
AROUND THE UNIFORM RATIONALITY

ILYA KARZHEMANOV

Abstract. We prove that there exist rational but not uniformly rational smooth algebraic varieties. The

proof is based on computing a certain numerical obstruction developed in the case of compactifications of affine

spaces. We show that for some particular compactifications this obstruction behaves differently compared to

the uniformly rational situation.

1. Introduction

1.1. Let X be a complex projective manifold of dimension n ≥ 2. Recall that rationality of X (i. e. the

existence of a birational map X 99K Pn) provides a Zariski open subset U ⊂ X isomorphic (as an affine scheme)

to a domain in Cn. Any rational X obviously carries a family of (very free in terminology of e. g. [65]) rational

curves and one may try to obtain a family of holomorphic maps C −→ X (called sprays in [39]) such that

near each of its points X is (algebraically) h-Runge (see [39] for the precise definition and results). The main

expectation is that Zariski locally near every point X should actually look like as an open subset U ⊆ Cn.

One refers to the latter property as uniform rationality (of X), the notion introduced recently in [3] (following

[39]), where some examples and basic properties of uniformly rational (or u. r. for short) manifolds have been

established. The ultimate goal was to approach the following:

Question G (cf. [3], [39]). Is it true that every rational manifold is uniformly rational?

Note that spherical (e. g. toric) varieties and blowups of u. r. varieties at smooth centers are easily seen to

be u. r. (all this is contained in [3], together with examples of X being the intersection of two quadrics, small

resolution of a singular cubic threefold, and some other instances).1) This immediately gives positive answer

to Question G in the case when n = 2. It is also easy to see that all points on a rational manifold X which

may not admit affine neighborhoods U ⊆ Cn form a locus of codimension ≥ 2 (compare with Proposition 2.12

below).

The goal of the present paper is to prove

Theorem 1.2. In the previous notation, there exists rational, but not uniformly rational, X whenever n is at

least 4.

MS 2010 classification: 14E08, 14M20, 14M27.
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1)We do not treat here two very interesting questions (both discussed in [3]) on rectifiability of divisorial families and on the

local regularization of an arbitrary birational map X 99K Pn. Instead we rather concentrate on the “negative side” of Question G

(see below). In addition, recall that small resolution of a Lefschetz cubic is (Moishezon and) not u. r., which shows that projectivity

assumption on X is crucial for Question G to be of any content.
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Thus Theorem 1.2 answers Question G negatively. But still it would be interesting to find out whether

a sufficiently large power XN := X × X × . . . of any rational manifold X is u. r. (same question for the

“stabilization” X × PN of X). See Appendix below for other plausible questions.

1.3. We proceed with a description of the proof of Theorem 1.2. First of all, in view of the above discussion,

it is reasonable to treat only rational manifolds which are “minimal” in certain sense, like those that are not

blowups of other manifolds for instance. The most common ones are compactifications of affine Cn with Pic ' Z
(see 2.1 and A.5 below for the setup and examples). Next, one may guess that being u. r. for a rational manifold

X results in “homogeneity property” for the underlying set of points (compare with [39, 3.5.E′′′]). The latter

means (ideally) that an appropriate test function f : X −→ R (“Gibbs distribution”) must be constant on

uniformly rational X. More precisely, as soon as just the points on X are concerned, it is natural to look just

for such f that are conformly invariant (these constitute a class of the so-called asymptotic invariants of X).

Now, if L is an ample (or more generally, nef) line bundle on X, then the very first candidate for f one can

think of would be the Seshadri constant sL(·) of L. Namely, for any point o ∈ X let us consider the blowup

σ : Y −→ X of o, with exceptional divisor E := σ−1(o), and then put

f(o) := sL(o) := max {ε ∈ R | the divisor σ∗L− εE is nef} .

We will also write simply s(o) instead of sL(o) when PicX = Z · L (resp. when L is clear from the context).

Further, conformal invariance of f = sL(·) may be seen via another definition of it as follows (see [15]):

(1.4) sL(o) := sup
multoM

k
,

where the supremum is taken over all k ∈ Z and linear subsystems M⊆ |kL| having isolated base locus near o.

One of the key ingredients in establishing the expression (1.4) is the Poincaré – Lelong formula

multo D = lim
r→0

1
r2n−2

Vol (D ∩B(r)) = lim
r→0

1
r2n−2

∫

D∩B(r)

ω2n−2

for the multiplicity of a hypersurface D ⊂ X at the point o, written in terms of volumes of intersections with

small balls B(r) centered at o.

Recall that the basic play ground for our approach are those X containing U := Cn as a Zariski open

subset. We also require the boundary Γ := X \ U to be (of pure codimension 1 and) irreducible. Assuming

such X uniformly rational, we claim that s(·) attains the same value at some points on U and Γ, respectively

(see Proposition 2.12). One thus gets a relatively simple numerical criterion to test uniform rationality of the

manifolds in question. The main issue then is to find a particular X for which this obstruction actually gives

something non-trivial.

For n = 3, as we show in A.5 (see Remark A.13), one does not obtain anything interesting (although we

demonstrate here that being u. r. confirms the results Section 2). Anyway, we construct the needed examples

(for any n ≥ 4) in Section 3. The idea behind our construction is to mimic the one for the fourfold V 4
5 from

Example A.10. Namely, we start by blowing up Pn at a smooth cubic of dimension n − 2 and contracting the

proper transform of hyperplane, which gives a singular n-fold Y . The only singularity of Y happens to be of

the form Cn/(Z/2) and so an appropriate double covering X −→ Y makes (Γ Cartier and) Y smooth. Here X

is an index n− 3 Fano manifold having Pic X = Z · OX(Γ) (we keep the same notation for the images of Γ on

Y, X, etc). It remains then to estimate the function s(·) on X and to show that X indeed compactifies Cn.
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The first issue is resolved in Corollary 3.6 by an explicit computation, where we show that s(·) = 1 on Γ,

while s(·) ≥ 2 on the complement X \Γ. In turn, the second issue (that is X \Γ ' Cn) reduces to finding a cubic

polynomial P such that the double cover of Cn with ramification in P , i. e. SpecC[Cn][
√

P ], is also isomorphic

to Cn. Theorem 1.2 for the given X now follows from Corollary 3.10 by combining the just mentioned properties

of X with Corollary 2.15.

Remark 1.5. The assumption on Γ to be irreducible is crucial in our approach (cf. Remark 2.8). In fact, the

surface X := F1 is uniformly rational (as a toric surface) and compactifies C2, with Γ being the union of a

(−1)-curve Z and a ruling R of the natural projection F1 −→ P1. Then one can easily see that s(o) = 3 (with

respect to −KX = 2Z + 3R) for any point o 6∈ Z. Otherwise we have s(o) = 1 – in contradiction with what

happens for irreducible Γ. Anyhow, X is an equivariant compactification of C2, and it would be interesting to

find out whether all such compactifications of Cn are u. r. (see [46] for their structural theory).

Finally, in the Appendix below we have made an attempt to explain the appearance of X, as well as the

role that asymptotic invariants play here. For the latter, we formulate a heuristic principle behind, which we

support further by several examples and comparisons with the previous work. We believe such discussion is of

some importance, as it helps one to build a certain intuition for the class of similar geometric problems, leading

to a better understanding of the phenomenon of rationality, say. (N. B. The results of this part of the paper are

not used in the proof of Theorem 1.2 and carry just an expository significance.)

Conventions. All varieties, unless stated otherwise, are defined over the complex field C and assumed to be

normal and projective. We will be using freely standard notation, notions and facts (although we recall some

of them for convenience) from [57], [65], [66] and [67].

Acknowledgments. I am grateful to C. Birkar, F. Bogomolov, A. I. Bondal, S. Galkin, Yu.G. Prokhorov,

M. Romo, and J. Ross for their interest and helpful comments. Some parts of the paper were written during my

visits to CIRM, Università degli Studi di Trento (Trento, Italy), Cambridge University (Cambridge, UK) and

Courant Institute (New York, US). The work was supported by World Premier International Research Initiative

(WPI), MEXT, Japan, and Grant-in-Aid for Scientific Research (26887009) from Japan Mathematical Society

(Kakenhi).

2. Beginning of the proof of Theorem 1.2: an obstruction

2.1. Let X be a Fano manifold with Pic X ' Z compactifying Cn. In other words, there exists an affine open

subset U ⊂ X, U ' Cn, such that Pic X = Z · OX(Γ) for the boundary Γ := X \ U . We will also assume that

Γ is an irreducible hypersurface.

