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We study the general theory of Englert–Brout–Higgs (EBH) mechanism without assuming Lorentz
invariance using effective Lagrangians. We clarified problems in previous studies, and present a
concrete prescription that satisfies the requirement of the charge neutrality and continuity in the
limit of vanishing gauge coupling constant for non-abelian gauge theories.

Introduction. —The discovery of the Higgs boson at
the Large Hadron Collider marks a great triumph of
unity of physics. The original idea emerged from the
study of superconductivity and its theory by Bardeen,
Cooper, and Schrieffer (BCS) [1]. After Anderson found
that there are collective excitations in the gap region [2],
Nambu first clarified that the BCS ground state is still
consistent with gauge invariance [3], and introduced the
concept of spontaneous symmetry breaking (SSB) into
particle physics [4, 5]. Soon afterwards, Goldstone proved
that the SSB leads to massless scalar particles called
Nambu–Goldstone bosons (NGBs) [6]. Even though the
original theorem did not apply to non-Lorentz-invariant
systems, the present authors generalized the theorem
so that it has real-life applications in condensed mat-
ter physics, atomic physics, nuclear physics, and astro-
physics [7–9]. On the other hand, Englert, Brout [10],
and Higgs [11] proposed the gauged symmetry with SSB
to go around Goldstone’s theorem because Nature does
not appear to have a massless scalar boson. It is called
Englert–Brout–Higgs (EBH) mechanism. It was finally
discovered fifty years later. At the same time, the concept
of the Higgs boson made a full circle back to condensed
matter physics, becoming a hot subject of research (see,
e.g., Refs. [12, 13]).

Given this tremendous cross-pollination among differ-
ent subareas in physics, it is natural to ask what the
general theory of Higgs phenomenon is without relying
on the Lorentz invariance. In particular, the non-abelian
gauge theory developed in particle physics [14] is making
inroads into condensed matter physics, such as spin liq-
uid [15], multi-layer graphene [16, 17], ultracold atoms in
optical lattices [18–20] etc. Therefore a specific question
of great importance is: what is the general theory of the
EBH mechanism in non-abelian gauge theories without
Lorentz invariance?

In relativistic field theories, spontaneously broken
gauge symmetries do not give rise to physical NGBs —
would-be NGBs are eaten by gauge fields and in turn
gauge fields acquire the longitudinal component and a
finite mass. This is how the EBH mechanism works. It
turns out that the extension of this famous story to the
general non-relativistic setup is not a trivial problem. In

pioneering works [21, 22], Gusynin and his collaborators
found that, in a gauged linear σ model at a finite charge
density, gauge fields Ai

µ develop a finite expectation value

due to the linear term in the Lagrangian−Aµ
i 〈j

i
µ〉, generi-

cally ending up with breaking the spatial rotation. Later,
Hama and his collaborators [23] pointed out a subtlety
of this result: the low-energy spectrum is discontinuous
as a function of the gauge coupling e and the mass of
the gauge bosons does not go to zero in the limit e → 0
(see the appendix of Ref. [23]). In general, there is noth-
ing wrong with discussing non-perturbative phenomena,
but if we are interested in a perturbative, weak coupling
physics, the low-energy spectrum should be continuous
as a function of the gauge coupling. They traced the ori-
gin of the discontinuity to the non-zero charge density
of the ground state. Having in mind a situation where
the background of the system has exactly the opposite
charge densities and the net charge densities of the entire
system vanish, they subtracted the ground state charge
densities from the Lagrangian, following the prescription
called “charge neutrality” discussed in Refs. [24, 25], and
found that the mass of the gauge bosons continuously
vanishes as e → 0 this time.

