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ABSTRACT
Starting from the geometrical concept of a 4-dimensional de-Sitter configuration of spheres
in Euclidean 3-space and modelling voids in the Universe as spheres, we show that a uniform
distribution over this configuration space implies a power-law for the void number density
which is consistent with results from the excursion set formalism and from data, for an inter-
mediate range of void volumes. We also discuss the effect of restricting the survey geometry
on the void statistics. This work is a new application of de-Sitter geometry to cosmology and
also provides a new geometrical perspective on self-similarity in cosmology.
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1 INTRODUCTION

While the existence and characteristic distributions of empty re-
gions are already implicit in early self-similar models of structure
hierarchy in the Universe (cf. Mandelbrot (1977)), it was the obser-
vational discovery of large, approximately spherical regions almost
devoid of visible galaxies known as voids and supervoids (e.g., Kir-
shner et al. (1981)) that sparked further theoretical work on un-
derdense regions in the Universe. This included analyticalstudies
of the dynamical evolution of individual voids and shell-crossing
(Peebles (1982); Sato (1982)) as well as statistical properties of the
void distribution. Applying a simple sign-reversal argument, Icke
(1984) pointed out that the sphericity of underdense regions in-
creases due to gravitational dynamics, so that it is in fact natural to
expect approximately spherical voids. Early theoretical approaches
to void statistics used Poisson statistics of empty regions, as devel-
oped by Politzer & Preskill (1986), Voronoi tesselations (Icke &
van de Weygaert (1987)), and structure formation theory in anal-
ogy to the statistics of overdensity peaks (Bardeen et al. (1986))
in Gaussian primordial density fluctuations (e.g., Betancourt-Rijo
(1990)). Self-similar features in the void size distribution were also
noted (e.g., Einasto, Einasto & Gramann (1989)). Of course,much
of this earlier work concentrated on Einstein-de-Sitter cosmology
with ΩM = 1, as was favoured then. Especially after the discovery
of the near-isotropic CMB, it was realized that the largest observ-
able voids were difficult to explain theoretically and may therefore
provide important cosmological constraints (e.g., Blumenthal et al.
(1992)). Attention has also been drawn to galaxy propertieswithin
voids (e.g., the void phenomenon of Peebles (2001)). Now, with
the advent of theΛCDM paradigm, detailed numerical studies of
void statistics (e.g., Colberg et al. (2005) for a comparison) and

⋆ E-mail:marcus.werner@ipmu.jp

analytical studies of void shape evolution in redshift space (e.g.,
Maeda, Sakai & Triay (2011)) have been conducted. Moreover,
the void formation theory based on the excursion set formalism
of primordial density fluctuations has been refined to include the
notion of hierarchy (Sheth & van de Weygaert (2004)). This for-
malism was extended more recently to investigate effects ofnon-
Gaussianity (e.g., D’Amico et al. (2011)) and modified theories of
gravity (e.g., Clampitt, Cai & Li (2013)) on voids. Following ear-
lier work on self-similarity, Gaite (2009) applied advanced fractal
structures to void statistics. On the observational side, avoid cat-
alogue extracted from the SDSS Data Release 7 has recently been
published (Pan et al. (2012)), which illustrates the strongdepen-
dence of void statistics on the underlying void definition. The pos-
sibility of using voids for precision cosmology has also been ex-
plored (e.g., Lavaux & Wandelt (2010)). A fitting formula which
matches the distributions of voids extracted from 2dF Galaxy Red-
shift Survey observations and from the Millennium Simulation has
been proposed by von Benda-Beckmann & Müller (2008), who
also discussed self-similarity in the void size distribution. Higuchi,
Oguri & Hamana (2013) have shown how weak lensing observa-
tions may be used to measure the mass distribution of voids.
In this paper, we propose a new geometrical approach to void statis-
tics based on the idea that voids can be modelled well by spheres in
the Euclidean 3-space. Each such sphere is represented by a point
in the 4-dimensional configuration space of spheres, with radius
and centre position as coordinates. Since the spatial contact be-
tween these spheres is physically important (e.g., in the evolution
of voids), it is interesting to consider transformations ofthe config-
uration space that preserve such contact relations, namelyconfor-
mal transformations, in order to define a distance measure onthe
configuration space. Given these assumptions, it turns out that the
configuration space has a de-Sitter geometry, with timelikeradii
and spacelike centre positions of the spheres, which emerges from
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classical sphere geometry and is different from cosmological de-
Sitter spacetime. One can now study the size distribution ofspheri-
cal voids in the Universe in terms of their distribution overthis de-
Sitter configuration space. The approach presented here hasbeen
inspired by other notions of configuration space measures incos-
mology (e.g., Gibbons & Turok (2008)), and another application
of this de-Sitter configuration space of spheres in a different astro-
nomical context has been proposed recently (Gibbons & Werner
(2013)).
The outline of this work is as follows. In Section 2, we give a brief
review of the de-Sitter configuration space for the general case of
n-spheres inn + 1-dimensional Euclidean space and indicate its
conformal structure. This is followed by a discussion of a uniform
distribution over the 4-dimensional de-Sitter configuration space
used to model voids, that isn = 2, in Section 3. We shall de-
rive, firstly, the corresponding void size distribution forvoids in the
whole (unrestricted) 3-space and find a self-similar power-law. Sec-
ondly, the effect of restricting void positions in 3-space due to sur-
vey geometry is studied, which naturally breaks the self-similarity
of the size distribution. This is carried out analytically for a survey
volume shaped as a spherical sector. Then in Section 4, we inves-
tigate how the void size distributions predicted by the unrestricted
and restricted uniform de-Sitter distributions compare with actual
void size distributions. We consider, firstly, theoreticalmodels of
self-similarity and the excursion set formalism, to find that the
power-law from the unrestricted uniform distribution is, to an ex-
tent, consistent with the expectation from structure formation the-
ory. To illustrate this and the effect of survey geometry restriction
in a data set, we apply an N-body simulation using the GADGET2
(Springel (2005)) code and extract spherical voids. A comparison
with the fitting formula of von Benda-Beckmann & Müller (2008)
is also given. Section 5 contains uur conclusions and comments on
possible further applications of this idea.

