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Abstract. K. Saito’s theory of primitive forms gives a natural semi-simple Frobe-
nius manifold structure on the space of miniversal deformations of an isolated
singularity. On the other hand, Givental introduced the notion of a total ances-
tor potential for every semi-simple point of a Frobenius manifold and conjectured
that in the settings of singularity theory his definition extends analytically to non-
semisimple points as well. In this paper we prove Givental’s conjecture by using
the Eynard–Orantin recursion.
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1. Introduction

The Gromov–Witten invariants of a compact algebraic manifold V are by defi-
nition a virtual count of holomorphic maps from a Riemann surface to V satisfy-
ing various incidents constraints. Although the rigorous definition of the Gromov–
Witten invariants is very complicated, when it comes to computations, quite a bit
of techniques were developed. One of the most exciting achievements is due to
Givental who conjectured that under some technical conditions (which amount to
saying that V has sufficiently many rational curves) we can reconstruct the higher
genus invariants in terms of genus 0 and the higher genus Gromov–Witten invari-
ants of the point. Givental’s conjecture was proved recently by Teleman [22] and
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its impact on other areas of mathematics, such as integrable systems and the theory
of quasi-modular forms is a subject of an ongoing investigation (see [5], [17]).

The higher genus reconstruction formalism of Givental (see [10] or Section 3
bellow) is most naturally formulated in the abstract settings of the so called semi-
simple Frobenius manifolds (see [7] for some background on Frobenius manifolds).
In the case of Gromov–Witten theory, the Frobenius structure is given on the vector
space H∗(V;C) and it is induced from the quantum cup product. More precisely,
Givental defined the total ancestor potential of a semi-simple Frobenius manifold
which in the case of Gromov–Witten theory coincides with a generating function of
the so called ancestor Gromov–Witten invariants (see [11]).

In this paper we study the total ancestor potential of the semi-simple Frobe-
nius manifold arising in singularity theory. Let f ∈ OC2l+1,0 be the germ of a
holomorphic function with an isolated critical point at 0, i.e., the local algebra
H := OC2l+1,0/( fx0 , . . . , fx2l) is a finite dimensional vector space (over C). The di-
mension is called multiplicity of the critical point and it will be denoted by N. We
fix a miniversal deformation F(t, x), t ∈ B and a primitive form ω in the sense of
K. Saito [19, 21], so that B inherits a Frobenius structure (see [14, 20]). Let Bss be
the set of points t0 ∈ B, such that the critical values u1(t), . . . , uN(t) of F(t, ·) form
a coordinate system for t in a neighborhood of t0. In such coordinates the product
and the residue pairing assume a diagonal form which means that the correspond-
ing Frobenius algebra is semi-simple. Let t = {tk,i}

i=1,...,N
k=0,1,... be a sequence of formal

variables. For every t ∈ Bss we denote by At(~; t) the total ancestor potential of
the Frobenius structure (c.f. Section 3.2). It is a formal series in C((~))[[t]], whose
coefficients are analytic functions in t ∈ Bss. A priori the coefficients could have
poles along the caustic B \ Bss. Our main result is the following.

Theorem 1.1. Assume that we have an isolated singularity with an arbitrary prim-
itive form. The corresponding family of total ancestor potentials At(~; t), t ∈ Bss,
determines a formal series in C((~))[[t]] whose coefficients are holomorphic in t and
extend holomorphically over the caustic to all of B.

The proof of Theorem 1.1 is based on the local Eynard–Orantin recursion (see
[4] and [16]). We follow the approach in [16]. The main advantage of the recur-
sion is that it gives a reconstruction which does not make use of the higher genus
theory of the point, but it depends only on the Frobenius structure! Following an
idea of Bouchard–Eynard (see [3]) we prove that the local recursion, which apriori
is defined only for t ∈ Bss, extends to generic points t ∈ B \ Bss. Let us point out
that at this point we use the fact that for a generic t ∈ B \ Bss the function F(t, ·)
has a singularity of type A2. From here one proves easily by induction thatAt(~; q)
extends analytically for generic t ∈ B\Bss provided some initial set of correlators of
genus 0 and genus 1 are analytic. While the analyticity of the genus 0 correlators is
easy to verify, the analyticity of the genus 1 ones is much more involved. However
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the computation was already done by C. Hertling (see [14], Theorem 14.6). There-
fore, to complete the proof of Theorem 1.1, it remains only to recall the Hartogue’s
extension theorem.

Remark 1.2. The fact that we have higher genus reconstruction at non-semisimple
points looks quite attractive on its own and it deserves a further investigation. In
particular, it will be interesting to find a generalization of Givental’s formula at
various non-semisimple points and see if similar formulas occur in Gromov–Witten
theory as well.

Remark 1.3. Theorem 1.1 is very important for the Landau–Ginzburg/Calabi–Yau
correspondence (c.f. [17, 18]) where it is necessary to restrict the total ancestor
potential to marginal deformations only and the latter are always non-semisimple.

For every semi-simple Frobenius structure, one can introduce also the so called
total descendant potential

D(~; t) = eF(1)(t)Ŝ −1
t At(~; t). (1)

We refer to [11] for the details of this formula. For the discussion that follows it will
be important to note only that in singularity theory S t depends holomorphically on
t ∈ B. One can check that the RHS is independent of t in a sense that the derivative
with respect to t is 0. However, there is a subtlety here that comes from the fact that
the operator Ŝ −1

t changes the Fock space. Namely, the total descendant potential is
an element of C((~))[[t0 − t, t1, . . . ]]. A good analogy to think about what is going on
here is the function f (q) = 1/q. Take any t , 0, then the Taylor series expansion of
f (q) at q = t gives

f (q) =

∞∑
n=0

(−1)nt−n−1(q − t)n.

The derivative of the RHS with respect to t is 0, however we can not quite say that it
is independent of t. On the other hand, we can set formally t = t0 in (1), then we get
a formal series in C((~))[[t1, t2, . . . ]] whose coefficients depend holomorphically on
t0 ∈ Bss. So we can interpret formula (1) in the following way. The total descendant
potential D(~; t) is a formal series in C((~))[[t1, t2, . . . ]] whose coefficients are holo-
morphic functions in t0 ∈ Bss with possible poles along the caustic B\Bss. If we pick
an arbitrary t ∈ Bss and take the Taylor series expansion of each coefficient at t0 = t,
then we get the RHS of formula (1). Theorem 1.1 implies that in singularity theory
the coefficients of D(~; t) are holomorphic in t0 ∈ B. The total descendant poten-
tial has the form e

∑∞
g=0 ~

g−1F (g)(t), where F (g)(t) is a formal series called the genus-g
descendant potential. Setting tk = 0 for all k > 0 in F (g)(t), we get a formal series
F(g)(t0) called primary genus-g potential. We have the following corollary.