However, as we shall see below in detail, this seemingly
reasonable prescription actually has many issues. The
crucial flaw is that the low-energy excitation spectrum is
still not continuous. In the setup they considered, there
is a NGB with a quadratic dispersion as well as its ac-
companying gapped mode at e = 0, but both of them are
absent in the limit e → 0. Although we will review this
pathological behavior below in details, the discontinuity
in the long wavelength limit can be already seen in their
original paper; see Fig. 2 of Ref. [23]. We claim that the
origin of this sick behavior is explicit breaking of both
local and global symmetry due to the naive subtraction
of non-Abelian charge densities.

In this Letter, we develop the general theory of
spontaneously broken non-abelian gauge theory without
Lorentz invariance, given the puzzles above. In particu-
lar, the emergence of type-A and type-B NGBs not seen
in Lorentz-invariant systems raises questions about the
number of “eaten” degrees of freedom, as there are only
half as many type-B NGBs as the broken gauge symme-
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tries.

Main Issues. — It is clear that the basic idea of
the EBH mechanism should carry over to non-Lorentz-
invariant systems. We assume rotational invariance in
d = 3 spatial dimensions throughout this Letter, and
stick to the unitarity gauge to understand the physical
degrees of freedom. In the limit of zero gauge coupling
constant, we have two massless states for each genera-
tor of the gauge group. On the other hand, a massive
spin-one boson at rest has three states of the same en-
ergy required by the rotational invariance. Their energy
should go to zero together as the gauge coupling constant
is switched off. Therefore, the three states of a massive
vector boson should decompose into two massless gauge
boson states and another massless state. The last state
is said to be “eaten” by the gauge boson when it becomes
massive. Namely, a gauge boson can only eat a gapless
state and acquires a mass as well as an additional degree
of freedom. So far it is the same as in Lorentz-invariant
case.

There are two related issues that make this familiar
story paradoxical. As the present authors showed [8],
there are two types of NGBs in non-Lorentz-invariant
systems. For type-A NGBs, there is one degree of free-
dom per each broken symmetry. Therefore, we expect
that the EBH mechanism should work just fine. How-
ever for type-B NGBs, there is one gapless boson for two
broken symmetries. The simplest example is the Heisen-
berg ferromagnet. SO(3) symmetry is broken to SO(2),
namely two generators are spontaneously broken. We ex-
pect two gauge bosons to acquire mass. However, there
is only one type-B NGB in the limit of zero gauge cou-
pling, and hence there is only one state to be “eaten.” In
addition, type-B NGBs are always associated with non-
zero charge density in the ground state. Namely sponta-
neously broken generators Q1 and Q2 excite one type-B
NGB when

〈0|[Q1, j
0
2 ]|0〉 = iǫ123〈0|j

0
3 |0〉 6= 0, Qi ≡

∫

d3xj0i (x). (1)

Non-zero charge density coupled to the gauge field means
there is a term linear in the gauge field in the La-
grangian 〈j30 〉A

3
0, namely a tadpole. Together with the

mass term m2
A ∝ g2v2, it causes the expectation value

〈A3
0〉 ∝ 〈j30 〉/gv → ∞ in the zero coupling limit. There-

fore, we do not expect a smooth limit of zero gauge cou-
pling constant in the presence of the finite charge density
in the ground state.

Therefore, we study these two questions together: de-
grees of freedom and charge density. We study a few
examples and draw a general lesson.

Gauged U(2) Model. —Let us start with discussing
the model introduced in Refs. [26, 27],

L = (Dµφ)
2 +m2|φ|2 − λ|φ|4 −

1

4
[(Fµν )

2 + (F i
µν)

2],(2)

where φ is a two-component complex scaler field and
Dν = ∂ν + i(e1Aν −µδν,0)+ ie2A

i
ν(σi/2) is the covariant

derivative, with Aµ being the U(1) gauge field and Ai
ν

(i = 1, 2, 3) being the SU(2) gauge field. The vacuum
expectation value 〈φ〉 = (0, φ0)

T [φ2
0 = (µ2 + m2)/2λ]

breaks the U(2) symmetry down to U′(1) symmetry
that acts only the first component of φ. The ground
state possesses a non-Abelian charge density 〈[Q1, j

0
2 ]〉 =

i〈j03〉 = −iµφ2
0 6= 0, in addition to U(1) charge density

〈j0〉 = 2µφ2
0, combining two NGBs into one type-B NGB.