Fix one particular such X 6= Pn (see A.5 and Section 3 below for some examples). Let H be a generator

of PicX and x1, . . . , xn be affine coordinates on U . Then, for r À 1, there exist sections si ∈ H0(X,Hr) such

that si = xi on U . Indeed, with Hr very ample, si

∣∣
U

induce an identification U = Cn. We may also assume

without loss of generality that X ⊂ Pdim |Hr| is projectively normal.
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Now pick a point p ∈ Γ and a rational function t ∈ OX,p ⊂ C(U) defining Γ in an affine neighborhood U ′ ⊂ X

of p.

Lemma 2.2. We have t−1 ∈ C[U ]. More precisely, t−1
∣∣
U

is an irreducible polynomial in x1, . . . , xn.

Proof. Rational function t does not have any zeroes on U = X \ Γ by construction. Hence t−1 is a polynomial

∈ C[U ]. Its irreducibility follows from that of Γ. ¤

2.3. Suppose that X is uniformly rational. Let U ′ 3 p be as above. Then U ′ embeds into Cn.

Let s ∈ H0(X,H) be the section whose zero locus equals Γ. By definition of H we have s
∣∣
U ′ = t and s

∣∣
U

= 1

(cf. Lemma 2.2), so that the functions s
∣∣
U ′ , s

∣∣
U
∈ C(x1, . . . , xn) are identified on U ′ ∩ U via s

∣∣
U ′ = ts

∣∣
U

. This

yields

(2.4) yi := si

∣∣
U ′ = trxi ∈ OX,p

for all i. Indeed, both line bundles Hr
∣∣
U ′ and Hr

∣∣
U

are trivial on U ′ and U , respectively, for si

∣∣
U ′ and si

∣∣
U

regarded as rational functions on Cn, satisfying by construction si

∣∣
U ′ ∈ C[U ′] and si

∣∣
U

= xi. Then Hr
∣∣
U ′ and

Hr
∣∣
U

are glued over U ′ ∩ U via the multiplication by tr as (2.4) indicates.

Lemma 2.5. In the previous setting, if yi 6= const for all i, then y1, . . . , yn are local parameters on U ′ ⊆ Cn

generating the maximal ideal of the C-algebra OX,p.

Proof. Notice that

C(x1, . . . , xn) = C(U) = C(U ′) = C(y1, . . . , yn)

by construction, i. e. xi = yi/tr (resp. yi) are (birational) coordinates on U ′, defined everywhere out of Γ (resp.

everywhere on U ′). This implies that the morphism ξ : Cn ∩ (t−1 6= 0) −→ (U ′ ⊆ Cn), given by

(x1, . . . , xn) 7→ (y1 = x1t
r, . . . , yn = xntr),

is birational.2)

Functions yi do not have common codimension 1 zero locus on U (cf. Lemma 2.2). Hence ξ does not contract

any divisors. In particular, ξ−1 is well-defined near ξ(Γ) by Hartogs, which shows that y1, . . . , yn are the claimed

local parameters. ¤

Lemma 2.6. yi = const for at most one i.

Proof. Indeed, otherwise (2.4) gives si = sj on X for some i 6= j, a contradiction. ¤

Lemma 2.7. Let y1 = const. Then tr, y2, . . . , yn ∈ OX,p are local parameters on U ′ ⊆ Cn generating the

maximal ideal of the C-algebra OX,p.

Proof. One may assume that y1 = 1. Then yi 6= const for all i ≥ 2 by Lemma 2.6, and a similar argument as

in the proof of Lemma 2.5 shows that birational morphism η : Cn ∩ (t−1 6= 0) −→ (U ′ ⊆ Cn), given by

η : (x1, . . . , xn) 7→ (tr = 1/x1, y2 = x2t
r, . . . , yn = xntr),

does not contract any divisors. Hence again tr, y2, . . . , yn are the asserted local parameters. ¤

2)More specifically, dividing all the xi by x1, say, one may assume xi = yi on U ′ ⊆ Cn for all i ≥ 2. Then ξ is simply the

multiplication of x1 by tr.
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Remark 2.8. An upshot of the previous considerations is that the whole “analysis” on X, encoded in the line

bundle H, can be captured just by two charts, like U and U ′, with a transparent gluing (given by t) on the

overlap U ∩ U ′. Let us stress one more time that this holds under the assumption that X is u. r. In addition,

as will also be seen in 2.9 below, similar property does not extend directly to the case of X with reducible

boundary Γ (compare Proposition 2.12 and Remark 1.5).

2.9. Let h ∈ H0(X, Hr) be any section. One may write

(2.10) h
∣∣
U

=
∑

0≤i1+...+in≤m

ai1,...,inxi1
1 . . . xin

n ,

where ai1,...,in
∈ C, m = m(h) ≥ 0 and ij are non-negative integers. Now, it follows from (2.4) and Lemmas 2.5,

2.7 that

(2.11) h
∣∣
U ′ =

∑

0≤i1+...+in≤m

ai1,...,inyi1
1 . . . yin

n tr−r(i1+...+in).

Conversely, starting with any function on U ′ as in (2.11), with m ≤ 1, we can find h ∈ H0(X, Hr) such that

h
∣∣
U ′ = RHS of (2.11) (cf. Remark 2.8). Indeed, in this way we get a global section of Hr, regular away the

codimension ≥ 2 locus X \ U ∪ U ′ (recall that Γ is irreducible), hence regular on the entire X.

This discussion condensates to the next

Proposition 2.12. There exist a point o ∈ U and a point p = p(o) ∈ Γ ∩ U ′ such that for any hypersurface

Σ ∼ rΓ,3) having prescribed multiplicity multo Σ > 0 at o, there is a hypersurface Σ̂ ∼ rΓ such that multp Σ̂ ≥
multo Σ.

Proof. Set o ∈ U = Cn to be the origin with respect to xi.

Lemma 2.13. The loci Hi := (si = 0), 1 ≤ i ≤ n, have a common intersection point, denoted p, on Γ.

Proof. Assume the contrary. Then all yi 6= const (cf. Lemma 2.6), for otherwise Γ = (s1 = 0), say, and so

∩Hi = deg Γ 6= 0. Further, by construction ∩Hi is a (reduced) point, which immediately gives X = Pn (recall

that Hr is very ample according to the setting of 2.1), a contradiction. ¤

Let the section h ∈ H0(X, Hr) correspond to Σ. We may assume without loss of generality all but one

ai1,...,in in (2.10) and (2.11) to be zero. Let also p be as in Lemma 2.13. Then, since t(p) = 0 by definition, one

may take Σ̂ := Σ whenever all yi 6= const. Finally, if y1 = 1 (and i1 6= 0), say, then from (2.4) and Lemmas 2.6,

2.7 we obtain

multo Σ = i1multo t−r + i2 + . . . + in ≤ multo x1 = 1.

It is thus suffices to take any Σ̂ 3 p. ¤

Remark 2.14. The proof of Proposition 2.12 shows that both Σ and Σ̂ can actually be taken to vary in some

linear systems, having isolated base loci near o and p, respectively. Furthermore, the value s(o) is attained on a

linear system M (cf. 1.3), with isolated base point at o, iff the value s(p) is attained on a similar linear system

for p and Σ̂.

Corollary 2.15. For o ∈ U and p ∈ Γ as above we have s(p) ≥ s(o).

3)“∼” denotes the linear equivalence of divisors on X.
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Proof. Fix some f := f
(j)
i ∈ M and k := ki as in (1.4). We may assume w. l. o. g. that r = 1 because

sHr (·) = rs(·). We may also take f = f(h1, . . . , hn) to be a homogeneous polynomial in some hi ∈ H0(X,H)

for X ⊂ Pdim |H| being projectively normal (cf. 2.1). Let mi(k) := multo hi be such that multo f =
∑

mi(k).

One may assume that sup lim of
∑

mi(k)/k exists and equals s(o).

Now, Proposition 2.12 provides some sections ĥ1, . . . , ĥn ∈ H0(X,H), having multp ĥi ≥ mi(k) for all i.

Then we obtain f̂ := f(ĥ1, . . . , ĥn) ∈ H0(X,Hk) and multp f̂ ≥ ∑
mi(k). Thus by (1.4) and Remark 2.14 we

get s(p) ≥ s(o) as wanted. ¤

With Corollary 2.15 we conclude our construction of a necessary condition for the manifold X ⊃ Cn in 2.1

to be u. r. Let us now construct those X that do not pass through this simple obstruction.

