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ABSTRACT

Starting from the geometrical concept of a 4-dimensionabier configuration of spheres
in Euclidean 3-space and modelling voids in the Universghsies, we show that a uniform
distribution over this configuration space implies a polesv-for the void number density
which is consistent with results from the excursion set falfsm and from data, for an inter-
mediate range of void volumes. We also discuss the effeastficting the survey geometry
on the void statistics. This work is a new application of dgeSgeometry to cosmology and
also provides a new geometrical perspective on self-siityilen cosmology.

Key words. cosmology:theory—large-scale structure of Universe

1 INTRODUCTION

While the existence and characteristic distributions opgnre-
gions are already implicit in early self-similar models tiusture
hierarchy in the Universe (cf. Mandelbrot (1977)), it was thbser-
vational discovery of large, approximately spherical oegialmost
devoid of visible galaxies known as voids and supervoids (Kir-
shner et al. (1981)) that sparked further theoretical warkun-
derdense regions in the Universe. This included analystalies
of the dynamical evolution of individual voids and shelbssing
(Peebles (1982); Sato (1982)) as well as statistical ptieseasf the
void distribution. Applying a simple sign-reversal argurhecke
(1984) pointed out that the sphericity of underdense region
creases due to gravitational dynamics, so that it is in fatunal to
expect approximately spherical voids. Early theoretippiraaches
to void statistics used Poisson statistics of empty regiasisievel-
oped by Politzer & Preskill (1986), Voronoi tesselationské &
van de Weygaert (1987)), and structure formation theorynai-a
ogy to the statistics of overdensity peaks (Bardeen et é338q))

in Gaussian primordial density fluctuations (e.g., BetamneRijo
(1990)). Self-similar features in the void size distriloutivere also
noted (e.g., Einasto, Einasto & Gramann (1989)). Of coumssh
of this earlier work concentrated on Einstein-de-Sittesngology
with Qs = 1, as was favoured then. Especially after the discovery
of the near-isotropic CMB, it was realized that the largdstesv-
able voids were difficult to explain theoretically and magréfore
provide important cosmological constraints (e.g., Bluthehet al.
(1992)). Attention has also been drawn to galaxy propewigsn
voids (e.g., the void phenomenon of Peebles (2001)). Notty wi
the advent of the\CDM paradigm, detailed numerical studies of
void statistics (e.g., Colberg et al. (2005) for a comparjsand
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analytical studies of void shape evolution in redshift spée.g.,
Maeda, Sakai & Triay (2011)) have been conducted. Moreover,
the void formation theory based on the excursion set fosmali
of primordial density fluctuations has been refined to ineltide
notion of hierarchy (Sheth & van de Weygaert (2004)). This fo
malism was extended more recently to investigate effectsoof
Gaussianity (e.g., D’Amico et al. (2011)) and modified the®of
gravity (e.g., Clampitt, Cai & Li (2013)) on voids. Follovgrear-
lier work on self-similarity, Gaite (2009) applied advaddeactal
structures to void statistics. On the observational sideid cat-
alogue extracted from the SDSS Data Release 7 has receptty be
published (Pan et al. (2012)), which illustrates the strdagen-
dence of void statistics on the underlying void definitioheTpos-
sibility of using voids for precision cosmology has also mex-
plored (e.g., Lavaux & Wandelt (2010)). A fitting formula whi
matches the distributions of voids extracted from 2dF GaRad-
shift Survey observations and from the Millennium Simwathas
been proposed by von Benda-Beckmann & Muller (2008), who
also discussed self-similarity in the void size distribatiHiguchi,
Oguri & Hamana (2013) have shown how weak lensing observa-
tions may be used to measure the mass distribution of voids.