2 DE-SITTER CONFIGURATION SPACE

We begin by briefly recapitulating the notion of a configuration
space of spheres in Euclidean space and its de-Sitter geometry, as
discussed in some more detail in Gibbons & Werner (2013); see
also Zee (2013). Consider ann-dimensional unoriented sphere
S
n(R,x) in n + 1-dimensional Euclidean spaceEn+1 given in

terms of its radiusR > 0 and its centre atx = (x1, . . . xn+1) ∈
E

n+1. It turns out that, to each such sphere, one can uniquely as-
sign a pointXµ = (X0,X, Xn+2), 0 6 µ 6 n + 2, in n + 3-
dimensional Minkowski spaceE1,n+2 endowed with the usual met-
ric ηµν = diag(−1, 1, . . . , 1), with

X0 = −
1

2

(

x
2 − 1

R
−R

)

,

X = −
x

R
,

Xn+2 = −
1

2

(

x
2 + 1

R
−R

)

,

on then+ 2-dimensional hypersurface

ηµνX
µXν = 1,

which is a de-Sitter quadric. In other words, each sphere with
a given centre and radius corresponds to a point on ann + 2-
dimensional de-Sitter spacedSn+2 which can therefore be inter-
preted as a configuration space of spheres. Since for unoriented
spheres one may setR > 0, we haveX0 − Xn+2 = 1

R
> 0.

x1 x2

D

R1 R2

S
n
1

S
n
2

Figure 1. Angle between spheres. The intersection of twon-spheres
Sn1 (R1,x1), Sn1 (R1,x1) in En+1, here illustrated for the casen = 1
and, in projection,n = 2, can be characterized by the Euclidean angle
∆(Sn1 , S

n
2 ) given in eq. (3), which is an invariant of the isometries of the

de-Sitter configuration space.