3. End of the proof of Theorem 1.2

3.1. The following construction was motivated by that of the fourfold V 4
5 in Example A.10 (see Appendix).

Take the projective space P := Pn, n ≥ 4, with a hyperplane H ⊂ P and a cubic hypersurface S ⊂ H. Let

σ : V −→ P be the blowup of (the ideal defining) S. More specifically, for the reasons that will become clear in

3.8 below, we assume V ⊂ P1 × P to be given by equation

wt0 = (wx2
1 + F )t1,

where ti are projective coordinates on the first factor and H, S are given by w = 0, w = F (x1, . . . , xn) = 0,

respectively, in projective coordinates w, xi on P. Furthermore, we take F in the form

x1x
2
3 + x2

2x4 + F3,

with a general homogeneous cubic F3 ∈ C[x3, . . . , xn]. This easily shows (Bertini) that V is smooth.

Put E := σ−1S and H∗ := σ∗H. Notice that σ resolves the indeterminacies of the linear system |3H − S|.
Let ϕ : V −→ Y be the corresponding morphism onto some variety Y with very ample divisor OY (1) pulling

back to 3H∗ − E.

Lemma 3.2. ϕ is birational and contracts the divisor HV := σ−1
∗ H ' Pn−1 to a point.

Proof. By construction of |3H − S| map ϕ coincides with the Veronese embedding (with respect to 2H) on an

affine open subset in P. Hence ϕ is birational.

Now let Z ⊂ P be the image of a curve contracted by ϕ. Suppose that Z 6⊂ H. Then, since σ−1
∗ Z is contracted

by ϕ, we have 3H · Z = deg S · Z. On the other hand, we obviously have deg S · Z ≤ H · Z, a contradiction.

Thus every curve contracted by ϕ belongs to HV ' Pn−1. ¤

Note that Y has exactly one singular point (cf. Lemma 3.3 below). More precisely, ϕ ◦ σ−1 induces an

isomorphism between P \H ' Cn and Y \ ϕ(E), so that Y can be singular only at the point o := ϕ(HV ) on

the boundary ϕ(E) (cf. Lemma 3.2).

Further, we want to modify Y into a smooth n-fold (our X below), yet preserving the properties Cn ⊂ Y

and Pic Y = Z. Let us start with the following technical observation:

Lemma 3.3. Singularity o ∈ Y is locally analytically of the form Cn/µ2 for the 2-cyclic group µ2 acting

diagonally on Cn.
6



Proof. Recall that KV = −(n + 1)H∗ + E and ϕ contracts HV = σ−1
∗ H ∼ H∗ − E to the point o.

One can choose such divisors D1, . . . , Dn on Y that σ−1
∗ Di ∼ H∗ for all i and the pair

(V,

n∑

i=1

σ−1
∗ Di + HV )

is log canonical. Note also that

KV +
n∑

i=1

σ−1
∗ Di + HV = 0.

Then we apply [67, Lemma 3.38] to deduce that the pair (Y,

n∑

i=1

Di) is log canonical.

It now follows from [66, 18.22] that o ∈ Y is a toric singularity. In particular, it is of the form Cn/µm for a

cyclic group µm acting diagonally on Cn, and it remains to show that m = 2.

For the latter, notice that σ(Di) are hyperplanes on P, with the plane σ(D1)∩ . . .∩σ(Dn−2), say, intersecting

the cubic S at exactly 3 distinct points. This implies that HV ∩D1 ∩ . . .∩Dn−2 is a (−2)-curve on the smooth

surface D1 ∩ . . . ∩Dn−2 and the equality m = 2 follows by varying Di. ¤

Choose some generic hypersurface R ∈ |3(3H∗ − E)| and let π : Ṽ −→ V be the double covering ramified in

R + HV ∼ 10H∗ − 4E. Variety Ṽ is smooth, as so are R and HV , with R ∩HV = ∅. We also have

−KṼ = −π∗(KV +
1
2
(R + HV )) = π∗((n− 4)H∗ + E) := (n− 4)H̃ + Ẽ

by the Hurwitz formula, where H̃ and Ẽ are the pullbacks to Ṽ of H∗ and E, respectively.

It is immediate from the construction that the group Pic Ṽ is generated by OṼ (π−1HV ) and OṼ (Ẽ) (note

that π∗HV = 2π−1HV because π ramifies in HV ). Indeed, since OV (H∗) and OV (E) generate Pic V , with

intersections H∗ ∩ R and E ∩ R being irreducible, the line bundles OṼ (π−1HV ) and OṼ (Ẽ) are the claimed

generators of Pic Ṽ .

Lemma 3.4. There exists a birational contraction f : Ṽ −→ X of π−1HV , given by a multiple of the linear

system |π∗(3H∗ − E)|, onto some smooth variety X.

Proof. Let Z ⊂ π−1HV ' Pn−1 be a line. We have

KṼ · Z = −((n− 4)H̃ + Ẽ) · Z = 3− n < 0.

Then [67, Theorem 3.25] delivers the contraction f as stated. Finally, Lemma 3.3 yields

π−1HV · Z =
1
2
π∗HV · Z =

1
2
HV · π(Z) = −1,

which implies that f is just the blowup of the smooth point f(π−1HV ) ∈ X. ¤

It follows from Lemma 3.4 that X is a smooth Fano n-fold of index n− 3. Namely, we have

−KX = (n− 3)f∗H̃ = (n− 3)f∗Ẽ,

for PicX = Z · OX(f∗Ẽ).

Let us now find those curves on X having the smallest intersection number with f∗Ẽ:

Proposition 3.5. For every curve Z ⊂ X we have f∗Ẽ ·Z ≥ 1 and equality is achieved when σ(π(f−1
∗ Z)) is a

point on P. In other words, f−1
∗ Z ⊂ Ẽ is an elliptic curve, a. k. a. the preimage of a ruling on E.
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Proof. Notice first that

−KṼ =
n− 3

2
(3H̃ − Ẽ)− n− 1

2
(H̃ − Ẽ).

In particular, we get f∗KX =
n− 3

2
(3H̃ − Ẽ), and hence f∗Ẽ · Z = a iff −KX · Z = (n− 3)a iff

n− 3
2

(3H̃ − Ẽ) · f−1
∗ Z = (n− 3)a

for any a ∈ Z.

Further, if π(f−1
∗ Z) is a ruling on E, then H̃ · f−1

∗ Z = 0 by definition and

Ẽ · f−1
∗ Z = π∗E · f−1

∗ Z = E · π∗(f−1
∗ Z) = 2E · π(f−1

∗ Z) = −2

by the projection formula, where π(f−1
∗ Z) has intersection index 4 with ramification divisor R+HV , i. e. f−1

∗ Z

is an elliptic curve. This implies that a = 1 for such Z and Proposition 3.5 follows. ¤

Corollary 3.6. For every point p ∈ X we have s(p) = 1 when p ∈ f∗(Ẽ) and s(p) ≥ 2 otherwise.

Proof. Consider the case when p = f(π−1HV ) ∈ f∗Ẽ first. Note that the Mori cone NE(Ṽ ) ⊂ N1(Ṽ )⊗R = R2

is generated by the classes of a line in π−1HV ' Pn−1 and an elliptic curve Z ⊂ Ẽ as in Proposition 3.5. Now,

by construction of Ṽ via the blowup f of X at p we obtain that s(p) = 1, since divisor H̃ is nef and

f∗f∗Ẽ − λπ−1HV = (
3
2
− λ

2
)H̃ +

1
2
(λ− 1)Ẽ

is nef only when λ ≤ 1. Then the estimate s(p) ≥ 1 holds for any other p ∈ Ẽ due to the lower semi-continuity

of the function s(·) on X (see [71, Example 5.1.11]). But s(p) > 1 can not occur for these p because otherwise

the divisor σ∗f∗Ẽ−λE (we are using the notation from 1.3), with λ > 1, intersects the curve σ−1
∗ Z as 1−λ < 0.

Thus s(·) = 1 identically on f∗Ẽ.

Recall further that π when considered on Ṽ \ π−1HV ∪ Ẽ = X \ f∗Ẽ is the double cover of V \HV ∪E ' Cn

ramified in R. Also, the proper transform on V of any element Σ ∈ |mẼ|,m ∈ Z, is an element from |m
2

(3H̃−Ẽ)|
which maps (via σ ◦ π) onto some Σ′ ∈ |m(3H − S)| on P. In particular, we get

(3.7) multp Σ = multσ◦π(p) Σ′ or ≥ multσ◦π(p) Σ′

as long as p 6∈ f∗Ẽ (for p ∈ X identified with f−1(p) ∈ Ṽ ), depending on whether p 6∈ R or p ∈ R, respectively.

