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THE SCHOTTKY PROBLEM IN GENUS FIVE

CHARLES SIEGEL

Abstract. In this paper, we present a solution to the Schottky problem in the
spirit of Schottky and Jung for genus five curves. To do so, we exploit natural
incidence structures on the fibers of several maps to reduce all questions to
statements about the Prym map for genus six curves. This allows us to find
all components of the big Schottky locus and thus, to show that the small
Schottky locus introduced by Donagi is irreducible.
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Introduction

The Schottky problem has a long history and is one of the first questions to be
asked in complex curve theory: how can we characterize Jacobians among all abelian
varieties? The question turns out to be quite subtle, and a completely satisfactory
answer is still lacking, despite several characterizations existing and being a fertile
ground for new techniques in studying the moduli of abelian varieties.

Historical Overview. The oldest approach to the Schottky problem is via theta
functions. Certain theta functions give natural coordinates on Ag, called thetanulls,
and Schottky [Sch88] for genus four and Schottky and Jung [SJ09] for genus g ≥
5 conjectured equations for the locus of Jacobians. We denote the locus these
equations cut out by Sg, the Schottky locus, and then the Schottky-Jung conjecture
is that Sg = Jg. Schottky and Jung’s results implied only Jg ⊂ Sg, though that Jg

is an irreducible component of Sg was shown by [Gee84]. A solution in the genus four
case was announced in the late 1960s by Igusa [Igu69] and appeared independently
in [Igu81] and [Fre83]. The method was to prove that S4 was an irreducible divisor
on A4, and thus, must be identical with J4, an irreducible divisor contained inside
it. Unfortunately, this method cannot be employed directly in higher genus, as it
relied on the fact that S4 is given by a single equation in theta nulls.

Another attempt to describe the Jacobians involves the dimension of the singular
locus of the theta divisor. The Riemann singularity theorem implies that this
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singular locus has dimension at least g − 4, and this is a special condition on
abelian varieties. Andreotti and Mayer [AM67] studied the locus AMg of such
abelian varieties and showed that it gives a weak solution to the Schottky problem,
that is, the Jacobians are an irreducible component of AMg, but other components
exist. In genus four [Bea77a] and five [Don81, Deb90] the locus AMg has been
completely described as

AM4 = θnull,4 ∪ J4 and AM5 = A1 ×A4 ∪ BE ∪ J5,

where BE is the locus of bielliptic Prym varieties and θnull,g the locus of abelian
varieties with a vanishing thetanull, with all the non-Jacobians contained in θnull,5.
This approach has not been carried out in higher genus fully, but singularities of
theta divisors remains an active area of study [CM08, CG00, GSM07].

A third approach has been through trisecants. Fay’s trisecant formula [Fay73]
tells us that the natural embedding of J (C)/ ± 1 → P2g−1 has a four dimensional
family of trisecant lines. Welters [Wel84] proved that if A/ ± 1 → P2g−1 has a
one parameter family of trisecant lines, then it must be a Jacobian. The family
of trisecants has an infinitesimal formulation as the KP hierarchy, and Novikov
conjectured that an abelian variety is a Jacobian if and only if the corresponding
theta function satisfies the KP hierarchy. This was proved by Shiota [Shi86]. The
strongest result on trisecants is the recent proof, using difference equations, by
Krichever [Kri10] that a single trisecant on A/ ± 1 suffices to determine that an
abelian variety is a Jacobian.

This paper. In [Don87a, Don87b], Donagi showed that the original Schottky-Jung
conjecture was incorrect. In particular, he showed that C, the locus of intermediate
Jacobians of cubic threefolds, is contained in S5. Additionally, he offered a means
of correcting this, and conjectured that nothing not accounted for by his methods
appears in the Schottky locus. However, even in genus five a proof was out of reach
at the time, with some aspects of degenerations of dimension five abelian varieties
remaining unclear until Izadi’s thesis [Iza91].

In this paper, we present a proof of

Theorem. Inside of Ag, we have

J5 = Ssmall
g .

The paper is organized as follows. In section 1, we will gather results from the
literature, recall definitions and set notation for the remainder of the paper. Section
2 consists of the geometry and combinatorics of point and line configurations over
F2, and describes incidence structures on the fibers of several maps defined below.
Section 3 studies degenerations of abelian varieties of dimension five, using results
from Izadi’s thesis [Iza91] to complete the computation of the degree of the map
β5 begun in section 2 via incidence structures. Section 4 consists of a study of
the contracted loci for β5, completing our picture of this map and allowing us to
proceed to section 5, where we use this to compute the Schottky locus, and prove
the main theorem.
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versity of Pennsylvania. Also, I am indebted to Sam Grushevsky, Gavril Farkas,
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1. Background

1.1. Moduli of curves and abelian varieties. First, we will describe the various
moduli spaces that we will need, all of which are covers of the spacesMg andAg, the
moduli space of genus g compact Riemann surfaces and of g dimensional principally
polarized abelian varieties, respectively.

We will need first Hg, the Siegel upper half space of g × g symmetric complex
matrices with positive definite imaginary part. This space is the stack universal
cover of Ag, and has an action of Γg = Sp(2g,Z) by

(
A B
C D

)
· Ω = (AΩ +B)(CΩ +D)−1

such that Ag
∼= Hg/Γg as complex analytic spaces.

Other space we will need are defined by subgroups of Γg. We set Ag(n) to be
the quotient of Hg by

Γg(n) = {γ ∈ Γg|γ ≡ 1 mod n}.

This space parameterizes pairs (A, φ) where A ∈ Ag and φ : A[n] → (Z/nZ)2g is a
symplectic isomorphism from the points of order n on A to (Z/nZ)2g . For theta
functions, it will be essential to use Ag(n, 2n), which is the quotient by

Γg(n, 2n) =

{(
A B
C D

)
∈ Γg(n)

∣∣∣∣ diag(
tAC) ≡ diag(tBD) ≡ 0 mod 2n

}
.

For the Prym map, we will need to fix the vector v = (0, . . . , 0, 1/2) ∈ Q2g, and
then look at the groups

RΓg(n) = {γ ∈ Γg(n)|γ · v ≡ v mod (nZ2g)}

RΓg(n, 2n) = {γ ∈ Γg(n, 2n)|γ · v ≡ v mod (nZ2g)}

corresponding to the moduli spaces RAg(n) and RAg(n, 2n). These spaces pa-
rameterize pairs (A, µ) where A is in Ag(n) or Ag(n, 2n), respectively, along with
µ ∈ A[2] nonzero.

ForMg, we will need all of the analogous spaces to the ones defined above forAg.
They can all be constructed via pullbacks: we use the Torelli map Jg : Mg → Ag

and take the fiber product with the projection to Ag. For example, RMg is the
space of pairs (C, µ) where µ is a nonzero point of order 2 on J (C). We will need one
additional space, R2Mg, whose elements are ordered triples (C, µ, ν) with C ∈ Mg,
µ, ν distinct nonzero points of order 2 on the Jacobian such that for any line bundle
L on C with L⊗2 ∼= KC , we have

(1) h0(C,L) + h0(C,L ⊗ µ) + h0(C,L ⊗ ν) + h0(C,L ⊗ µ⊗ ν) ≡ 0 mod 2.