Therefore, the space of unoriented spheres is in fact given by half of
the full de-Sitter quadric, sometimes referred to as de-Sitter space
modulo the antipodal mapXµ 7→ −Xµ. Geometrically, the coor-
dinatesXµ of a sphere can be regarded as a form of Lie cycle co-
ordinates for the Laguerre cycle representing the sphere (see, e.g.,
the appendix of Gibbons & Werner (2013) for more mathematical
details). Takingyi = (R,x), 0 6 i 6 n+ 1, as coordinates of the
de-Sitter configuration space, its metricg induced by the ambient
Minkowski metric in the usual way can be read off from the line
element

ds2 =
(

−(dX0)2 + (dX)2 + (dXn+2)2
)

|dSn+2

=
1

R2

(

−dR2 + dx2)

= gijdy
idyj (1)

so that, with respect to the coordinate-induced basis,

gij = diag

(

−
1

R2
,
1

R2
, . . . ,

1

R2

)

. (2)

Hence, this metric measures the distance between spheres interms
of their configuration, that is, their radii and positions inspace.
Isometries of this de-Sitter space can be identified with conformal
transformations of spheres, for the following reason. Consider two
intersecting spheresSn

1 (R1,x1) andSn
2 (R2,x2) given byXµ

1 and
Xµ

2 , respectively. Then

(ηµνX
µ
1 X

ν
2 ) |dSn+2 =

R2
1 +R2

2 − (x1 − x2)
2

2R1R2

= cos∆(Sn
1 , S

n
2 ), (3)

so that isometries leave the Euclidean angle∆(Sn
1 , S

n
2 ) between

the two spheres invariant which, as illustrated in Fig. 1, measures
their contact. Indeed, it provides a geometrical interpretation for the
line element (1), since for two spheres that are infinitesimally close
in the configuration space so that they are nearly identical in their
radii and positions, one finds,

ds2 =
1

R2
(−dR2 + dx2)

= d∆2(Sn(R,x), Sn(R+ dR,x+ dx)).

Finally, a measure of the number of spheres having radii within
[R,R + dR] and centres in the volume elementdx1 . . .dxn+1 at
x ∈ E

n+1 is provided by the volume element,

dV n+2 =
√

− det gijdy
0 . . . dyn+1
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=
1

Rn+2
dRdx1 . . .dxn+1, (4)

of then+ 2-dimensional de-Sitter configuration space.

3 UNIFORM DISTRIBUTION OVER dS4

3.1 Without survey geometry restriction

In order to study the distribution of cosmic voids from the geometri-
cal perspective of the de-Sitter configuration space, we shall model
them as unoriented2-spheres inE3. Hence specializing the previ-
ous discussion to the casen = 2, the corresponding 4-dimensional
configuration space has the de-Sitter geometrydS4 with metric
given by (2). Then the configuration space volume element for
voids with radii in [R,R + dR] and with centres in the volume
elementdx1dx2dx3 atx ∈ E

3 becomes

dV 4 =
1

R4
dRdx1dx2dx3, (5)

from eq. (4). Also, the infinitesimal number of voidsdN with radii
in [R,R + dR] centred within the volume element atx can be
described in terms of a non-negative distribution functionover the
configuration space,f : dS4 → R

+, so that

dN = f(R,x)dRdx1dx2dx3. (6)

In this section, we will consider the simplest distributionin this
framework, corresponding to a uniform distribution of voids over
the de-Sitter configuration space such that

dN ∝ dV 4.

Clearly, this uniform distribution has the property that all voids are
counted regardless of their position inE3: there is no restriction
due to survey geometry and any mutual overlap of voids that may
occur is ignored. The corresponding distribution functionf is in-
dependent of the position in space,

f(R,x) ∝
1

R4
, (7)

from eq. (5) and (6). Defining the void number density as the num-
ber of void centres per volume element inE3, one can compute the
cumulative number densityn(> R) of voids with radius greater
thanR that corresponds to the uniform distribution,

n(> R) =

∫

∞

R

f(R′)dR′ ∝
1

R3
,

by integrating (6) using (7). Expressing this in terms of void volume
V = 4πR3/3,

n(> V ) ∝
1

V
. (8)

A more realistic modification of this cumulative number density
should take into account that any actual void survey can, of course,
only encompass a finite subregion ofE

3. We shall investigate this
in the following.

3.2 With survey geometry restriction

The assumption of a uniform distribution of voids over theirde-
Sitter configuration space results in a differential numberdensity

dn

dR
= f(R) ∝

1

R4
⇒

dn

dV
=

dR

dV

dn

dR
∝

1

V 2
(9)