Now take m = 1 and Σ′ ∈ |3H − S| satisfying multσ◦π(p) Σ′ = 2. Such Σ′ vary in a linear system on P with

isolated base locus near p.4) This and (3.7) (cf. (1.4)) imply that s(p) ≥ 2 for f∗Ẽ ≡ Σ (numerically on X). ¤

3.8. It remains to show that X \ f∗Ẽ ' Cn for one particular R.

Identifying P \ H = V \ HV ∪ E = Y \ ϕ(E) with Cn = Pn ∩ (w = 1) via σ, ϕ we observe that there are

elements y1, . . . , yn in |3H∗ − E|, depending on the affine coordinates xi, for which the assignment xi 7→ yi,

1 ≤ i ≤ n, induces an automorphism on Cn = ϕ ◦ σ−1(Cn). Namely,

y1 := x1 + F, y2 := x2, y3 := x2x3, . . . , yn := x2xn

satisfy this property, since one has induced isomorphism C(y1, . . . , yn) ' C(x1, . . . , xn) (cf. the definition of F

in 3.1). This also shows (as σ∗F
∣∣
E
6= 0 identically) that one may assume yi

∣∣
E
6= 0 identically for all i.

4)Indeed, if x1, . . . , xn, w are projective coordinates on P, with H = (w = 0) and S = (w = F (x1, . . . , xn) = 0) as in 3.1, then

we consider Σ′ := (F + wB = 0) for an arbitrary quadratic form B = B(x1, . . . , xn) and p := [0 : . . . : 0 : 1]. The case of arbitrary

p ∈ Cn is easily reduced to this one.
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Further, the equation of R on V \HV ∪ E is a cubic polynomial in yi, and we may take

R ∩ (V \HV ∪ E) := (P (y1, . . . , yn−1) + yn + 1 = 0)

for some generic P . Notice that this defines a smooth hypersurface in Cn.

Expressing yi in terms of xi we identify R∩ (V \HV ∪E) with a hypersurface in P \H. Then compactifying

via w, we obtain that R ⊂ V can only be singular at the locus y1 = . . . = yn−1 = w = 0, i. e. precisely at S.

Lemma 3.9. R is smooth and R ∩HV = ∅.

Proof. After the blowup σ the only singularities on E that R = (P + w2yn + w3 = 0) can have belong to the

locus E ∩
n−1⋂

i=1

(yi = 0) ∩HV . But the latter is empty by the choice of yi. Hence R is smooth. The statement

about R ∩HV follows from Lemma 3.2 and the fact that yi

∣∣
E
6= 0 identically. ¤

Lemma 3.9 implies that Ṽ is smooth. Then so is X (cf. Lemma 3.4) and on the open chart Ṽ \π−1HV ∪ Ẽ =

X \ f∗Ẽ morphism π : Ṽ −→ V coincides with the projection of

Ṽ \ π−1HV ∪ Ẽ = (T 2 = P (y1, . . . , yn−1) + yn + 1) ⊂ Cn+1

onto Cn = V \HV ∪E (having affine coordinates yi). This yields Ṽ \π−1HV ∪Ẽ ' Cn, if one takes T, y1, . . . , yn−1

as generators of the affine algebra C[Ṽ \ π−1HV ∪ Ẽ].

Finally, since the defining equation of R
∣∣
E

is P (y1, . . . , yn−1) = 0, with generic P , both cycles R
∣∣
E

and Ẽ are

irreducible. Thus f∗Ẽ is also irreducible and so X is the pertinent compactification of Cn (with the boundary

divisor Γ = f∗Ẽ). This concludes the construction of X.

Theorem 1.2 now follows from the next

Corollary 3.10. X is not uniformly rational.

Proof. Notice first that X satisfies all the assumptions (except possibly for u. r.) made in 2.1 of Section 2.

Then Corollary 2.15 applies to X once we assume the latter to be actually u. r. We obtain s(p) ≥ s(o) for some

p ∈ f∗Ẽ and o ∈ X \ f∗Ẽ. At the same time, Corollary 3.6 gives s(p) = 1 and s(o) ≥ 2, a contradiction. Hence

X can not be u. r. ¤

Appendix: discussion and examples

A.1. Comments on the proof. Let us briefly summarize what we have encountered in the course of the

proof of Theorem 1.2.

First of all, we started with a particular class of Fano manifolds with Pic ' Z and, assuming those to be

uniformly rational, we have deduced a geometric condition as explained in Remark 2.8. This provides some

control on how our u. r. manifold X is glued out of affine domains ⊆ Cn.

The next natural step is to “measure” what happens with a given point o ∈ X when transported from one

domain to another. We believe that probabilistic viewpoint is the most suitable here for obtaining such mea-

surements. Namely, as has already been mentioned in 1.1 of Introduction, one may expect certain conformally

invariant functions (a. k. a. distributions) f : X −→ R should enter the game. Informally, each value f(o) is
9



a “probability to observe the point o ∈ X”, and so it is not prohibited to consider X on a large scale (hence

the conformal invariance of f), as well as to apply Central Limit Theorem type of arguments (compare with

e. g. [17, 2.3.2], [32], [60], [36] and [14]). This dictates the motto that points on u. r. X should be “equally

distributed” w. r. t. f . We confirm this, in a way, by Corollary 2.15 when f = s(·).
Finally, in 3.8 of Section 3 we construct such X, violating our probabilistic principle (hence not uniformly

rational). Roughly, the strategy was to find those compactifications of Cn, for which all the lines are contained

in the boundary Γ (cf. 2.1).

Such compactifications seem to be not known (compare with examples in A.5 below). This also makes

one curious whether all these X (including also the u. r. ones) are constructed by the standard extraction-

contraction-cyclic covering operation (or a sequence of these), applied to some weighted projective space, as it

was in Section 3. Although this sort of operations had been widely used in birational geometry (description of

canonical singularities, construction of log flips, etc, as in [93] for example) we are not aware of any systematic

applications of them to the problems of classification of algebraic varieties. Perhaps our probabilistic view point

might again be of some use here.

More specifically, various f as above should impose strong (numerical) restrictions on u. r. X, thus bounding

the class of such manifolds. This might require, however, finer versions of f to be developed, as compared to

s(·). Unfortunately, it is not clear which particular refinement one should choose, as there are plenty of them (cf.

A.3). Yet let us conclude this item by mentioning two counterparts of s(·) which may bring further perspective

to the subject.

Namely, one may relax the conditions on M in (1.4) and define a similar quantity mL(o) (called the mobility

threshold of L at o), or again just m(o) when L is clear, in the following way:

mL(o) := sup
multoM

k
,

where sup is taken over all k and mobile linear subsystems M⊆ |kL|. One may equally consider only those M
that give various rational maps (“observables”) X 99K P1.

Recall that function s(·) was used (by J.-P. Demailly, C. S. Seshadri et al) in order to establish the celebrated

ampleness criterion for (nef) line bundles, obtain various “Fujita-type” theorems for global forms with logarith-

mic poles, and so on (the ultimate reading on the subject are [71] and [72]). The function m(·) (introduced

by A. Corti in [91]) is less known and can be used for example to formulate in a compact way the main result

of [56] as the bound m(·) ≤ 2 (for any smooth quartic threefold X := X4 ⊂ P4). There are other birational

properties of (Mori fiber spaces) X guident by the behavior of m(·) and related invariants (see e. g. [6], [82] and

also Remark A.35 below for some complementary results).