The left hand side is called the Weil pairing and we will refer to pairs satisfying 1
as orthogonal. For abelian varieties that are not Jacobians, we can define the Weil
pairing as the intersection pairing on H1(A,Z/2Z). (That these are the same is
shown in [Mum71])
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Finally, here we note another interpretation of RMg. The data of a smooth

curve C and µ ∈ J (C)[2] is equivalent to C̃ → C, an unramified double cover. We

can construct C̃ inside the total space of µ by fixing ϕ : µ⊗2 → OC an isomorphism
and then, on sufficiently small open sets U ⊂ C, we have

C̃|U = {σ2 = 1|σ ∈ µ(U)}.

We will use (C, µ) and (C, C̃) interchangeably, along with (C̃, ι) where ι : C̃ → C̃
is the involution corresponding to the double cover.

1.2. Compactifications. In this paper, we will need several partial compactifica-
tions of the moduli spaces we study, particularly Mg, Ag, RMg, RAg and R2Mg.

We will start with the boundary for Ag and RAg, which is simpler than that of
Mg and its covers. The space Ag has a distinguished compactification, the Satake
compactification, which all other compactifications map to. We will only need the
corank 1 part, which we will denote by A

s

g and we note that ∂A
s

g
∼= Ag−1. There is

a larger class of compactifications called toroidal compactifications [AMRT10]. We
will only need the corank 1 part here as well, and for all toroidal compactifications,

this is the same, so we write A
t

g = BlAg−1
A

s

g. This has the property that ∂A
t

g is a
divisor, and is isomorphic to Xg−1, the universal Kummer variety over Ag−1. We
will interpret it as parameterizing C×-extensions of abelian varieties of dimension
g − 1.

The space RAg has a slightly more complex boundary, and for reference we
reproduce results in [Don87a] describing it. There are both Satake and toroidal
compactifications, for which we will again only need the corank 1 part. In either
case, there are three components, depending on the relationship between the point
of order two, µ, and the vanishing cycle δ taken modulo two:

• ∂IRA
s

g
∼= Ag−1 and ∂IRA

t

g
∼= Xg−1 are the components where δ = µ.

• ∂IIRA
s

g
∼= RAg−1 and ∂IIRA

t

g
∼= RX g−1 (The fiber of RX g−1 → RAg−1

over (X,µ) ∈ RAg−1 is the double cover of X determined by (µ)⊥) are the
components where δ 6= µ and the two points are orthogonal.

• ∂IIIRA
s

g
∼= Ag−1 and ∂IIIRA

t

g
∼= Xg−1 are the components where δ and

µ are not orthogonal.

In fact, we have

Proposition 1.1 ([Don87a, Proposition 2.3.2]).

The projection RA
t

g → RA
s

g is simply ramified along ∂IIIRA
t

g and unramified on

the other boundary components. (Note that the map ∂IIIRA
t

g → ∂IIIRA
s

g is given

by RX g−1
×2
→ RX g−1 → RAg−1 with the first map multiplication by two along the

fibers)

For Mg and its covers, the boundary is somewhat more complex. We will only
be using partial compactifications contained in the Deligne-Mumford stable curve
compactification [DM69]. In this compactification, we have δi for 1 ≤ i ≤

⌊
g−1
2

⌋

consisting of reducible curves with a component of genus i meeting a component of
genus g− i at a point. There is also a component δ0 consisting of irreducible curves
of geometric genus g − 1 with a single node[HM98].

The situation for RMg is slightly more complex. Each boundary component of

Mg splits into three components. The reducible components δi give us ∂i, ∂g−i
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and ∂i,g−i, consisting of pairs (C, µ) where µ is supported on the curve of genus i,

g − i or both. For δ0, we have ∂I , ∂II and ∂III as with RA
s

g. We also, for later
reference, describe the corresponding double covers:

Proposition 1.2 ([Don92, Examples 1.9]).
The generic element of the boundary components of RMg correspond to double
covers as follows:

• ∂i for 1 ≤ i ≤ g− 1: the base curve is C = Ci ∪p Cg−i and the double cover

is C̃ = Cg−i ∪p1
C̃i ∪p2

Cg−i.

• ∂i,g−i for 1 ≤
⌊
g−1
2

⌋
: the base curve is C = Ci ∪p∼q Cg−i and C̃ =

C̃g−i ∪p1∼q1,p2∼q2 C̃i.
• ∂I : the base curve is C = X/p ∼ q and the double cover is

C̃ = X0

∐
X1/p0 ∼ q1, p1 ∼ q0. This is called a Wirtinger double cover.

• ∂II : the base curve is C = X/p ∼ q and the double cover is

C̃ = X̃/p0 ∼ q0, p1 ∼ q1 where X̃ → X is an unramified double cover. This
is called an unallowable double cover.

• ∂III : the base curve is C = X/p ∼ q and the double cover is C̃ = X̃/p̃ ∼ q̃

where X̃ → X is a double cover ramified over p and q. This is called a
Beauville double cover.

1.3. The Prym map. In this section, we will define, describe and collect useful
results about the Prym map.

Let C be a genus g curve and π : C̃ → C be any morphism of curves. Then we
can define a map Nmπ : J (C̃) → J (C) by writing D ∈ J (C̃) as D =

∑
nPP and

setting Nmπ(D) =
∑

nPπ(P ). If π is surjective, then so is Nmπ. This is especially
useful in the case where π is an unramified double cover. In this case, the kernel is
g − 1 dimensional and has two components. We define Pg(C, C̃) = ker0 Nmπ, the
connected component of the identity of the kernel of the norm map, and call it the
Prym variety of the double cover. The principal polarization on J (C̃) restricts to

twice a principal polarization on P(C, C̃)[Mum74, Corollary 2], thus giving P(C, C̃)
the natural structure of a principally polarized abelian variety, giving us a map
Pg : RMg → Ag−1. Additionally, we have:

Lemma 1.3 (Mumford Sequence[Mum74, Corollary 1]).
Let (C, µ) ∈ RMg. Then we have a short exact sequence

0 → 〈µ〉 → µ⊥ → P(C, µ)[2] → 0

where we are taking the orthogonal complement with respect to the Weil pairing.
If ν ∈ µ⊥ we will denote the image of ν in P(C, µ)[2] by ν̄.

This allows us to define also RPg : R2Mg → RAg−1 by
RPg(C, µ, ν) = (P(C, µ), ν).

Unfortunately, as defined, the Prym map is not proper, so we must study the
Prym map on the boundary of RMg.

Proposition 1.4 ([Don92, Example 1.9]).
The Prym map extends to the general point of the boundary of RMg as follows
along each component:

• ∂I : For a Wirtinger double cover, Pg(C, C̃) ∼= Jg−1(X).
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• ∂II : For an unallowable double cover, Pg(C, C̃) is the C×-extension of

Pg−1(X, X̃) given by p0 − p1 + q0 − q1 in Pg−1(X, X̃)
• ∂III : The Prym of a Beauville double cover is a principally polarized abelian
variety, and this and other ramified Prym maps are studied in [MP12]. It

is isogenous to Pg−1(X, X̃) but is not isomorphic to it.
• ∂i fits into a diagram:

RMi ×Mg−i

Ai−1 ×Ag−i∂i

��

Pg
//

Pi×Jg−i

77♦♦♦♦♦♦♦♦♦♦♦♦♦

• ∂i,g−i fits into a diagram:

RMi ×RMg−i

∂A
t

g−1

Ak−1 ×Ag−k−1

∂i,g−i

Pi×Pg−i

//

Pg
//

�� ��

Unfortunately, Pg is only a rational map, it cannot be extended to all overRMg.