In this paper, we propose a new geometrical approach to tatig-s
tics based on the idea that voids can be modelled well by splier
the Euclidean 3-space. Each such sphere is representeddigta p
in the 4-dimensional configuration space of spheres, witliusa
and centre position as coordinates. Since the spatial c@oh&
tween these spheres is physically important (e.g., in tieugen

of voids), it is interesting to consider transformationstaf config-
uration space that preserve such contact relations, nacoalpr-
mal transformations, in order to define a distance measutben
configuration space. Given these assumptions, it turnshatithe
configuration space has a de-Sitter geometry, with timeigdi
and spacelike centre positions of the spheres, which emé&mgma
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classical sphere geometry and is different from cosmotbgie-
Sitter spacetime. One can now study the size distributi@pbéri-
cal voids in the Universe in terms of their distribution otleis de-
Sitter configuration space. The approach presented herbeeas
inspired by other notions of configuration space measuressn
mology (e.g., Gibbons & Turok (2008)), and another appiocat
of this de-Sitter configuration space of spheres in a diffeastro-
nomical context has been proposed recently (Gibbons & Werne
(2013)).

The outline of this work is as follows. In Section 2, we giverab
review of the de-Sitter configuration space for the genesiabof
n-spheres im + 1-dimensional Euclidean space and indicate its
conformal structure. This is followed by a discussion of &arm
distribution over the 4-dimensional de-Sitter configumatispace
used to model voids, that is 2, in Section 3. We shall de-
rive, firstly, the corresponding void size distribution faids in the
whole (unrestricted) 3-space and find a self-similar polaet-Sec-
ondly, the effect of restricting void positions in 3-spacedo sur-
vey geometry is studied, which naturally breaks the selfilarity

of the size distribution. This is carried out analyticalty & survey
volume shaped as a spherical sector. Then in Section 4, ws-inv
tigate how the void size distributions predicted by the strieted
and restricted uniform de-Sitter distributions comparéhveictual
void size distributions. We consider, firstly, theoreticabdels of
self-similarity and the excursion set formalism, to findtthiae
power-law from the unrestricted uniform distribution is,an ex-
tent, consistent with the expectation from structure fdaromathe-
ory. To illustrate this and the effect of survey geometrytrieson

in a data set, we apply an N-body simulation using the GADGET2
(Springel (2005)) code and extract spherical voids. A caispa
with the fitting formula of von Benda-Beckmann & Milller (28)0
is also given. Section 5 contains uur conclusions and cortsen
possible further applications of this idea.

2 DE-SITTER CONFIGURATION SPACE

We begin by briefly recapitulating the notion of a configurati
space of spheres in Euclidean space and its de-Sitter ggomaet
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Figure 1. Angle between spheres. The intersection of twespheres
ST (R1,x1),S?(R1,%1) in E™t1, here illustrated for the case = 1
and, in projectionn = 2, can be characterized by the Euclidean angle
A(ST,S%) given in eq. (3), which is an invariant of the isometries af th
de-Sitter configuration space.

Therefore, the space of unoriented spheres is in fact giyéwalb of

the full de-Sitter quadric, sometimes referred to as deS#pace
modulo the antipodal maf* — —X*. Geometrically, the coor-
dinatesX'* of a sphere can be regarded as a form of Lie cycle co-
ordinates for the Laguerre cycle representing the spheee ésg.,
the appendix of Gibbons & Werner (2013) for more mathemhtica
details). Takingy” = (R, x), 0 <4 < n + 1, as coordinates of the
de-Sitter configuration space, its metgignduced by the ambient
Minkowski metric in the usual way can be read off from the line
element

ds* = (—(dX°)? + (dX)* + (dX"?)?) |ggnt2
2 2
= 2 (—dR + dx )
= gidy'dy’ 1)
so that, with respect to the coordinate-induced basis,
. 1 1 1
gij:d1ag<—ﬁ7ﬁ7...7ﬁ). (2)

Hence, this metric measures the distance between sphderais
of their configuration, that is, their radii and positionsspace.

discussed in some more detail in Gibbons & Werner (2013); see |qmetries of this de-Sitter space can be identified wittaronal

also Zee (2013). Consider andimensional unoriented sphere
S™(R,x) in n + 1-dimensional Euclidean spa@"*! given in
terms of its radius? > 0 and its centre ak = (z!,...2"™) €