When e1 = e2 = 0, the Lagrangian (2) describes four
modes: one type-A NGB, one Higgs (amplitude) mode,
one type-B NGB, and a gapped mode accompanying the
type-B NGB. Their dispersion relations are respectively
given by (we set c = 1 in this section)

ω2
A = m2 + 3µ2 + k2 −

√

(m2 + 3µ2)2 + (2µk)2, (3)

ω2
H = m2 + 3µ2 + k2 +

√

(m2 + 3µ2)2 + (2µk)2, (4)

ωB =
√

µ2 + k2 − µ, ωB′ =
√

µ2 + k2 + µ. (5)

Our interest is how these modes are affected by switching
on the gauge couplings.

When we gauge only the U(1) part of the symmetry
(e1 6= 0 and e2 = 0), we fix the gauge in such a way that
the second component of φ is real, i.e., φ = (π, φ0 + h)
with h ∈ R and π ∈ C. Expanding the Lagrangian L1 +
L2 to the quadratic order in fields and dropping total
derivatives, we find

L = [∂µπ
∗∂µπ + iµ(π∗π̇ − π̇∗π)]

+
1

2

[

~̇AT · ~̇AT − (~∇× ~AT )
2 − 2m2

1
~AT · ~AT

]

+∂µh∂
µh− 2(µ2 +m2)h2

+
1

2
(~∇A0)

2 +m2
1A

2
0 +

1

2
Ȧ2

L −m2
1A

2
L

+~∇A0 · ∂0 ~AL − 4m1µhA0 − 2e1µφ
2
0A0, (6)

where we defined m1 ≡ e1φ0 and decomposed ~A into the
longitudinal and transverse components with respect to
~∇. Note that the last term is linear in A0, corresponding
to the U(1) charge density 〈j0〉 = 2µφ2

0. Assuming the
existence of a background that neutralizes the net U(1)
charge of the system, Ref. [24] suggested that one should
add the background contribution −e1A0j

0
br = 2e1µφ

2
0A0

to the Lagrangian to cancel this term.

It is then a standard exercise to derive the excitation
spectrum in this phase. The first line of Eq. (6) gives
ωB,B′ modes in Eq. (5), unaffected by the gauge coupling.
The second line describes the gapped transverse gauge
bosons with ωT =

√

2m2
1 + k2. Finally, the rest part de-

scribes the longitudinal gauge boson and the Higgs mode
with

ω2
L = 2m2

1 + m̃2 + k2 −
√

m̃4 + 4µ2k2, (7)

ω′
H

2
= 2m2

1 + m̃2 + k2 +
√

m̃4 + 4µ2k2, (8)
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where m̃2 ≡ m2 + 3µ2 − m2
1. Observe that ωL and ω′

H

continuously go back to ωA and ωH in Eqs. (3), (4) in
the limit e1 → 0. It is thus clear that the type-A NGB is
eaten by the longitudinal part of the gauge field, making
it a physical mode with a mass (gap)

√

2m2
1.

Next let us consider gauging only the SU(2) part of
the symmetry (e1 = 0 and e2 6= 0). This time, we fix the
gauge by setting φ = (0, φ0 + h). The Lagrangian to the
quadratic order in fields is then given by

L =
1

2

[

~̇A3
T · ~̇A3

T − (~∇× ~A3
T )

2 − (m2
2/2)

~A3
T · ~A3

T

]

−
1

4

[

F 1
µνF

1µν + F 2
µνF

2µν +m2
2(A

1
µA

1µ +A2
µA

2µ)
]