Corollary 1.4. The primary potentials F(g)(t0) are holomorphic on B for all g ≥ 0.



4 TODOR MILANOV

2. Frobenius structures in singularity theory

Let us first recall some of the basic settings in singularity theory. For more details
we refer the reader to the excellent book [1]. Let f : (C2l+1, 0)→ (C, 0) be the germ
of a holomorphic function with an isolated critical point of multiplicity N. Denote
by

H = OC2l+1,0/(∂x0 f , . . . , ∂x2l f )
the local algebra of the critical point; then dim H = N.

Definition 2.1. A miniversal deformation of f is a germ of a holomorphic function
F : (CN × C2l+1, 0)→ (C, 0) satisfying the following two properties:

(1) F is a deformation of f , i.e., F(0, x) = f (x).
(2) The partial derivatives ∂F/∂ti (1 ≤ i ≤ N) project to a basis in the local

algebra
OCN ,0[[x0, . . . , x2l]]/〈∂x0 F, . . . , ∂x2l F〉.

Here we denote by t = (t1, . . . , tN) and x = (x0, . . . , x2l) the standard coordinates
on CN and C2l+1 respectively, and OCN ,0 is the algebra of germs at 0 of holomorphic
functions on CN .

We fix a representative of the holomorphic germ F, which we denote again by F,
with a domain X constructed as follows. Let

B2l+1
ρ ⊂ C2l+1 , B = BN

η ⊂ C
N , B1

δ ⊂ C

be balls with centers at 0 and radii ρ, η, and δ, respectively. We set

S = B × B1
δ ⊂ C

N × C , X = (B × B2l+1
ρ ) ∩ φ−1(S ) ⊂ CN × C2l+1 ,

where

φ : B × B2l+1
ρ → B × C , (t, x) 7→ (t, F(t, x)) .

This map induces a map φ : X → S and we denote by Xs or Xt,λ the fiber

Xs = Xt,λ = {(t, x) ∈ X | F(t, x) = λ} , s = (t, λ) ∈ S .

The number ρ is chosen so small that for all r, 0 < r ≤ ρ, the fiber X0,0 intersects
transversely the boundary ∂B2l+1

r of the ball with radius r. Then we choose the num-
bers η and δ small enough so that for all s ∈ S the fiber Xs intersects transversely the
boundary ∂B2l+1

ρ . Finally, decreasing further η and ρ if necessary we may assume
that the critical values of F are contained in a disk B1

δ′′ with radius δ′′ < δ.
Let Σ be the discriminant of the map φ, i.e., the set of all points s ∈ S such that

the fiber Xs is singular. Put

S ′ = S \ Σ ⊂ CN × C , X′ = φ−1(S ′) ⊂ X ⊂ CN × C2l+1 .

Then the map φ : X′ → S ′ is a smooth fibration, called the Milnor fibration. Let
δ′ be a real number, s.t., δ′′ < δ′ < δ, then (0, δ′) ∈ S ′ and all smooth fibers are
diffeomorphic to X0,δ′ . To avoid cumbersome notation let us assume that δ′ = 1.
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The middle homology group of the smooth fiber, equipped with the bilinear form
(·|·) equal to (−1)l times the intersection form, is known as the Milnor lattice Q =

H2l(X0,1;Z). For a generic point s ∈ Σ, the singularity of the fiber Xs is Morse. Thus,
every choice of a path from (0, 1) to s avoiding Σ leads to a group homomorphism
Q→ H2l(Xs;Z). The kernel of this homomorphism is a free Z-module of rank 1. A
generator α ∈ Q of the kernel is called a vanishing cycle if (α|α) = 2.

2.1. Frobenius structure. Let TB be the sheaf of holomorphic vector fields on B.
Condition (2) in Definition 2.1 implies that the map

∂/∂ti 7→ ∂F/∂ti mod 〈∂x0 F, . . . , ∂x2l F〉 (1 ≤ i ≤ N)

induces an isomorphism between TB and p∗OC, where p : X → B is the natural
projection (t, x) 7→ t and

OC := OX/〈∂x0 F, . . . , ∂x2l F〉

is the structure sheaf of the critical set of F. In particular, since OC is an algebra, the
sheaf TB is equipped with an associative commutative multiplication, which will be
denoted by •. It induces a product •t on the tangent space of every point t ∈ B. The
class of the function F in OC defines a vector field E ∈ TB, called the Euler vector
field.

Given a holomorphic volume form ω on (C2l+1, 0), possibly depending on t ∈ B,
we can equip p∗OC with the so-called residue pairing

(ψ1(t, x), ψ2(t, x)) :=
( 1
2πi

)2l+1
∫

Γε

ψ1(t, y) ψ2(t, y)
∂y0 F · · · ∂y2l F

ω ,

where y = (y0, . . . , y2l) is aω-unimodular coordinate system (i.e. ω = dy0∧· · ·∧dy2l)
and the integration cycle Γε is supported on |∂y0 F| = · · · = |∂y2l F| = ε. Using that
TB � p∗OC, we get a non-degenerate complex bilinear form ( , ) on TB, which we
still call residue pairing.

For t ∈ B and z ∈ C∗ put

Xt = {x ∈ B2l+1
ρ : |F(t, x)| < δ}

and

X−t,z = {x ∈ Xt ∩ ∂B2l+1
ρ : Re(z−1F(t, x)) < 0}.

The homology groups

H2l+1(Xt, X−t,z;C) � CN

form a vector bundle on B × C∗ equipped naturally with a Gauss–Manin connec-
tion. For every flat section B = Bt,z let us denote by JB(t, z) the stationary phase
asymptotic (see [1] for more details) as z→ 0 of the oscillatory integral

(2πz)−l− 1
2 (zdB)

∫
Bt,z

ez−1F(t,x)ω ∈ T ∗B ,
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where dB is the de Rham differential on B. According to K. Saito’s theory of prim-
itive forms [14, 19, 21] there exists a form ω, called primitive, such that JB(t, z) are
horizontal sections for the following connection:

∇∂/∂ti = ∇L.C.
∂/∂ti − z−1(∂ti•t), 1 ≤ i ≤ N (2)

∇∂/∂z = ∂z − z−1θ + z−2E •t . (3)

Here ∇L.C. is the Levi–Civita connection associated with the residue pairing and

θ := ∇L.C.E −
(
1 −

d
2

)
Id,

where d is some complex number. In particular, this means that the residue pairing
and the multiplication • form a Frobenius structure on B of conformal dimension d
with identity 1 and Euler vector field E. For the definition of a Frobenius structure
we refer to [7] .

Assume that a primitive form ω is chosen. Note that the flatness of the Gauss–
Manin connection implies that the residue pairing is flat. Denote by (τ1, . . . , τN) a
coordinate system on B that is flat with respect to the residue pairing, and write ∂i

for the vector field ∂/∂τi. We can further modify the flat coordinate system so that
the Euler field is the sum of a constant and linear fields:

E =

N∑
i=1

(1 − di)τi∂i +

N∑
i=1

ρi∂i .