E™*1. It turns out that, to each such sphere, one can uniquely as-

sign a pointX* = (X%, X, X""?), 0 < p < n+2,inn + 3-
dimensional Minkowski spadg""*2 endowed with the usual met-

ric nu., = diag(—1,1,...,1), with
1/x*—1
X% = = -R
s ()
X
X = -2
R’
1/x*+1
X"t = 2 -R
s ()
on then + 2-dimensional hypersurface
WUX”XVZ ,

which is a de-Sitter quadric. In other words, each spheré wit
a given centre and radius corresponds to a point om an 2-
dimensional de-Sitter spaets™? which can therefore be inter-
preted as a configuration space of spheres. Since for utedien

spheres one may sé > 0, we haveX’ — X"** = L > 0.

transformations of spheres, for the following reason. @mrswo
intersecting spheres; (R1,x1) andS3 (R2, x2) given by X" and
X4, respectively. Then

Rf + R} — (x1 —x2)°
2R1 Ro
cos A(ST,S3),

(M X1 X2) |agn

®)

so that isometries leave the Euclidean andléST, S5) between
the two spheres invariant which, as illustrated in Fig. lagsuges
their contact. Indeed, it provides a geometrical integdien for the
line element (1), since for two spheres that are infiniteBintéose
in the configuration space so that they are nearly identictieir
radii and positions, one finds,
1

R?
dA*(S™(R,x),S™(R + dR,x + dx)).

ds® (—dR? 4 dx?)

Finally, a measure of the number of spheres having radiiimith
[R, R + dR] and centres in the volume elemeht' .. .dz"*" at
x € E"*!is provided by the volume element,

dynt? /= det gijdy® ... dy"

(© 0000 RAS, MNRASDQ0, 1-7



On de-Sitter Geometry in Cosmic Void Statistics3

_ 1 1
= e’

n+1
Ldx" T,

4)

of then + 2-dimensional de-Sitter configuration space.

3 UNIFORM DISTRIBUTION OVER dS*
3.1 Without survey geometry restriction

In order to study the distribution of cosmic voids from thegetri-
cal perspective of the de-Sitter configuration space, wi stvalel
them as unoriented-spheres ifE. Hence specializing the previ-
ous discussion to the caase= 2, the corresponding 4-dimensional
configuration space has the de-Sitter geomeit$y} with metric

given by (2). Then the configuration space volume element for Figure 2. Survey geometry. In a survey region shaped as sphericairsect

voids with radii in[R, R + dR] and with centres in the volume
elementdz'dz?dz® atx € E* becomes
1 )

dv* = ﬁdexldﬁdﬁ, (5)
from eq. (4). Also, the infinitesimal number of void$v with radii
in [R, R + dR] centred within the volume element atcan be
described in terms of a non-negative distribution functiwar the
configuration spacef : dS* — R¥, so that

dN = f(R,x)dRdz'dz’dz”. (6)

In this section, we will consider the simplest distributionthis
framework, corresponding to a uniform distribution of veiover
the de-Sitter configuration space such that

dN o« dV*.

Clearly, this uniform distribution has the property thdtalids are
counted regardless of their positioni¥: there is no restriction
due to survey geometry and any mutual overlap of voids that ma
occur is ignored. The corresponding distribution functjois in-
dependent of the position in space,

1
ﬁ: (7)

from eq. (5) and (6). Defining the void number density as tha-nu
ber of void centres per volume elemenfiif, one can compute the
cumulative number density(> R) of voids with radius greater
than R that corresponds to the uniform distribution,

f(R,x) x

n(> R) :/R FRNAR o =

by integrating (6) using (7). Expressing this in terms ofiadlume
V =47 R3/3,

1

n(>V) o o (8)

A more realistic modification of this cumulative number dgns
should take into account that any actual void survey canoofse,
only encompass a finite subregionIot. We shall investigate this
in the following.