+∂µh∂
µh− 2(µ2 +m2)h2

+
1

2
(~∇A3

0)
2 +

m2
2

4
(A3

0)
2 +

1

2
(Ȧ3

L)
2 −

m2
2

4
(A3

L)
2

+~∇A3
0 · ∂0

~A3
L + 2m2µhA

3
0 + e2µφ

2
0A

3
0, (9)

where m2 = e2φ0. Again, the last term is linear in
A3

0, corresponding to the non-Abelian charge density
〈j03〉 = −µφ2

0. In the same spirit as the above U(1) case,
Ref. [23] subtracted this term by assuming the oppo-
site contribution from the background −e2A

3
0(jbg)

0
3 with

(jbg)
0
3 = µφ2

0. Then we notice that the last three lines of
Eq. (9) is identical to those of Eq. (6) if we replace m2

by −2m1 and A3
µ by Aµ. Therefore, we do not have to

repeat the calculation for this sector as we already know
that it correctly describes the type-A NGB and the Higgs
mode in the limit e2 → 0.
However, we now encounter a serious problem. The

first and second lines of Eq. (9) describe gapped
gauge bosons with the dispersion relation ωL,T =
√

(m2
2/2) + k2. Although the total number of the phys-

ical modes is conserved, the ωB,B′ modes at e2 = 0 are
missing in the limit of e2 → 0. Instead, there are two
more gapless modes with the linear dispersion ω = k in
this limit.
The Dynamics of the Background. —We attribute

this sick behavior to the incorrect treatment of the back-
ground degrees of freedom. We subtracted the back-
ground charge densities from the Lagrangian in the form
−eAi

µ(jbg)
µ
i . However, if we do not take into account the

dynamics of the background and completely freeze it, the
fixed expectation value (jbg)

µ
i can no longer transform

under the symmetry transformation acting the internal
index i. Hence this added term explicitly breaks the orig-
inal symmetry. In the above example, adding −(jbr)

0
3A

3
0

term explicitly breaks the U(2) symmetry down to the
U(1)2 symmetry generated by σ3 and 11. This residual
symmetry explains why ωA,H modes were properly de-
scribed in the limit e2 → 0 in this scheme, but because
the symmetry related to the ωB,B′ modes were explicitly
broken, it was no wonder why they were missing in the
limit same limit.
Note that subtracting Abelian charge densities do not

explicitly break any symmetries, for Aµ changes by ∂µχ
and the Lagrangian thus changes only by a surface term
∂µ(−χejµbg). This is why above treatment of the gauged
U(1) symmetry returned physical results.
If we fully take into account the dynamics of the back-

ground degrees of freedom, the added term −eAi
µ(jbg)

µ
i

together with other terms that are needed to describe the
background dynamics can now perfectly respect the sym-
metry of the original system. However, by assumption,
the background has non-zero charge densities 〈(jbg)

0
i 〉,

which are supposed to cancel the charge densities of the
original system. These non-Abelian charge densities im-
ply spontaneous breaking of generators Qa such that
〈[Qa, j

0
b ]〉 = if i

ab 〈j0i 〉 6= 0 for ∃b. Thus the background
itself must support NGBs as an inevitable consequence of
the NG theorem. Then, the question is whether once take
a decoupling limit, where interactions of the background
to other parts of the system vanish. We argue that such
a limit does not exist in the case of non-Abelian symme-
tries.
Decoupling Limit. —Let us first review an example

of the proper decoupling limit in the case of the back-
ground Abelian charge densities to clarify the difficulty in
the non-Abelian cases. Our example is a superconductor,
which exhibits the EBH mechanism via the condensation
of Cooper pairs of electrons. Clearly there is a charge
density of the electrons that couple to the electromag-
netic gauge field. However, there is the ion background
with a positive charge to ensure the charge neutrality.
For simplicity we assume an isotropic elastic medium as
a model,