The constant part represents the class of f in H, and the spectrum of degrees
d1, . . . , dN ranges from 0 to d. Note that in the flat coordinates τi the operator θ
(called sometimes the Hodge grading operator) assumes diagonal form:

θ(∂i) =
(d
2
− di

)
∂i , 1 ≤ i ≤ N .

Finally, let us trivialize the tangent and the cotangent bundle. We have the following
identifications:

T ∗B � T B � B × T0B � B × H,

where H is the Jacobi algebra of f , the first isomorphism is given by the residue
pairing, the second by the Levi–Cevita connection of the flat residue pairing, and
the last one is the Kodaira–Spencer isomorphism

T0B � H, ∂/∂ti 7→ ∂ti F
∣∣∣
t=0

mod ( fx0 , . . . , fx2l). (4)

Let vi ∈ H be the images of the flat vector fields ∂i via the Kodaira–Spencer iso-
morphism (4). We assume that vN = 1 is the unity of the algebra H.
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2.2. Period integrals. Given a middle homology class α ∈ H2l(X0,1;C), we denote
by αt,λ its parallel transport to the Milnor fiber Xt,λ. Let d−1ω be any 2l-form whose
differential isω. We can integrate d−1ω over αt,λ and obtain multivalued functions of
λ and t ramified around the discriminant in S (over which the Milnor fibers become
singular). To α ∈ H2l(X0,1;C), we associate the period vectors I(k)

α (t, λ) ∈ H (k ∈ Z)
defined by

(I(k)
α (t, λ), vi) := −(2π)−l∂l+k

λ ∂i

∫
αt,λ

d−1ω , 1 ≤ i ≤ N . (5)

Note that this definition is consistent with the operation of stabilization of singu-
larities. Namely, adding the squares of two new variables does not change the
right-hand side, since it is offset by an extra differentiation (2π)−1∂λ. In particular,
this defines the period vector for a negative value of k ≥ −l with l as large as one
wishes. Note that, by definition, we have

∂λI(k)
α (t, λ) = I(k+1)

α (t, λ) , k ∈ Z .

The following lemma is a consequence of the definition of a primitive form.

Lemma 2.2. The period vectors (5) satisfy the differential equations

∂iI(k)
α = −vi •t (∂λI(k)

α ) , 1 ≤ i ≤ N , (6)

(λ − E•t)∂λI(k)
α =

(
θ − k −

1
2

)
I(k)
α . (7)

The connection corresponding to the differential equations (6)–(7) is a Laplace
transform of the connection (2)–(3). In particular, since the oscillatory integrals are
related to the period vectors via the Laplace transform, Lemma 2.2 follows from the
fact that the oscillator integrals are horizontal sections for the connection (2)–(3).

Using equation (7), we analytically extend the period vectors to all |λ| > δ. It
follows from (6) that the period vectors have the symmetry

I(k)
α (t, λ) = I(k)

α (t − λ1, 0) , (8)

where t 7→ t − λ1 denotes the time-λ translation in the direction of the flat vector
field 1 obtained from 1 ∈ H. (The latter represents identity elements for all the
products •t.)

Let t ∈ Bss be a semi-simple point; then the period vector I(0)
α (t, λ) could have

singularities only at the critical values ui(t). Moreover, using equation (3) it is easy
to see that the order of the pole at a given singular point λ = ui(t) is at most 1

2 . A
simple corollary of this observation, which will be used repeatedly, is that if the
cycle α is invariant with respect to the local monodromy around λ = ui(t); then
the corresponding period vectors I(n)

α (t, λ) must be analytic in a neighborhood of
λ = ui(t).
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2.3. Stationary phase asymptotic. Let ui(t) (1 ≤ i ≤ N) be the critical values
of F(t, ·). For a generic t, they form a local coordinate system on B in which the
Frobenius multiplication and the residue pairing are diagonal. Namely,

∂/∂ui •t ∂/∂u j = δi j∂/∂u j ,
(
∂/∂ui, ∂/∂u j

)
= δi j/∆i ,

where ∆i is the Hessian of F with respect to the volume form ω at the critical point
corresponding to the critical value ui. Therefore, the Frobenius structure is semi-
simple. We denote by Ψt the following linear isomorphism

Ψt : CN → TtB , ei 7→
√

∆i∂/∂ui ,

where {e1, . . . , eN} is the standard basis for CN .
Let Ut be the diagonal matrix with entries u1(t), . . . , uN(t). According to Givental

[10], the system of differential equations (cf. (2), (3))

z∂iJ(t, z) = vi •t J(t, z) , 1 ≤ i ≤ N , (9)

z∂zJ(t, z) = (θ − z−1E•t)J(t, z) (10)

has a unique formal asymptotic solution of the form ΨtRt(z)eUt/z, where

Rt(z) = 1 + R1(t)z + R2(t)z2 + · · · ,

and Rk(t) are linear operators on CN uniquely determined from the differential equa-
tions (9) and (10).

We will make use of the following formal series

fα(t, λ; z) =
∑
k∈Z

I(k)
α (t, λ) (−z)k , (11)

and
φα(t, λ; z) =

∑
k∈Z

I(k+1)
α (t, λ) dλ (−z)k . (12)

Note that for A1-singularity F(t, x) = x2/2 + t we have u := u1(t) = t. Up to a sign
there is a unique vanishing cycle. The corresponding series (11) and (12) will be
denoted simply by fA1(t, λ; z) and φA1(t, λ; z). The period vectors can be computed
explicitly and they are given by the following formulas:

I(k)
A1

(u, λ) = (−1)k (2k − 1)!!
2k−1/2 (λ − u)−k−1/2, k ≥ 0

I(−k−1)
A1

(u, λ) = 2
2k+1/2

(2k + 1)!!
(λ − u)k+1/2, k ≥ 0.

The key lemma (see [12]) is the following.

Lemma 2.3. Let t ∈ B be generic and β be a vanishing cycle vanishing over the
point (t, ui(t)) ∈ Σ. Then for all λ near ui := ui(t), we have

fβ(t, λ; z) = ΨtRt(z) ei fA1(ui, λ; z) .
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3. Symplectic loop space formalism

The goal of this section is to introduce Givental’s quantization formalism (see
[11]) and use it to define the higher genus potentials in singularity theory.

3.1. Symplectic structure and quantization. The space H := H((z−1)) of formal
Laurent series in z−1 with coefficients in H is equipped with the following symplec-
tic form:

Ω(φ1, φ2) := Resz (φ1(−z), φ2(z)) , φ1, φ2 ∈ H ,

where, as before, (, ) denotes the residue pairing on H and the formal residue Resz

gives the coefficient in front of z−1.
Let {vi}

N
i=1 and {vi}Ni=1 be dual bases of H with respect to the residue pairing. Then

Ω(vi(−z)−k−1, v jzl) = δi jδkl .