However, if we look at P−1
g (Ag−1) = (RMg)

allowable, then we have

Theorem 1.5 (Prym is Proper [DS81, Theorem 1.1], [Bea77a, Proposition 6.3]).
For all g, (RMg)

allowable → Ag−1 is proper and for g ≤ 6 it is surjective.

Finally, we will need a theorem of Shokurov, based on Mumford’s analysis of the
singularities of theta divisors:

Proposition 1.6 ([Sho82], stated as it appears in [Bea89]).

Assume g 6= 4. If Pg(C, C̃) is a Jacobian, then C is hyperelliptic, trigonal or is a
plane quintic with an even point of order two.

In particular, this theorem implies that C is not bielliptic, that is, it is not a
branched cover of an elliptic curve, and this will be the main use we will have for
it later.

1.4. Fibers of the Prym map. Any study of the fibers of the Prym map begins
with the tetragonal construction of Donagi, announced in [Don81] and more fully

developed in [Don92]. Let π : C̃ → C be an unramified double cover and f : C → P1

be a degree four map. Then we define

f∗C̃ = {D ∈ Sym4 C̃|Nmπ(D) = f−1(k) for some k ∈ P1.

The involution ι on C̃ extends to f∗C̃, which also splits into two components, giving

us two new towers C̃0
π0→ C0

f0
→ P1 and C̃1

π1→ C1
f1
→ P1 where (Ci, C̃i) ∈ RMg and

fi is of degree four. The key theorem is

Theorem 1.7 ([Don81, Proposition 1.1]).
The tetragonal construction commutes with the Prym map:

Pg(C, C̃) ∼= Pg(C0, C̃0) ∼= Pg(C1, C̃1).

This is a generalization of a theorem of Recillas identifying trigonal Pryms:
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Theorem 1.8 (The Trigonal Construction [Don92, Example 2.15(1)],[Rec74]).

If C → P1 is tetragonal and C̃ → C is the reducible double cover, then the tetragonal
construction gives a copy of C̃ → C → P1 and also P1 ∪ T̃ ∪ P1 → P1 ∪ T → P1

where T is a trigonal curve and Pg(T, T̃ ) ∼= Jg−1(C). Additionally, this operation
is a bijection, so every trigonal Prym is a tetragonal Jacobian.

and also we recall a theorem of Mumford’s identifying hyperelliptic Pryms:

Proposition 1.9 ([Mum71]).
The Pryms of hyperelliptic curves are products of Jacobians.

Now we will discuss the fibers of the Prym maps P6 and P5, as well as the
behavior over certain special loci. For a general genus six curve, there are exactly
five g14 ’s, and from this and the fact that any two points in the fiber of P6 are
related by at most two applications of the tetragonal construction, we get

Theorem 1.10 ([DS81, Theorem 2.1][Don81, Theorem 2.1]).
The map RM6 → A5 is generically finite of degree 27 with Galois group WE6, the
Weil group of the root system of type E6, giving the general fiber the structure of
the 27 lines on a cubic surface.

We can see this structure clearly over some special loci in A5. However, first
we need to perform some blowups. Let RQ0 and RQ1 be the loci of plane quintic
curves with an odd or even point of order two, respectively. (If µ is a point of order
two on J (Q), its parity is the parity of the dimension of the space of global sections

of µ⊗ g25.) Also let RMTrig
6 be the locus of genus six curves with a g13 , let C be the

locus of intermediate Jacobians of cubic threefolds in A5. Finally, set R̃M6 to be

the blowup of RM6 along RQ0 ∪RQ1 ∪RMTrig
6 and Ã5 the blowup of A5 along

J5 ∪ C. Then the Prym map P̃6 : R̃M6 → Ã5. This blown up Prym map is easier
to analyze and gives more explicitly the structure of the tetragonal construction
and the fibers.

Proposition 1.11 ([Don92, Remark 4.5.1]).

Any two points in a fiber of P̃6 are related by at most two tetragonal constructions.

Proposition 1.12 ([Don92, 4.3.4]).

The fiber of P6 over X ∈ C is the Fano surface of lines in X. In Ã5, the inverse
image of X ∈ C is pairs (X,H) where H is a hyperplane in P4. Then, P̃−1

6 (X,H) =
{ℓ|ℓ ⊂ X ∩H}.

The above proposition exhibits the structure of the 27 lines very explicitly, and
it follows from [Bea77b, Theorem 2.1] which uses the correspondence between conic
bundle structures and lines on a cubic threefold to identify the intermediate Jaco-
bians with the Pryms of discriminant curves.

Suppressing normal data, we can also describe the fiber over the Jacobian of a
curve:

Proposition 1.13 ([Don92, 4.3.7]).

Let C ∈ M5. Then P̃−1
6 (J (C)) contains one plane quintic with an odd point

of order two, ten trigonal curves with double covers and sixteen Wirtinger double
covers.

Another extremely useful result is



8 CHARLES SIEGEL

Proposition 1.14 ([Don81, Corollary 2.3],[Don92, 4.8],[Cle83]).
The ramification locus of P6 is mapped six to one onto the branch locus, which is
the locus of intermediate Jacobians of quartic double solids.

Finally, for P6 we look over the boundary where we have

Proposition 1.15 ([Iza91, Corollary 6.5]).

The restriction of the Prym map to ∂II → ∂A
t

5 is generically unramified and finite.

Now, we recall the major results on P5:

Proposition 1.16 ([Don92, Theorem 5.2]).

(1) There exists an involution λ : RM5 → RM5 such that P5 ◦ λ = P5.

(2) There is a natural birational map χ : A
t

4 99K RC
0
, where RC

0
is the space

of cubic threefolds with an even point of order two on the intermediate
Jacobian, including nodal cubic threefolds as limits.

Given these two maps, Donagi showed

Proposition 1.17 ([Don81, Theorem 3.3]).
For A ∈ A4 generic, P−1

5 (A)/λ is isomorphic to the Fano surface of lines in χ(A),

and (C1, C̃1) and (C2, C̃2) are tetragonally related if and only if the corresponding
lines intersect. Thus, any two points in P−1

5 (A) are related by at most two tetragonal
constructions.

Before moving on, we will identify the fibers of P5 over Jacobians:

Proposition 1.18 ([Don92, Theorem 5.14]).
Let B ∈ M4 be a general curve of genus 4 and let (X, δ) = χ(J (B)). Then

(1) X is a nodal cubic threefold
(2) The double cover of the Fano surface of lines in X is reducible and each

component is isomorphic to Sym2 B
(3) P−1

5 (J (B)) is isomorphic to the double cover of the Fano surface of lines of
X, with one component of trigonal curves Tp,q and one of Wirtinger double

covers Sp,q, for (p, q) ∈ Sym2 B
(4) The tetragonal construction takes Sp,q and Tp,q to Sr,s and Tr,s if and only

if p+ q + r + s is a special divisor on B, and λ exchanges Sp,q and Tp,q

(5) Two objects of P−1
5 (J (B)) are related by at most two tetragonal construc-

tions.