Lion =
n0M

2
[~̇u2−c2L(

~∇·~u)2−c2T (
~∇×~u)2]−eAµj

µ, (10)

where e, M , n are the charge, mass, and number density
of the ions, cL,T are the phonon velocities, and jµ =

n0(1 − ~∇ · ~u, ~̇u) + O(u2) is the number current density
of the ions. If we canonically normalize the displacement
field ~u so that the coefficient of ~̇u2 term becomes 1/2, the
coupling to the gauge field is suppressed by the factor of
M−1/2 per ~u field. Therefore, in the limit M → ∞, the
ion dynamics should completely decouple from the rest
of the system, while the charge density 〈j0〉 = n0 still
plays its role of electrically neutralizing the system.
In the Supplemental Material [28], we discuss a non-

relativistic superfluid as another example of the back-
ground with a proper decoupling limit.
A Ferromagnet. —Let us now move on to the case

of non-Abelian charge densities to see whether a simi-
lar decoupling limit exists. As the simplest example, we
examine the gauged version of ferromagnets. To con-
struct an effective Lagrangian with local SO(3) sym-
metry, it is useful to define the gauged Maurer-Cartan
form Ω(π,A) via Ωi

µTi = −iU †(∂µ + ieAi
µTi)U , where Ti

(i = x, y, z) is a matrix representation of SO(3) gener-
ators and U(π) ≡ eiπ

aTa (a = x, y). A local symmetry
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transformation g ∈ G acts NG fields πa and the gauge
field Aµ = Ai

µTi as

gU(π) = U(π′)h, h ≡ eiθ(g,π)Tz ∈ H, (11)

A′
µ = gAµg

−1 − ie−1g∂µg
−1, (12)

so that the Maurer-Cartan form transforms nicely:

(ωa
µ)

′ = R(θ)abω
b
µ, (ωz

µ)
′ = ωz

µ − ∂µθ, (13)

where R(θ) is the rotation matrix around the z axis by
an angle θ(g, π).
The low-energy effective Lagrangian of a ferromagnet

with the local SO(3) symmetry is then given by

LFM = −mzω
z
t −

1

2
g~ωa · ~ωa (14)

to the leading order in derivatives. Here, g is a posi-
tive constant and mz is the magnetization. Using the
transformation rule in Eq. (13), one can check that the
Lagrangian changes just by a surface term mz∂tθ(g, π)
under a local symmetry transformation.
Expanding the Maurer-Cartan form ωz

t in NG fields
πa, one finds

ωz
t = −

ǫab
2
πaπ̇b + e

(

Az
t + ǫabπ

aAb
t −

1

2
πa2Az

t

)

(15)

to the order of O(π3, π2A). Note that all interactions are
dictated by the SO(3) symmetry, in contrast to the case
of Abelian symmetries. Since the coupling constant e is
common to all fields coupling to the non-Abelian gauge
field, one cannot control e arbitrarily if one wishes to use
this ferromagnet as a background of a system. One can-
not tune mz either since it should be fixed by the mag-
netization density of the main system. This argument
proves that the coupling to the gauge field in the first
term of Eq. (14) cannot be decoupled. Unfortunately,
this is a general property of non-Abelian gauge theories
— in the presence of non-Abelian charge densities, the
dynamics of the background that is supposed to neutral-
ize the charge densities of the whole system cannot be
decoupled.
Two Copies of Ferromagnets. — This observation

motivates us to explicitly include the dynamics of the
background, at least when we are interested in the situa-
tion with non-Abelian charge densities. As a toy model,
here we discuss two copies of ferromagnets, one with the
magnetizationmz pointing in the positive z direction and
the other one in the opposite direction with the equal
magnitude. We assume G = SO(3) × SO(3) symme-
try, which is broken down to H = SO(2) × SO(2) by
magnetizations. In this case, we can safely gauge the
diagonal SO(3) symmetry thanks to the cancelation of
the magnetization. Note that, due to the non-Abelian
nature of the SO(3) symmetry, gauging the vector part
of SO(3) × SO(3) explicitly breaks the axial part of the
global symmetry.

