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STRONGLY CYCLIC COVERINGS OF CYCLIC CURVES

CHARLES SIEGEL

Abstract. In this note, we introduce the notion of an unramified strongly
cyclic covering for a cyclic curve, a class that has similar properties to, and
contains, unramified double covers of hyperelliptic curves. We determine sev-
eral of their basic properties, extending the theorems in [FGD06] to this larger
class. In particular, we will write down equations for smooth affine models,
determine when they are isomorphic, and discuss the curves that they are
ramified cyclic covers of.

The algebra and geometry of double covers of hyperelliptic curves is well under-
stood, and has been studied by, among many others, Farkas [Far76, Far87a, Far87b]
and Bujalance [Buj86], from the topological viewpoint and Fuertes and González-
Diez [FGD06] from a more algebraic standpoint. This can be done because the
square-trivial line bundles on the curve can all be described in terms of the fixed
points of the hyperelliptic involution. This yields concrete equations, which can
then be used to get very strong geometric information about the covers that can-
not be so readily obtained for a general curve.

One would like to generalize these results to understand concretely examples of
higher degree cyclic coverings, as studied by Faber in [Fab88] and recently by Lange
and Ortega in [LO11]. The natural generalization is to cyclic curves of degree d,
because for any fixed point of the cyclic automorphism, p, the class dp does not
depend on which fixed point was chosen. Unfortunately, there are not enough of
these points to describe every degree d cyclic covering. Below, we will study the set
of cyclic coverings that can be written in terms of the fixed points, and will prove
analogues of the results for double covers of hyperelliptic curves in this case.

Below, we will not distinguish between an affine algebraic curve, its smooth and
complete model, and its model as a compact Riemann surface.

Definition 1 (Cyclic Curve). A cyclic curve is a curve C with a morphism f :
C → P1 of degree d and Galois group Z/dZ and Z/dZ ⊳ Aut(C).

Our goal will be to study a class of divisors on a cyclic curve. For the remainder
of this note, let f : C → P1 be the cyclic g1d on a curve of genus g, and x1, . . . , xr the
ramification points of f . We want to look at the divisors of the form

∑r
i=1 nixi and

of degree 0. Equivalently, we can write them as
∑r

i=1 nixi−
∑

ni

d g1d with 0 ≤ ni < d,
and we will equivalent mean the divisor of degree 0 and the positive part by itself.

From here on, we fix the degree d to be a prime number, and we will assume that
the map f is unramified over ∞, and we will identify P1 \ {∞} with the complex
numbers.

Proposition 2. There are dr−2 points of order d in J (C)[d] that can be written
in the form

∑

nixi as above.
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Proof. Following [Dol12], we let R = {x1, . . . , xr} be the set of ramification points.
Then we can look at Fr

d = {the set of functions R → Fd}. The hyperplane given by
{µ : R → Fd|

∑r
i=1 µ(xi) = 0} gives the set of degree 0 divisors. The curve can be

written yd =
∏r

i=1(x− bi)
di , where bi = f(xi), for some set of 1 ≤ di < d such that

∑

di ≡ 0 modulo d. We can see that this is trivial by comparing the lines y = 0
and z = 0, and so, finally, we quotient by this relation, and get Fr−2

d which embeds
into J (C)[d], the points of order d on the Jacobian of C. �

Elements α ∈ Fr−1
d in the proof of Proposition 2 will also be identified with

their images in J (C)[d], and as divisors
∑r

i=1 α(xi)xi, with α(xi) interpreted as an
integer 0 ≤ α(xi) < d.

Definition 3 (Strongly Cyclic Cover). The unramified cyclic cover corresponding
to a point above will be called a strongly cyclic cover. We will denote this cover
by π : C̃ → C, and when context requires that we be more specific, we will use
subscripts.

This implies that only a small fraction of all cyclic covers are strongly cyclic.
For instance, if g(C) = 2 and d = 3, then there will be four ramification points and
so there are at most 32 points of order 3 that are strongly cyclic, but there are 34

points of order 3 on the Jacobian of C.
This is in contrast with the d = 2 case. For hyperelliptic curves, there are 2g+2

ramification points, so there are 22g points of this form, and so every point of order
two on a hyperelliptic Jacobian is one of these.