1.5. Theta Functions. Now, we shall describe one more major technical tool used
in this paper. The Riemann theta function on Hg × Cg is given by

θ(Ω, z) =
∑

n∈Zg

exp[πi(tnΩn+ 2tnz)].

This function is periodic with respect to Zg and is multiplied by an exponential
factor with respect to ΩZg. Thus, the zero locus of θ(Ω, z) is periodic for Zg ⊕ΩZg

and gives a divisor Θ on A, the theta divisor.
For ǫ, δ ∈ Qg, we define a theta function with characteristics to be

θ

[
ǫ
δ

]
(Ω, z) = exp[πi(tǫΩǫ+ 2tǫ(z + δ))]θ(Ω, z +Ωǫ+ δ)
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which is essentially the translate of θ(Ω, z) by Ωǫ + δ. Evaluating at z = 0, these
are Siegel modular forms of weight 1

2 and level (4, 8), so they are only well-defined
on Ag(4, 8), not on Ag itself.

We will also need θ2[ǫ](Ω, z) = θ

[
ǫ
0

]
(2Ω, 0) where ǫ ∈ (12Z/Z)

g, the second or-

der theta functions, and θ

[
ǫ 0
0 1/2

]
(2Ω, 0) where ǫ ∈ (12Z/Z)

g−1. These are mod-

ular forms of weight (2, 4), and we we can use them to define maps αg : Ag(2, 4) →
P(Ug) and βg : RAg(2, 4) → P(Ug−1) where Ug is the vector space of functions

(Z/2Z)g → C by setting αg(Ω)ǫ = θ2[ǫ](Ω, 0) and βg(Ω)ǫ = θ

[
ǫ 0
0 1/2

]
(2Ω, 0).

We get maps on Ag and RAg by noting that Gg = Γg/Γg(2, 4) acts on Ag(2, 4),
RAg(2, 4) and P(Ug) in compatible ways, so that if Pg = P(Ug)/Gg, we have
αg : Ag → Pg and βg : RAg → Pg−1.

The primary purpose of this paper will be to understand the fibers of β5. For
this, we will use

Theorem 1.19 (Theta symmetry [Don87b, Theorem 3.1]).
Let C ∈ Mg+1 be a curve of genus g+1 and let {0, µ0, µ1, µ2} be a rank 2 isotropic
subgroup of Jg+1(C)2 (thus, µ2 = µ0 + µ1). For i = 0, 1, 2 we have a Prym variety
Pi = P (C, µi) ∈ Ag and on it a uniquely determined semiperiod νi, the image of
µj, j 6= i in Pi.

The point β(Pi, νi) is independent of i = 0, 1, 2.

We will also use the description of the fibers of β4 that appears in the survey
[Don88]

Proposition 1.20 ([Don88, Theorem 5.3]).
For C ∈ M3, the fiber β−1

4 (α3(J (C))) consists of two copies of the Kummer
K(J (C)), one contained in the interior of RM4 and the other the fiber over

J (C) ∈ A3 = ∂A
s

4 in the projection A
t

4 → A
s

4.

1.6. The Schottky Loci. We begin with the theorem that motivates this study:

Theorem 1.21 (Schottky-Jung Identities [Sch88, SJ09, RF74]).
The following diagram commutes:

RMg

Pg

Ag−1 RAg

Pg

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ RJ g

��❄
❄❄

❄❄
❄❄

❄

αg−1

��❄
❄❄

❄❄
❄❄

❄

βg
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Schottky and Jung noticed these relations between various theta functions and
suggested that they can be used to describe Jacobians. More precisely, we define

RSg = β−1
g (imαg−1)

Sbig
g = {A|∃µ, (A, µ) ∈ RSg}

Ssmall
g = {A|∀µ, (A, µ) ∈ RSg}
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Schottky and Jung conjectured that Sbig
g = Jg, the closure of the image of the

Torelli map. This is known not to be true, and the key result for that is Theta
symmetry (Theorem 1.19)

Let Q ⊂ P2 be a plane quintic curve and let µ, ν be two points of order two on
J (Q) such that µ is odd and ν is even. Then (P(Q,µ), ν̄) ∈ RS5 if and only if
(P(Q, ν), µ̄) ∈ RS5. However, as mentioned above and proved in [DS81], P(Q,µ)
is the intermediate Jacobian of a cubic threefold. Additionally, P(C, ν) is known
to be a Jacobian of a curve (see the discussion in section 5 of [Don87b]). Thus,

C ⊂ Sbig
5 , and so Donagi introduced Ssmall

g to correct this, as only RC0 appears in

RS5, not RC1, the locus of intermediate Jacobians of cubic threefolds with an odd
point of order two.

There are two additional components that are not difficult to show lie in RS5.
There is the locus RA1 ×A4, and in fact:

Proposition 1.22 ([Don87a, 3.3.4]).
The Schottky locus RSg contains Ag′ ×RAg′′ for all g′+g′′ = g (Note that if g = 0,
then RS0 = ∅).

We will see below that no other product loci can be components of RS5.
There is also one boundary component, described by

Proposition 1.23 ([Don87a, Theorem 3.3.1]).
In the Satake compactification, we have

∂RS
s

g = ∂IRA
s

g ∪ ∂IIIRA
s

g ∪ iII(RSg−1)

where iII is the inclusion of RAg−1 as ∂IIRA
s

g.

In [Don88] this result is strengthened to show that ∂RA
t

g does not contain ∂III

or iII(RSg−1) as components, but only contains the points that are limits of other
components.

2. Line Configurations

In this section, we will study a class of configurations that occur whenever there
is a triality on a space, such as the tetragonal construction or theta symmetry.
Because we are working with trialities, everything in this section will be done over
F2, but the majority will work for Fq.

Definition 2.1 (Line Configuration).
A line configuration V over F2 is a set PV , called the points of V , along with a set
LV , called the lines of V , such that for all ℓ ∈ LV , we have ℓ ⊂ PV , |ℓ| = 3 and for
all ℓ, ℓ′ ∈ LV , |ℓ ∩ ℓ′| ≥ 2 implies that ℓ = ℓ′.

We can construct a large class of examples, which we will call algebraic line
configurations. These are defined by starting with V ⊂ Pn over F2 a projective
variety. Then we set PV to be the F2-points of V and LV to be the projective lines
over F2 contained in V . The first interesting example is V = P2, the Fano plane:

• • •

•
• •

•

✟✟✟

☛☛☛
✻✻✻

✸✸✸

♦♦♦♦
❖❖❖❖
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we define a morphism of configurations f : V → W to be an injection f : PV →
PW such that for each line {p0, p1, p∞} ∈ LV , the image {f(p0), f(p1), f(p∞)} is a
line in LW . A subconfiguration is then the image of a morphism. We say that two
points are collinear if they lie on a subconfiguration isomorphic to P1 and that two
lines are coplanar if they lie on a subconfiguration isomorphic to P2.