Denoting the NG fields of the first ferromagnet by πa

and those of second one by Πa (a = x, y), the linearized
Lagrangian of the whole system reads

L = −
1

2
g(~∇πa − e ~Aa)2 −

1

2
G(~∇Πa − e ~Aa)2

+mzǫab

(

1

2
ΠaΠ̇b −

1

2
πaπ̇b + eΠaAb

t − eπaAb
t

)

+
ǫ

2
(~∇Ai

t + ∂t ~A
i)2 −

ǫv2

2
(~∇× ~Ai)2, (16)

where g,G are positive constants. ǫ is the electric per-
mittivity v is the speed of light in the medium. When
e = 0, the Lagrangian describes two type-B NGBs with

ωB1
=

gk2

mz
, ωB2

=
Gk2

mz
. (17)

and (d − 1) × 3 = 6 states for transverse gauge bosons
with ωT = vk. Since Az

µ stays gapless regardless of the
gauge coupling, we will not discuss them below. In the
Supplemental Material [28], we discuss additional gapped
modes in the presence of terms with second power in time
derivatives so that our results can be compared to those
in Ref. [29], but we find they do not change any of the
discussions here.
For a finite coupling e 6= 0, we use the unitary gauge

to set πa +Πa = 0. Then the Lagrangian is

L = −
1

2
g(~∇πa − e ~Aa

L)
2 −

1

2
G(~∇πa + e ~Aa

L)
2

− 2emzǫabπ
aAb

t +
ǫ

2
(~∇Aa

t + ∂t ~A
a
L)

2

+
ǫ

2
(∂t ~A

a
T )

2 −
ǫv2

2
(~∇× ~Aa

T )
2 −

g +G

2
(e ~Aa

T )
2.(18)

The last line describes gapped transverse gauge bosons
with

ωT =
√

m2
1 + (vk)2, m2

1 ≡ e2(g +G)/ǫ, (19)

and the first three lines describes two longitudinal gauge
bosons with

ωL1,2
=

√

m2
1 +

[

(g +G)k2

2mz

]2

±
(g −G)k2

2mz
. (20)

In the limit of switching off the gauge coupling, the lon-
gitudinal modes ωL1,2

smoothly go back to two type-B
NGBs ωB1,2

in Eq. (17). Therefore, the two type-B NGBs
at e = 0 are “eaten” to become the two longitudinal
gauge bosons at a finite coupling.
Therefore, we see clearly that we need two type-B

NGBs to make both A1 and A2 massive, while gapped
modes play no role, contrary to claims in Refs. [23, 29].
Given the necessity of a type-B NGB from the back-
ground, there is no decoupling limit where we can simply
replace the background system by a current density.
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Conclusion. —In this Letter, we proposed a con-
crete prescription to realize the EBH mechanism in non-
Lorentz-invariant systems. The naive subtraction of
background non-Abelian charge densities, as suggested
in the literature, explicitly breaks the symmetry of the
system and results in a discontinuity of the spectrum as
a function of the gauge coupling. When we include the
dynamics of the background to properly respect the sym-
metry, there is no limit where the background dynamics
is decoupled from the other part of the system. We ex-
plicitly show that the gauged ferromagnet is consistent
after fully taking into account the background dynam-
ics, with a continuous limit of zero gauge coupling and
correct numbers of “eaten” degrees of freedom.
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1. Gauged U(2) Model

Here we present the full derivation of Eqs. (7) and (8).
The (h,A0, AL) sector of the Lagrangian (6) reads

L =

∫

d3xdt

{

[

∂µh∂
µh− 2(µ2 +m2)h2

]

+

[

1

2
(~∇A0)

2 +m2
1A

2
0

]

+

[

1

2
Ȧ2

L −m2
1A

2
L

]

