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Abstract

Angular correlation of jets produced in association with a massive scalar, vector or
tensor boson is crucial in the determination of their spin and CP properties. We study
jet angular correlations in events with a high mass bottom quark pair or a top quark pair
and two jets at the LHC, whose cross-section is dominated by the virtual gluon fusion
sub-processes when appropriate kinematic selection cuts (vector-boson fusion cuts) are
applied. We evaluate helicity amplitudes for sub-processes initiated by qq, qg and gg

collisions in the limit where the intermediate gluons are collinear to the initial partons.
We first obtain a general expression for the azimuthal angle correlations among the
dijets and tt̄ or bb̄, in terms of the gg → tt̄ or bb̄ helicity amplitudes in the real gluon
approximation of the full matrix elements, and find simple analytic expressions in the
two kinematic limits, the production of a heavy quark pair near the threshold, and in
the relativistic limit where the invariant mass of the heavy quark pair is much larger
than the quark mass. For bb̄+ 2 jets we find strong azimuthal angle correlations which
are distinct from those expected for events with a CP-even or odd scalar boson which
may decay into a bb̄ pair. For tt̄ + 2 jets we find that the angular correlations are
similar to that of a CP-odd scalar+2 jets near the threshold Mtt̄ ∼ 2mt, while in the
relativistic limit they resemble the distribution for bb̄ + 2 jets. These correlations in
the standard QCD processes will help establish the experimental technique to measure
the spin and CP properties of new particles produced via gluon fusion at the LHC.
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1 Introduction

Angular correlations among jets produced in association with scalar bosons and massive
gravitons have been the subject of several studies [1, 2]. It has been found that experimental
determination of such correlations can give us important information about the spin and
CP-properties of these particles. For example, by studying the distribution of azimuthal
angle difference between two tagging jets (∆φjj) in the gluon fusion (GF) production of a
scalar (H) or pseudo-scalar (A) Higgs with two jets, it has been shown that the CP-odd
and CP-even Higgs can clearly be discriminated at the LHC. It has also been shown that
for jets produced with massive gravitons (G), the ∆φjj distribution is flat while the sum
of the azimuthal angles show a characteristic distribution [2]. It was further demonstrated
analytically in Ref. [2] that these angular correlations arise from the quantum interference
of different helicity states of the intermediate vector bosons, which can either be a weak
boson or a gluon. Another critical observation made in Ref. [2] is that the amplitudes for
H/A/G+ 2 jets production can be approximated by those of the vector boson fusion (VBF)
sub-processes when a specific set of kinematic cuts are applied, where the two tagging jets
are demanded to be in the opposite hemispheres of the detector and also to be well separated
in rapidity (the so called VBF cuts), and in addition their transverse momenta are subjected
to a slicing cut, restricting them to be sufficiently low as compared to the H/A/G masses.

In this paper, we study heavy quark pair QQ (Q = b, t) production at the LHC in
association with two jets, and study the azimuthal angle correlations among these jets.
Our goal is to predict the jet angular correlations for the SM processes by using the same
approximation, so that the experimental technique to measure the new particle properties
via initial state radiation patterns can be established using the ample SM processes. We
first calculate the helicity amplitudes for gluon fusion processes initiated by qq, qg, gg initial
states at the LHC leading to QQ+2 jets production. Here, we work in the limit in which the
intermediate gluons are collinear to the initial partons. We work out the angular correlations
using the formalism of Ref. [2], and then verify our approximate analytical results in several
kinematic regions by comparing them with the exact parton level matrix elements in the
tree level.

This paper is organized as follows. In section 2 we briefly review the helicity formalism
used to obtain our analytical results. In section 3 we give the spin summed matrix-element
squared for QQ + 2 jets production via gluon fusion in the collinear limit for the exchanged
gluons, and then analyze the results in two different kinematic limits, namely that of the tt̄
production threshold (Q = t) in which the invariant mass of the tt pair, Mtt, is very close to
2mt, and that of the relativistic limit where MQQ is much higher than 2mQ, for Q = b and
t. In section 4 we show the exact numerical results for these angular correlations at parton
level, where the expected azimuthal angle correlations are reproduced once appropriate final
state selection cuts are applied. Finally, we summarize our findings in section 5.

