitely presented mod-
ules

Let A = KΓ. Then we know that B(Γ) = Â∆. According to our original problem, we are
interested in the categories of representations for B(Γ), which are of finite rank over K, but
general theory dictates that we should start with the category of finitely presented modules.
First we need to show that this category is abelian.

A left module M of an algebra is said to be coherent if it is finitely generated and for every
morphism ϕ : P → M with free module P of finite rank the kernel of ϕ is finitely generated.
An algebra is (left) coherent if it is coherent as a left module over itself. If algebra is coherent,
then finitely presented modules are the same as coherent modules and the category of finitely
presented modules is abelian [?].

By proposition 7, algebra KΓ is isomorphic to the matrix algebra over K[π(Γ, t)]. Hence, it
is quasi-free relatively over K. The definitions due to Cuntz and Quillen [CQ1] of a quasi-free
algebra, which we adopt to the relative case (i.e. for algebras over a a commutative ring K
rather than over a field), is that algebra A is quasi-free if the bimodule of noncommutative
differential 1-forms Ω1A is a projective A⊗ Aopp-module.

If K = k is a field, then every quasi-free algebra is hereditary, i.e. has global dimension ≤ 1.
Indeed, for any two A-modules M and N we have:

ExtiA(M,N) = ExtiA−A(A,Homk(M,N)).
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Since A has a projective bimodule resolution of length 1, it follows that ExtiA(M,N) = 0, for
i ≥ 2.

Hereditary algebras are coherent. Indeed, a submodule of a projective module is projective
for such algebras. Thus, given a morphism ϕ : P1 → P2 between finitely generated projective
modules, the image I of ϕ is a submodule of a projective module, hence projective too. Then
short exact sequence induced by ϕ:

0→ K → P1 → I → 0,

where K is the kernel of ϕ, splits. Hence, we have an epimorphism P1 → K, which proves
that K is finitely generated. Since kΓ is quasi-free, hence hereditary, we got that the category
kΓ−modfp of finitely presented kΓ-modules is abelian.

The above argument works for quasi-free algebras when the base ring is a field only. We
develop the theory for the case of relatively quasi-free algebras. A K-algebra A is said to be
central over K if the image of K → A is in the center of A. Define the A ⊗K A

opp-module of
relative forms by an exact sequence

0→ Ω1
A/K → A⊗K A→ A→ 0 (70)

Definition Let K be a commutative ring. An algebra A central over K is said to be
quasi-free over K if Ω1

A/K is a projective A⊗K A
opp-module.

A generalization of Cuntz-Quillen criterion for quasi-freeness [CQ1] holds in the relative
case.

Proposition 44. Algebra A is quasi-free over K if and only if for any R̃, a nilpotent extension
of the algebra R by square zero ideal I in the category of algebras central over K, and any
homomorphism A→ R there exists its lifting to a homomorphism A→ R̃.

Proof. Consider such an extension and such a homomorphism. Let Ã be the fibred product
over R of A and R̃. This is an algebra central over K too. It is a square zero extension of A
by means of I endowed with an A-bimodule structure pulled back from R-bimodule structure.
Note that I is is K-central bimodule (i.e. left K action coincides with the right one). Such
extensions are classified by Ext2

A⊗Aopp(A, I) which are trivial for quasi-free algebras. Hence, we

have a splitting homomorphism A → Ã. When combined with the map Ã → R̃ it gives the
required lifting. Conversely, if all square zero extensions allow liftings, then, by taking R = A
and I arbitrary K-central A-bimodule, we see that Ext2

A⊗Aopp(A, I) = Ext1
A⊗Aopp(Ω1

A/K, I) = 0,

i.e. Ω1
A/K is a projective A⊗ Aopp-bimodule.

The following criterion of coherence is due to Chase [Chase].

Lemma 45. For any ring A the following are equivalent:

• A is left coherent

• For any family of right flat modules Fi, i ∈ I, the product
∏

i∈I Fi is right flat.
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• For the family Fi ∼= A of free modules with card I = card A, the product
∏

i∈I Fi is right
flat.

We will use also a similar criterion for noetherianess (cf. [Ab]).

Lemma 46. For any ring A the following are equivalent:

• A is left noetherian

• For any left A-module M and any family of flat right modules Fi, i ∈ I, the morphism
(
∏

i∈I Fi)⊗AM →
∏

i∈I(Fi ⊗AM) is mono.

• For any left A-module M and the family of rank 1 free right modules Fi ∼= A, i ∈ I,
card I = card A, the morphism (

∏
i∈I Fi)⊗AM →

∏
i∈I(Fi ⊗AM) is mono.

Theorem 47. Let K be a commutative noetherian ring. Assume that A is an algebra quasi-free
relatively over K and A is flat as a K-module. Then A is a left and right coherent algebra.