Definition 2.2 (V -Configuration).
Let V be a line configuration. Then another line configuration W is a
V -configuration if for each p ∈ PW , there exists a bijection φp : {ℓ ∈ LW |p ∈ ℓ} →
PV such that ℓ, ℓ′ are coplanar if and only if φp(ℓ) and φp(ℓ

′) are collinear.

Example 2.3.

(1) Pn is a Pn−1-configuration.
(2) If V is a collection of n points with LV = ∅, then (P1)n is a V -configuration.
(3) For some V , we can construct examples of multiple fundamentally distinct

V -configurations. For instance, if V consists of five points and no lines,
the previous example says that (P1)5 is a V -configuration. However, if
S is a smooth cubic surface, then we can define a configuration W with
PW = {ℓ ⊂ S|ℓ is a line} and with LW the set of triples of coplanar lines.
It is classical that given a line on a cubic surface, it is contained in exactly
five coplanar triples, no set of which are configured as a Fano plane.

Now, to help us to describe the properties of line configurations, we use the
incidence graph. This is the graph ΓV whose vertices are the points of PV and two
vertices p, q ∈ PV are connected by an edge if and only if they are collinear. We
fix a metric on ΓV such that each edge has length 1, and give properties to V from
the properties of the metrized graph ΓV , for instance, we can speak of connected
configurations or the diameter of a configuration.

Given ΓV , we can define numerical invariants of a configuration. For each p ∈ PV ,
we define Vi(p) = {q ∈ V |d(p, q) = i}, the points that are first reached after passing
along i lines from p. For points p ∈ PV , and q ∈ Vi(p), we define Vi,j(p, q) =
Vj(p) ∩ V1(q), the points distance j from p which are adjacent to q. Note that
Vi,j(p, q) is empty unless j is i− 1, i or i+ 1. We denote the cardinalities of these
sets by vi(p) and vi,j(p, q) (by convention, we set these numbers to be zero if i or j
is negative), and call a line configuration symmetric if the vi(p) and vi,j(p, q) don’t
depend on p and q, in which case we will denote vi = vi(p) and vi,j = vi,j(p, q).

Proposition 2.4.

Let V be a connected symmetric line configuration. Then

(1) For all i, v1 = vi,i−1 + vi,i + vi,i+1

(2) For all i, v1vi = vi−1,ivi−1 + vi,ivi + vi+1,ivi+1

(3) We have v0 = 1, v0,0 = 0, v0,1 = v1 and v1,0 = 1.

Let W be a connected symmetric V -configuration. Then

(4) w2,2 ≥ w2,1

(5) w1 = 2|PV |
(6) w1,1 = 2v1 + 1
(7) If, additionally, v3 = w3 = 0, then either w2 = |PV | or w2 = 4v2.

For convenience, throughout the proof we will set LinesW (p) = {ℓ ∈ LW |p ∈ ℓ},
the set of lines through p in W .
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Proof. Let V be a connected symmetric line configuration and W a connected
symmetric V -configuration.

(1) Fix p ∈ V , i ∈ N, q ∈ Vi(p). Then

Vi,i−1(p, q) ∪ Vi,i(p, q) ∪ Vi,i+1(p, q)

= (Vi−1(p) ∩ V1(q)) ∪ (Vi(p) ∩ V1(q)) ∪ (Vi+1(p) ∩ V1(q))

= (Vi−1(p) ∪ Vi(p) ∪ Vi+1(p)) ∩ V1(q)

= V1(q).

(2) Fix p ∈ V , i ∈ N. Let X = {(a, b)|a ∈ Vi(p), b ∈ V1(a)}. Then |X | = viv1.
But also,

X = {(a, b)|a ∈ Vi(p) ∩ V1(b), b ∈ ∪jVj(p)}

= ∪j{(a, b)|a ∈ Vj,i(p, b), b ∈ Vj(p)}

and so |X | =
∑

j vj,ivj .

(3) These all follow directly from the definitions.
(4) Fix q ∈ W2(p). We prove that no line containing q contains two points of

W1(p). As each line consists of 3 points, this implies that w2,2 ≥ w2,1. Let
a, b ∈ W1(p) and assume that there is a line ℓ ∈ LW such that a, b, q ∈ ℓ. As
a, b ∈ W1(p), there exist lines m1,m2 through p containing a, b respectively.
But then, m1,m2 must be coplanar, and so there is a line m containing p, q,
so q ∈ V1(p) ∩ V2(p) = ∅, a contradiction.

(5) For each line ℓ ∈ LinesW (p), fix a bijection ℓ → P1(F2) such that p is
mapped to ∞. Then ∪ℓ∈LinesW (p)ℓ \ {p} =

∐
ℓ∈LinesW (p) A

1(F2), and this

has cardinality twice the number of lines, 2|PV |.
(6) Fix p ∈ PW , ℓ a line through p, p′ ∈ ℓ distinct form p. Through p′, there

are |PV | lines. One is ℓ, v1 of them are coplanar with ℓ, and the rest are
not. Each coplanar line consists of n points in V1(p) that are not p′, but
there are also n−1 points of ℓ in V1(p) other than p′, and so w1,1 = 2v1+1.

(7) Fix p ∈ W . Let X̃ be the set of triples (ℓ,m, q) in LinesW (p) × LW ×W2

such that p ∈ ℓ, ℓ ∩m 6= ∅ and q ∈ m. There is a natural map X̃ → W2

which is surjective. Then

|X̃| = w2 · |fiber|

= w2 · |{paths to q ∈ W2 from q}|

= w2 · |{points ofW1(p)connected to p}|

= w2 · |W1(p) ∩W1(q)| for q ∈ W2(p)

= w2w2,1

Now, we also have a map X̃ → LinesW (p) × W2(p) = A
∐

B, where
the fiber over A has cardinality 1 and over B has cardinality 0. These are
the only possibilities, because if there were two, then we get a plane and
q ∈ W1(p). So |A| = |X̃ | = w2w2,1, and |A|+ |B| = |LinesW (p)×W2(q)| =
|PV |w2, so |B| = w2(|PV | − w2,1).

But, as W is symmetric, we can see that |V | = |PV |α, where α is the
number of lines in LinesW (p) that don’t have a line connecting them to
q. Then α = |PV | − |{lines in LinesW (p) connected to q}|, which is α =
|V | − w2,1, so |B| = |PV |(|PV | − w2,1).
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So, w2(|PV | −w2,1) = |PV |(|PV | −w2,1), implying that either w2 = |PV |
or else w2,1 = |PV |. In the latter case, the previous parts of this proposition
along with the hypothesis that diam(W ) ≤ 2, implies that w2 = 4v2.

�

We can now apply these numerics to another family. Let the zero locus of
x2
1+x2

2+x1x2+x3x4+ . . .+x2n−1x2n in P2n−1(F2) be denoted by Q−
2n. This is the

smooth quadric of Witt defect 1 in P2n−1 over F2. We have actually already seen it
in an above example: if n = 2, then the zero locus is five points, no three collinear,
and if n = 3, we get 27 points, each of which lies on 5 lines (and thus is adjacent to
10 points), which gives the configuration of lines on a smooth cubic surface. The
latter fact also appears as an isomorphism WE6

∼= O−
6 (F2), the orthogonal group

preserving the form x2
1 + x2

2 + x1x2 + x3x4 + x5x6.
For all n, in fact, we can see that Q−

2n+2 is a Q−
2n-configuration, by noting

that they are homogeneous varieties, and so we only need to look at the point
[0 : . . . : 0 : 1], where everything is easy to compute. Additionally, for n ≥ 3 these
are all symmetric and have diameter two, so all of the numerical conditions above
apply.