The Riemann-Hurwitz theorem applied to C̃
π
→ C

f
→ P1 immediately gives us

Lemma 4. If g is the genus of C and g̃ is the genus of C̃, then

g =
(r − 2)(d− 1)

2

g̃ =
(d− 1)(rd− 2d− 2)

2

r =
2g

d− 1
+ 2

Theorem 5. Let C be a cyclic curve and α ∈ Fr−1
d a nonzero element of the kernel

of the map to J (C)[d]. Then C is given by the equation yd =
∏r

i=1(x − bi)
α(xi).

Let β ∈ Fr−1
d give a curve Cβ with equation zd =

∏r
i=1(x− bi)

β(xi). Then:

(1) the normalization of C̃β = C ×P1 Cβ is the unramified strongly cyclic cover
corresponding to β, and every strongly cyclic cover occurs in this way,

(2) two strongly cyclic covers C̃β1
→ C and C̃β2

→ C are isomorphic if and
only if β1 + β2 is a multiple of α, in which case the change of coordinates
is:

(x, y, z) 7→

(

x, y, ζd
yj

z

)

,

where ζd is a primitive dth root of unity,
(3) Let Aβ = {xi|β(xi) 6= 0}. Then C̃β is a ramified d-cyclic cover of a curve of

genus g0 =
(d−1)(|Aβ|−2)

2 and curves of genera gi =
(d−1)(|Aiα−β |−2)

2 where
i = 1, . . . , d− 1.
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(4) The number of strongly cyclic covers of Cβ that cover a curve of genus

g = (k−2)(d−1)
2 is

(

r
k

)

(

(

1− 1
d

)k
dk−1 − (−1)k

d

)

.

We note that in part 2, although not isomorphic as covers of C, C̃β1
and C̃β2

are
isomorphic as curves if β2 is a multiple of β1. Specifically, if µ is the line bundle
corresponding to β1, then they are given by the relative spectra OC⊕µ⊕ . . .⊕µd−1,
and OC ⊕ µk ⊕ . . .⊕ µ(d−1)k, which are isomorphic because d and k are relatively
prime, and d is the order of µ.

For part 4, the result of Bujalance [Buj86] states the d = 2 case of this slightly
more strongly, as a partition over half of the genera that appear. For higher degree,
the situation is much less clear, just as it is in part 3, because the relation between
β and the iα− β’s is more complex.

Proof. To prove the first point, it suffices to show that if fi : Ci → P1 for i = 1, 2 be
maps of degree d with the same Galois group. Assume further that Branch(f2) ⊂
Branch(f1) and the ramification type over each common branch point is the same.
Then the normalization of C1 ×P1 C2 → C2 is unramified.

This is a local issue near a branch point. So, without loss of generality, we can
take fi : C → C to be zk and wk for some k. Then, the fiber product is the curve
zk = wk in C2 and the structure map to C is zk. The fiber over 0 is singular, but
it has k distinct branches, so that the normalization is unramified over 0.

Part two follows by a direct computation, where f(x) is defined by z1z2
y = f(x)

and z1, z2 are the z-coordinates for the covers given by β1 and β2.
Now, we show that this is the only case. Let φ : C̃β1

→ C̃β2
be an isomorphism

over C. The field C(C̃β1
) is generated by x, y, z, so we’ll denote it by C(x, y, z)

and ignore the relations in the notation. So there is a rational function R(x, y, z) ∈
C(x, y, z) so that φ(x, y, z) = (x, y,R(x, y, z)), and R(x, y, z)d =

∏r
i=1(x− bi)

β2(xi).
Under the action of multiplying y and z by dth roots of unity, the fixed fields of
index d are C(x, y) = C(Cβ1