2 Helicity formalism : brief review

The helicity amplitude formalism for vector boson fusion processes has been discussed in
detail in Ref. [2] in the context of production and decay of a heavy particle in association
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Figure 1: Schematic Feynman diagram for the parton level QQjj production process in
the on-shell gluon approximation, where ai denote quarks, anti-quarks or gluons. The four-
momenta of each particle are also shown along the particle lines.

with two jets. We follow the same notations and conventions in this paper. The inclusive
process,

pp → QQjj + anything , (1)

can proceed, via gluon fusion, through the sub-processes a1a2 → a3a4g
∗g∗ → a3a4QQ, where

a1a2 is one of the three possible initial states {qq, qg, gg}, g∗ is a t-channel intermediate gluon
and q stands for a quark or anti-quark of any flavour:

qq → qqQQ (2a)

qg → qgQQ (2b)

gg → ggQQ . (2c)

In addition to gluon fusion, the above sub-processes receive contributions from all other
diagrams at the same order in perturbation theory to make a gauge-invariant physical ampli-
tude. However, in this and the next section, we shall consider only the gluon fusion diagrams.
As mentioned earlier, it has been demonstrated in Ref. [2] that after applying the VBF se-
lection cuts, the GF contribution can be made to dominate the total cross-section. We shall
also show the validity of this approach by first determining analytically the distributions
predicted by the GF diagrams in various kinematic limits, and then comparing them with
the exact matrix elements.

To begin with, we define a common set of kinematic variables for the QQjj sub-processes
in Eqn. 2 as

a1(k1, σ1) + a2(k2, σ2) → a3(k3, σ3) + a4(k4, σ4) + Q(p, σ) + Q(p̄, σ̄), (3)

The helicities of the quarks or anti-quarks have the value σi/2 while for on-shell gluons they

2



take the values σi = ±1. The helicity amplitudes for this process can be written as

Mσσ̄
σ1σ3,σ2σ4

= Jµ′

1
a1a3

(k1, k3; σ1, σ3)J
µ′

2
a2a4

(k2, k4; σ2, σ4)

× Dg1

µ′

1
µ1

(q1)D
g2

µ′

2
µ2

(q2)M̂µ1µ2

QQg1g2

(q1, q2, p, p̄; σ, σ̄) (4)

where the external quark or gluon currents are denoted by J
µ′

i
aiai+2 , and the gluon propagator

is given by

Dgi

µ′

iµi
(qi) =

−gµ′

iµi

q2
i

=
1

q2
i

∑

λi=±1

ǫ∗µ′

i
(qi, λi)ǫµi

(qi, λi) , (5)

for the conserved currents

qµ′

1
Jµ′

1
a1a3

(k1, k3; σ1, σ3) = qµ′

2
Jµ′

2
a2a4

(k2, k4; σ2, σ4) = 0. (6)

We note in passing that the conditions in Eqn. 6 are satisfied not only for massless quark
currents but also for the gluonic currents, in the processes (2b) and (2c) in the light-cone
gauge [2]. The real gluon approximation to the amplitudes (Eqn. 4) is obtained by replacing
the off-shell g∗g∗ → QQ amplitudes by the on-shell, and hence gauge-invariant gg → QQ
amplitudes

ǫµ1
(q1, λ1)ǫµ2

(q2, λ2)M̂µ1µ2

QQg1g2

(q1, q2, p, p̄; σ, σ̄)
q2
i →0−−−→ (MQQ

g1g2
)σσ̄
λ1λ2

, (7)

while keeping the four-momenta of the QQ system and the orientation of the colliding virtual
gluon momenta in the QQ rest-frame. The full amplitudes for the process (3) are now
approximated as

Mσσ̄
σ1σ3,σ2σ4

≈ 1

q2
1q

2
2

∑

λi=±1

(J g1

a1a3
)λ1

σ1σ3
(J g2

a2a4
)λ2

σ2σ4
(MQQ

g1g2
)σσ̄
λ1λ2

, (8)

where the incoming current amplitudes are given by

(J gi

aiai+2
)λi

σiσi+2
= Jµ

aiai+2
(ki, ki+2; σi, σi+2)ǫµ(qi, λi)

∗ (9)

It has been shown in Ref. [2] that the helicity dependent phases of the above current am-
plitudes reproduce azimuthal angle correlations among the jets while their magnitudes give
the well-known DGLAP splitting functions when squared and summed over helicities.