Proof. Consider left A-module M and a family of rank 1 free right A-modules Fi ∼= A. We shall
consider all left (respectively, right) A-modules to be always endowed with the right (respec-
tively, left) K-module structure identical to the left (respectively, right) K-module structure.

By applying functors (−)⊗A⊗KAopp (M ⊗K
∏

i Fi) and
∏

i((−)⊗A⊗KAopp (M ⊗KFi)) and their
derived functors to the exact sequence (70), we obtain a commutative diagram with exact rows:

0 // TorA⊗KA
opp

1 (A,M ⊗K
∏

i Fi)
//

��

Ω1
A/K ⊗A⊗KAopp (M ⊗K

∏
i Fi)

��

0 // ∏
i TorA⊗KA

opp

1 (A,M ⊗K Fi) //
∏

i(Ω
1
A/K ⊗A⊗KAopp (M ⊗K Fi))

(71)

For any left A-module M and right A-module N , we have an isomorphism of objects in the
derived categories:

A⊗L
A⊗KAopp (M ⊗L

K N) = M ⊗L
A N,

which implies a spectral sequence:

TorA⊗KA
opp

i (A,TorK
j (M,N)) =⇒ TorAi+j(M,N)

For a flat K-module N , it implies that

TorA⊗KA
opp

1 (A,M ⊗K N) = TorA1 (M,N). (72)

Since Fi are rank 1 free as A-modules and A is a flat K-module, Fi are also flat K-modules.
Hence TorA1 (M,Fi) = 0. Since K is noetherian, it is coherent, hence by Chase criterion, lemma
45,

∏
i Fi is also flat. In view of (72), diagram (71) reads:

0 // TorA1 (M,
∏

i Fi)
//

��

Ω1
A/K ⊗A⊗KAopp (M ⊗K

∏
i Fi)

��

0 //
∏

i(Ω
1
A/K ⊗A⊗KAopp (M ⊗K Fi))

(73)
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Let us show that Ω1
A/K⊗A⊗KAopp (M⊗K

∏
i Fi)→

∏
i(Ω

1
A/K⊗A⊗Aopp (M⊗KFi)) is an embedding.

By criterion of noetherianess, lemma 46, for K, we have that M ⊗K
∏

i Fi →
∏

i(M ⊗K Fi) is
an embedding.

Let D = ⊕j(A⊗K A
opp) be a free A⊗K A

opp-module, then

D ⊗A⊗KAopp (M ⊗K
∏
i

Fi) = ⊕j(M ⊗K
∏
i

Fi)

and ∏
i

(D ⊗A⊗KAopp (M ⊗K Fi)) =
∏
i

(⊕j(M ⊗K Fi)).

The morphism

D ⊗A⊗KAopp (M ⊗K
∏
i

Fi)→
∏
i

(D ⊗A⊗KAopp (M ⊗K Fi))

is the composite of two morphism:

⊕j(M ⊗K
∏
i

Fi)→ ⊕j
∏
i

(M ⊗K Fi)→
∏
i

(⊕j(M ⊗K Fi)).

Both morphism are readily embeddings, hence so is the composite.
Since Ω1

A/K is a projective bimodule, we have an imbedding

Ω1
A/K → ⊕jA⊗K A

opp

as a direct summand. This implies a diagram:

Ω1
A/K ⊗A⊗KAopp (M ⊗K

∏
i Fi) //

��

⊕j(M ⊗K
∏

i Fi)

��∏
i(Ω

1
A/K ⊗A⊗KAopp (M ⊗K Fi)) //

∏
i(⊕j(M ⊗K Fi))

(74)

The upper horizontal arrow is an embedding because it obtained by tensoring up an embedding
of a direct summand with a module M ⊗K

∏
i Fi. We have shown above that the right vertical

arrow is an embedding too. Therefore, the left vertical arrow is an embedding. Then, diagram
(73) implies that TorA1 (M,

∏
i Fi) = 0, i.e

∏
i Fi is a right flat module. By Chase criterion,

lemma 45, algebra A is left coherent.
Right coherence follows similarly.

Theorem 48. Let ∆ ∈ A be well-tempered and B = Â∆. Assume that A is a coherent algebra
over a coherent ring K. Then B is coherent too.
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Proof. Consider a homomorphism M → N of free B-modules of finite rank. Embed it into a
four term exact sequence

0→ K →M → N → Q→ 0. (75)

We need to show that K is finitely generated. Apply functor ψ1∗ψ
!
1 to it. Since both functors

ψ1∗ and ψ!
1 are exact (lemma 36), we get an exact sequence:

0→ ψ1∗ψ
!
1K → ψ1∗ψ

!
1M → ψ1∗ψ

!
1N → ψ1∗ψ

!
1Q→ 0

By proposition 24, ψ!
1M and ψ!

1N are free A-modules of finite rank. Since A is a coherent
algebra, this implies that ψ!