Θ2

r1 r2r
O Θ=0, rS

ΘS

Figure 2. Survey geometry. In a survey region shaped as spherical sector
with r 6 rS , θ 6 θS centred at the observerO, the limitsr1(R), r2(R)
andθ2(r, R) for voids of radiusR (solid circles) are illustrated, see eq.s
(10). The largest void for the given survey geometry, atr0 with radiusR0

given by eq. (11), is also shown (dashed circle).
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Figure 3. Cumulative number density of voids. Double logarithmic plots of
n(> v), the integral (15) with the same constant of proportionality andrS
set to unity, as functions of the dimensionless volume parameter0 6 v 6 1
defined in (12), for three choices of the opening angleθS of the survey
geometry: a solid curve forθS = π/2, the half sphere; a dashed curve for
θS = π/6; and a dotted curve forθS = π/18.

of dn void centres per volume inE3, per void radiusdR or void
volumedV , respectively, again by eq. (6) and (7). Now suppose
that a survey counts only those voids which are wholly within
the survey regionVS . For simplicity, consider a survey geometry
shaped as a spherical sector with opening angleθS and maximal
(comoving) distancerS from an observer who is situated at its
apex and coordinate origin. Then, in terms of spherical polar co-
ordinates, the survey region can be described by

VS : 0 6 r 6 rS , 0 6 θ 6 θS , 0 6 φ 6 2π,

and we letθS 6 π/2. The total volume of the survey is then

VS(rS, θS) =
2π

3
r3S(1− cos θS).

A given void of radiusR will be counted in the distribution if it lies
wholly within VS , that is, if the coordinates of its centre(r, θ, φ)
satisfy the conditions

VS(R) : r1(R) 6 r 6 r2(R), 0 6 θ 6 θ2(r,R), 0 6 φ 6 2π,
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where the lower and upper coordinate limits are determined by
voids touching the boundary ofVS . The conditions for these can
be read off from Fig. 2,

r1(R) sin θS = R, r2(R) +R = rS, r sin(θS − θ2(r,R)) = R,

whence we have

r1(R) =
R

sin θS
,

r2(R) = rS −R, (10)

θ2(r,R) = θS − arcsin
R

r
.

The largest void which fits intoVS is situated atr0 on the polar axis
and has radiusR0, whose values can be obtained from the condition
r1(R0) = r2(R0). Hence, using eq. (10),

r0 =
rS

1 + sin θS
, R0 =

rS sin θS
1 + sin θS

. (11)

In order to compare different survey geometries, it will be con-
venient to express void volumeV in terms of the volumeV0 of
the largest void admitted by a given survey geometry(rS, θS), and
hence define the dimensionless quantity0 6 v 6 1,

v =
V

V0(rS, θS)
such that R =

rS sin θS
1 + sin θS

v
1
3 (12)

from eq. (11). The differential number density of voids within the
range[v, v+dv] of the volume parameter can then be expressed as

dn =
1

VS(rS, θS)

∫

VS (v)

dN,

so that by eq. (6) in spherical polar coordinates,

dn

dv
=

1

VS(rS, θS)

dR

dv

∫

VS(v)

f(v, r, θ, φ)r2 sin θdrdθdφ. (13)

Using the limits ofVS(v) for voids with volume parameterv given
by (10) and the uniform distribution (7), whose constant of propor-
tionality is kept, we can recast (13) to obtain

dn

dv
∝

(1 + sin θS)
3

sin3 θS(1− cos θS)r6S

1

v2

∫ r2

r1

∫ θ2

0

r2 sin θdθdr

=
(1 + sin θS)

3

3 sin3 θS(1− cos θS)r3S

1

v2

[

1

−
3

2

sin θS(2 + sin θS)

1 + sin θS
v

1
3 +

sin2 θS
1 + sin θS

(

3v
2
3 −

v

2

)

− cos θS

(

1−
2 sin θS

1 + sin θS
v

1
3

) 3
2

]

. (14)

This expression can in turn be integrated to yield the corresponding
cumulative number density,

n(> v) =

∫ 1

v

dn

dv′
dv′, (15)

and Fig. 3 shows it for three choices of the opening angleθS of
the survey geometry. These results for the number density (14) and
cumulative number density of voids illustrate how the intrinsic dis-
tribution and the observed distribution can differ substantially due
to the restrictions imposed by the survey geometry. Small voids, of
course, tend to be affected less by the survey geometry and there-
fore approach asymptotically the power-law (8) of the intrinsic dis-
tribution.