Following Ref. [2], we define the reduced current amplitudes Ĵ λi
σiσi+2

as follows

(J gi
aiai+2

)λi
σiσi+2

=
√

2gaiai+2

gi
QiĴ λi

σiσi+2
, (10)

where Qi =
√

−q2
i and the coupling factor g

aiai+2

gi is given by gsT
a for quark or anti-quark

currents, and gsfabc for gluon currents. Here, gs =
√

4παs is the QCD coupling constant,
while we suppress the colour indices in the helicity amplitudes of Eqn. 4 for brevity. The
reduced current amplitudes Ĵ λi

σiσi+2
have been computed and tabulated in Ref. [2], to which we

refer the reader for details. However, it might be worth recalling some of the salient features
of these reduced current amplitudes. First of all, the reduced amplitudes for anti-quark
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currents are same as those of quark currents. And since we neglect light quark masses,
by chirality conservation, the helicity-flip amplitudes will be zero for quark currents, i.e.,
Ĵ λi

σ−σ = 0, while this is not the case for gluon current amplitudes. The existence of helicity-
flip amplitudes in gluon currents give rise to certain special features in the amplitudes for
QQ + 2 jets involving them.

It is useful to look into the current amplitudes from the point of view of parton branch-
ing [3], whereby the outgoing partons are emitted collinearly. In the current amplitudes
f → fg∗ or g → gg∗, if z is the energy fraction of the initial parton that is carried away by
the off-shell gluon, then one can write the current amplitudes in terms of the energy fractions
of the two t-channel gluons, z1, z2, and the azimuthal angles of the outgoing partons φ1 and
φ2, in the frame in which the t-channel gluons are taken as propagating along the ±z-axis.

2.1 Helicity amplitudes for gg → QQ

Let us first fix the reference frame in which we shall be working. As mentioned above, we
take this frame to be the centre of mass frame of the two t-channel gluons producing the QQ
pair, which is also the rest frame of the QQ pair. In this frame, the two gluons can be taken
to be propagating in opposite directions along the z-axis with energy E each. Therefore, the
scattering process,

g(q1, λ1, a1) + g(q2, λ2, a2) → Q(p, σ, i) + Q(p̄, σ̄, ī) , (11)

can be assumed to be taking place in the x− z plane. Here, a1, a2 denote the colour indices
for the gluons and i, ī denote the colour indices for the quark and the anti-quark. The four
momenta of the gluons, Q and Q are given by

qµ
1 = E(1, 0, 0, 1)

qµ
2 = E(1, 0, 0,−1)

pµ = E(1, β sin θ, 0, β cos θ)

p̄µ = E(1,−β sin θ, 0,−β cos θ) (12)

where β denotes the velocity of Q in the QQ rest frame and is given by β =

√

1 − 4m2

M2

QQ

, and

MQQ is the invariant mass of the QQ system.

The helicity amplitudes for the process gg → QQ can be expressed in the following form:

(MQQ
g1g2

)σσ̄īi
λ1λ2a1a2

= g2

s

[

1

2
{T a1 , T a2}i,iM̂σσ̄

λ1λ2
+

1

2
[T a1 , T a2 ]i,iN̂ σσ̄

λ1λ2

]

. (13)

One can further simplify Eqn. 13 by noting the following relation

N̂ σσ̄
λ1λ2

= M̂σσ̄
λ1λ2

× β cos θ . (14)

Finally, the helicity amplitudes M̂σσ̄
λ1λ2

, for different helicity combinations of the heavy quarks
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and gluons, are given by

M̂σ−σ
λ−λ = 2β sin θ(σλ + cos θ)/(1 − β2 cos2 θ)

M̂σσ
λλ = −2

√

1 − β2(λ + σβ)/(1 − β2 cos2 θ)

M̂σσ
λ−λ = 2β

√

1 − β2σ sin2 θ/(1 − β2 cos2 θ)

M̂σ−σ
λλ = 0 . (15)

3 Azimuthal angle correlations: analytical results

The squared matrix element (averaged over initial state and summed over final state colour
(c) and spin (s)) can be obtained by using Eqns. 8, 13, 15, and the current amplitudes J gi

aiai+2

as tabulated in Ref. [2]. We find that for all of the different collision processes initiated by
qq, qg and gg, the squared amplitude can be cast in the following form:

∑

s,c

|Mσσ̄
σ1σ3,σ2σ4

|2 =
16g8

sC

Q2
1Q

2
2

(7/3 + 3β2 cos2 θ)

(1 − β2 cos2 θ)2
[{1 + β2 sin2 θ(2 − β2 sin2 θ) − β4}F0

+ 4β2(1 − β2) sin2 θ{F1 cos(2φ1) + F2 cos(2φ2)}
− 4(1 − β2)2F3 cos 2(φ1 − φ2) − 4β4 sin4 θF4 cos 2(φ1 + φ2)] (16)

where the colour factor C comes from the quark and gluon current amplitudes, averaged
over initial colour, and is given by C = 1/36, 1/16 and 9/64 for qq, qg and gg sub-processes
respectively. The co-efficients Fi’s in the above expression are functions of zi, the energy
fractions of the initial partons carried away by the t-channel intermediate gluons. For nota-
tional convenience, let us also define z̄i = 1− zi. Also note that φ1 and φ2 are the azimuthal
angles of the two outgoing partons (jets) in the frame defined in sub-section 2.1.