Lemma 2.5.

Let n ≥ 2. Then the only connected, symmetric Q−
2n-configuration of diameter 2 is

Q−
2n+2.

Proof. We set V = Q−
2n for some fixed n ≥ 2 and W a connected, symmetric

V -configuration.
As we are assuming diameter 2, we have to determine wi and wi,j for 0 ≤ i, j ≤ 2.

Proposition 2.4(3) determines w0, w0,0, w1,0 and that w0,1 = w1. Then Proposition
2.4(5) says that w1 = 2|Q−

2n| = 2(2n−1(2n− 1)− 1) = 2n(2n− 1)− 2 = 22n− 2n− 2.
This leavesw1,1, w2,1, w1,2, w2,2 and w2. Proposition 2.4(6) givesw1,1 = 2(22n−2−

2n−1 − 2) = 22n−1 − 2n − 4. Then Proposition 2.4(1) says that 22n − 2n − 2 =
1 + w1,1 + w1,2 and 22n − 2n − 2 = w2,1 + w2,2, which we solve for w1,2 =
22n − 2n − 2− 1− (22n−1 − 2n − 4) = 22n − 22n−1 + 1.

Substitution of 2.4(1) into 2.4(2) and cancellation gives us the relation wiwj,i =
wjwi,j . And thus, w1w2,1 = w2w1,2. So (22n−1 − 2n − 4)w2,1 = w2(2

2n − 2n −
2− 1 − (22n−1 − 2n − 4)). Using 2.4(7), we know that w2 = (2n−1(2n − 1)− 1) or
4((2n−1(2n− 1)− 1)− 1− 2((2n−2(2n−1− 1)− 1))) = 22n. The former case leads to
w2,2 < w2,1 contradicting 2.4(4), and so we must have the latter case. And finally,
this determines w2,1 using w1w2,1 = w2w1,2 and w2,2 from w1 = w2,1 + w2,2.

In particular, |W | = |Q−
2n+2| = 2n(2n+1 − 1)− 1.

We now prove that these 2n(2n+1 − 1)− 1 points must be connected by lines in
a unique way to satisfy the conditions of the lemma. We begin with a point of the
configuration w ∈ W . As w2,1 = w2,2 = 2n−1(2n − 1) − 1 = |Q−

2n|, each line not
containing w must contain one point in W1(w) and two points of W2(w). Thus, a
point in W2(w) is given by a point (not w) on each line containing w.

The same holds for any point w′ ∈ W1(w), and there must be a function
W1(w) → W1(w

′) that preserves incidence and takes the set of choices at w to
those at w′. This will dictate the data of which half (we note that w1,2 = 1

2w2, and
so each point of W1(w) is colinear with half of the points of W2(w)) of the points of
W2(w) are connected to w′. As this works for each w′ ∈ W1(w), there is only one
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such choice that will work globally, up to automorphisms of Q−
2n and involutions

switching non-w points on a line. �

So to identify a Q−
2n-configuration, we must merely check symmetry and diame-

ter.

Proposition 2.6.

The general fiber of β5 : RA5 → P15/G4 is a Q−
6 -configuration.

Proof. Let (A, µ) ∈ RA5 be a general point. Then A is the Prym variety of 27
distinct curves (Xi, νi) ∈ RM6, and µ lifts to two distinct points of order two on

J (Xi), µ
0
i , µ

1
i . Then theta symmetry implies that, again generically, (P(Xi, µ

j
i ), ν̄i)

are distinct points in the fiber of β5. Thus, (A, µ) lies on 27 triples (A, µ), (P(Xi, µ
0
i ), ν̄i),

(P(Xi, µ
1
i ), ν̄i), which are lines over F2, form the configuration Q−

6 , by Theorem
1.10, and so the fiber is a Q−

6 -configuration. �

Lemma 2.7.

The connected components of the Q−
6 -configuration on the fibers of β5 has diameter

2.

Proof. If we blow up RP6 : R2M6 → RA5 to a finite map R̃P6, then Proposition
1.12 says that the fiber over (X,µ) ∈ RC0, with the normal data suppressed for ease
of notation, consists of 54 plane quintics with an odd and an even point of order two
marked. Theta symmetry then says that the Pryms with respect to the even points
with the images of the odd points marked are in the same fiber of β5, and all of these
are the Jacobians of curves. By Proposition 1.13, the fiber of a Jacobian consists
of quintic curves, whose Pryms are cubic threefolds and Jacobians, trigonal curves,
whose Pryms are Jacobians, and singular curves, whose Pryms are Jacobians and

degenerate abelian varieties in ∂IRA
t

5.
If we start with a degenerate abelian variety, then we must only have singular

curves lying over it. Proposition 1.4 tells us that these are either in ∂II or ∂i,6−i.
But the latter component only gives products, and so generically all 27 preimages

under P6 are in ∂II . Thus, any points of RA
t

5 related to a point of ∂IRA
t

5 is either

in ∂IRA
t

5 or is a Jacobian, and so no new types of points occur after the second
iteration of theta symmetry.

Finally, we show that the objects obtained previously don’t constitute anything
new. First, the Jacobians obtained from the chosen Jacobian in the second step.
These Jacobians all must have already been obtained from the cubic threefold,
because each Jacobian is the Prym of a unique quintic curve, and will thus determine
a cubic threefold. However, generically no two cubic threefolds can be related in
this manner, because the incidence is contained in the fibers of β5, which induces
a birational isomorphism between RC0 and α(A4), and so, generically, must be
injective. And last, we have the objects obtained from a given degenerate abelian
variety. We have twenty-seven nodal curves, and each occurs as a Wirtinger and
as a ∂II double cover, which we then take the Pryms of. The Wirtingers must be
Jacobians we’ve already seen, by the above, and so the ∂II double covers would
be obtained by applying theta symmetry on those Jacobians first. Thus, the Q−

6 -
configuration must have diameter 2. �

And so, by Lemma 2.5, the map β5 must have degree a multiple of 119.
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3. Degenerations of Abelian varieties

In this chapter, we will show that the Q−
6 -configuration on the fibers of β is

connected. This amounts to computing the degree of β, which we will do by study-
ing certain degenerations. We will spend this chapter studying the structure of

∂IIRA
t

5, the degenerations with vanishing cycle orthogonal but not identical to the
marked semiperiod.

Lemma 3.1 ([Don87a, Corollary 3.2.3 and Lemma 3.3.6]).

The extension of βg : RA
t

g → P(Ug−1)/Gg−1 to ∂IIRA
t

g is βg−1 and the diagram:

P(Ug−2)/Gg−2 P(Ug−1)/Gg−1

RAg−1 RA
t

g

//

iII //

βg−1

��
βg

��

is Cartesian.

This result tells us that if we start with a point in ∂IIRA
t

g then the whole fiber

over its image is in ∂IIRA
t

g, and so we focus our attention there:

Proposition 3.2.