1K is a finitely generated A-module. Further, ψ1∗A is finitely
generated as a B-module by lemma 26. Therefore, ψ1∗ of a finitely generated A-module is a
finitely generated B-module. Hence, B-module ψ1∗ψ

!
1K is finitely generated too.

Now consider the exact sequence induced by the adjunction morphism:

ψ1∗ψ
!
1K → K → S → 0

As ψ1∗ψ
!
1K is finitely generated, it is remained to show that S is so. By lemma 34, S is a

B+-trivial B-module. Therefore, S is a quotient of K/B+K. Let us check that the latter is
finitely generated.

Consider the spectral sequence which is obtained by applying functor K ⊗B (−) to the
sequence (75). The spectral sequence converges to zero, because the original sequence is exact.
Taking into account that M and N are projective, hence, flat, we see that the contribution to
K⊗B K = K/B+K come from the kernel of K⊗BM → K⊗B N and TorB2 (K, Q). The former
is the kernel of a morphism between finite rank free K-module, hence, in view of coherence of
K, is finitely generated, the latter is zero because augmentation sequence (48) provides a flat
B-resolution of length 2 for K.

Corollary 49. Let K be a noetherian ring. Then Poincare groupoid KΓ and algebra B(Γ) are
coherent.

Proof. Since the fundamental group π(Γ) is free, the group ring K[π(Γ)] is quasi-free relatively
over K (cf. [CQ1]). Indeed, the free algebra K〈x1, . . . , xn〉 is relatively quasi-free over K
because it obviously satisfies the lifting criterion of proposition 44. The group ring K[π(Γ)] is
a localization of of the free algebra, hence satisfies the lifting criterion too. By theorem 47 it
is coherent. By proposition 7, algebra KΓ is Morita equivalent to the group ring of K[π(Γ)].
Therefore, it is coherent too. Coherence of B(Γ) follows by theorem 48.

This corollary implies that the category of finitely presented left modules over KΓ and over
B(Γ) are abelian. We indicate the categories of finitely presented (left) modules by subscript
fp.

Proposition 50. Let ∆ be a well-tempered element in algebra A and B = Â∆. Then functors
ψ1∗, ψ

∗
2, ψ!

1 and ψ∗1 take finitely presented left modules over corresponding algebras to finitely
presented modules.
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Proof. A finitely presented A-module W has a presentation by finitely generated free A-
modules. By applying exact functor ψ1∗ to this presentation, we obtain a presentation for
ψ1∗W by projective B-modules which are finite sums of copies of B+. Since B+ is finitely
generated B-module by lemma 26, ψ1∗W is finitely presented.

Functors ψ∗1 and ψ∗2 take finitely generated free B-modules to finitely generated free A-
modules. As the both are right exact, it follows that they take finitely presented B-modules to
finitely presented A-modules.

Functor ψ!
1 is isomorphic to ψ∗2 by proposition 39.

Lemma 51. Let K be a noetherian ring. Then any finitely generated K-module is finitely
presented as a B-module.

Proof. Since K is noetherian every finitely generated module has a presentation by finitely
generated free modules over K. Finitely generated free modules over K have finite projective
resolution over B, because K has a projective B-resolution (48). The fact follows.

Proposition 52. Functor ψ2∗ takes finitely presented modules to finitely presented if and only
if {a ∈ A|∆a = 0} and A/∆A are finitely generated K-modules.

Proof. Assume that ψ2∗ takes finitely presented modules to finitely presented. Consider exact
sequence (60) applied to module W = A. Since ψ1∗W is finitely presented and the category of
finitely presented modules is abelian, the kernel and cokernel of λA must be finitely presented
modules. But they are B+-trivial modules with the kernel being isomorphic to {a ∈ A|∆a = 0}
and cokernel to A/∆A. Hence they must be finitely generated K-modules.

Conversely, assume that these K-modules are finitely presented. By lemma 51 it is enough
to show that the kernel and cokernel of λW are finitely generated K-modules. For W = A it is
clear from (60).

Consider the 4-term exact sequence that come from this finite presentation:

0→ Z → Ak → Al → W → 0

First, since functor ψ2∗(−)/B+ψ2∗(−) is right exact and its value on Al is a finitely generated
K-module then so is its value on W . Thus the cokernel of λW is a finitely generated K-module.
Second, by applying exact functor ψ1∗ to the exact sequence, we get a 4-terms exact sequence:

0→ ψ1∗(Z)→ (B+)k → (B+)l → ψ1∗(W )→ 0

By applying functor HomB(K,−) to it, we get a spectral sequence that converges to 0. It
shows that the contribution to (ψ1∗W )B

+
= HomB(K, ψ1∗W ) might come from the cokernel

of HomB(K, (B+)k) → HomB(K, (B+)l), from Ext1
B(K, (B+)k) and from Ext2

B(K, ψ1∗Z). By
lemma 42 contributions from the first two are finitely generated K-modules, while the third
module is zero. Therefore, the kernel of λW is finitely generated over K.