The general expressions for F0, which determines the total cross-section, for the qq, qg
and gg initiated sub-processes are as follows:

F0[qq] =
(1 + z1

2)

z2
1

(1 + z2
2)

z2
2

F0[qg] =
(1 + z1

2)

z2
1

(1 + z4
2 + z4

2)

z2
2z2

F0[gg] =
(1 + z4

1 + z4
1)

z2
1z1

(1 + z4
2 + z4

2)

z2
2z2

. (17)

The function F1 is found to be the same for the qg and gg initiated processes, and is given
by,

F1[qq] =
z1

z2
1

(1 + z2
2)

z2
2

F1[qg/gg] =
z1

z2
1

(1 + z4
2 + z4

2)

z2
2z2

. (18)
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Similarly, the function F2 is the same for the qq and qg initial states, and is as follows:

F2[qq/qg] =
z2

z2
2

(1 + z1
2)

z2
1

F2[gg] =
z2

z2
2

(1 + z4
1 + z4

1)

z2
1z1

. (19)

The zi-dependent co-efficients of the terms proportional to cos 2(φ1 −φ2) and cos 2(φ1 +φ2),
namely F3 and F4, which will be seen to determine the azimuthal correlations in the threshold
and the relativistic limits respectively, are found to be equal to each other (i.e., F3 = F4),
and are also remarkably the same for all three sub-processes,

F3,4[qq/qg/gg] =
z1

z2
1

z2

z2
2

. (20)

We see that there is an enhancement in all the amplitudes in the z1 → 0 and z2 → 0 limits,
i.e., when the t-channel intermediate gluons become soft. Furthermore, in the amplitudes
involving gluon currents (i.e., the qg and gg initiated processes), there is an additional
singularity as zi → 1 (i.e., zi → 0). This happens because not only the intermediate gluons
can become soft, but now an outgoing gluon jet can become soft as well. Since the form of
F3 and F4 are identical for all of the qq, qg and gg collision processes, and these functions
determine the angular distributions in the two kinematic limits to be considered next, the
only difference that will arise is from F0. We shall see that the ratio of F3 or F4 to F0

determines how strong the azimuthal correlations will be.

3.1 Threshold and relativistic limits

We now explore the two different kinematic limits in which one obtains characteristic strong
azimuthal angle correlations that can be probed at the LHC. The first one is when the QQ
pair is produced near the threshold, i.e., the invariant mass MQQ ≈ 2mQ, and therefore,
β → 0. We can then express the squared matrix element in Eqn. 16 in this simple form:

∑

s,c

|Mσσ̄
σ1σ3,σ2σ4

|2 β→0−−→ 16g8
sC

Q2
1Q

2
2

7F0

3

[

1 − 4F3

F0

cos 2(φ1 − φ2)

]

(21)

From this equation, we can see that the differential distribution in (φ1−φ2) will show a strong
suppression at (φ1−φ2) = 0,±π, while it will show an enhancement at (φ1−φ2) = ±π/2 (we
use the convention in which the azimuthal angles are in the interval [−π, π]). Note that, in
Eqn. 21, in the soft-limit for the t-channel gluons (zi → 0), the combination 4F3/F0 → 1. In
the next section we shall see that by studying the threshold production of top quark pair in
tt̄ + 2 jets events at the LHC, we do observe these features in the corresponding differential
distribution for (φ1 − φ2). We would like to point out that in the production of a CP-odd
scalar boson in association with 2 jets one expects a similar distribution in (φ1 − φ2) .