4 COMPARISON WITH VOID DISTRIBUTIONS

4.1 From theoretical models

4.1.1 Self-similarity

As shown in Section 3.1, the uniform de-Sitter distributionwith-
out survey geometry restriction yields a power-law size distribution
given by

ν(V ) :=
dn

dV
∝

1

V 2
(16)

for the differential number density of voids, from eq. (9). This is
obviously self-similar in the sense that a change in volume scale,
Ṽ = sV, s = const., also implies

ν(Ṽ ) ∝
1

Ṽ 2
.

Moreover, since, for a given volume inE3, the integer rankR of
a void in an ordered sequence decreasing in size from largestone
is proportional ton(> V ), one can see from (8) that Zipf’s law
is satisfied. The applicability of fractal structures and Zipf’s law to
void distributions was investigated in detail by Gaite & Manrubia
(2002), showing that, in our notation for a void of volumeV in E

3,

V (R) ∝ R−
3
D ,

whereD < 3 is the fractal dimension, so that in terms of the cu-
mulative number density withR ∝ n(> V ),

n(> V ) ∝ V −
D

3 .

Hence, the inverse power-law of eq. (8) represents a limiting case
that cannot be described by a fractal set with one dimensionD < 3.
In fact, Gaite (2007) shows that the extended notion of a multifrac-
tal, a set with multiple fractal dimensions, is useful in this context
(see also Gaite (2009); a recent review on scaling laws in thelarge
scale structure more generally is given by Jones et al. (2004)). Of
course, the property of self-similarity does not fix the power in (16)
by itself, which will depend on the underlying physics. It isthere-
fore interesting to note that the self-similar power-law (16) from
the uniform de-Sitter distribution has also been found to arise in
the excursion set formalism of structure formation, as we shall out-
line below.

4.1.2 Excursion set formalism

In their pioneering paper, Press & Schechter (1974) point out that,
starting from Gaussian density perturbations in a Friedmann cos-
mology and considering the linear quasi-Newtonian perturbation
analysis of the growing mode, the mass distribution at late times
does not depend on the initial mass distribution. They identify a
simple physical reason for this self-similarity in the existence of
two dimensionless quantities governing the gravitationalcollapse,
which remain approximatelyconstantduring the matter-dominated
phase on subhorizon scales. The Press-Schechter argument yield-
ing a power-law size distribution can be summarized as follows.
Consider massive particles distributed in some comoving volume.
Then the mass density functionρ on this volume is obtained by
applying some smoothing window function with scale lengthl at
each point. At sufficiently early times, this density function will be
approximately constant,

ρ = ρ̄(1 + δ), |δ| ≪ 1.
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However, if the density within a window is greater than some (fixed
dimensionless, say) critical density so thatδ > δcrit around over-
density peaks due to fluctuations in the density function, then the
mass within the window will gravitationally collapse and ultimately
form a bound object. Again, for sufficiently early times, onemay
take these fluctuations to be Gaussian, such that the volume fraction
of points with collapsing windows is given by

F ∝
1

σ

∫

∞

δcrit

exp

(

−
δ

2σ2

)

dδ.

These windows will contain slightly different masses, but basically
M ∝ ρ̄l3. Also, the variance may depend on the smoothing scale
and hence also on the mass,σ2 ∝ l−n−3 ∝ M−n/3−1, for some
spectral indexn > −3. Thus,F is a functionM as well, and so
the differential number densityν(M) of ultimately bound objects
obeys

Mν(M) ∝ −ρ̄
dF

dM
= −ρ̄

dσ

dM

dF

dσ
, (17)

and hence

ν(M) ∝ M−
n

6
−

3
2 for M ≪ M0,

whereM0 is the mass scale of the exponential term, which gives
rise to a cutoff at large masses (or volumes). For a scale-invariant
σ, that isn = −3, this yields the inverse square power-law

ν(M) ∝ M−2. (18)

It turns out that this power-law emerges also in the modified Press-
Schechter approach proposed by Appel & Jones (1990), which
uses an adaptive window scalel. Now in the context of voids, one
can consider underdensity troughs rather than overdensitypeaks
(as in Bardeen et al. (1986)) and, since Gaussian fluctuations are
symmetric about the average density, the same power-law applies,
as pointed out by Sheth & van de Weygaert (2004). Then since
M ∝ l3 ∝ V , we recover (16) from (18). Of course, in addition to
the large volume cutoff, this simple excursion set argumentignores
effects of void hierarchy which affect small volumes in particular
(i.e., by the void-in-void and void-in-cloud processes, cf. Sheth &
van de Weygaert (2004)), so that the power-law will only apply
within a range of volumes.
Hence, at least within a range of volumes, the power-law (16)has
a physical basis in the excursion set formalism: the Gaussian fluc-
tuations producing voids give rise to a self-similar power-law size
distribution which can be described geometrically as a uniform dis-
tribution over the de-Sitter configuration space of spheres.