Any two points in a fiber of β5 inside ∂IIRA
t

5 are related by a sequence of theta
symmetries.

Proof. By Lemma 3.1, we are working with the map β4 : RA4 → P7/G3. Now, fix
a curve C ∈ M3. Then the fiber of β4 over α3(J (C)) is Bl0 K(J (C)) ∪K(J (C))
by Proposition 1.20, with the first component consisting of genus 4 Jacobians and

the second of degenerate abelian varieties in ∂IRA
t

4. Over (B, µ) ∈ RJ 4, the
fiber of RP5 is a double cover of Sym2 B ∪ Sym2 B, with the first component
consisting of trigonal curves and the second consisting of Wirtinger curves, as in
Proposition 1.18. Thus, for each (B, B̃), we get a map from the double cover of

Sym2 B, ˜Sym2 B → Bl0 K(J (C)), because theta symmetry takes trigonal curves
to trigonal curves and Wirtinger curves to Wirtinger curves. Each of these maps
has two dimensional image, and they’re all nonisomorphic, and thus distinct, so the
dimension of the union is at least three, so surjectivity follows. �

Now that we have a locus where we know that theta symmetry spans the fibers,
we need to identify theta symmetry over that locus:

Proposition 1.15 tells us that the fiber in ∂IIRA
t

5 has the Q−
6 -configuration

structure we expect, and more so, the fact that theta symmetry spans the fibers
implies connectivity, so the fiber is Q−

8 . It remains, though, to check that β5 is

generically unramified on ∂IIRA
t

5.

We have a tower of maps R2M6
RP6→ RA

t

5
β5

→ P15/G4 and as each map is
generically finite, if we blow up each locus with positive dimensional fibers, and
the blow up again so that the maps are all well defined, the maps will be finite.

We denote the blowups and blown up maps by R̃2M6 → R̃A5 → P̃. Set X =

R̃A5 ×P R̃A5. For each point (x, y) ∈ X , we can associate the distance in ΓQ
−

8

, or

∞ if they are not connected. This gives a decomposition X = I1 ∪ I54 ∪ I64 ∪ I,
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where I1 is the diagonal, I54 are theta related pairs, I64 the pairs theta related to
a common point and I the pairs in the same fiber but not theta related. Our goal
is to show that I = ∅.

We will focus on studying I54. It fits into a diagram

I27

I54 R̃A5

2:1

��

β̃
//

P̃

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

where I27 is the pullback of the Prym map to R̃A5 from A5, and I54 → I27 is the
natural double cover. Differentiating these maps, we can see that Ram β̃ = Ram P̃.

Lemma 3.3.

Let f : X → Y be a finite morphism of smooth varieties and f̄ : X ×Y X → X be
the fiber product of f with itself. Then if p is a ramification point of f and q is a
nonramification point in the same fiber, (p, q) is a ramification point of f̄ .

Proof. Set b = f(q) = f(p). As p is a ramification point and q is not, we have dfq
an isomorphism and dfp not. Locally, this means that we have an isomorphism of
X and Y near q but not near p, and so the map df̄(p,q) : Tp,q(X ×Y X) → TpX is
not an isomorphism. �

Lemma 3.4.

Let p ∈ ∂IIR̃A5. Then if β5 is ramified at p, I54 is ramified over p.

Proof. Let p ∈ ∂IIR̃A5 be a ramification point of β̃. Then either there exists a
q such that (p, q) ∈ I54 is unramified, or else not. If there is such a q, then this
follows from Lemma 3.3.

If not, then we must have a fiber of the Prym map which is totally ramified.
This would correspond to a cubic surface such that every line has multiplicity at
least two, but which is reduced and irreducible. This cannot happen, as if there is a
line of multiplicity two, then the residual intersection with the tangent plane along
that line must be a line of multiplicity one, so every line would have multiplicity
three, which does not occur. �

More useful than the lemma is the contrapositive: that if I54 is unramified over
p, then β5 is unramified at p.

Proposition 3.5.

The map β5 is generically unramified on ∂IIRA
t

5.

Proof. Lemma 3.4 tells us that a point is a ramification point for β5 only if it is a
branch point of β̃, which is the same as being a branch point over P̃ . But Izadi’s

Theorem 1.15 tells us that the Prym map is generically unramified over ∂IIRA
t

5,

and so I54 → R̃A5 is generically unramified over ∂IIR̃A5, and so, β5 is as well. �

Thus, we have the main result of this section:
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Theorem 3.6.

the fibers of β5 : RA
t

5 → P15/G4 are exactly the orbits of theta symmetry.

4. Contracted loci

Now, we’ve identified the fibers of β5 with the orbits of theta symmetry, which
gives us the degree of this generically finite map. What remains is to understand
the locus where β5 has infinite fibers. As each abelian variety has finitely many
points of order two, and as αg is finite and generically injective for all g [SM94,
Proposition 1], any infinite fiber must arise from an infinite fiber of the Prym map.

By Proposition 1.11 we know that given (C, µ) ∈ RM6, we obtain the rest of
the fiber containing (C, µ) by iterating the tetragonal construction, so long as we
allow points to be related via the boundary. There can be no infinite chains of
curves with finitely many g14 ’s, because such a fiber would be countable, and an
infinite fiber must be uncountable. Thus, infinite fibers will correspond to curves
with infinitely many g14 ’s and to singular curves.

Theorem 4.1 ([ACGH85, Theorem IV.5.2],[Mum74, Theorem in Appendix]).
Let C be a smooth non-hyperelliptic curve of genus g ≥ 4. Let d, r ∈ Z with
0 < 2r ≤ d and 2 ≤ d ≤ g − 2. Then, if there exists a (d − 2r − 1)-dimensional
family of grd’s on C, we must have that C is trigonal, bielliptic or a plane quintic.

Fixing g = 6, d = 4 and r = 1, the hypotheses on Theorem 4.1 are satisfied,
and so a curve of genus 6 that has a positive dimensional family of g14 ’s must be
hyperelliptic, trigonal, bielliptic, a plane quintic, or singular.

Proposition 1.9 says that Pryms of hyperelliptic curves are products. Theorem
1.8 tells us that trigonal Pryms are Jacobians. Propositions 1.12 and 1.13 tell us
that Pryms of quintics are Jacobians or cubic threefolds and Proposition 1.4 says

that the Prym varieties of singular curves are contained in J5, ∂A
t

5, the Beauville
Pryms or the product loci.

But we actually only care about contracted loci over α4(A4), which may be
irreducible components of RS5. As dim(α4(A4)) = 10, any irreducible component

of RS5 must have dimension at least 10. Also, as we will see later, RJ 5, RC
0
, and

∂IRA5 are the only components of RS5 with positive local degree, thus, any other
component is actually a contracted locus.

Proposition 4.2.

The only component of β−1
5 (α4(A4)) that is blown down by β is RA1 ×A4.

Proof. By the above discussion, the only loci with positive dimensional fibers are

RJ 5, the bielliptic loci,RC0, RC1, ∂IRA
t

5, ∂
IIRA

t

5, ∂
IIIRA

t

5, andRP6(∂
IIIR2M6).