For an A-module W , consider the map λW : ψ1∗W → ψ2∗W defined by natural transforma-
tion (58). Define the B-module Wmin as the image of λW .
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Lemma 53. Let W be an A-module and V a B+-trivial B-module. Then B(Γ)-module Wmin

satisfies HomB(V,Wmin) = 0 and HomB(Wmin, V ) = 0.

Proof. Module Wmin is a submodule in ψ2∗W , hence HomB(Γ)(V,Wmin) = 0 by lemma 37(iv).
Also it is a quotient of ψ1∗W , hence HomB(Γ)(Wmin, V ) = 0 by lemma 37(iii).

If V is a B-module, then define the minimal shadow of V by Vmin := (ψ!
1V )min = (ψ∗2V )min.

Proposition 54. Given B-module V we have a commutative diagram:

ψ1∗ψ
!
1V

α−−−→ Vmin

εV

y yβ

V −−−→
δV

ψ2∗ψ
∗
2V

with an epimorphism α and monomorphism β.

Proof. This follows from lemma 35 and proposition 39.

For a left B(Γ)-module V and a vertex i ∈ V (Γ), define K-modules

Vi = {v ∈ V | ρ(xi)v = v}.

If Γ is a connected graph, then Vi are isomorphic for all i ∈ V (Γ). Indeed, if (ij) ∈ E(Γ)
and v ∈ Vi, then s−1

ij ρ(xj)v ∈ Vj. Moreover, s−1
ij ρ(xi)(s

−1
ij ρ(xj)v) = s−2

ij ρ(xixjxi)v = v. Thus,

s−1
ij ρ(xj) and s−1

ij ρ(xi) are mutually inverse transformations between Vi and Vj. In general, the
isomorphism depends on the choice of path connecting vertices i and j.

Proposition 55. Let V be a left B(Γ)-module. Then there is a natural decomposition:

ψ∗2V = ⊕i Vi (76)

Proof. Since KΓ is isomorphic to B+(Γ) as a right B(Γ)-module, we can apply (45) to calcula-
tion of KΓ⊗B(Γ) V . Since xi is an idempotent we have a short exact sequence of right modules
(actually, a direct sum decomposition):

0→ (1− xi)B(Γ)→ B(Γ)→ xiB(Γ)→ 0 (77)

Taking tensor product of (77) with V over B(Γ) shows that the

xiB ⊗B V = V/Im(idV − ρ(xi)) = Vi.

We say that a finite dimensional B(Γ)-module is of rank r, and write rank V = r, if
dimVi = r.
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6.4 Duality

Assume that we have an involutive anti-automorphism σ = σA on A that preserves ∆:

σ(∆) = ∆.

Then, σ induces an anti-automorphism on B+, hence on B, which we denote by σB when we
need to distinguish it from σA. Indeed,

σ(a ·∆ b) = σ(a∆b) = σ(b)σ(∆)σ(a) = σ(b) ·∆ σ(a).

Further, the anti-involutions on A and B satisfy a relation with respect to ψ1 and ψ2:

σA ◦ ψ1 = ψ2 ◦ σB. (78)

Remember that we have an anti-involution (26) on the algebra KΓ. It preserves Laplace
operator ∆, hence it induces an anti-involution σB : B(Γ)→ B(Γ)opp, which is defined by:

σB(xi) = xi.

Any anti-isomorphism of an algebra induces an equivalence between the categories of left
and right modules of the algebra. If K = k is field and a left B-module is finite dimensional over
k, then the dual vector space is a right B-module. The composition of the equivalence induced
by an anti-isomorphism with ”taking dual” gives a duality, i.e. an involutive anti-equivalence,
on the category of finite dimensional right B-modules. Anti-involution σB induces a duality
D : B(Γ) − mod ' B(Γ) − modopp. For the representation ρ : B(Γ) → End(V ), the dual
representation D(ρ) : B(Γ)→ End(V ∗) in V ∗ is defined by

D(ρ)(b) = ρ(σB(b))∗.

On generators xi’s of B+(Γ) the duality acts by xi 7→ x∗i . Thus, the duality is an algebraic
version of the duality discussed in the beginning of section 2.3.

An interesting problem is to study self-dual representations of B+(Γ), i.e representations V
that allow an isomorphism with the dual representation: V ' V ∗.