3.2 With survey geometry restriction

The assumption of a uniform distribution of voids over theér-
Sitter configuration space results in a differential nurrdersity

dn 1 dn dRdn 1

ar B X gm W avdrR < Ve ©)
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with » < rg, 0 < g centred at the observé?, the limitsr1 (R), r2(R)
and 62 (r, R) for voids of radiusR (solid circles) are illustrated, see eq.s
(20). The largest void for the given survey geometry;@atvith radius Ro
given by eq. (11), is also shown (dashed circle).
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Figure 3. Cumulative number density of voids. Double logarithmictplof
n(> v), the integral (15) with the same constant of proportiopaditdr s
set to unity, as functions of the dimensionless volume patar < v < 1
defined in (12), for three choices of the opening angdeof the survey
geometry: a solid curve fats = 7/2, the half sphere; a dashed curve for
0s = m/6; and a dotted curve fdts = 7/18.

of dn void centres per volume i*, per void radiusiR or void
volumedV, respectively, again by eq. (6) and (7). Now suppose
that a survey counts only those voids which are wholly within
the survey regiori/s. For simplicity, consider a survey geometry
shaped as a spherical sector with opening afigland maximal
(comoving) distance s from an observer who is situated at its
apex and coordinate origin. Then, in terms of spherical pota
ordinates, the survey region can be described by

Vs: 0<r<rs, 0<0<0s, 0<¢<2m,

and we let)s < /2. The total volume of the survey is then

Vs(rs,0s) = 2%7"2(1 —cosfs).

A given void of radiusR will be counted in the distribution if it lies
wholly within Vg, that is, if the coordinates of its cent(e, 9, ¢)
satisfy the conditions

Vs(R): ri(R) <7 <ra(R), 0<0<02(r,R), 0< ¢ < 2m,
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where the lower and upper coordinate limits are determined b 4 COMPARISON WITH VOID DISTRIBUTIONS

voids touching the boundary dfs. The conditions for these can
be read off from Fig. 2,

ri(R)sinfs = R, ro(R) + R =rg, rsin(0s — 02(r, R)) = R,

whence we have

R
ri(R) = m7
ro(R) = rs—R, (10)
02(r,R) = 0s — arcsin %

The largest void which fits int®s is situated at on the polar axis

and has radiu&y, whose values can be obtained from the condition

r1(Ro) = r2(Ro). Hence, using eq. (10),

rs rssinfs

=2 = 27772 11
1 +sinfs’ 0 1+ sin g (11)

To
In order to compare different survey geometries, it will <
venient to express void volum¥ in terms of the voluméd/, of
the largest void admitted by a given survey geométry, 0s), and
hence define the dimensionless quanlitg v < 1,

v = v suchthat R = MU%
Vo(rs, 0s)

1+ sinfs (12)
from eq. (11). The differential number density of voids witthe

range[v, v + dv] of the volume parameter can then be expressed as

1
dn= —— dn,
Vs(rs,0s) As(’u)

so that by eq. (6) in spherical polar coordinates,

dn 1 dR 2 .
—_— = v,r,0,¢)r"sinfdrdfdde. (13
B0 = Vatre09) @ Jy, o ! ¢)r’ si . (13)
Using the limits ofVs(v) for voids with volume parametergiven
by (10) and the uniform distribution (7), whose constantroior-
tionality is kept, we can recast (13) to obtain

d 1 +sinfg)? 1 [r2 %
LN - 3( + sin fs) 6—2/ / 2 sin OdAdr
dv sin® 0s(1 — cosOs)rg v? J,., Jo

_ (14 sinfs)? 1

~ 3sin®6s(1 — cos Os)ri v?

. . . 9
_§s1n93(2—-|—sm95)v% sm‘93 (31)% B E)
2 1+ sinfs 1+ sinfs 2

3
2sinfls  1\2
— 1— 272 93 .
cos s ( T+ s 0s v ) :| (14)
This expression can in turn be integrated to yield the cpmeding
cumulative number density,

1
n(>v) :/ j;dv',

and Fig. 3 shows it for three choices of the opening afiglef
the survey geometry. These results for the number denglyafid
cumulative number density of voids illustrate how the imgit dis-
tribution and the observed distribution can differ substdly due
to the restrictions imposed by the survey geometry. Smadisyof
course, tend to be affected less by the survey geometry @ne-th
fore approach asymptotically the power-law (8) of the imgit dis-
tribution.