The loci RJ 5, RC0 and ∂IRA
t

5 actually have positive local degree (see next
chapter) and so are not blown down.

The bielliptic loci are ruled out by 1.6.
The locus RC1 is not in RS5, as any point of RC1 will only be theta related

to other points of RC1. Specifically, a curve over (X,µ) ∈ RC1 must be a plane
quintic Q and an odd point of order two ν with P (Q, ν) = X , but also the lifts of
µ must be odd, so all three points in any instance of theta symmetry give points of
RC1.
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From 1.23, it is shown that ∂IIIRA
t

5, the Beauville Pryms, RA4 × A1 and
RA4 × RA1 are not in the Schottky locus, and all other product loci other than
RA1 ×A4 are of too small dimension. However, RA1 ×A4 is contracted by β5.

The only remaining component is ∂IIRA
t

5, but we know this locus is mapped
to P7/G3, and so any points of it in RS5 must be the limits of points of other
components. �

5. Schottky-Jung locus

Finally, we prove our main theorem:

Theorem 5.1.

In RA
t

5, we have RS5 = RJ 5 ∪RC0 ∪ ∂IRA
t

5 ∪ A4 ×RA1.

Proof. As the general fiber of β is a connected Q−
6 -configuration, we have that

deg β = 119. Then Proposition 4.2 tells us that the only blown down component
of RS5 is A4 ×RA1, so it remains to identify the components with positive local
degree.

It is known Proposition 1.16 that β5 restricts to χ−1 : RC0
99K A4, and thus has

local degree one.
The Schottky-Jung relations imply that the restriction to RJ 5 is birational to

the Prym map RM5 → A4. Thus, over A ∈ A4, we get a double cover of the Fano
surface of a cubic threefold. However, when we blow up to obtain a finite map, we
get a double cover of the 27 lines on a cubic surface, and so we have local degree
54.

In [GG86], van Geemen and van der Geer compute the local degree on ∂IRA
t

5 as
follows: fix X ∈ A4. Then the part of the fiber of β5 is K(X) and by blowing up,
they showed that the degree of the map is the same as that of the map K(X) → P4

given by the linear system Γ00 = {s ∈ Γ(X, 2Θ)|mult0 s ≥ 4}. We blow X up at 0,
call the exceptional divisor E, and then this linear system is precisely 2Θ− 4E on
the abelian variety. Thus, the local degree is 1

2 (2Θ− 4E)4 = 64.
This gives us degree 1 + 54 + 64 = 119, and so there are no other components

with positive local degree. �

And so, as noted in [Don87b], this implies

Corollary 5.2.

Ssmall
5 = J5

Proof. The points of Ssmall
5 are just the abelian varieties A such that (A, µ) ∈

RS5 for all nonzero points of order two µ ∈ A. Among the components above,
Jacobians have all nonzero points of order two, but the intermediate Jacobians of
cubic threefolds only have even points of order two, the boundary component has
only the vanishing cycle, and the product locus only has pullbacks of the points of
order two on the elliptic curve. �
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Norm. Sup. (4), 10(3):309–391, 1977.

[Bea89] Arnaud Beauville. Prym varieties: a survey. In Theta functions—Bowdoin 1987, Part
1 (Brunswick, ME, 1987), volume 49 of Proc. Sympos. Pure Math., pages 607–620.
Amer. Math. Soc., Providence, RI, 1989.

[CG00] Ciro Ciliberto and Gerard van der Geer. The moduli space of abelian varieties and
the singularities of the theta divisor. In Surveys in differential geometry, Surv. Differ.
Geom., VII, pages 61–81. Int. Press, Somerville, MA, 2000.

[Cle83] C. Herbert Clemens. Double solids. Adv. in Math., 47(2):107–230, 1983.
[CM08] Sebastian Casalaina-Martin. Singularities of theta divisors in algebraic geometry. In

Curves and abelian varieties, volume 465 of Contemp. Math., pages 25–43. Amer.
Math. Soc., Providence, RI, 2008.

[Deb90] Olivier Debarre. Variétés de Prym et ensembles d’Andreotti et Mayer. Duke Math. J.,
60(3):599–630, 1990.

[DM69] P. Deligne and David Mumford. The irreducibility of the space of curves of given

genus. Inst. Hautes Études Sci. Publ. Math., (36):75–109, 1969.
[Don81] Ron Donagi. The tetragonal construction. Bull. Amer. Math. Soc. (N.S.), 4(2):181–

185, 1981.
[Don87a] Ron Donagi. Big Schottky. Invent. Math., 89(3):569–599, 1987.
[Don87b] Ron Donagi. Non-Jacobians in the Schottky loci. Ann. of Math. (2), 126(1):193–217,

1987.
[Don88] Ron Donagi. The Schottky problem. In Theory of moduli (Montecatini Terme, 1985),

volume 1337 of Lecture Notes in Math., pages 84–137. Springer, Berlin, 1988.
[Don92] Ron Donagi. The fibers of the Prym map. In Curves, Jacobians, and abelian varieties

(Amherst, MA, 1990), volume 136 of Contemp. Math., pages 55–125. Amer. Math.
Soc., Providence, RI, 1992.

[DS81] Ron Donagi and Roy Campbell Smith. The structure of the Prym map. Acta Math.,
146(1-2):25–102, 1981.

[Fay73] John D. Fay. Theta functions on Riemann surfaces. Lecture Notes in Mathematics,
Vol. 352. Springer-Verlag, Berlin, 1973.

[Fre83] Eberhard Freitag. Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz
von J. Igusa). Arch. Math. (Basel), 40(3):255–259, 1983.

[Gee84] Bert van Geemen. Siegel modular forms vanishing on the moduli space of curves.
Invent. Math., 78(2):329–349, 1984.

[GG86] Bert van Geemen and Gerard van der Geer. Kummer varieties and the moduli spaces
of abelian varieties. Amer. J. Math., 108(3):615–641, 1986.

[GSM07] Samuel Grushevsky and Riccardo Salvati Manni. Singularities of the theta divisor at
points of order two. Int. Math. Res. Not. IMRN, (15):Art. ID rnm045, 15, 2007.

[HM98] Joe Harris and Ian Morrison. Moduli of curves, volume 187 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1998.

[Igu69] Jun-ichi Igusa. Geometric and analytic methods in the theory of theta-functions. In
Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), pages
241–253. Oxford Univ. Press, London, 1969.

[Igu81] Jun-ichi Igusa. On the irreducibility of Schottky’s divisor. J. Fac. Sci. Univ. Tokyo
Sect. IA Math., 28(3):531–545 (1982), 1981.

[Iza91] Elham Izadi. On the moduli space of four dimensional principally polarized abelian
varieties. PhD thesis, Univ. of Utah, 1991.

[Kri10] Igor Moiseevich Krichever. Characterizing Jacobians via trisecants of the Kummer
Variety, arXiv. org: math. Ann. of Math. (2), 2010.

[MP12] Valeria Ornella Marcucci and Gian Pietro Pirola. Generic Torelli theorem for Prym
varieties of ramified coverings. Compos. Math., 148(4):1147–1170, 2012.



20 CHARLES SIEGEL

[Mum71] David Mumford. Theta characteristics of an algebraic curve. Ann. Sci. École Norm.
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