The second kinematic region of interest is the relativistic limit in which the QQ pair
invariant mass is very high, such that the masses of the heavy quarks can be ignored. In this
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limit, as m ≪ E, β → 1. Therefore, we can express the squared matrix element in Eqn. 16
as follows:

∑

s,c

|Mσσ̄
σ1σ3,σ2σ4

|2 β→1−−→ 16g8
sC

Q2
1Q

2
2

(7/3 + 3 cos2 θ)(1 + cos2 θ)

sin2 θ
F0

[

1 − sin2 θ

1 + cos2 θ

4F4

F0

cos 2(φ1 + φ2)

]

(22)
From the above expression we see that in the relativistic limit, the differential distribution in
the sum of azimuthal angles, (φ1 + φ2), will show a strong suppression at (φ1 + φ2) = 0,±π,
while it will show an enhancement at (φ1 + φ2) = ±π/2. In the next section, we shall study
QQ+2 jets (Q = b, t) processes at the LHC by demanding a high invariant mass for the QQ̄
pair, and shall see that we are able to observe these features in the differential distribution
for (φ1 + φ2).

4 Numerical results

We now discuss the results for exact numerical evaluation of the differential distributions
for (φ1 − φ2) and (φ1 + φ2) in the tt̄ + 2 jets and bb̄ + 2 jets processes. Here, in addition
to the GF diagrams, all other diagrams at the tree level have also been taken into account.
Using suitably devised cuts, we show that we are able to observe the angular correlations
in different kinematic regions, as obtained using only the GF contribution in the previous
section. We also compare the distributions and total cross-sections obtained by using the
approximate matrix elements (presented in section 3, Eqns. 16-20) with the exact ones. For
exploring the threshold limit, we concentrate on the process tt̄+2 jets, with Mtt̄ close to 2mt.
For the relativistic limit, in which m ≪ E, we consider both the production of bb̄ + 2 jets
and tt̄ + 2 jets with a high invariant mass of the bottom or top pair.

We present our results for LHC with a centre of mass energy of 8 TeV. The exact matrix
elements were calculated with the help of MadGraph 5 [4] at parton level. Subsequently,
both the exact and approximate matrix elements were integrated over the relevant four-
body phase-space using the BASES [5] Monte-Carlo integration package. We have used the
CTEQ6L1 [6] parton distribution functions with LO running of αs, and αs(MZ) = 0.13. For
the factorization scale we choose the minimum value of transverse momenta demanded for
the tagging jets (pj

T min
= 20 GeV). The strong coupling constant αs is evaluated at the

corresponding minimum transverse energy of the final state partons or heavy quarks, i.e., for
the tt̄+2 jets process, we take α4

s = αs(mt)
2αs(p

j
T min

)2, while for bb̄+2 jets it is taken to be

α4
s = αs(E

b
T min)2αs(p

j
T min

)2. In our analysis, Eb
T min is taken as 100 GeV (see Cut-3 below).

The values of top and bottom quark masses used are 173 GeV and 4.7 GeV respectively [7].
To start with, we impose a set of selection cuts on the final-state partons (jets):

Cut-1: 20 GeV ≤ pj
T ≤ 60 GeV, Ej ≥ 250 GeV, |ηj| ≤ 5, ∆Rj1j2 ≥ 0.6

Here pj
T , Ej and ηj denote the transverse momenta, energy and pseudorapidity of the jets

respectively, while ∆Rj1j2

(

=
√

(ηj1 − ηj2)
2 + (φj1 − φj2)

2

)

defines the separation between

the jets in the pseudorapidity-azimuthal angle plane. We have subjected the tagging jets to
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a slicing pT cut, and have also demanded a high value for the minimum energy of the jets.
Since we want to isolate the contribution of the GF diagrams to the full process, we also
need to impose the so-called VBF cuts, which require the two tagging jets to reside in the
opposite hemispheres of the detector and to be well separated in pseudorapidity. The VBF
cuts imposed in our study are as follows:

Cut-2: ηj1 > 0 > ηj2, ∆ηjj = ηj1 − ηj2 > 4.

In addition to the above cuts on the tagging jets, we also impose a set of cuts on the t and b
quarks. We demand a minimum transverse energy (ET =

√

m2 + p2
T ) for the b quarks, such

that Eb,b̄
T is always higher than the tagging jet pT ’s. Also, the t and b quarks are required to

be in the central region of the detector. These cuts are summarized below:

Cut-3: Eb,b̄
T ≥ 100 GeV, |η|b,b̄,t,t̄ ≤ 2.5

d
σ
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) 
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b
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Figure 2: Differential distribution of (φ1 − φ2) (left panel) and (φ1 + φ2) (right panel) for
tt̄+2 jets in the three sub-processes initiated by qq, qg and gg and the sum of all sub-processes
at the

√
s = 8 TeV LHC after Cuts 1, 2 and 3 as described in the text. The invariant mass

of the tt̄ pair has been demanded to be Mtt̄ < 400 GeV.