(15)

4.1 From theoretical models
4.1.1 Self-similarity

As shown in Section 3.1, the uniform de-Sitter distributiith-
out survey geometry restriction yields a power-law sizérittistion
given by

_dn L
Tav > e
for the differential number density of voids, from eq. (9niFis

obviously self-similar in the sense that a change in voluoaes
V = sV, s = const., also implies

~ 1
v(V) « Tz

(16)

<

(V):

Moreover, since, for a given volume IB?, the integer rankR of
a void in an ordered sequence decreasing in size from langest
is proportional ton(> V'), one can see from (8) that Zipf's law
is satisfied. The applicability of fractal structures angfZi law to
void distributions was investigated in detail by Gaite & Malnia
(2002), showing that, in our notation for a void of voluivién E3,

V(R) x R™D,

whereD < 3 is the fractal dimension, so that in terms of the cu-
mulative number density witlt o« n(> V),

n(>V) x VoS,

Hence, the inverse power-law of eq. (8) represents a limitese
that cannot be described by a fractal set with one dimenSien 3.

In fact, Gaite (2007) shows that the extended notion of aifradt

tal, a set with multiple fractal dimensions, is useful insthbntext
(see also Gaite (2009); a recent review on scaling laws itatige
scale structure more generally is given by Jones et al. (2004
course, the property of self-similarity does not fix the poing16)

by itself, which will depend on the underlying physics. Ithere-
fore interesting to note that the self-similar power-lavg)(from

the uniform de-Sitter distribution has also been found feeain
the excursion set formalism of structure formation, as vl siut-

line below.

4.1.2 Excursion set formalism

In their pioneering paper, Press & Schechter (1974) pointat,
starting from Gaussian density perturbations in a Friednaos-
mology and considering the linear quasi-Newtonian pedttiiob
analysis of the growing mode, the mass distribution at lates
does not depend on the initial mass distribution. They ifieiat
simple physical reason for this self-similarity in the égisce of
two dimensionless quantities governing the gravitatiamdbpse,
which remain approximatelyonstantduring the matter-dominated
phase on subhorizon scales. The Press-Schechter arguieleirt y
ing a power-law size distribution can be summarized asvialo
Consider massive particles distributed in some comovirigme.
Then the mass density functignon this volume is obtained by
applying some smoothing window function with scale lengt
each point. At sufficiently early times, this density fulctiwill be
approximately constant,

p=p(l+9), |0 <1l

(© 0000 RAS, MNRASDQ0, 1-7
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However, if the density within a window is greater than sofne(l

dimensionless, say) critical density so that- d..i; around over-
density peaks due to fluctuations in the density functioantthe
mass within the window will gravitationally collapse andiniately

form a bound object. Again, for sufficiently early times, anay

take these fluctuations to be Gaussian, such that the vohatisoh

of points with collapsing windows is given by

F x l/ exp (—i) dé.

T Js,., 202

These windows will contain slightly different masses, basibally

M o pl3. Also, the variance may depend on the smoothing scale
and hence also on the masg, oc "% « M~/ for some
spectral index: > —3. Thus,.F is a functionM as well, and so
the differential number density()) of ultimately bound objects
obeys

_do dF

dM do’

_dF

My(M) & ~pir = =7 (17)

and hence
V(M) M~673 for M < Mo,

where My is the mass scale of the exponential term, which gives
rise to a cutoff at large masses (or volumes). For a scabianvt
o, that isn = —3, this yields the inverse square power-law

(M) o M2, (18)

It turns out that this power-law emerges also in the modifiex &
Schechter approach proposed by Appel & Jones (1990), which
uses an adaptive window scdleNow in the context of voids, one
can consider underdensity troughs rather than overdepsiiks

(as in Bardeen et al. (1986)) and, since Gaussian fluctisatiom
symmetric about the average density, the same power-lalieapp
as pointed out by Sheth & van de Weygaert (2004). Then since
M I3 x V, we recover (16) from (18). Of course, in addition to
the large volume cutoff, this simple excursion set argurigmres
effects of void hierarchy which affect small volumes in parar
(i.e., by the void-in-void and void-in-cloud processes,Sifieth &

van de Weygaert (2004)), so that the power-law will only gppl
within a range of volumes.