6.5 Morita equivalence

Consider a pair of elements ∆,∆′ in an algebra A. Here we address the problem when the
corresponding algebras B = Â∆ and B′ = Â∆′ are Morita equivalent, i.e. when there exists a
B′ −B-bimodule N such that the functor ΦN : mod−B → mod−B′ given by

ΦN : V 7→ N ⊗B V

induces an equivalence on categories of modules.
We use superscript ′ for notation of homomorphisms related to ∆′, to distinguish them from

similar homomorphisms related to ∆.
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Fix elements c, d ∈ A which satisfy the equation:

c ·A ∆ = ∆′ ·A d. (79)

Let us construct bimodule N = Ncd as follows. We want N to be an extension of a trivial
bimodule K by A, the latter is considered as a B′ −B-bimodule with left B′-module structure
coming via ψ′1 and with right B-module structure coming from ψ2:

0→ A→ Ncd → K〈z〉 → 0 (80)

with z being a generator in K = K〈z〉. Take N = K〈z〉⊕A as a vector space. Define left action
of b′ ∈ B′+ on z by:

b′z = b′ ·A c.

This is an element in A ⊂ Ncd. Similarly, define right action of b ∈ B+ on z by:

zb = d ·A b.

The action of the unit is, of course, by identity.

Lemma 56. This endows Ncd with a B′ −B-bimodule structure.

Proof. Indeed, we have for the left B′-module structure:

b′1(b′z) = b′1 ·B′ b′ ·A c = (b′1b
′)z

and similar for the right B-module structure. Also, the left and the right module structures
commute:

(b′z) ·B b = (b′ ·A c) ·B b = b′ ·A c ·A ∆ ·A b = b′ ·A ∆′ ·A d ·A b = b′ ·B′ (d ·A b) = b′ ·B′ (zb).

Let ∆′ = ∆, then B′ = B. Let (c, d) = (1A, 1A) be two copies of the unit in A. Then
N11 = B as a B-bimodule. Hence the functor ΦN11 is the identity functor in mod−B.

Composition of functors of type ΦN is compatible with products of bimodules:

ΦL ◦ ΦN = ΦL⊗B′N

for a B′ −B-bimodule L and a B −B′′-bimodule N .

Proposition 57. Let ∆ be a well-tempered element in A. Let Ncd be a B′ − B-bimodule and
Nuv be a B −B′′-bimodule. Then

Ncd ⊗B Nuv = Nc·Au,d·Av

as a B′ −B′′-module.
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Proof. Let ∆,∆′,∆′′ be the defining elements for B,B′ and B′′ respectively. By definition of
bimodules Ncd and Nuv, we have:

c ·A ∆ = ∆′ ·A d, u ·A ∆′′ = ∆ ·A v,

which implies that
cu ·A ∆′′ = ∆′ ·A dv.

That is, the module Ncu,dv does exist.
We know by (51) that A ⊗B A = A and by lemma 37 (ii) that A ⊗L

B K = 0. By taking
tensor product over B of sequences (80) for Ncd and for Nuv, we obtain that Ncd ⊗Nuv fits in
a similar short exact sequence

0→ A→ Ncd ⊗B Nuv → K〈z ⊗ w〉 → 0,

where z and w stand for generators in the components K for Ncd and for Nuv, respectively.
Thus, we need to check the left action of B′ and right action of B′′ on z ⊗ w. Let b′ be in B′.
Then

b′(z ⊗ w) = b′ ·A c⊗ w.

Now b′ ·A c is an element in A ' B+. According to (51), we can decompose it into

b′ ·A c =
∑

pi ·B qi,

where pi and qi are some elements in B+. Further,

b′ ·A c⊗ w =
∑

pi ·B qi ⊗ w =
∑

pi ⊗ qiw =
∑

pi ⊗ qi ·A u.

The identification B+ ⊗B B+ = B+ in (51) is given by multiplication in B+. Hence under this
identification, we have

b′(z ⊗ w) =
∑

pi ⊗ qi ·A u =
∑

pi ·B qi ·A u = b′ ·A c ·A u.

Thus the left action of B′ on z ⊗ w is ‘via’ c ·A u. Similarly for the right action of B′′.

Corollary 58. If c, d ∈ A is a pair of invertible elements in A satisfying (79), then bimodule
Ncd provides a Morita-equivalence.

Proof. For B′ −B-bimodule Ncd, the inverse B′ −B-bimodule is Nc−1,d−1 .

Let G be the group of invertible elements in A.

Corollary 59. If ∆′ is in the double orbit G∆G of ∆, then categories B−mod and B′−mod
are equivalent.

Take tensor product over B of the sequence (80) with the trivial left B-module k. We know
that kΓ⊗L

B k = 0, therefore ΦNcd
(k) = k.
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Proposition 60. Functors ψ1∗ and ψ′1∗ are compatible with equivalences ΦNcd
, i.e.

ΦNcd
◦ ψ1∗ = ψ′1∗.

The same is true for ψ2∗ and ψ′2∗

Proof.

If c and d are invertible, then ΦNcd
is an equivalence for both abelian and derived categories.

We got that it is identical on the two pieces of semiorthogonal decomposition for derived
categories.

6.6 Example: matrix algebra over a field

Let A be a matrix algebra over a field K = k, We identify A with the algebra of operators in a
vector space V over k of dimension n.