In Figure 2, we show the differential distributions obtained using the exact matrix el-
ements for both the azimuthal angle difference of the two tagging jets, (φ1 − φ2), and the
sum of the azimuthal angles (φ1 + φ2) in tt̄ + 2 jets events, for the sub-processes initiated
by qq, qg and gg. In addition, we show the sum of all sub-process contributions, too. In
order to obtain the azimuthal angle distributions in the threshold limit, we need to ensure
that the invariant mass of the tt̄ system, Mtt̄, should be very close to 2mt. Therefore, in
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this figure, we have imposed an invariant mass cut of Mtt̄ < 400 GeV. As explained in
sub-section 3.1, we indeed see a distribution resembling the behaviour predicted by Eqn. 21.
In particular, we see the expected suppression at (φ1 − φ2) = 0,±π, and enhancement at
(φ1 − φ2) = ±π/2. On the otherhand, the φ1 + φ2 distribution is observed to be rather flat,
as expected in this region of Mtt̄. This agreement between the analytic approximation and
the exact numerical evaluation shows the usefulness of the VBF cuts in selecting the GF
contribution to the total cross-section. In order to estimate the feasibility of studying the
angular distributions in the tt̄+2 jets process at the 8 TeV LHC, we show the cross-sections
after cuts 1, 2 and 3, and various values of the Mtt̄ cut in Table 1. As we can infer from
this table, the total cross-section from all sub-processes taken together is considerable, such
that with an expected integrated luminosity of ∼ 20 fb−1, one can have sufficient number of
events to study the azimuthal angle correlations at the 8 TeV run of LHC.

Mtt̄ cut σqqtt̄ (fb) σqgtt̄ (fb) σggtt̄ (fb) σtt̄+2 jets (fb)
No Mtt̄ cut 655.80 1199.09 529.43 2384.32
Mtt̄ < 400 GeV 87.91 170.22 80.12 338.25
Mtt̄ > 600 GeV 195.62 334.58 137.42 667.62

Table 1: Cross-sections of various sub-processes contributing to tt̄ + 2 jets at 8 TeV LHC
after Cuts 1, 2 and 3 and different values of the Mtt̄ cut. We also show the total tt̄ + 2 jets
cross-section after these cuts.
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Figure 3: Normalized differential distribution of (φ1 − φ2) (left panel) and (φ1 + φ2) (right
panel) for tt̄ + 2 jets with different Mtt̄ cuts, including all sub-processes, at the

√
s = 8 TeV

LHC, after Cuts 1, 2 and 3 as described in the text. The distributions obtained using the
exact matrix elements are shown as histograms with solid lines, while the ones obtained
using the approximate matrix elements are shown as curves with dotted lines.
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In Figure 3, we show the normalized differential distributions in (φ1 − φ2) and (φ1 + φ2)
for the tt̄ + 2 jets process, where we present the sum of all sub-process contributions coming
from qq, qg and gg. Here, we have shown the effect of variation in the Mtt̄ cut. While the
φ1 −φ2 distribution becomes more and more flat as we increase Mtt̄, the φ1 +φ2 distribution
is observed to resemble the prediction of Eqn. 22 for high Mtt̄. It is worth mentioning that
in the distributions with no cuts on Mtt̄, one does retain some of the features of the two
different kinematic limits. In this figure, we also compare the normalized distributions as
obtained from the exact matrix elements and the approximate ones (the later being described
by Eqns. 16-20). As can be observed, the distributions very closely agree with one another,
thus confirming the validity of our approximation in correctly predicting the shapes of the
azimuthal angle correlations.

pj
T cut (GeV) σApprox./σExact

qqtt̄ qgtt̄ ggtt̄

20 ≤ pj
T ≤ 60 2.03 2.02 2.06

10 ≤ pj
T ≤ 20 1.08 1.21 1.39

Table 2: The ratio of tt̄ + 2 jets cross-section calculated using the approximate and exact
matrix elements (σApprox./σExact) for the various sub-processes, with different choices of the
slicing cut for pj

T , at 8 TeV LHC. All other cuts described in Cuts 1, 2 and 3 are kept fixed.

We also show in Table 2 the ratio of the total cross-section obtained using the approximate
and exact matrix elements. As we can see from this table, for the values of the kinematic
cuts used so far in our analysis, although the on-shell gluon approximation predicts the
normalized distributions rather accurately, it overestimates the total cross-section by about
a factor of 2. Since our approximation approaches the exact matrix elements only in the limit
when the t-channel gluons are collinear to the initial partons, we expect better agreement
in the total cross-section when the pj

T ’s are reduced further. This is what we observe in
Table 2, where we see that by decreasing the pT ’s of the tagging jets, the total cross-sections
also approach the exact ones.