Hence, at least within a range of volumes, the power-law (E8)

a physical basis in the excursion set formalism: the Gandkia-
tuations producing voids give rise to a self-similar pouar-size
distribution which can be described geometrically as aqunifdis-
tribution over the de-Sitter configuration space of spheres

4.2 From data
4.2.1 An N-body simulation

Now in order to compare the void size distributions preaidby
the unrestricted and restricted uniform de-Sitter distitns from
Section 3 with data, we perform an N-body simulation withphe-
allel Tree-Particle Mesh code, GADGET2 (Springel (20083jng
osmological parameters consistent with the WMAP sevem-ggea
sults (Komatsu et al. (2011)), namely spatial curvatkre= 0,
dark energy densitf2a = 0.7274, Hubble parametek = 0.704
and spectral index; = 0.963. The initial condition for the sim-
ulation is generated at redshiff = 50 using the code developed
by Nishimichi et al. (2009), who employ second order Lagrang
perturbation theory. The simulation is run in a cubic boxwgtde
length240h~!Mpc in comoving coordinates with periodic bound-
ary conditions, an®56° dark matter particles whose individual

(© 0000 RAS, MNRASDQ0, 1-7
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n(>V)[(h'Mpc)~]

VI(h'Mpe)’]

Figure 4. Simulated void size distributions. Double logarithmic tplof

the cumulative number density of voids as a function of vaumsing the
simulation discussed in Section 4.2: uniform de-Sittetritistion from eq.

(8) without survey geometry restriction (upper solid cuamd data set)
and fitting formula of von Benda-Beckmann & Miiller (2008p{ekd); uni-

form de-Sitter distribution from eq. (15) with survey gedrgeestriction in

spherical sector (lower solid curve and data set) and quoreting power-
law asymptote (dashed). Poisson errors are indicated.

mass is scaled to match the mass density of the Universe dAt re
shift z = 0, voids are extracted according to the following algo-
rithm.

Firstly, the discrete simulation data are smoothed to coasthe
matter density function, using a Gaussian window with agapt
length scale. This smoothing length is chosen to be thentistto
the 20th nearest particle at each cell. Secondly, a set @risalh
voids is extracted by defining density minima as void cendres
determining the radius for each void as the largest radiusen-
tered at the density minimum for which the average densithef
enclosed spherg(R) is less than a critical value

pR)—p

p

relative to the average densijtyof the box. Hence, for our present
purposes, we ignore the overlap of the spherical voids andotlo
apply an additional merging algorithm to these voids (ciib@g et
al. (2005), also called 'protovoids’), which would giveeit non-
spherical voids. This should allow for are meaningful corgmm
with the uniform distribution over the de-Sitter configuoatspace
of spheres, which allows void overlap as noted in Section 3.1

5Crit = = _0~87

4.2.2 Discussion

The resulting cumulative number density of voids in the datian
box as a function of void volume is shown in Fig. 4. The largest
void has a volume oVax ~ 4.2 - 10 (h~'Mpc)?, which can be
interpreted in terms of the exponential cutoff in the exmmrset
formalism mentioned in Section 4.1.2, and whose value ispegem
rable with the simulation results reported in Fig. 7 of Cotpet

al. (2005). Until the curve flattens at very small volumes tehe
of course, rather due to simulation resolution and smogtkiale
than effects of void hierarchy —, the cumulative number iesr

V <« Vmax can indeed be approximated by the power-law of eq.
(8) derived from the unrestricted uniform de-Sitter dtstition. It

is also instructive to compare this result with the fittingnfala

of von Benda-Beckmann & Miller (2008), which was shown to
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model well the cumulative volume filling factdr(> R) of voids
derived from magnitude-limited samples of galaxies in tlo& 2
Galaxy Redshift Survey,

Fo m=e [ ()" - (£)7],

whereR = (3V/4x)'/3 is the effective spherical radius of a void
of volumeV and any shape, denotes the mean separation between
galaxies, ang, p2, s1, s2 are parameters. In order to convert this
to a cumulative number density as a function of volume, ome ca
rewrite eq. (19) in terms of . Again ignoring void overlap,