Hence, a Darboux coordinate system is provided by the linear functions qi
k, pk,i on

H given by:

qi
k = Ω(vi(−z)−k−1, ·) , pk,i = Ω(·, vizk) .

In other words,

φ(z) =

∞∑
k=0

N∑
i=1

qi
k(φ)vizk +

∞∑
k=0

N∑
i=1

pk,i(φ)vi(−z)−k−1 , φ ∈ H .

The first of the above sums will be denoted φ+(z) and the second φ−(z).
The quantization of linear functions onH is given by the rules:

q̂i
k = ~−1/2qi

k , p̂k,i = ~1/2 ∂

∂qi
k

.

Here and further, ~ is a formal variable. We will denote by C~ the field C((~1/2)).
Every φ(z) ∈ H gives rise to the linear function Ω(φ, ·) on H , so we can define

the quantization φ̂. Explicitly,

φ̂ = −~1/2
∞∑

k=0

N∑
i=1

qi
k(φ)

∂

∂qi
k

+ ~−1/2
∞∑

k=0

N∑
i=1

pk,i(φ)qi
k . (13)

The above formula makes sense also for φ(z) ∈ H[[z, z−1]] if we interpret φ̂ as a
formal differential operator in the variables qi

k with coefficients in C~.

Lemma 3.1. For all φ1, φ2 ∈ H , we have [φ̂1, φ̂2] = Ω(φ1, φ2).

Proof. It is enough to check this for the basis vectors vi(−z)−k−1, vizk, in which case
it is true by definition. �
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It is known that the operator series Rt(z) := ΨtRt(z)Ψ−1
t is a symplectic transfor-

mation. Moreover, it has the form eA(z), where A(z) is an infinitesimal symplectic
transformation. A linear operator A(z) on H := H((z−1)) is infinitesimal symplectic
if and only if the map φ ∈ H 7→ Aφ ∈ H is a Hamiltonian vector field with a
Hamiltonian given by the quadratic function hA(φ) = 1

2Ω(Aφ, φ). By definition, the
quantization of eA(z) is given by the differential operator êhA , where the quadratic
Hamiltonians are quantized according to the following rules:

(pk,i pl, j)̂ = ~
∂2

∂qi
k∂q j

l

, (pk,iq
j
l )̂ = (q j

l pk,i)̂ = q j
l

∂

∂qi
k

, (qi
kq

j
l )̂ =

1
~

qi
kq

j
l .

3.2. The total ancestor potential. Let us make the following convention. Given a
vector

q(z) =

∞∑
k=0

qkzk ∈ H[z] , qk =

N∑
i=1

qi
kvi ∈ H ,

its coefficients give rise to a vector sequence q0, q1, . . . . By definition, a formal
function on H[z], defined in the formal neighborhood of a given point c(z) ∈ H[z],
is a formal power series in q0 − c0, q1 − c1, . . . . Note that every operator acting
on H[z] continuously in the appropriate formal sense induces an operator acting on
formal functions.

The Witten–Kontsevich tau-function is the following generating series:

Dpt(~; Q(z)) = exp
(∑

g,n

1
n!
~g−1

∫
Mg,n

n∏
i=1

(Q(ψi) + ψi)
)
, (14)

where Q0,Q1, . . . are formal variables, and ψi (1 ≤ i ≤ n) are the first Chern classes
of the cotangent line bundles on Mg,n (see [23, 15]). It is interpreted as a formal
function of Q(z) =

∑∞
k=0 Qkzk ∈ C[z], defined in the formal neighborhood of −z. In

other words,Dpt is a formal power series in Q0,Q1 + 1,Q2,Q3, . . . with coefficients
in C((~)).

Let t ∈ B be a semi-simple point, so that the critical values ui(t) (1 ≤ i ≤ N) of
F(t, ·) form a coordinate system. Recall also the flat coordinates τ = (τ1(t), . . . , τN(t))
of t. The total ancestor potential of the singularity is defined as follows

At(~; q(z)) = R̂t

N∏
i=1

Dpt(~∆i; iq(z)) ∈ C~[[q0, q1 + 1, q2 . . . ]], (15)

where Rt(z) := ΨtRt(z)Ψ−1
t and

iq(z) =

∞∑
k=0

N∑
a=1

∂ui

∂τa
qa

k zk .
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It will be convenient also to consider another set t = {ti
k} of formal variables related

to q via the so called dilaton shift:

ti
k =

qi
k if (k, i) , (1,N)

qN
1 + 1 otherwise,

(16)

where recall that vN = 1 ∈ H is the unit for the Frobenius multiplication.

3.3. The correlator functions. In order to motivate our definition of correlators,
let us first recall the definition in the geometric settings, following [11]. For a given
projective manifold V , let us denote by Mg,n(V, d) the moduli space of degree-d
stable maps from a genus-g nodal Riemann surface, equipped with n marked points,
to V . The ancestor correlator functions are defined by the following intersection
numbers:

〈vi1ψ
k1

1 , . . . , vinψ
kn

n 〉g,n(t) :=
∞∑

m=0

∑
d

Qd

m!

∫
[Mg,n+m(V,d)]virt

ev∗(vi1 ⊗ · · · ⊗ vin ⊗ t⊗m)
n∏

a=1

ψ
ka

a ,

where the notation is as follows. The classes {vis}
n
s=1 and t are cohomology classes

on V , the 2-nd sum is over all effective curve classes d ∈ H2(V;Z) and Qd is an
element of the Novikov ring. Furthermore, evaluating the stable map at the marked
points gives rise to the evaluation map

ev :Mg,n+m(V, d)→ Vn+m,

while the operation forgetting the last m marked points, the stable map, and stabi-
lizing (i.e. contracting the unstable components) gives a map ft : Mg,n+m(V, d) →
Mg,n. The cohomology classes ψs := ft∗(ψs) (1 ≤ s ≤ n). Finally, [Mg,n+m(V, d)]virt

is the virtual fundamental cycle. Let us point out that ifMg,n is empty, i.e., 2g− 2 +

n ≤ 0, then the ancestor correlator is by definition 0. The total ancestor potential of
V has the form

At(~; t) = exp
( ∞∑

g=0

~g−1F
(g)

t (t)
)
, (17)

where t ∈ H := H∗(V;C), t = {ti
k} is a set of formal variables and

F
(g)

t (t) =

∞∑
n=0

1
n!
〈t(ψ1), . . . , t(ψn)〉(t)g,n

is the so called genus-g ancestor potential, where t(z) =
∑

k,i ti
kvizk and the definition

of the correlator is extended mult-linearly.
Let us return to the settings of singularity theory. It can be proved that the ances-

tor potential (15) still has the form (17). Motivated by Gromov–Witten theory we
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would like to define the analogues of the ancestor correlator functions, so that the
ancestor potential can be written in the same way. Put

〈vi1ψ
k1 , . . . , vinψ

kn〉g,n(t; t) := ∂ti1k1

· · · ∂tinkn
F

(g)
t (~; t), (18)

then by the Taylor’s formula we have

At(~; t) = exp
( ∞∑

g,n=0

~g−1

n!
〈t(ψ), . . . , t(ψ)〉g,n(t; 0)

)
,

where by extending multi-linearly the definition (18) we allow the insertions of the
correlator to be any formal power series from H[[ψ]]. Our main interest is in the
correlators (18) with t = 0. Using the definition (15), it is easy to check that each
of these correlators (with t = 0) is an analytic function in t ∈ Bss. The statement of
Theorem 1.1 is that each correlator is in fact analytic on the entire space B.