4.2 From data

4.2.1 An N-body simulation

Now in order to compare the void size distributions predicted by
the unrestricted and restricted uniform de-Sitter distributions from
Section 3 with data, we perform an N-body simulation with thepar-
allel Tree-Particle Mesh code, GADGET2 (Springel (2005)),using
osmological parameters consistent with the WMAP seven-year re-
sults (Komatsu et al. (2011)), namely spatial curvaturek = 0,
dark energy densityΩΛ = 0.7274, Hubble parameterh = 0.704
and spectral indexns = 0.963. The initial condition for the sim-
ulation is generated at redshiftz0 = 50 using the code developed
by Nishimichi et al. (2009), who employ second order Lagrangian
perturbation theory. The simulation is run in a cubic box with side
length240h−1Mpc in comoving coordinates with periodic bound-
ary conditions, and2563 dark matter particles whose individual

10
-9
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-7

10
-5

10
-3

10
3

10
4

10
5

n
(>

V
)[

(h
-1

M
p

c)
-3

]

V[(h
-1

Mpc)
3
]

Figure 4. Simulated void size distributions. Double logarithmic plots of
the cumulative number density of voids as a function of volume, using the
simulation discussed in Section 4.2: uniform de-Sitter distribution from eq.
(8) without survey geometry restriction (upper solid curveand data set)
and fitting formula of von Benda-Beckmann & Müller (2008) (dotted); uni-
form de-Sitter distribution from eq. (15) with survey geometry restriction in
spherical sector (lower solid curve and data set) and corresponding power-
law asymptote (dashed). Poisson errors are indicated.

mass is scaled to match the mass density of the Universe. At red-
shift z = 0, voids are extracted according to the following algo-
rithm.
Firstly, the discrete simulation data are smoothed to construct the
matter density function, using a Gaussian window with adaptive
length scale. This smoothing length is chosen to be the distance to
the 20th nearest particle at each cell. Secondly, a set of spherical
voids is extracted by defining density minima as void centresand
determining the radius for each void as the largest radiusR cen-
tered at the density minimum for which the average density ofthe
enclosed sphereρ(R) is less than a critical value

δcrit =
ρ(R)− ρ̄

ρ̄
= −0.8,

relative to the average densitȳρ of the box. Hence, for our present
purposes, we ignore the overlap of the spherical voids and donot
apply an additional merging algorithm to these voids (cf. Colberg et
al. (2005), also called ’protovoids’), which would give rise to non-
spherical voids. This should allow for are meaningful comparison
with the uniform distribution over the de-Sitter configuration space
of spheres, which allows void overlap as noted in Section 3.1.

4.2.2 Discussion

The resulting cumulative number density of voids in the simulation
box as a function of void volume is shown in Fig. 4. The largest
void has a volume ofVmax ≃ 4.2 · 104(h−1Mpc)3, which can be
interpreted in terms of the exponential cutoff in the excursion set
formalism mentioned in Section 4.1.2, and whose value is compa-
rable with the simulation results reported in Fig. 7 of Colberg et
al. (2005). Until the curve flattens at very small volumes – here,
of course, rather due to simulation resolution and smoothing scale
than effects of void hierarchy –, the cumulative number density for
V ≪ Vmax can indeed be approximated by the power-law of eq.
(8) derived from the unrestricted uniform de-Sitter distribution. It
is also instructive to compare this result with the fitting formula
of von Benda-Beckmann & Müller (2008), which was shown to
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6 G. W. Gibbons, M. C. Werner, N. Yoshida and S. Chon

model well the cumulative volume filling factorF (> R) of voids
derived from magnitude-limited samples of galaxies in the 2dF
Galaxy Redshift Survey,

F (> R) = exp

[

−

(

R

s1λ

)p1

−

(

R

s2λ

)p2
]