F(>V):/V°ov

and we have
d_n _ 1 dF(>V)
v v 4dv

so that
[ dn < 1 dF(> V')
n(> V)*/V av’ V' av

can be computed from (19). While a detailed comparison is be-
yond the scope of this paper, we note that the paramgtets 1,

pa = 4.5,51 = 1,55 = 1.5 and\ = 11 h~"Mpc, which seem
appropriate choices given the data in Tables 1 and 2 of vod#&en
Beckmann & Miller (2008), yield a curve in reasonable agreet
with our simulation data, as seen in Fig. (4), using a facta.b

to correct for the fact that our voids are not merged and foeze
have a higher cumulative number density. This factor is etso-
patible with the void number densities shown in Fig. 6 and Fig
of Colberg et al. (2005).

Given, then, that our simulation appears to produce a teatize
distribution of spherical voids without merging, which ddadeed
agree with the uniform de-Sitter distribution for voids hretrange
10%...10* (R~ 'Mpc)?, we shall now turn to the effect of restrict-
ing the survey geometry. To this end, we select a survey megio
the simulation box shaped like a spherical sector as in Figith

its apex at a corner of the box and its axis oriented along ithe d
agonal. Consider such a spherical sector with an openinig ahg
0s = 10° and a radius of half the maximum radius within the box,
rs ~ 169h~Mpc. Although such a survey volume has only%

of the total box volume, the volume of the largest void witttiis
survey region i, ~ 6.5-10* (h~*Mpc)?, from eq. (11), which is
greater tharV/hax. The corresponding cumulative number density
is also shown in Fig. 4, together with the theoretical preolicof
eg. (15) from the restricted uniform de-Sitter distribati&ince, for
voids in the whole box, the unrestricted uniform de-Sittistrébu-
tion is a good approximation in the range® . .. 10*(h~*Mpc)?
wherev = V/V; is of the order0.1, we expect from Fig. 3 that
the survey geometry restriction causes a significant dewian
this range from the power-law asymptote, which represdms t
effect of the survey volume restriction alone. Furthermsiace
Vo/Vmax =~ 1.5, we expect no significant effect of the large vol-
ume cutoff. Both expectations are indeed borne out by the, dat
can be seen in the figure.

(19)

, dn ’
a v

v’ = - av’

v

5 CONCLUDING REMARKS

“In parallel with efforts to explain, | think it indispenséb to describe
clustering, and to mimic reality by purely geometric means.
Mandelbrot (1977), p. 84

G. W. Gibbons, M. C. Werner, N. Yoshida and S. Chon

In this article, we have considered an application of the 4-
dimensional de-Sitter configuration space of 2-spheresidiean
3-space to cosmology. Modelling cosmic voids as spheresgand
noring their overlap, it was shown that a uniform distribuatiover
this configuration space gives rise to a self-similar polsrsize
distribution of voids. It appears to agree well with data mnister-
mediate range of void volumes, and this can be understoosiphy
cally from the excursion set formalism as long as the larderie
cutoff and void hierarchy effects at small volumes may beigd.
We have also seen how restrictions of void positions in Zsplue

to survey geometry significantly affect the size distribati

Now in order to refine this approach, one might implement void
merging conditions using this configuration space langu&ge-
thermore, since the uniform distribution appears to preadea-
sonably good match with actual void distributions of intedi
ate volume, it may be worthwhile to treat the uniform digitibn

as a null hypothesis and study the physical interpretatfamo-
uniform distributions. Then deviations from uniformityllyas we
have seen, encode physically interesting effects suchid$ierar-
chy processes or the large volume cutoff, which may be pdatity
sensitive to the underlying cosmology.

Finally, while de-Sitter geometry plays an important andlwe
known réle in cosmological spacetimes, we would like to bep
size the interesting, and perhaps rather surprising, faat the
present application of de-Sitter geometry to cosmologgeariin

a physically entirely different context. At this stage, @pproach

is primarily a descriptive device which also offers a novebmet-
rical interpretation of an aspect of self-similarity in coalogy, in
the spirit of the quotation above.
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