4. The ancestors for generic non-semisimple points

Let t0 ∈ B be a point, such that the function F(t0, ·) : B2l+1
ρ → C has N − 2 Morse

critical points ξ0
i (1 ≤ i ≤ N − 2) and a critical point ξ0

N−1 of type A2, i.e., we can
choose local coordinate system y = (y0, y1, . . . , y2l) centered at the critical point ξ0

N−1
such that

F(t0, y) = u0
N−1 + y3

0 +

2l∑
i=1

y2
i , u0

N−1 := F(t0, ξ
0
N−1).

Let us assume that the critical values u0
i := F(t0, ξ

0
i ), 1 ≤ i ≤ N − 1, are pairwise

distinct. Note that t0 ∈ B \ Bss and that all other points in B \ Bss form an analytic
subvariety in B of codimension at least 2.

Let us choose a small disc Di with center the critical value u0
i for each i =

1, 2, . . . ,N − 1. We are going to let t vary in a small open neighborhood U of
t0, so that the critical values ui(t), 1 ≤ i ≤ N of F(t, ·) satisfy the conditions

ui(t) ∈ Di, 1 ≤ i ≤ N − 2, uN−1(t), uN(t) ∈ DN−1,

and

ui(t0) = u0
i , 1 ≤ i ≤ N − 2, uN−1(t0) = uN(t0) = u0

N−1.

Let us fix an arbitrary t ∈ U ∩ Bss.

4.1. Twisted representations of the local Heisenberg algebras. We fix a refer-
ence point pi in the complement D∗i to the critical values in Di and denote by

∆i ⊂ H2l(Xt,pi;Z), 1 ≤ i ≤ N − 1
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the cycles vanishing over the critical values contained in Di. Note that together with
the intersection pairing (·|·) the sets ∆i = {±βi}, 1 ≤ i ≤ N − 2 are root systems of
type A1, while

∆N−1 = {α := βN−1, β := βN , α + β,−α,−β,−α − β}

is a root system of type A2.
Let us fix ∆ = ∆i, D := Di, and D∗ = D∗i for some i = 1, 2, . . . ,N − 1. We

denote by Q∆ the corresponding root lattice and put h∆ = C ⊗Z Q∆. The vector
space ĥ∆ = h∆[t, t−1] ⊕ CK has a natural structure of a Heisenberg Lie algebra with
Lie bracket given by

[α tm, β tn] = mδm+n,0 (α|β) K .

We denote byF∆ = Sym(h∆[t−1]t−1) the Fock space of ĥ∆, i.e., the unique irreducible
highest weight representation of ĥ∆, such that the center K acts by 1 and ĥ+

∆
:= h∆[t]

annihilates the vacuum 1. The notation t that appears here has nothing to do with
the deformation parameters that we introduced before. In order to avoid confusion,
from now on we put am := a tm, a ∈ h∆, m ∈ Z.

Following [2], we define bosonic fields

Xt(α, λ) = ∂λ f̂α(t, λ), (19)

and propagators

Pα,β(t, λ; µ − λ) = ∂λ∂µ lim
ε→0

∫ t−λ 1

t−(ui(t)+ε)1
I(0)
α (t′, µ − λ) • I(0)

β (t′, 0) (20)

where α, β ∈ ∆, for each λ ∈ D∗ we pick µ ∈ D∗ sufficiently close to λ, and the
integration is along a path such that βt′,0 ∈ H2l(Xt′,0;Z) vanishes at the end point
t′ = t − ui(t)1. The integrand is a 1-form obtained as follows: each period vector is
by definition a co-vector in T ∗t′B; we identify vectors and co-vectors via the residue
pairing and hence the Frobenius multiplication in Tt′B induces a multiplication on
T ∗t B. Finally, we can extend the definition of the propagator bi-linearly to all α, β ∈
h∆.

The Laurent series expansion of the propagator (20) at µ = λ (see [2] Lemma
7.5) has the following form:

Pα,β(t, λ; µ − λ) =
(α|β)

(λ − µ)2 +

∞∑
k=0

Pk
α,β(t, λ) (µ − λ)k.

The above series has a non-zero radius of convergence and the coefficients Pk
α,β(t, λ)

are multi-valued analytic functions on D∗, i.e., the analytic continuation in λ along
any path in D∗ is compatible with the monodromy action on α and β. The latter
statement follows from Lemmas 7.1–7.3 in [2], which can be applied in our settings
as well because the root system ∆ is of type A.
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For a ∈ F∆ of the form

a = α1
(−k1−1) · · ·α

r
(−kr−1)1 , r ≥ 1 , αi ∈ h∆ , ki ≥ 0 ,

we define

Xt(a, λ) =
∑

J

( ∏
(i, j)∈J

∂
(k j)
λ Pki

αi,α j(t, λ)
)

:
(∏

l∈J′
∂(kl)
λ Xt(αl, λ)

)
: , (21)

where the sum is over all collections J of disjoint ordered pairs (i1, j1), . . . , (is, js) ⊂
{1, . . . , r}2 such that i1 < · · · < is and il < jl for all l, J′ = {1, . . . , r}\{i1, . . . , is, j1, . . . , js},
and the normally ordered product : : means the usual composition of differential
operators, except that we apply the differentiation operations ∂

∂qi
k

before the multi-

plication ones q j
l . The main property of the above operators is that their Laurent

series expansions at the critical values contained in D form a twisted representation
of F∆ (see [2] Section 6 for more precise statement).

4.2. The local Eynard–Orantin recursion. Let ∆ = ∆i be one of the root systems
and let a = α1

(−k1−1) · · ·α
r
(−kr−1)1 ∈ F∆ be any vector. We define a multi-valued

analytic symmetric r-form

Ωa
g(t, λ; t) = f a

g (t, λ; t) dλ · · · dλ︸    ︷︷    ︸
r times

as follows

Xt(a, λ)At(~; q) =
( ∞∑

g=0

f a
g (t, λ; q) ~g−1

)
At(~; q). (22)

Note that in the definition of Ωa
g(t, λ; t) we replaced q by t, so we did not use

the dilaton-shift identification (16). If a = α1
(−1) · · ·α

r
(−1)1; then we will write

Ωα1,...,αr

g (t, λ; t) instead of Ωa
g(t, λ; t).