We now turn to the bb̄ + 2 jets process. Since the b-quark mass is very small, we can
easily obtain the characteristic distributions predicted for the relativistic limit by demanding
a moderate cut on Mbb̄. In Figure 4, we show the differential distributions for both the
azimuthal angle difference of the two tagging jets, (φ1 − φ2), and the sum of the azimuthal
angles (φ1 +φ2) in bb̄+2 jets events, for the sub-processes initiated by qq, qg and gg. We also
show the sum of all sub-process contributions separately. In this figure, we have imposed
an invariant mass cut of Mbb̄ > 400 GeV. In contrast to tt̄ + 2 jets with Mtt̄ < 400 GeV,
the (φ1 − φ2) distributions for bb̄ + 2 jets with the chosen value of Mbb̄ cut are found to be
rather flat, as expected. As far as the (φ1 + φ2) distribution is concerned, as explained in
sub-section 3.1, we indeed see a distribution as predicted by Eqn. 22 for the β → 1 limit.
In particular, we see the expected suppression at (φ1 + φ2) = 0,±π, and enhancement at
(φ1 + φ2) = ±π/2. In order to estimate the feasibility of studying the angular distributions
in bb̄ + 2 jets processes at the 8 TeV LHC, we present in Table 3 the cross-sections after
Cuts 1, 2 and 3, and various values of the Mbb̄ cut. The total cross-sections for this process
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Figure 4: Differential distribution of (φ1 − φ2) (left panel) and (φ1 + φ2) (right panel) for
bb̄ + 2 jets in the three sub-processes initiated by qq, qg and gg and the sum of all sub-
processes at the

√
s = 8 TeV LHC after Cuts 1, 2 and 3. The invariant mass of the bb̄ pair

has been demanded to be Mbb̄ > 400 GeV.

for different values of the invariant mass cut are seen to be considerably high, such that
sufficient number of events for studying the angular correlations are expected at the 8 TeV
LHC with ∼ 20 fb−1 luminosity, even after b-tagging efficiencies are taken into account.

Mbb̄ cut σqqbb̄ (fb) σqgbb̄ (fb) σggbb̄ (fb) σbb̄+2 jets (fb)
No Mbb̄ cut 3748.27 7374.65 3593.10 14716.02
Mbb̄ > 400 GeV 1248.36 2333.83 1064.38 4646.57
Mbb̄ > 600 GeV 349.36 613.72 262.32 1225.40

Table 3: Cross-sections of various sub-processes contributing to bb̄ + 2 jets at 8 TeV LHC
after Cuts 1, 2 and 3 and different values of the Mbb̄ cut. We also show the total bb̄ + 2 jets
cross-section after these cuts separately.

In Figure 5, we show the normalized differential distributions for the bb̄ + 2 jets process,
where we present the sum of all sub-process contributions coming from qq, qg and gg. Here,
we have shown the effect of variation in the Mbb̄ cut. We also compare the normalized
distributions obtained by using the approximate and the exact matrix elements, and they
are found to agree to a good accuracy, as in the tt̄+2 jets case. We show in Table 4 the ratio of
the total cross-section obtained by using the exact and approximate matrix elements for two
different choices of the slicing pT cuts on the tagging jets. Here also, the approximate matrix
element is found to overestimate the total cross-section, and the difference between the two
is reduced once the tagging jet pT ’s are demanded to be very small, thereby approaching the
collinear limit for the t-channel gluons.
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Figure 5: Normalized differential distribution of (φ1 − φ2) (left panel) and (φ1 + φ2) (right
panel) for bb̄ + 2 jets with different Mbb̄ cuts, including all sub-processes, at the

√
s = 8 TeV

LHC, after Cuts 1, 2 and 3. The distributions obtained using the exact matrix elements are
shown as histograms with solid lines, while the ones obtained using the approximate matrix
elements are shown as curves with dotted lines.

pj
T cut (GeV) σApprox./σExact

qqbb̄ qgbb̄ ggbb̄

20 ≤ pj
T ≤ 60 2.34 2.31 2.27

10 ≤ pj
T ≤ 20 2.07 2.06 2.07

Table 4: The ratio of bb̄ + 2 jets cross-section calculated using the approximate and exact
matrix elements (σApprox./σExact) for the various sub-processes, with different choices of the
slicing cut for pj

T , at 8 TeV LHC. All other cuts described in Cuts 1, 2 and 3 are kept fixed.