, (19)

whereR = (3V/4π)1/3 is the effective spherical radius of a void
of volumeV and any shape,λ denotes the mean separation between
galaxies, andp1, p2, s1, s2 are parameters. In order to convert this
to a cumulative number density as a function of volume, one can
rewrite eq. (19) in terms ofV . Again ignoring void overlap,

F (> V ) =

∫

∞

V

V ′ dn

dV ′
dV ′,

and we have

dn

dV
= −

1

V

dF (> V )

dV
,

so that

n(> V ) =

∫

∞

V

dn

dV ′
dV ′ = −

∫

∞

V

1

V ′

dF (> V ′)

dV ′
dV ′

can be computed from (19). While a detailed comparison is be-
yond the scope of this paper, we note that the parametersp1 = 1,
p2 = 4.5, s1 = 1, s2 = 1.5 andλ = 11 h−1Mpc, which seem
appropriate choices given the data in Tables 1 and 2 of von Benda-
Beckmann & Müller (2008), yield a curve in reasonable agreement
with our simulation data, as seen in Fig. (4), using a factor of 2.5
to correct for the fact that our voids are not merged and therefore
have a higher cumulative number density. This factor is alsocom-
patible with the void number densities shown in Fig. 6 and Fig. 7
of Colberg et al. (2005).
Given, then, that our simulation appears to produce a realistic size
distribution of spherical voids without merging, which does indeed
agree with the uniform de-Sitter distribution for voids in the range
103 . . . 104(h−1Mpc)3, we shall now turn to the effect of restrict-
ing the survey geometry. To this end, we select a survey region in
the simulation box shaped like a spherical sector as in Fig. 2, with
its apex at a corner of the box and its axis oriented along the di-
agonal. Consider such a spherical sector with an opening angle of
θS = 10◦ and a radius of half the maximum radius within the box,
rS ≃ 169h−1Mpc. Although such a survey volume has only1.1%
of the total box volume, the volume of the largest void withinthis
survey region isV0 ≃ 6.5 ·104(h−1Mpc)3, from eq. (11), which is
greater thanVmax. The corresponding cumulative number density
is also shown in Fig. 4, together with the theoretical prediction of
eq. (15) from the restricted uniform de-Sitter distribution. Since, for
voids in the whole box, the unrestricted uniform de-Sitter distribu-
tion is a good approximation in the range103 . . . 104(h−1Mpc)3

wherev = V/V0 is of the order0.1, we expect from Fig. 3 that
the survey geometry restriction causes a significant deviation in
this range from the power-law asymptote, which represents the
effect of the survey volume restriction alone. Furthermore, since
V0/Vmax ≃ 1.5, we expect no significant effect of the large vol-
ume cutoff. Both expectations are indeed borne out by the data, as
can be seen in the figure.

5 CONCLUDING REMARKS

“In parallel with efforts to explain, I think it indispensable to describe
clustering, and to mimic reality by purely geometric means.”
Mandelbrot (1977), p. 84

In this article, we have considered an application of the 4-
dimensional de-Sitter configuration space of 2-spheres in Euclidean
3-space to cosmology. Modelling cosmic voids as spheres andig-
noring their overlap, it was shown that a uniform distribution over
this configuration space gives rise to a self-similar power-law size
distribution of voids. It appears to agree well with data in an inter-
mediate range of void volumes, and this can be understood physi-
cally from the excursion set formalism as long as the large volume
cutoff and void hierarchy effects at small volumes may be ignored.
We have also seen how restrictions of void positions in 3-space due
to survey geometry significantly affect the size distribution.
Now in order to refine this approach, one might implement void
merging conditions using this configuration space language. Fur-
thermore, since the uniform distribution appears to provide a rea-
sonably good match with actual void distributions of intermedi-
ate volume, it may be worthwhile to treat the uniform distribution
as a null hypothesis and study the physical interpretation of non-
uniform distributions. Then deviations from uniformity will, as we
have seen, encode physically interesting effects such as void hierar-
chy processes or the large volume cutoff, which may be particularly
sensitive to the underlying cosmology.
Finally, while de-Sitter geometry plays an important and well-
known rôle in cosmological spacetimes, we would like to empha-
size the interesting, and perhaps rather surprising, fact that the
present application of de-Sitter geometry to cosmology arises in
a physically entirely different context. At this stage, ourapproach
is primarily a descriptive device which also offers a novel geomet-
rical interpretation of an aspect of self-similarity in cosmology, in
the spirit of the quotation above.
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