Let us point out that in definition (22) we are using in an essential way that
the total ancestor potential At(~; t) is tame. The latter by definition means that the
correlator functions (18) vanish for t = 0 and k1 + · · ·+kn > 3g−3+n. The tameness
guarantees that inserting formal power series from H[[ψ]] in the correlators (18) does
not produce divergent series.

According to [16], the ancestor correlators 〈t, . . . , t〉g,n(t; 0) satisfy the local Eynard–
Orantin recursion, which can be written in the following way. If (g, n + 1) is in the
stable range, i.e., 2g − 2 + n + 1 > 0, then〈

vaψ
m
1 , t, . . . , t

〉
g,n+1

= (23)

−
1
4

N∑
j=1

Resλ=u j

[v̂azm , f̂β j
−(t, λ)]

(I(−1)
β j

(t, λ), 1) dλ
×


〈
φ+
β j

(t, λ;ψ1), φ+
β j

(t, λ;ψ2), t, . . . , t
〉

g−1,n+2
+ (24)
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∑
g′+g′′=g
n′+n′′=n

(
n
n′

) 〈
φ+
β j

(t, λ;ψ1), t, . . . , t
〉

g′,n′+1

〈
φ+
β j

(t, λ;ψ1), t, . . . , t
〉

g′′,n′′+1

 , (25)

where β j is a cycle vanishing over λ = u j, we are allowing unstable correlators (see
[16] for the definition) on the RHS, and we suppressed the argument (t; 0) of the
correlators. In order to see that the above formula defines a recursion let us order
all correlators lexicographically according to the pair (g, n) formed by the genus g
and the number of insertions n of the correlator. The LHS is a single correlator of
type (g, n + 1), while the RHS involves only correlators that are lexicographically
smaller, because if (g′, n′) = (0, 0) or (g′′, n′′) = (0, 0), then the corresponding term
in the sum (25) involves unstable correlators that vanish.

The above recursion can be written also in the following way

〈va ψ
m〉g,1(t; t) = −

1
4

N∑
i=1

Resλ=ui

Ω(va zm, f−βi
(t, λ; z))

yβi(t, λ)
Ωβi,βi

g (t, λ; t), (26)

where βi is a cycle vanishing over λ = ui and

yβ(t, λ) := (I(−1)
β (t, λ), 1) dλ.

If we compare the degree-n terms with respect to t in (26), then we get precisely
(23)–(25). Let us point out that while in (25) one has to give a special definition of
the unstable correlator 〈φ+

β j
(t, λ;ψ1), t〉0,2 and 〈φ+

β j
(t, λ;ψ1)〉0,1, in (26) this definition

is automatically incorporated in the notation Ω
β j,β j
g (t, λ; t).

4.3. Extending the recursion. Let ∆ = ∆N−1 be the root system of type A2. Put

χ1 =
2
3
α +

1
3
β, χ2 = −

1
3
α +

1
3
β, χ3 = −

1
3
α −

2
3
β ∈ h∆.

We refer to these as 1-point cycles. Note that the root system ∆ consists of all
differences χi−χ j for i , j. Motivated by the construction of Bouchard–Eynard [3]
we introduce the following integral

−
1

2π
√
−1

∮ ∑
c1,...,cr

1
(r − 1)!

Ω(va zm, f−c1
(t, λ; z))∏r

k=2 yck−c1(t, λ)
Ωc1,...,cr

g (t, λ; t), (27)

where the integral is along a closed loop in D∗N−1 that goes once counterclockwise
around the critical values uN−1(t) and uN(t) and the sum is over all r = 2, 3 and all
c1, . . . , cr ∈ {χ1, χ2, χ3} such that ci , c j for i , j. The monodromy group is the
Weyl group of the root system and it acts on the 1-point cycles via permutations. In
other words the integrand is monodromy invariant, hence a single valued analytic
1-form in D∗N−1, so the integral makes sense.
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Theorem 4.1. For g , 1, the integral (27) coincides with the sum of the last two
residues (at λ = uN−1, uN) in the sum (26). For g = 1 the same identification holds
up to terms independent of t.

The proof of Theorem 4.1 relies on a certain identity that we would like to present
first. Let ui and u j (1 ≤ i, j ≤ N) be two of the critical values, β := β j be the cycle
vanishing over u j, and a ∈ h∆i (we assume that ∆N = ∆N−1). Let us fix some Laurent
series

f (λ, µ) ∈ (λ − ui)1/2C((λ − ui, µ − u j)) + C((λ − ui, µ − u j))

where C((λ − ui, µ − u j)) denotes the space of formal Laurent series. We have to
evaluate residues of the following form:

Resλ=ui Resµ=u j

∑
all branches

Ω(φ+
a (t, λ; z), f−β (t, µ; z))

yβ(t, µ)
f (λ, µ) dµ, (28)

where φa is the formal series (12) and the sum is over all branches (2 of them) of
the multivalued function that follows.

Lemma 4.2. If f (λ, µ) does not have a pole at λ = ui; then the residue (28) is
non-zero only if i = j and in the latter case it equals to

(a|β) Resλ=ui

∑
all branches

f (λ, λ)
yβ(t, λ)

dλ2.

Proof. Put a = a′ + (a|βi)βi/2; then a′ is invariant with respect to the monodromy
around λ = ui. From this we get that φ+

a′(t, λ; z) is analytic at λ = ui, so it does not
contribute to the residue. In other words, it is enough to prove the lemma only for
a = βi. Let us assume that a = βi. We have

Ω(φ+
a (t, λ; z), f−β (t, µ; z)) = Ω(f+

β (t, µ; z), φ−a (t, λ; z)) + Ω(φa(t, λ; z), fβ(t, µ; z)).

The first symplectic pairing on the RHS does not contribute to the residue, because
φ−a (t, λ; z) has a pole of order at most 1

2 so after taking the sum over all branches,
the poles of fractional degrees cancel out and hence the 1-form at hands is analytic
at λ = ui. For the second symplectic pairing we recall Lemma 2.3 and after a
straightforward computation we get

Ω(φA1(ui, λ; z)ei, fA1(u j, µ; z)e j) = 2δi, j
(µ − u j)

1
2

(λ − ui)
1
2

δ(λ − ui, µ − u j) dλ,

where

δ(x, y) =
∑
n∈Z

xny−n−1
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is the formal δ-function. It is an easy exercise to check that for every f (y) ∈ C((y))
we have

Resy=0 δ(x, y) f (y) = f (x).

The lemma follows. �

4.4. Proof of Theorem 4.1. The integral (27) can be written as a sum of two
residues: Resλ=uN−1 and Resλ=uN . We claim that each of these residues can be re-
duced to the corresponding residue in the sum (26). Let us present the argument for
λ = uN−1. The other case is completely analogous.