+ ~∇A0 · ∂0 ~AL − 4m1µhA0

}

=

∫

d3kdω

(2π)4

{

[

ω2 − k2 − 2(µ2 +m2)
]

h∗h+

(

1

2
k2 +m2

1

)

A∗
0A0 +

(

1

2
ω2 −m2

1

)

A∗
LAL

−
1

2
kω(A∗

0AL +A∗
LA0)− 2m1µ(h

∗A0 +A∗
0h)

}

=

∫

d3kdω

(2π)4
(

h∗, A∗
0, A

∗
L

)

M





h
A0

AL



 , (21)

where

M ≡





ω2 − k2 − 2(µ2 +m2) −2m1µ 0
−2m1µ

1
2k

2 +m2
1 − 1

2kω
0 − 1

2kω
1
2ω

2 −m2
1



 , (22)

detM =
m2

1

2

{

ω4 − 2(m2 + 3µ2 +m2
1 + k2)ω2 +

[

k4 + 2(m2 + µ2 +m2
1)k

2 + 4m2
1(m

2 + 3µ2)
]}

. (23)

Dispersion relations, Eqs. (7) and (8), can be obtained by solving detM = 0:

ω2 = (m2 + 3µ2 +m2
1 + k2)±

√

(m2 + 3µ2 +m2
1 + k2)2 − [k4 + 2(m2 + µ2 +m2

1)k
2 + 4m2

1(m
2 + 3µ2)]

= 2m2
1 + (m2 + 3µ2 −m2

1) + k2 ±
√

(m2 + 3µ2 −m2
1)

2 + (2µk)2. (24)

2. Two Copies of Ferromagnets

In this section, we discuss the two copies of ferromagnets, including additional terms with second power in time
derivatives. The linearized Lagrangian reads

L =
1

2
ḡ(π̇a + eAa

t )
2 −

1

2
g(~∇πa − e ~Aa)2 +

1

2
Ḡ(Π̇a + eAa

t )
2 −

1

2
G(~∇Πa − e ~Aa)2

+mzǫab

(

1

2
ΠaΠ̇b −

1

2
πaπ̇b + eΠaAb

t − eπaAb
t

)

+
ǫ

2
(~∇Ai

t + ∂t ~A
i)2 −

ǫv2

2
(~∇× ~Ai)2, (25)

where g, ḡ, G, Ḡ are positive constants. for the sake of brevity we set G = g and Ḡ = ḡ, but one can work out without
this simplification if one wishes.
When e = 0, the Lagrangian

L =
1

2

[

ḡ(π̇a)2 −mzǫabπ
aπ̇b − g(~∇πa)2

]

+
1

2

[

ḡ(Π̇a)2 +mzǫabΠ
aΠ̇b − g(~∇Πa)2

]

+
ǫ

2

[

(~∇Ai
t + ∂t ~A

i)2 − v2(~∇× ~Ai)2
]

, (26)

describes two type-B NGBs with

ω2
B =

m2
z

2ḡ2

(

1 + 2
gḡ

m2
z

k2 −

√

1 + 4
gḡ

m2
z

k2
)

≃
g2k4

m2
z

+O(k6), (27)

two gapped modes with

ω2
G =

m2
z

2ḡ2

(

1 + 2
gḡ

m2
z

k2 +

√

1 + 4
gḡ

m2
z

k2
)

≃
m2

z

ḡ2
+

2g

ḡ
k2 +O(k4), (28)



7

and (d− 1)× 3 transverse gauge bosons with

ωT = vk. (29)

Note that ωG modes in general is beyond the scope of an effective Lagrangian, as they balance O(∂t) term with
O(∂2

t ) term; hence their gap may be beyond the cutoff scale and not belong to the effective Lagrangian. Especially,
they should disappear in the limit ḡ → 0. Nevertheless, here we assume the existence of the ωG modes to see their
fate after coupling to gauge fields. Since Az