The preceding discussion indicates a link between differential and birational geometries, and the last asymp-

totic invariant we mention in this regard (cf. A.3 and A.14) is the so-called global log canonical threshold,

defined as follows:

lct(o) := sup {λ | the pair (X,λD) is log canonical at o for any Weil divisor D ∼Q −KX}

for any o ∈ X. Apparently, the quantity inf
o∈X

lct(o) has also a differential-geometric interpretation (see [95], [9]),

being the alpha-invariant α(X) := sup

{
λ | sup

φ

∫

X

exp(−λφ)ωn < ∞
}

, where the inner sup is taken over all

ω-plurisubharmonic (w. r. t. to a Kähler form ω ∈ H2(X,Z)) functions φ on X having sup
X

φ = 0.
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Remark A.2. It would be interesting to apply the previous reasoning to other classes of Fano manifolds in order

to decide whether they are u. r. and classify all such. Some natural candidates can be found in e. g. [69],

[48], [30], [13], [12], [21], [63], [89], [68], [23] (cf. [17, 4] and Remark A.37 below). Recall also those manifolds

mentioned in Remark 1.5. It would be equally interesting to develop some sort of a numerical characterization

for u. r. manifolds. Reducing possibly again to the case of Cn-compactifications, one may approach this problem

from either birational point of view (as in [4], [59], [61] for example), or by studying the intrinsic geometry –

minimal curves, say, or the anticanonical degree – of these manifolds (compare with [47], [51], [49], [52], [76],

[98] and [11] for instance; see also [20], [50], [53], [99] for an illustration in the case of homogeneous spaces

and some connections with s(·),m(·), lct(·), etc). This may be related to similar differential-geometric problems

(characterization via various types of curvatures or Morse profiles as in Conjecture A.4 below), arithmetic ones

(behavior of height zeta-functions as in [1], [97], [5] and others), and to the derived geometry as well (see e. g.

[31] for a characterization of the fourfold from [100]).

A.3. Heuristics. Functions similar to s(·), m(·), lct(·) had already appeared in different areas of mathematics

and proved to be extremely useful. It is still interesting (and important perhaps) to give a systematic account

for all such functions and how they influence (birational for instance) geometry of a manifold (compare with

the discussion in A.1). In the forthcoming examples we have tried to extract some common features of the

way these (conformly invariant) functions enter the geometry, how they are computed, and what geometric

properties they obstruct. This is by no means an extensive account and we refer to the papers [33], [45], [42],

[43] as a sample, where the reader will find an overwhelming discussion (from much more general grounds) of

matters similar to the present ones.

Firstly, let us mention the d-conformal volume Vc(d,M) of a compact Riemannian manifold M , defined as

the infimum over all branched conformal immersions φ : M −→ Sd (to the unit sphere in Rd+1) of suprema of

volumes of (g◦φ)(M) for all conformal diffeomorphisms g of Sd (see [73]). The quantity Vc(M) := lim
d→∞

Vc(d,M)

is called conformal volume of M . One can show that 2Vc(M) ≥ λ1VolM for the first Laplacian eigenvalue λ1

of a compact surface M (see [73, Theorem 1] and corollaries thereof). Moreover, equality 2Vc(M) = λ1VolM
holds iff M is a minimal surface in the unit sphere, with coordinates all being λ1-eigen functions. (See [73]

for a similar story on L2-estimates for the mean curvature of M .) As for higher dimensions, we refer to [35]

containing related “Ahlfors-type” considerations, applied to the quasi-conformal maps from Rn into convex

manifolds. Finally, the papers [44], [41], [38] provide more results and ideas on the subject. Conformal volume

and its relation with λ1 were used, for instance, as obstructions to the exitance of maps between Riemann

surfaces (see e. g. the proof of the Surface Coverings Theorem in [38, §4] or that of [44, Theorem 2.A1]).5)

Next we recall the notion of topological entropy. Namely, given a (cubical for instance) partition Π of a

compact topological manifold M one defines entΠ := log #Π, where # is the number of elements in a partition.

Let Π(m),m ≥ 1, be the partition obtained by subdividing each “cube” from Π into mdim M smaller “cubes”.

Then with any continuous self-map f : M −→ M one associates an inf (denoted ent f) of all e ∈ R such that

there exist k À 1 for which lim
i→∞

sup i−1ent (Π(m) ∩ fk(Π(m)) ∩ . . . ∩ fki(Π(m))) ≤ ek (with arbitrary m ≥ 1).

Note that ent f does not depend on Π (hence on the metric, if any, on M) and is thus an asymptotic invariant

of M . More similarity between ent f (especially when f = id) and invariants s(·),m(·), etc is provided by the

5)Observe an analogy with discussion in A.1: heuristically, taking inf in the definition of Vc(d, M), say, corresponds to applying a

“CLT reasoning” (i. e. one takes inf over an infinite number of “repetitions”), while sup corresponds to certain “mass concentration”

on the resulting limit object (space, structure, etc).
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Yomdin’s theorem (and its proof), as discussed in [34]. (Roughly, the entropy measures the rate of growth of

the quantity Vol(¤)1/m, ¤ ∈ Π(m), when m →∞; compare with the notion of the Cr-size in [34, 3] of a subset

Y ⊂ Rm and also with the Poincaré – Lelong formula in 1.3 above.) We refer to [34, 2.7], [40] and [2] (cf.

[41, §4]) for further discussion on significance of the entropy for (algebraic) geometry/topology of M , as well as

some computations of ent f for different f and M .

Another instance is the Borsuk – Ulam theorem and its vast generalizations in [37], concerning continu-

ous maps f : Sn −→ Rk and volumes (with respect to a given concave measure µ on the sphere Sn) of

ε-neighborhoods of the f -fibers, ε ≥ 0, – the so-called waists wst (Sn −→ Rk, ε). Basically, one estimates

wst (Sn −→ Rk, ε) from below in terms of the usual Euclidean Vol (Sn−k + ε), which is again a reminiscence of

CLT and concentration of µ
∣∣
Sn−k at the center of mass of Sn−k.

Our next illustration concerns one instance of lct(·) (cf. the end of A.1). Namely, the beautiful idea from

[10] claims that all birational maps between two manifolds X and Y of general type 1 : 1 correspond to linear

isometries between the pseudo-normed spaces (H0(X, mKX), 〈〈 〉〉m) and (H0(Y, mKY ), 〈〈 〉〉m), some m ∈ N.

Here 〈〈η〉〉m, for any form η ∈ H0(X, mKX), equals the volume of X w. r. t. the (normalized) density induced

by η. In turn, the asymptotics of 〈〈η0 + tη〉〉m, for any fixed η0 and variable t ∈ C, is governed by the log

canonical threshold of the divisor D0 := (η0 = 0), and the points on both X and Y can be interpreted (roughly)

as the loci where the value lct(D0) is attained (see [10, Section 4]). This already suffices to recover birational

maps from the stated linear isometries.

Last, but not the least, subject is on the weight function wt∆ : X̂η −→ R ∪ {+∞}, which one associates to a

smooth algebraic variety X and a regular function f on X with the divisor ∆ := (f = 0) (see [78, §6.1]). Here

X̂η denotes the completion (w. r. t. the t-adic topology) of the scheme X ×C[t] SpecC[[t]] along the special fiber.

Note that the dual complex of a log resolution (see [67, 2.3] for definitions) of the pair (X, ∆) naturally embeds

into the C((t))-analytic space X̂η and is a deformation retract of the latter. This defines a Berkovich skeleton

SkX in the C((t))-analytic space X (polyhedron SkX is unique up to the embedding into X). The crucial

property of SkX is that it, to some extent, captures the geometry of (X, ∆). Namely, the function wt∆ turns

out to be piecewise affine on the faces of SkX , equal to the log discrepancy function a(?, X, ∆) + 1, weighted

by mult?∆, on the vertices of SkX , and finally the minimal value of wt∆ is attained on a certain face of SkX
(see [79, Theorem 4.6] for precise formulations). Moreover, the latter face is a deformation retract of SkX ,

which makes it plausible to think of (the “Morse function”) wt∆ and its properties on X as the right general

framework for studying s(·),m(·), lct(·) and related asymptotic invariants.

We conclude the present discussion by illustrations from Kähler geometry. This aims to (partially) justify

the relation between birational and differential geometries pointed out in A.1 (compare also with [80]). Again,

it is impossible to give a more or less complete account here, so we will briefly mention just two instances (see

[85] and references therein for an extensive collection of relevant notions and facts).

The first instance is a numerical characterization of the Kähler cone of an arbitrary compact Kähler manifold

X (see [16, Theorem 0.1]). Basic idea is to replace (via the “mass concentration”) any given nef (1, 1)-class

α ∈ H2(X,R), satisfying
∫

X

αn > 0, by an analytic cycle Z whose δ-function determines a Kähler current on

X. This allows one restrict to analytic subsets on X and argue by induction on the dimension.

The second instance is the problem of existence of extremal metrics on X. Once again, this a priori analytic

problem (of convergence of the Kähler – Ricci flow for instance) can be replaced essentially by estimating, only

in terms of dim X, the injectivity radii of certain geodesic balls in X, which relates this subject to our earlier
12



“microlocal” discussion. One may even reduce to the purely algebro-geometric problem on whether X is stable

(for a given projective embedding). We will not specify this deep and beautiful notion here, referring to the

survey op.cit, but mention only that existence of a constant scalar curvature metric on X ⊂ PN , with the group

of automorphisms Aut X being discrete, implies the Chow – Mumford (or CM for short) stability of such X (see

[18], [19]). Let us also indicate that various notions of stability are governed by certain (asymptotic) numerical

invariants of a manifold X, such as the Futaki invariant, Chow character, alpha-invariant and the Bergman

function in the case of CM-(semi)stability (see [74]).