Recall that we denoted by α = βN−1 the cycle vanishing over uN−1. The sum-
mands in (27) for which r = 2 and c1, c2 ∈ {χ1, χ2} give precisely

Resλ=uN−1

Ω(va zm, f−χ1−χ2
(t, λ; z))

yχ1−χ2(t, λ)
Ωχ1,χ2

g (t, λ; t).

On the other hand, using that α = χ1 − χ2 we get

Ωχ1,χ2
g (t, λ; t) = −

1
4

Ωα,α
g (t, λ; t) +

1
4

Ωχ1+χ2,χ1+χ2
g (t, λ; t)

Since (χ1 + χ2|α) = 0, the form Ω
χ1+χ2,χ1+χ2
g (t, λ; t) is analytic at λ = uN−1, so it does

not contribute to the residue. Therefore we obtain precisely the (N − 1)-st residue
in (26). It remain only to see that the remaining summands with r = 2 cancel out
with the summand with r = 3.

There are two types of quadratic summands: c1, c2 ∈ {χ1, χ3} and c1, c2 ∈ {χ2, χ3}.
They add up respectively to

Ω(va zm, f−χ1−χ3
(t, λ; z))

yχ1−χ3(t, λ)
Ωχ1,χ3

g (t, λ; t) (29)

and
Ω(va zm, f−χ2−χ3

(t, λ; z))

yχ2−χ3(t, λ)
Ωχ2,χ3

g (t, λ; t). (30)

By definition
∞∑

g=0

~g−1 Ωχi,χ3
g (t, λ; t)At =

(
: φ̂χi(t, λ)φ̂χ3(t, λ) : +P0

χi,χ3
(t, λ) dλ2

)
At. (31)

The term P0
χi,χ3

contributes only to genus 1 and the contribution is independent of t,
so we may ignore this term. The normal product on the RHS is by definition

φ̂χ3(t, λ) φ̂+
χi

(t, λ) + φ̂−χi
(t, λ)φ̂χ3(t, λ). (32)

Since (χ3|α) = 0 the field φ̂χ3(t, λ) is analytic at λ = ui. In addition φ̂−χi
(t, λ) has a

pole of order at most 1
2 at λ = ui. It follows that the second summand in (32) does



18 TODOR MILANOV

not contribute to the residue and therefore it can be ignored as well. For the RHS
of (31) we get

∞∑
g=0

~g−1 φ̂χ3(t, λ) 〈φ+
χi

(t, λ;ψ)〉g,1(t; t)At.

Recalling the local recursion (26) we get

−
1
4

N∑
j=1

Resµ=u j

Ω(φ+
χi

(t, λ; z), f−β j
(t, µ; z))

yβ j(t, µ)
φ̂χ3(t, λ) Yu j

t (β2
j , µ) dµ2At,

where Yu j
t (a, µ) is the Laurent series expansion of Xt(a, µ) in (µ − u j). Therefore we

need to compute the residues Resλ=uN−1 Resµ=u j of the following expressions

−
1
4

∑
i=1,2

Ω(va zm, f−χi−χ3
(t, λ; z))

yχi−χ3(t, λ)

Ω(φ+
χi

(t, λ; z), f−β j
(t, µ; z))

yβ j(t, µ)
φ̂χ3(t, λ) Yu j

t (β2
j , µ) dµ2At.

The operator φ̂χ3(t, λ) Yu j
t (β2

j , µ) dµ2 can be written as

: φ̂β j(t, µ)2 φ̂χ3(t, λ) : +2[φ̂+
χ3

(t, λ), φ̂−β j
(t, µ)] φ̂β j(t, µ) + P0

β j,β j
(t, µ)φ̂χ3(t, λ) dµ2 . (33)

Since (χ3|α) = 0 the operator φ̂+
χ3

(t, λ) is regular at λ = ui. It follows that the
commutator

[φ̂+
χ3

(t, λ), φ̂−β j
(t, µ)] ∈ C((λ − uN−1, µ − u j))

and therefore we may recall Lemma 4.2. The above residue is non-zero only if
j = N − 1. In the latter case we get

−
1
4

Resλ=uN−1

∑
i=1,2

(χi|α)
Ω(va zm, f−χi−χ3

(t, λ; z))

yχi−χ3(t, λ) yα(t, λ)
φ̂χ3(t, λ) YuN−1

t (α2
−1, λ)At. (34)

Note that (c.f. [2], Section 7)

[φ̂+
χ3

(t, λ), φ̂−β j
(t, µ)] = ιλ−uN−1 ιµ−uN−1 Pχ3,β j(t, λ; µ − λ),

where ιλ−uN−1 is the Laurent series expansion at λ = uN−1. Hence

φ̂χ3(t, λ) YuN−1
t (α2

−1, λ) = ιλ−uN−1 Xt((χ3)−1α
2
−1, λ).

By definition

−
1
4
α2
−1 = (χ1)−1 (χ2)−1 −

1
4

(χ3)2
−1

and since χ3 is invariant with respect to the local monodromy around λ = uN−1, the
field Xt((χ3)3

−1, λ) does not contribute to the residue. We get the following formula
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for the residue (34):

Resλ=uN−1

∑
i=1,2

(χi|α)
Ω(va zm, f−χi−χ3

(t, λ; z))

yχi−χ3(t, λ) yα(t, λ)
YuN−1

t ((χ1)−1 (χ2)−1 (χ3)−1, λ)At.

Using that α = χ1 − χ2, (χ1|α) = 1, and (χ2|α) = −1 we get

Resλ=uN−1

(
Ω(va zm, f−χ1

(t, λ; z))

yχ2−χ1(t, λ) yχ3−χ1(t, λ)
+

Ω(va zm, f−χ2
(t, λ; z))

yχ1−χ2(t, λ) yχ3−χ2(t, λ)
+

+
Ω(va zm, f−χ3

(t, λ; z))

yχ1−χ3(t, λ) yχ2−χ3(t, λ)

)
×

∞∑
g=0

~g−1Ωχ1,χ2,χ3
g (t, λ; t)At.

This sum cancels out the contribution to the residue at λ = uN−1 of the cubic terms
(i.e. the terms with r = 3) of the integral (27). �

4.5. Proof of Theorem 1.1. The most difficult part of the proof is already com-
pleted. We just need to take care of several initial cases. Let t0 be a generic point in
B \ Bss. Let us write each 1-point correlator as a sum of terms homogeneous in t

〈vaψ
m〉g,1(t; t) =

∞∑
n=0

1
n!
〈vaψ

m, t(ψ), . . . , t(ψ)〉g,n+1(t; 0).