Proposition 61. All non-zero elements in A are well-tempered. If A is an operator of corank
s, then B is Morita equivalent to the algebra of the quiver with two vertices, [0] and [1], having
s arrows
alphai from [0] to [1] and s arrows βj from [1] to [0] and relations βjαi = 0, for all 1 ≤ i, j ≤ s.

Proof. First, A is simple, hence, for any non-zero element ∆, the two sided ideal A∆A coincides
with A. Let ∆ be an operator of rank k. We know that well-temperateness is a property of
a double coset. By multiplying ∆ from both sides by invertible operators, we can make it
to become a projector P of rank k. Let U and W be the image and the kernel of P . Then
V = U ⊕W .

6.7 Derived categories

We assume here that ∆ ∈ A is well-tempered andB = Â∆. Consider bounded derived categories
Db(A − mod) and Db(B − mod). Functors ψ1∗ and ψ2∗ and functors ψ∗2 ' ψ!

1 are exact. We
denote by the same symbols the corresponding derived functors. We show that they provide
semi-orthogonal decompositions for Db(B −mod). Natural transformations (58) and (65) and
the fact that µ is an isomorphism of functors carry on to the derived category context.

Denote by Db
0(B−mod) the full subcategory in Db(B−mod) of complexes with cohomology

B+-trivial modules. In view of proposition 40, it is equivalent to Db(K − mod). Denote by
i∗ : Db(K−mod)→ Db(B −mod) the corresponding embedding functor.

Recall some definitions from [Bon1]. A triangulated subcategory is said to be right (resp.,
left) admissible if it has right (resp. left) adjoint to the embedding functor.

Proposition 62. Subcategory Db
0(B − mod) in Db(B − mod) is left and right admissible.

Functors ψ1∗ and ψ2∗ are fully faithful and identify category Db(A − mod) with, respectively,
left and right orthogonal to the subcategory Db

0(B −mod) in Db(B −mod).
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Proof. Since ψ1∗ and ψ2∗ are exact functors between triangulated categories (i.e. the one that
takes exact triangles into exact ones), they are fully faithful if the adjunction morphisms are
isomorphisms: id ' ψ∗2ψ2∗, id ' ψ!

1ψ1∗. This follows from proposition 38, because functors
ψ∗2 = ψ!

1, ψ2∗ and ψ1∗ are exact as functors between abelian categories.
Let W be an A-module and V0 a B+-trivial B-module. We already know by lemma 37

that Hom•B(Γ)(ψ1∗W,V0) = 0 and Hom•B(Γ)(V0, ψ2∗W ) = 0. To prove that Db
0(B −mod) is left

admissible and, simultaneously, that the image of functor ψ1∗ is indeed the whole left orthogonal
to Db

0(B − mod), it is enough to check [Bon1] that every object, say V , in Db(B − mod) has
a decomposition into exact triangle U → V → W with U in the image of ψ1∗ and W ∈
Db

0(B − mod). Consider the adjunction morphism ψ1∗ψ
!
1V → V . By lemma 34 its cone is in

Db
0(B −mod) if V is a pure B-module. This gives a triangle with required properties for such

V . For general V ? this follows from exactness of functors ψ1∗ and ψ!
1. For ψ2∗, the proof is

similar.

In accordance with ideology of [Bon1], this proposition is interpreted as existence of decom-
positions into semiorthogonal pairs:

Db(B−mod) = 〈i∗Db(K−mod), ψ1∗D
b(A−mod)〉 = 〈ψ2∗D

b(A−mod), i∗D
b(K−mod)〉. (81)

Given an admissible subcategory B, there is an equivalence between the left and right
orthogonals to it, ⊥B and B⊥. The mutually inverse ’mutation’ functors LB : ⊥B → B⊥
and RB : B⊥ → ⊥B are given by restricting to ⊥B the left adjoint to the embedding functor
B⊥ → B and by restricting to B⊥ the right adjoint functor to the embedding ⊥B → B.

For the case of our interest subcategories Db
0(B − mod)⊥ and ⊥Db

0(B − mod) are both
equivalent to Db(A−mod) via functors ψ1∗ and ψ2∗, with equality

ψ2∗ = iB⊥ ◦ LB ◦ ψ1∗,

where iB⊥ is the embedding functor for the subcategory B⊥. Since LB is basically the adjoint
to iB⊥ we have the adjunction morphism:

λ : id⊥B → iB⊥ ◦ LB. (82)

It implies the functorial morphism ψ1∗ → ψ2∗, which coincides with the natural transformation
λ in (58) when extended to a transformation between the derived functors.

The embedding functor i∗ has the left adjoint i∗, i! : Db(B −mod)→ Db(K−mod) defined
by

i∗(V ) = RHomB(V,K)∗

and the right adjoint i! defined by

i!(V ) = RHomB(K, V ).