The following is in line with what has been said above:

Conjecture A.4. If the function s(·) (resp. m(·)) is measurable with respect to ωFS

∣∣
X

for a projective em-

bedding X ⊂ PN of a complex manifold X, having PicX ' Z, then X is CM-semistable.

In the forthcoming examples we will provide some evidence for Conjecture A.4. Notice however that the as-

sumption Pic ' Z is really crucial here because of the examples of unstable surfaces (with Pic > Z), constructed

in [92], and the results of [81].

A.5. Compactifications of Cn. Let G(3, 7) be the Grassmannian of 3-dimensional linear subspaces in C7

and U −→ G(3, 7) be the tautological bundle. Then given three global sections σ1, σ2, σ3 of ∧2U∗ in general

position, the locus

X := G(3, 7) ∩ (σ1 = σ2 = σ3 = 0)

is a smooth threefold. This is an example of a Fano threefold of principle series (i. e. −KX is ample and

PicX = Z ·KX). Note that (−KX)3 = 22.

Example A.6. Let Vd be the space of binary forms of degree d. We may regard C7 = V6 as a representation of

SL(2,C). Then there is a unique SL(2,C)-invariant linear subspace V2 ⊂
∧2C7, spanned by some σi as above,

so that the corresponding X := X22 admits a regular PSL(2,C)-action. One computes H0(X,−KX) = C⊕V12

as SL(2,C)-modules. This yields a point p ∈ X, invariant under the icosahedron subgroup A5 ⊂ PSL(2,C), and

hence (Zariski) locally near p threefold X looks like a PSL(2,C)-orbit of an A5-invariant form ∈ P(V12), which

gives an open PSL(2,C)-orbit (' SL(2,C)/A5) on X. Furthermore, there is a unique 2-dimensional PSL(2,C)-

orbit F ⊂ X, the image of P1 × P1 under the morphism given by a linear subsystem in |OP1×P1(11, 1)|.6) One

finds that F is singular along a rational normal curve 7) (the image of the diagonal ⊂ P1 × P1) and every line `

on X ⊂ P13 is contained in F (and is tangent to Sing F ). One also has N`/X = O(1) ⊕ O(−2) for the normal

bundle of (arbitrary) ` ⊂ X. Finally, there is a surface Γ ⊂ X, singular along a line (hence Γ 6= F ), such that

X \ Γ ' C3.

Example A.7. Let X = X22 be as in Example A.6. Fix a line ` ⊂ Γ and consider the double projection

π : X 99K X5 (i. e. π is given by the linear system | −KX − 2`|):

Y

σ

²²

χ //___ Y +

σ+

²²
X

π //___ X5

6)F coincides with the union of orbits PSL(2,C)x11y ∪ PSL(2,C)x12 for x11y, x12 ∈ V12.
7)Notice that Sing F = PSL(2,C)x12 in the notation from the previous footnote.
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Here σ is the blowup of `, χ is a KY -flop, X5 ⊂ P6 is a del Pezzo threefold (i. e. −KX5 = 2H with Pic X5 = Z·H)

such that H3 = 5 and X5 \ (σ+ ◦ χ)∗E ' C3 for the surface E := σ−1(`). Furthermore, in the notation of

Example A.6 one may regard X5 as the closure of a PSL(2,C)-orbit in P(V6), so that PSL(2,C) ⊆ AutX5.

Notice however that Γ := (σ+ ◦ χ)∗E ∼ H is not a PSL(2,C)-orbit because otherwise its complement (= C3)

would satisfy Pic (PSL(2,C)/S4) ' Z/2Z for the octahedron subgroup S4 ⊂ PSL(2,C). Yet there are lines

on X5 that sweep out the 2-dimensional orbit F on X and have normal bundle O(1) ⊕ O(−1).8) The surface

F ∼ 2H admits a similar description to that in Example A.6. In particular, its normalization coincides with

P1 × P1 (for the normalization morphism given by a linear subsystem in |OP1×P1(5, 1)|) and F is singular along

the image of the diagonal, with Sing F being the 1-dimensional PSL(2,C)-orbit. Moreover, the map π−1 is

given by the linear system |3H − 2C|, where C ⊂ F is a rational normal curve of degree 5, the image of one

of the rulings on P1 × P1. Finally, X5 is unique and can be obtained as a linear section of the Grassmannian

G(2, 5) ⊂ P9, with H = OX(1).

Example A.8. Let us mention two more examples of compactifications of C3 with Pic ' Z and an infinite

group of automorphisms. We proceed with notation of Example A.7 and consider the section 〈C〉 ∼ H of X5

by the linear span 〈C〉 of the curve C ⊂ X5. We have (σ+ ◦ χ)−1
∗ 〈C〉 = E and the surface (σ−1 ◦ χ)−1

∗ E+ = Γ,

where E+ := σ+−1(C), has multiplicity 3 along the line `. Furthermore, one can run this construction the other

way around, i. e. start from X5 and a C+-invariant curve C of degree 5, say, which yields a threefold Xa
22 with

C+ ⊆ AutXa
22 as a finite index (algebraic) subgroup. This Xa

22 is not isomorphic to X by construction. However,

since all rational normal curves on X5 of degree 5, not contained in F , are projectively equivalent on X5 and 〈C〉
is the unique hyperplane section passing through the given C, one can easily see that Xa

22 \ Γ ' X5 \ 〈C〉 ' C3

and mult` Γ = 3 as earlier. Similarly, starting from C∗-invariant C we obtain a threefold Xm
22, with C∗ ⊆ Aut Xm

22

as a finite index subgroup.

Remark A.9. At this stage (for dimensions n ≤ 3), all compactifications of Cn with Pic ' Z we have met so far

are not (C+)n-equivariant, except for Pn and the quadric. In fact, this is a typical situation, as is pointed out

in Remark A.11 below. On the other hand, in higher dimensions there are such equivariant compactifications

of Cn different from Pn and the quadric, as well as non-equivariant ones (see Example A.10 and Remark A.13

for further discussion; compare also with [22] and Remark 1.5 above). This suggests that higher-dimensional

compactifications of Cn may perform rather unexpectedly.

Example A.10. Our last example is the fourfold X := V 4
5 ⊂ P7 of index 3 compactifying C4 and having

PicX = Z ·H for some divisor H. Recall that X embeds into P7 via |H| as a codimension 2 linear section of

G(2, 5) ⊂ P9. Furthermore, X contains a unique plane Π ∼ σ2,2 (the corresponding Schubert cell) and all other

planes (∼ σ3,1) on X sweep out a divisor R ∼ H, Sing R = Π, such that the linear projection X 99K P4 from

Π is birational and contracts R to the twisted cubic. One can see that X \R ' C4 and the group Aut X is an

extension of PSL(2,C) by C5
+ (with C4 ⊂ X being an open Aut X-orbit). Note also that every plane 6= Π on

X intersects Π at some line tangent to a fixed conic C ⊂ Π. Then the AutX-orbits are X \ R, R \ Π, Π \ C

8)All other lines on X5, not contained in F , have normal bundle O ⊕O.
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and C. Moreover, if Π′ ⊂ X is a σ3,1-plane, then there is a commutative diagram