We claim that each summand is analytic at t = t0. In order to see this let us put a
lexicographical order on the summands according to (g, n) – genus and degree. Note
that the local Eynard–Orantin recursion tells us how to find a correlator of a fixed
genus and degree in terms of correlators of lower lexicographical order. Assuming
that the lower order correlators are analytic at t = t0 and that we can apply Theorem
4.1, we get the analyticity of the next correlator, because the integral (27) is analytic
at t = t0. Therefore, the proof would be completed by induction if we establish the
initial cases

〈vaψ
m, t(ψ), t(ψ)〉0,3(t; 0) and 〈vaψ

m〉1,1(t; 0).

Note that the above genus-1 correlators are the only ones for which Theorem 4.1
can not be applied. Hence if we verify the analyticity of the above correlators; then
the proof of the analyticity of the 1-point correlators will be completed.

We will compute the above correlators via the local recursion. Using Lemma 2.3
we can express the Laurent series expansion

ιλ−ui ιµ−ui Pβi,βi(t, λ; µ − λ)

in terms of the Givental’s higher-genus reconstruction operator R. After a straight-
forward computation we get

µ + λ − 2ui

(λ − µ)2(λ − ui)1/2(µ − ui)1/2 +

∞∑
k,l=0

2k+l+1(ei,Vklei)
(µ − ui)k− 1

2

(2k − 1)!!
(λ − ui)l− 1

2

(2l − 1)!!
,
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where the matrices Vkl ∈ End(CN) are defined as follows:
∞∑

k,l=0

Vkl wkzl =
1 − T R(−w)R(−z)

w + z
.

The Laurent series expansion of the propagator at µ = λ becomes

2
(λ − µ)2 + P0

βi,βi
(t, λ) + · · · ,

where the dots stand for higher order terms in (µ − λ) and

P0
βi,βi

(t, λ) =
1
4

(λ − ui)−2 + 2(ei,R1ei) (λ − ui)−1.

Similarly, we can find the Laurent series expansion of the period vectors

I(−1−m)
βi

(t, λ) = 2
(2(λ − ui))m+ 1

2

(2m + 1)!!

(
ei −

N∑
k=1

Rki
1

2m + 3
ek 2(λ − ui) + · · ·

)
,

where Rki
1 is the (k, i)-th entry of the matrix R1 and slightly abusing the notation we

put ei = dui/
√

∆i.
Let us begin with the genus-0 case. The quadratic part of the form Ω

βi,βi
0 (λ; t) is

∞∑
k,l=0

N∑
a,b=1

(I(−k)
βi

(t, λ), va) (I(−l)
βi

(t, λ), vb) dλ2 ta
k tb

l .

Applying the local recursion and leaving out the terms with k > 0 or l > 0 (since
they do not contribute to the residue) we get that 〈vcψ

m, t(ψ), t(ψ)〉0,3(t; 0) is

1
4

N∑
i=1

Resλ=ui

N∑
a,b=1

(I(−1−m)
βi

(t, λ), vc)

(I(−1)
βi

(t, λ), 1)
(I(0)
βi

(t, λ), va) (I(0)
βi

(t, λ), vb) dλ ta
0 tb

0

The above residue is non-zero only for m = 0. Using the Laurent series expansion
of the periods we get

N∑
a,b=1

1
2

N∑
i=1

1
∆i

∂ui

∂τa

∂ui

∂τb

∂ui

∂τc
ta
0 tb

0 =

N∑
a,b=1

1
2

(va • vb, vc) ta
0 tb

0.

The coefficients of the above quadratic form are precisely the structure constants of
the Frobenius multiplication, so they are analytic.

Let us continue with the genus-1 case. Now the local recursion takes the form

〈vaψ
m〉1,1(t; 0) =

1
4

N∑
i=1

Resλ=ui

(I(−1−m)
βi

(t, λ), vc)

(I(−1)
βi

(t, λ), 1)
P0
βi,βi

(t, λ).
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The above residue is non-zero only if m = 0 or m = 1, because P0
βi,βi

has a pole
of order at most 2. In the case when m = 1, after substituting the Laurent series
expansions of the propagator and of the periods we get

〈vaψ〉1,1(t; 0) =
1

24

N∑
i=1

∂ui

∂τa
=

1
24

∂

∂τa
Tr(E•) =

1
24

Tr(va•),

where we used that in canonical coordinates the Euler vector field takes the form∑N
i=1 ui∂ui and hence

∑
i ui = Tr(E•).

For m = 0 after a straightforward computation, using also that Rki
1 = Rik

1 , we get

〈va〉1,1(t; 0) =
1
2

N∑
i=1

Rii
1
∂ui

∂τa
+

1
24

N∑
k,i=1

√
∆k
√

∆i
Rki

1

( ∂uk

∂τa
−
∂ui

∂τa

)
.

The differential equations (9)–(10) imply the following relation:

[∂aUt,R1] = Ψ−1
t ∂aΨt.

From this equation, using that the entries of the matrix Ψ and Ψ−1 are respectively

Ψbi =
√

∆i
∂τb

∂ui
and (Ψ−1)kb =

1
√

∆k

∂uk

∂τb

we get
√

∆k
√

∆i
Rki

1

( ∂uk

∂τa
−
∂ui

∂τa

)
=
∂uk

∂τb
∂a

( √
∆i
∂τb

∂ui

) 1
√

∆i
= δki

1
2
∂a log ∆i +

∂uk

∂τb

∂

∂τa

( ∂τb

∂ui

)
.

If we sum the above expression over all i = 1, 2, . . . ,N, since
∑

i ∂ui = ∂N , we get
simply 1

2∂a log ∆k. Hence the 1-point genus-1 correlator becomes

〈va〉1,1(t; 0) =
1
2

N∑
i=1

Rii
1
∂ui

∂τa
+

1
48

N∑
k=1

∂a log ∆k.

The RHS is a well known expression, i.e., it is ∂aF(1)(t), where F(1)(t) is the genus-1
potential of the Frobenius structure (see [13]), also known as the G-function (see
[8, 9]). According to Hertling [14], Theorem 14.6, the function F(1)(t) is analytic.
This completes the proof of the analyticity of all correlators that have at least 1
insertion.

To finish the proof of Theorem 4.1 we still have to prove that the correlators
with no insertions 〈 〉g,0(t; 0) are analytic. Such correlators are identically 0 for
g = 0, due to the tameness property of the ancestor potential. In genus 1, in the
settings of Gromov–Witten theory, the correlator is 0 because the moduli space
M1,0 is empty. It is not hard to check (using the differential equation (9)) that in the
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abstract settings of semis-simple Frobenius manifolds this correlator still vanishes.
For higher genera, using the differential equation (9) one can check easily that

∂a 〈 〉g,0(t; t) =
∂

∂ta
0
〈 〉g,0(t; t) = 〈va〉g,1(t; t).

In other words, the differential of the correlator 〈 〉g,0(t; 0) is an analytic 1-form on
B and since B is simply connected the correlator must be analytic as well. �
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