All together, functors ψ1∗, ψ2∗, ψ
!
1, i∗, i

∗, i! fit Grothendieck formalism of six functors.
Given an admissible subcategory B in a triangulated category one can consider the ambient

category as being ’glued’ from the subcategories B and its orthogonal ⊥B. The necessary extra
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data to define gluing is the functor ⊥B → B which takes an object from ⊥B to the cone of the
natural transformation (82) applied to this object. The resulting object lies in B.

To be more precise, this approach works only in the framework of pre-triangulated DG-
categories [BK2], rather than for ordinary triangulated categories. Thus we should consider
suitable DG-categories, enhancements for B and for its orthogonal ⊥B, and a gluing DG-functor
(or DG-bimodule) between them. Given this data, one can construct in an essentially unique
way a new DG-category, such that its homotopy category has a semiorthogonal decomposition
into a pair 〈B, ⊥B〉 (cf. [?]).

When applied to the our categories, this means that category Db(B −mod) is glued from
the categories Db(A−mod) and Db(K−mod) by means of a functor which is given by the cone
of the natural transformation λ in (58).

The first semiorthogonal decomposition from (81) restricts to the category Db
fp(B −mod),

but the second one restricts only when ψ2∗ takes finitely presented modules to finitely presented.
The conditions for this is given in proposition 52.

6.8 Example: matrix algebra over a commutative ring

Example. Assume that graph Γ is a tree. Then homology of Γ is trivial and KΓ is isomorphic
to the algebra of K-valued matrices of size n × n with n equal to the number of vertices in
the graph. The group G of invertible elements is just GL(n,K). The category KΓ − mod is
equivalent to the category of K-modules. Functor F : Db(KΓ−mod)→ Db(K−mod) is fully
defined by its values on the standard representation of the matrix algebra KΓ−mod in the n
dimensional vector space V . The value of the functor F on this representation is the cone λV ,
which is nothing but the Laplace operator ∆ understood as an element of the matrix algebra.
Since the cone consists of the kernel and cokernel of ∆, the corank of ∆ only matters. This
is in accordance with the fact that double orbits of ∆ with respect to GL(n) action produce
Morita equivalent algebras.

If ∆ is nondegenerate, then F = 0 and category Db(B(Γ−modfd)) is equivalent to the direct
sum of two categories Db(k−mod). In general, if ∆ has corank s, then Db(B(Γ−modfd)) has a
full exceptional collection with two elements (E1, E2) and extensions: Ext0,1(E1, E2) = ks and
Ext6=0,1(E1, E2) = 0.

Example. Let H1(Γ) = Z. Then the group ring k[π1(Γ)] is the algebra k[x, x−1] of Laurent
polynomials in one variable. In view of Morita equivalence between kΓ and k[π1(Γ)], the
category kΓ − modfp is equivalent to the category of coherent sheaves on a punctured affine
line A1 \ 0. The category kΓ − modfd is equivalent to the subcategory of artinian sheaves.
Since kΓ is isomorphic to the matrix algebra over k[π1(Γ)], elements of kΓ can be understood
as homomorphisms of free sheaves of O-modules on A1 \ 0 of rank n = |V (Γ)|. The Laplace
operator gives a homomorphism φ∆ : On → On given by the matrix:

If Γ is a cyclic graph with n vertices and n edges li,i+1, where i ∈ Z/n, then

∆ = 1 +
∑
i∈Z/n

si,i+1li,i+1.
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Then m Matrix of φ∆ in a suitable basis of the representation has the form:
1 s1,2 0 ... 0 sn,1x

−1

s1,2 1 s2,3 0 ... 0
0 s2,3 1 s3,4 ... 0
... ... ... ... ... ...
0 ... 0 sn−2,n−1 1 sn−1,n

sn,1x 0 ... 0 sn−1,n 1

 (83)

Proposition 63. Let ∆ and ∆′ be two Laplace operators. Categories B(Γ) − modfp and
B′(Γ)−modfp are equivalent if and only if the cokernel of φ∆ and φ∆′ are isomorphic.

Proof. If determinant of ∆ is not tautologically zero, then homomorphism ∆ : On → On has
trivial kernel. The cokernel cokerφ∆ is an artinian sheaf with support at zeros of detφ∆. ....

Let the field be algebraically closed. Then an artinian sheaf is decomposed into direct sum
of sheaves with support in closed points. All indecomposable artinian sheaves with support in
a given closed point are isomorphic to the structure sheaf of a k-th infinitesimal neighborhood
of the point, for some k. The support is given by zeros of detφ∆. The multiplicity of a closed
point corresponds to the length of the part of the cokerφ∆ with support in the point. Thus the
isomorphism class of an artinian sheaf is fully defined by partitions of multiplicities in A1 \ 0
of all zeros of detφ∆. To find the partition of multiplicity at a given point x0 one has to look
at the dimension ds of the kernel of action of (x − x0)s on cokerφ∆, for all s. The number of
entries of size ≥ s in the partition of multiplicity at point x0 is equal to ds. We come to the
following corollary which explicitly describes Laplace operators with equivalent categories of
finitely presented modules.