µ is decoupled from the other part of the system, regardless of the gauge
coupling, we will not discuss them below.
For a finite coupling e 6= 0, we use the unitary gauge to set πa +Πa = 0. The Lagrangian is then decomposed into

L =
[

ḡ(π̇a)2 − g(~∇πa)2
]

+
[ ǫ

2
(~∇Aa

t )
2 + ḡe2(Aa

t )
2
]

+
[ ǫ

2
(∂t ~A

a
L)

2 − ge2( ~Aa
L)

2
]

−2emzǫabπ
aAb

t + ǫ~∇Aa
t · ∂t ~A

a
L (30)

+
ǫ

2

[

(∂t ~A
a
T )

2 − v2(~∇× ~Aa
T )

2 −
2e2g

ǫ
( ~Aa

T )
2

]

. (31)

The last line describes (d− 1)× 2 gapped transverse gauge bosons with

ω′
T =

√

(2e2g/ǫ)2 + (vk)2. (32)

The first two lines describes 1 × 2 gapped longitudinal gauge bosons. In the basis (π1, A1
t , A

1
L, π

2, A2
t , A

2
L)

T , the
quadratic Lagrangian in the Fourier space can be represented by the matrix

M =

















ḡω2 − gk2 0 0 0 −emz 0
0 ǫ

2k
2 + ḡe2 − ǫ

2kω emz 0 0
0 − ǫ

2kω
ǫ
2ω

2 − ge2 0 0 0
0 emz 0 ḡω2 − gk2 0 0

−emz 0 0 0 ǫ
2k

2 + ḡe2 − ǫ
2kω

0 0 0 0 − ǫ
2kω

ǫ
2ω

2 − ge2

















. (33)

By solving detM = 0, one gets

ω2
L =

m2
z

2ḡ2





(

1 +
e2gḡ2

ǫm2
z

)

+ 2
gḡ

m2
z

k2 −

√

(

1−
e2gḡ2

ǫm2
z

)2

+ 4
gḡ

m2
z

k2





≃ (2e2g/ǫ)2



1−

gḡk2

m2
z

1− 2e2gḡ2

ǫm2
z



+

g2k4

m2
z

(

1− e2gḡ2

ǫm2
z

)3 +O(k6), (34)

ω′
G
2
=

m2
z

2ḡ2





(

1 +
e2gḡ2

ǫm2
z

)

+ 2
gḡ

m2
z

k2 +

√

(

1−
e2gḡ2

ǫm2
z

)2

+ 4
gḡ

m2
z

k2





≃
m2

z

ḡ2
+

g

ḡ

(

1 +
1

1− 2e2gḡ2

ǫm2
z

)

k2 +O(k4). (35)

One can see that ωL has the same gap
√

2e2g/ǫ as the transverse components, as expected by the spatial rotational
symmetry. This mode is continuously connected to the type-B NGB ωB in the limit e → 0. Also, ω′

G continuously
goes back to ωG in this limit.

3. Another Example of Background With a U(1) Charge

As an example of a background that does break an internal symmetry, let us take a non-relativistic superfluid of
charged bosons, described by the Galilean invariant Lagrangian

LSF =
n0

2Mc2s

[

Mc2s − (ϕ̇+ eAt)−
(~∇ϕ− e ~A)2

2M

]2

. (36)
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Here M is the mass of the bosons and cs is the speed of sound. One may worry that the superfluid phonon (NGB)
messes up the system or the broken symmetry gives a mass to the U(1) gauge field by the standard EBH mechanism.
However, redefining ϕ′ = ϕ

√

n0/Mc2s, we find

LSF =
1

2
[(ϕ̇′)2 − c2s(~∇ϕ′)2]− en0At + O(M−1/2). (37)

Therefore the superfluid dynamics is completely decoupled in the limit of M → ∞. Especially, the Higgs mass
√

n0e2/M vanishes in this limit, while the U(1) charge n0 remains finite.