), C(x, z) = C(Cβ2
), and C(x, yi/z) = C(Ciα−β). Let

w be y, z or yi/z for some i.
Then, we can write R(x, y, z) = a(x) + b(x)w. Then, as R(x, y, z)d ∈ C(x), we

have a(x)d + b(x)dwd + a(x)b(x)w(
∑d−2

i=0 fi(x)w
i) ∈ C(x). So then either w ∈ C(x)

or a(x)b(x) = 0, and if b(x) = 0, then R(x, y, z) ∈ C(x), thus, a(x) = 0. So
R = bw. Raising to the dth power, we get that

∏r
i=1(x − bi)

β2(xi) = bdwd =

bd
∏r

i=1(x−bi)
χ(xi) where χ is β1,β2 or iα−β1, depending on w. We divide and get

bd =
∏r

i=1(x− bi)
β2(xi)−χ(xi), and as |β2(xi)−χ(xi)| < d, we must have b(x)d = 1,

so b(x) = ζd for some root of unity. Thus, β2 = χ, and we have β2 = iα − β1 for
some i.

Part three is just the map C̃β → Cβ combined with part two.
Part four is a fairly straightforward counting argument. We need to have exactly

k ramification points, we need to count the number of β’s such that |Aβ | = k. This
is

(

r
k

)

times the number of linear functions {x1, . . . , xk} → Fd whose values add
up to zero and none of them are zero. This can be counted by inclusion-exclusion,

giving us
∑k

i=0(−1)i
(

k
i

)

dk−i−1, and this simplifies to
(

1− 1
d

)k
dk−1 − (−1)k

d , giving
us the count. �

Corollary 6. Any degree d cyclic curve given by yd = f(x) such that f(x) ∈ Q[x]
and which splits over Q into the product of two polynomials of degrees divisible by
d, then the curve admits a smooth strongly cyclic cover defined over Q.
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Finally, we look at the branch points of those strongly cyclic covers which are
also d-cyclic curves. These are given by pairs of branch points, bi, bj and we require
that the corresponding values of β are β(xi) = 1 and β(xj) = d − 1. Then, the
cover is given by the equations

yd =

r
∏

k=1

(x − bk)
β(xk) zd = (x− bi)(x − bj)

d−1.

We make the substitution z = t(x − aj), which transforms the equation in z to

td = x−ai

x−aj
, which we can then solve for x to get x =

ai−ajt
d

1−td
.

From here, it becomes a straightforward manipulation:

yd =

r
∏

k=1

(

ai − ajt
d

1− td
− ak

)β(xk)

=

r
∏

k=1

(

td(ak − aj)− (ak − ai)

1− td

)β(xk)

=
td(ai − aj)

d

(1 − td)d

∏

k 6=i,j

(

td(ak − aj)− (ak − ai)

1− td

)β(xk)

=
td(ai − aj)

d

(1− td)
∑

k
β(xk)

∏

k 6=i,j

(

td(ak − aj)− (ak − ai)
)β(xk)

=
td(ai − aj)

d

(1− td)
∑

k
β(xk)

∏

k 6=i,j

(ak − aj)
β(xk)

∏

k 6=i,j

(

td −
ak − ai
ak − aj

)β(xk)

Now, we set

w =
y(1− td)(

∑
β(xk))/d

t(ai − aj)
(

∏

k 6=i,j (ak − aj)
β(xk)

)1/d

and obtain the equation

wd =
∏

k 6=i,j

(

t2 −
ak − ai
ak − aj

)β(xk)

Corollary 7. Let C be a d-cyclic curve with equation yd =
∏r

k=1(x − ai)
β(xi).

Then for each ordered pair (except when d = 2, then unordered) of point (ai, 0)
and (aj , 0), there is a smooth strongly cyclic cover, with additional equation zd =
(x − ai)(x − aj)

d−1, Fi,j : Ci,j → C where Ci,j is itself d-cyclic, given by yd =
∏

k 6=i,j

(

x2 − ak−ai

ak−aj

)β(xk)

with

Fi,j(x, y) =







ai − ajx
d

1− xd
,
wt(ai − aj)

(

∏

k 6=i,j(ak − aj)
)1/d

(1− td)
∑

β(xj)/d






.

This can be characterized, up to equivalence, by the fact that the two chosen points
are the only ones not covered by ramification points.
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