Corollary 64. Let ∆ and ∆′ be two Laplace operators. Categories B(Γ) − modfp and
B′(Γ)−modfp are equivalent if and only if the partitions of multiplicities at every closed point
in A1 \ 0 for ∆ and ∆′ coincide.

Note that the above discussion concerned description of the category of finitely presented
modules. Since the equivalences are Morita equivalences, they induce equivalences of relevant
categories of finite dimensional modules too. But, if we interested in equivalences of categories
of finite dimensional representations only, then more equivalences are possible. Indeed, the
category kΓ−modfp is equivalent to the category of artinian sheaves which is the direct sum
of subcategories of sheaves with support in closed points of A1 \ 0.

6.9 Recollement

Given an admissible subcategory in a triangulated category and two t-structures, one in a
subcategory and another one in its orthogonal, on can define a t-structure in the ambient
category by the procedure known as recollement [BBD]. In this subsection, we show that the
standard t-structure in Db(B −mod) is obtained by recollement from the standard t-structure
on Db(A−mod) and Db(K−mod).
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The initial data for recollement are 3 triangulated categories D, DU and DF and six exact
functors between them. Two of the functors are:

i∗ : DF → D, j∗ : D → DU .

The other functors i∗, i!, j∗, j! are the left and right adjoints to these two. They must satisfy
a number of constraints which are equivalent to saying that DF is an admissible subcategory
in D and DU is the quotient of D by DF , with i∗ the embedding functor and j∗ the quotient
functor.

Given a t-structure (D≤0
U , D≥0

U ) in DU and a t-structure (D≤0
F , D≥0

F ) in DF , the glued t-
structure is defined by:

D≤0 := {K ∈ D| j∗K ∈ D≤0
U and i∗K ∈ D≤0

F },

D≥0 := {K ∈ D| j∗K ∈ D≥0
U and i!K ∈ D≥0

F }.

According to theorem 1.4.10 in [BBD], this pair of categories indeed defines a t-structure.
As we got in the previous subsection, category Db(B−mod) has an admissible subcategory

DF = Db(K−mod), with the quotient category (orthogonal) being the category equivalent to
DU = Db(A−mod). We denote by (D≤0

F , D≥0
F ) and by (D≤0

U , D≥0
U ) the standard t-structure in

these categories.
The dictionary between our functors and the standard notations for six functors is as follows:

ψ1∗ ←→ j!,

ψ2∗ ←→ j∗,

ψ!
1 = ψ∗2 ←→ j∗,

while the notation for i∗, i
!, i∗ coincide.

Theorem 65. The standard t-structure in Db(B − mod) coincides with the one obtained by
recollement of the standard t-structures in Db(K−mod) and in Db(A−mod).

Proof. Denote by (D≤0, D≥0) the standard t-structure in Db(B −mod) and by D≤0
gl ∩D

≥0
gl the

glued t-structure. The embedding D≤0 ⊂ D≤0
gl and D≥0 ⊂ D≥0

gl follows from t-exactness (in

the standard t-structures) of ψ!
1 and from right t-exactness of i∗ and left t-exactness of i!. The

inverse inclusions follow from the fact that both (D≤0, D≥0) and D≤0
gl ∩ D

≥0
gl are t-structures,

in particular, D≤0 is the left orthogonal to D≥0.

Let V be a B-module. We say that it is minimal if

(i) HomB(Γ)(V, k) = 0,

(ii) HomB(Γ)(k, V ) = 0.

46



This definition is in compliance with the definition of minimal configurations of projectors
given in subsection 2.3. An object V ∈ Db(B(Γ)−mod) is said to be an extension of an object
W ∈ Db(kΓ−mod), if ψ!

1V ' W . Given a kΓ-module W , there is a unique up to isomorphism
minimal extension of W . It can be defined as the image:

Wmin := Im λW : ψ1∗W → ψ2∗W.

Given an object V ∈ Db(B(Γ)−mod), we define its minimal shadow as the minimal extension
for ψ!

1V :
Vmin = (ψ!

1V )min = Im λψ!
1V

: ψ1∗ψ
!
1V → ψ2∗ψ

!
1V.

Clearly, the assignment V 7→ Vmin produce a functor. Note that λψ!
1V

is identified with the
composite of adjunction maps:

ψ1∗ψ
!
1V → V → ψ2∗ψ

∗
2V

Come back to our example of the cyclic graph.

Theorem 66. Assume that graph Γ is cyclic and parameters sij are such that corank of Laplace
operator for x = 1 is 2 (this is in fact the maximal possible corank for all x). Consider a
singular complex rational curve with one double point stratified by the singular point and the
smooth complement to it. The category of B(Γ)-modules for this choice of parameters sij is
equivalent to the category of perverse sheaves locally constant on the strata.
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