5 Summary

In this paper, we have studied the azimuthal angle correlations of jets produced in association
with a top or bottom quark pair at the LHC. We have presented the helicity amplitudes for
the process QQ+2 jets using only the gluon fusion diagrams and employing the on-shell gluon
approximation to the matrix element. This gives us a general expression for the azimuthal
angle distributions for processes initiated by qq, qg and gg initial states. Subsequently, we
have explored this matrix element in two different kinematic limits. The first one is the
threshold production of the QQ pair, in which the invariant mass MQQ is very near to 2mQ.
In this limit we find a strong angular correlation in the distribution of the difference of
azimuthal angles of the tagging jets, (φ1 − φ2). The other kinematic limit considered is
the relativistic limit, in which MQQ is very much higher than 2mQ. In this limit, while the
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distribution in (φ1 − φ2) is expected to be rather flat, there is a strong correlation in the
sum of the azimuthal angles, (φ1 + φ2). We performed an exact numerical evaluation of
these angular distributions in tt̄ + 2 jets and bb̄ + 2 jets processes at the LHC, including all
the diagrams at the tree level, and verified our analytical approximations using a suitably
devised set of kinematic selection cuts. The VBF selection cuts are found to efficiently select
the GF contribution to these processes. A comparison between the normalized differential
distributions obtained by using the exact and the approximate matrix elements also shows
a very good agreement between the two. The total cross-sections are overestimated by the
approximate matrix elements by about a factor of 2, while they approach the exact cross-
sections as the pT ’s of the tagging jets are demanded to be smaller, thereby achieving the
collinear limit for the t-channel intermediate gluons, in which our approximation approaches
the exact matrix elements.

We expect these azimuthal correlations calculated at the leading order to survive even
after including higher order corrections, as has been previously demonstrated in the case of
Higgs production with multiple hard jets [1, 8]. One particular future direction that can
be explored is to extend our parton level results by using a matrix elements matched with
parton shower method.

We would like to stress that the study of such angular correlations among jets produced
with a top or bottom quark pair is not only interesting in itself, it has useful implications
in the study of VBF processes for determining the spin and CP properties of new particles
which can be discovered at the LHC. In particular, the experimental technique to measure
such correlations between tagging jets can be established first by using these SM processes
which have sufficiently high cross-sections. We expect that these studies can be performed
with the already accumulated data at the 8 TeV run of the LHC.

Acknowledgements

SM is grateful to Junichi Kanzaki for many a help regarding the use of the BASES integration
package. SM would also like to acknowledge the warm hospitality of the Theory Center at
KEK, Japan, and the RECAPP centre at Harish-Chandra Research Institute, India, where
major portions of this work were carried out. This work is partially supported by World
Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and by
Grant-in-Aid for scientific research (No.-20340064) from JSPS.

References

[1] T. Plehn, D. L. Rainwater and D. Zeppenfeld, Phys. Rev. Lett. 88 (2002) 051801;

V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Phys. Rev. Lett.
87 (2001) 122001;

V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Nucl. Phys. B 616

(2001) 367;

V. Hankele, G. Klamke and D. Zeppenfeld, arXiv:hep-ph/0605117;

13



K. Odagiri, JHEP 0303 (2003) 009;

V. Del Duca et al., JHEP 0610 (2006) 016;

H. Murayama and V. Rentala, Phys. Rev. D 85 (2012) 095005;

C. Englert, M. Spannowsky and M. Takeuchi, JHEP 1206 (2012) 108;

S. Y. Choi, M. M. Muhlleitner and P. M. Zerwas, Phys. Lett. B 718 (2013) 1031;

J. Frank, M. Rauch and D. Zeppenfeld, arXiv:1211.3658 [hep-ph];

C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, arXiv:1212.0843 [hep-ph].

[2] K. Hagiwara, Q. Li and K. Mawatari, JHEP 0907, 101 (2009).

[3] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438;

L. N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94;

G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298;

Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.

[4] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106, 128 (2011).

[5] S. Kawabata, Comput. Phys. Commun. 88 (1995) 309.

[6] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung, JHEP
0207 (2002) 012.

[7] K. Nakamura et al. [Particle Data Group Collaboration], J. Phys. G G 37, 075021
(2010).

[8] J. R. Andersen, V. Del Duca and C. D. White, JHEP 0902 (2009) 015;

14