W

σ

~~~~
~~

~~
~~ ϕ

##GG
GG

GG
GG

G

X
π

//_______ Q ⊂ P4

where π is the projection from Π′, σ is the blowup of Π′, Q is a smooth quadric and ϕ induces a P1-bundle

structure everywhere on W except for the fiber = σ−1
∗ Π. There is hyperplane section Λ ∼ H of X passing

through Π′, singular along a line ` (so that Λ is swept by all the lines on X intersecting `) and such that

X \ Λ ' Q \ π(Λ) ' C4, where π(Λ) is a cone. Finally, projection from generic ` ⊂ X, ` 6⊂ R, yields a similar

diagram of maps as above, but with π now being birational onto a 4-dimensional quadric Q such that the proper

transform of a tangent cone to Q is a hyperplane section Λ ⊂ X with only one singular point and X \ Λ ' C4.

Remark A.11. The preceding constructions are well-known and go back to papers [77], [70], [54], [55], [24], [25],

[26], [28], [27], [29], [17], [86], [87] and [89]. Let us also mention that the threefolds P3, Q ⊂ P4, X22 and X5

are the only (up to deformations) small compactifications of C3 (see [27], [84], [83]). In particular, this sets

up the problem of finding all such compactifications of Cn for n ≤ 3, since the case when n ≤ 2 is obvious.

In dimension n = 4 the picture is less complete, although the fourfolds P4, Q and V 4
5 exhaust all examples of

compactifications of C4, having Pic ' Z and Fano index ≥ 3 (see [84]).

Amongst the Fano manifolds we have considered there are “less homogeneous” ones – those not covered

by lines. This makes one guess that such manifolds are not u. r. (cf. the discussion at the beginning of A.1).

However, as Proposition A.12 shows, one does not obtain the needed examples this way (nevertheless the present

constructions were the main motivation for those in Section 3).

Proposition A.12. Manifolds from Examples A.6, A.8 (and more generally, every Fano threefold of principle

series, having degree 22) and A.7, A.10 are uniformly rational.

Proof. We begin with X := X5. In the notation of Example A.7, it suffices to show Sing F 6⊂ Γ, so that the

group Aut X “moves” the open chart X \ Γ ' C3 to cover any point on X. But the property SingF 6⊂ Γ is

evident, for varying Γ, because there is no Aut X-invariant rational normal curve C ⊂ X of degree 5 (recall

that 〈C〉 = Γ).

Let us now turn to X := X22 (this in fact can be any Fano threefold from the corresponding family). Pick a

point o ∈ X. In the notation of Examples A.6, A.7, the map π : X 99K X5 is not defined only at ` and possibly

at some other lines intersecting it. In other words, π is not defined only at a finite number of lines (cf. [57,

Proposition 4.2.2, (iv)]), so that one may assume π to be biregular near o. Now recall that X5 is unique and

u. r. Then, since σ+ is the blowup of C ⊂ X5, the threefold Y + is u. r. as well (see [3, Proposition 2.6], [39,

3.5.E]). Thus, for X identified with Y + near o, there is a Zariski open subset ⊆ C3 on X containing o. Hence

X is also u. r. because o was chosen arbitrarily.

Finally, to prove that X := V 4
5 is u. r. we recall that X \ Λ ' C4 for any σ3,1-plane, with notation as in

Example A.10. By description of the AutX-orbits on X, it suffices to show that C 6⊂ Λ, since in this case the

locus X \ Λ will cover (via the Aut X-action) any point on X. But the property C 6⊂ Λ is evident because

Λ ∩Π = Π′ ∩Π is a line tangent to C.

Proposition A.12 is completely proved. ¤
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Remark A.13. Proposition A.12 together with Propositions A.15 and A.19 below confirm the results of Section 2

(cf. the discussion in 1.3). Furthermore, varieties X22, X5, . . . admit the “distribution-like” functions s(·) and

m(·), which agrees with Conjecture A.4. More precisely, semistability for X22 and X5 follows from the (highly

non-trivial) papers [17], [18], [19], [9], while for Xa
22, X

m
22 and V 4

5 this is not known.9) It would be interesting to

explore these matters further (cf. Remark A.2).

A.14. Some computations. We are now going to carry out several computations for the functions s(·) and

m(·) on some (not necessarily Fano, rational, etc) manifolds X with PicX ' Z. Let us start by proving the

next

Proposition A.15. For the threefolds from Examples A.6, A.8 (and more generally, for every Fano threefold

of principle series, having degree 22 and variety of lines F ) the following holds:

• s(o) = 2 for any o ∈ X \ F (resp. s(p) = 1 for any p ∈ F );

• m(o) = 3 for any o ∈ X \ F (resp. m(p) = 8/3 for any p ∈ F ).

Proof. Fix X := X22 for clarity (this in fact can be any Fano threefold from the corresponding family) and

consider the function s(·) first. Take any o ∈ X away from F . Then the blowup σ : Y −→ X of o resolves the

indeterminacies of the linear projection X 99K P9 from the tangent space To,X . This shows that divisor H−λE

is nef for all λ ≤ 2 (we are using the notation from 1.3) and so s(o) ≥ 2.

Lemma A.16. s(o) = 2 and s(p) = 1 for any p ∈ F .

Proof. The first equality follows from (H − λE) · σ−1
∗ C < 0 for all λ > 2 and a conic C ⊂ X passing through

o. Similarly, for λ > 1 and a line ` ⊂ X containing p, we get s(p) ≤ 1. It remains to take a smooth hyperplane

section of X ⊂ P13 passing through p and apply (1.4). ¤

We proceed with computing m(p) for p ∈ F (cf. A.1). Consider the double projection π : X 99K X5 from a

line ` 3 p (see Example A.7). Notice that this yields m(p) ≥ 2. In particular, if M ⊆ |kH|, k ≥ 1, is a mobile

linear system with generic element M ∈M passing through p, then one may assume that

λ :=
mult` M

k
≥ 1.

Lemma A.17. λ ≤ 2 and the equality is attained on M := |H − 2`|.

Proof. Put H+ := (χ ◦ σ−1)∗H, M+ := (χ ◦ σ−1)∗M and E+ := χ∗E (in the notation of Example A.7). One

can write
1
k

M+ ≡ H+ + (1− λ)E+

on Y +. Notice also that contraction σ+ : Y + −→ X5 is given by the linear system |H+−E+| = (χ◦σ−1)∗|H−2`|
and σ+−1(C) ≡ H+ − 2E+. This shows that once λ > 2, we get M+ · Z < 0 for every curve Z contracted by

σ+, which implies that the proper transform of σ+−1(C) on X is a fixed component of M, a contradiction. The

last assertion of lemma is evident. ¤

9)Actually, since the group Aut V 4
5 is not reductive, fourfold V 4

5 does not admit the Kähler – Einstein metric (see [75]). The

same holds for Xa
22 and Xm

22 due to [96]. Thus the results of [18] and [19] are not applicable here.
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It follows from Lemma A.17 that MY := σ−1
∗ M ⊆ |k(HY − E)| for HY := σ−1

∗ H = σ∗H − E. Put

R := σ−1(p) (i. e. R is a fiber on the ruled surface E ' F3)10) and also

µ :=
multR MY

k

for MY := σ−1
∗ M .

Lemma A.18. m(p) = 8/3. More precisely, we have µ ≤ 2/3, with equality attained onMY = |3(HY −E)−2R|.

Proof. Note that
multp M

k
= λ + µ ≤ 2 + µ.

Hence it suffices to maximize µ. Now, in the notation from the proof of Lemma A.17, since σ+ is the blowup

of C, one computes

σ+−1(C)3 = KX5 · C + 2− 2g(C) = −8.

We also have

H+3 = 18, H+2 · E+ = 3, H+ · E+2 = −2,

which together with σ+−1(C) ≡ H+ − 2E+ gives E+3 = −2.

Further, since H · ` = 1, we have R ≡ E · (H + E). Also, as E+ is a ruled surface obtained from E by

elementary modifications, the curve R+ := χ∗R is smooth and ≡ E+ · (H+ + E+). Then we get

(H+ − E+) ·R+ = (H+2 − E+2) · E+ = 5.

This shows that σ+(R+) is a smooth rational curve of degree 5.

On the other hand, from the construction of inverse π−1 : X5 99K X in Example A.7 we deduce that

σ ◦ χ−1 : Y + 99K X is given by the linear system |3(H+ − E+) − 2(H+ − 2E+)|. This yields µ ≤ 2/3 (by the

same argument as in the proof of Lemma A.17), if we assume for a moment that σ+(R+) = C.

In general, both curves σ+(R+) and C ⊂ σ+(E+) are projectively equivalent, which provides a mobile linear

system of cubic hypersurfaces in P6 passing through σ+(R+) with multiplicity 2, thus maximizing µ to 2/3. ¤

We conclude by computing m(o) for o ∈ X \ F . Recall that there is a triple projection π : X 99K P3 from o

(i. e. π is given by the linear system |−KX−3o|). In this case one has a similar diagram as in Example A.7, but

with X5 now being replaced by P3 and σ being the blowup of o (see e. g. [57, §4.5] or [94]). Then, arguing exactly

as in the proof of Lemma A.17 we obtain that m(o) = 3, which concludes the proof of Proposition A.15. ¤

Let us now consider the case of X5 from Example A.7:

Proposition A.19. For X := X5 the following holds:

• s(o) = 1 for any o ∈ X \ F (resp. s(p) = 1 for any p ∈ F );

• m(o) = 2 for any o ∈ X \ F (resp. m(p) = 2 for any p ∈ F ).

Proof. As in the proof of Proposition A.15, we start with s(o), o ∈ X \ F , keeping the same notation as

before/in the proof of Lemma A.16. Notice that the threefold Y is (at least) a weak Fano because the divisor

−KY = 2(σ∗H − E) is nef and big.

10)For generic X in the family containing X22, one has E ' F1, which does not affect however the forthcoming arguments and

shows again that m(p) = 8/3.
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Lemma A.20. The divisor −KY is not ample.

Proof. The blowup σ : Y −→ X resolves indeterminacies of the linear projection π : X 99K P5 from o.

Furthermore, since (σ∗H − E)3 = 4, the image X ′ := π(X) is an intersection of two quadrics. Threefold X ′ is

not isomorphic to Y because the latter is smooth and rk Pic Y = 2. In particular, we get KY · Z = 0 for some

curve Z ⊂ Y contracted to X ′, hence the assertion. ¤

Lemma A.20 shows that s(o) = 1 and the same argument as in the proof of Lemma A.16 gives s(p) = 1 for

any p ∈ F .

Let us now compute m(p) for p ∈ F . Pick a line ` 3 p (cf. Example A.7). Consider the linear projection

π : X 99K P4 from ` and the blowup σ : Y −→ X of `. It is easy to see that (σ∗H − σ−1(`))3 = 2, i. e.

X ′ := π(X) is a quadric. Moreover, from the description of the family of lines on X we obtain that X ′ is the

cone over a smooth quadric Q ⊂ P3, with the (−2)-curve on σ−1(`) ' F2 contracted to the vertex.

Lemma A.21. m(p) = 2.

Proof. Let M ⊆ |kH|, k ≥ 1, be a mobile linear system. Then, in the same notation as in/after the proof of

Lemma A.17, we may assume that λ ≥ 1.

Further, one computes

σ∗H · E2 = −1, E3 = 0, (σ∗H − E)2 · E = 2,

and the latter shows that the image of the surface E := σ−1(`) on X ′ is a hyperplane section (passing through

the vertex). In particular, the linear system π∗M on X ′ is cut out by hypersurfaces of degree 2k − kλ, which

gives λ ≤ 2. Hence, as in the proof of Proposition A.15, we may assume that M ⊆ |kH − kλ`| and σ−1
∗ M

contains the ruling R := σ−1(p) ⊂ E.

Notice that the image π ◦ σ(R) is a generating line on the cone X ′. Then π∗M ⊆ |OX′(2k − kλ)| can be

considered as lifted from a linear system on the base surface Q. The latter yields the multiplicity of π∗M along

the line π ◦ σ(R) does not exceed 2k − kλ. Thus, sticking again to the notation around Lemma A.17, we get

µ ≤ 2− λ. All together this gives m(p) ≤ λ + µ ≤ 2 and finally m(p) = 2. ¤

We proceed with computing m(o) for o ∈ X \F . Recall that there is a double projection π : X 99K P2 from o

(cf. the arguments after the proof of Lemma A.18). In this case one has a similar diagram as in Example A.7,

but with X5 now being replaced by P2 and σ being the blowup of o. Then, with the same notation as in the

proof of Lemma A.17, the divisor E+ is a multisection of the conic bundle σ+ : X+ −→ P2.

Lemma A.22. m(o) = 2 and the equality is attained on |H − 2o|.

Proof. Note that σ+ is given by the linear system |H+ − E+|. Then, assuming that λ > 2, we obtain

(H+ + (1− λ)E+) · Z = (2− λ)E+ · Z < 0

for every curve Z ⊂ Y + contracted by σ+. This shows that the linear system |k(H − λo)|, k À 1, can not be

mobile. Thus we get λ ≤ 2 and m(o) = 2 (the last assertion of lemma is obvious). ¤

Lemma A.22 finishes the proof of Proposition A.19. ¤
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Remark A.23. Observe that the fourfold X := V 4
5 from Example A.10 admits a hyperplane section = X5

passing through every point o ∈ X. This immediately gives s(o) ≤ 1 and m(o) ≤ 2, while the opposite

estimates s(o) ≥ 1, m(o) ≥ 2 are evident.

A.24. Let us turn to a couple of non-rational examples. We first treat the case of generic quartic threefold

X := X4 ⊂ P4 and show that m(·) = 3/2 identically on such X.

Remark A.25. To save the space we will skip the computation of the function s(·) on X = X4 – as the very

definition suggests, s(·) is finer than m(·), hence more difficult to compute. However, at a quick glance, it is

tempting to propose that s(o) = 4/3 for every point o ∈ X not on a line ⊂ X, and s(o) = 1 otherwise (for the

former, one has to analyze the base locus of the linear system |3H − 4E| as below, while the part with s(o) = 1

is clear).

Fix an arbitrary point o ∈ X. Consider the blowup σ : Y −→ X of o and put E := π−1(o), H := π∗(−KX).

Lemma A.26 (I. Cheltsov). If o does not lie on a line on X, then m(o) = 3/2.11)

Proof. Write the equation of X in the form

w3x + w2q2 + wq3 + q4 = 0,

for some projective coordinates w, x, y, z, t, so that qi = qi(x, y, z, t) are homogeneous forms of degree i and o

has all coordinates = 0, except for w = 1.

Suppose that m(o) > 3/2. Then, with notation as above, the linear system |nH −mE| does not have fixed

components for some m,n ∈ N such that m/n > 3/2 (cf. A.1).

Let M be the linear system on X cut out by various cubics

xh2 + (wx + q2)h1 + (w2x + wq2 + q3)λ = 0,

where hi = hi(x, y, z, t) are homogeneous of degree i and λ ∈ C is arbitrary. Then, since qi(0, y, z, t) do not

have common zeroes (by the assumption on o), we get BsM = ∅ for the base locus of M.

Let T be the tangent hyperplane section at o and D ∈ |nH −mE|,M ∈M some generic elements. Then we

have

12n = M · T · σ∗D ≥ multo M ·multo T ·multo σ∗D = 8m,

which implies that m/n ≤ 3/2, a contradiction.

Thus we get m(o) ≤ 3/2. Equality m(o) = 3/2 now follows because the section of X by general quadric

(A.27) λx2 + µ(wx + q2) = 0,

λ, µ ∈ C, is irreducible and has multiplicity 3 at o. ¤

According to Lemma A.26 we may (and will) assume in what follows that there are some (possibly multiple)

lines Li ⊂ X passing through o. Let the surface M ⊂ X be given by equation (A.27) for generic λ, µ ∈ C. Then

we have MY := σ−1
∗ M ∈ |2H − 3E| and TY := σ−1

∗ T = H − 2E. Furthermore, since the forms q2(0, y, z, t) and

q3(0, y, z, t) are coprime (use [90, Proposition 1] and generality of X), we get

Bs |MY | = MY · TY =
k∑

i=1

LY,i + Ξ,

11)One does not need here the genericity assumption about X.
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some k ≥ 1, where LY,i := σ−1
∗ Li and Ξ is an effective residual 1-cycle. Moreover, since the map τ (see the

diagram (A.30) below) is an isomorphism near Ξ by construction and the linear system |mMY + |,m À 1, is

basepoint-free (see the argument right after the proof Lemma A.32), we obtain

(A.28) Bs |mMY | =
k∑

i=1

LY,i.

Further, notice that the linear system |m(H − E)|, m À 1, determines a small birational morphism f :=

Φ|m(H−E)| : Y −→ W , which contracts only LY,i and such that divisor MY is f -negative (for M · LY,i =

(2H − 3E) · LY,i = −1).

Lemma A.29. TY has (at worst) canonical singularities.

Proof. By generality of X the surface T does not have bad points in the sense of [8, Proposition 2.1.1], which

implies that singularities of T and TY are canonical (cf. [67, Theorem 4.57]). ¤

It follows from the inversion of adjunction (see [67, 5.4]) and Lemma A.29 that the pair (Y, TY + εMY ), 0 <

ε ¿ 1, is purely log terminal near all the curves LY,i. Furthermore, we have KY + TY + εMY ≡ εMY , and

hence one obtains a pl flip (see e. g. [66]):

(A.30) Y
τ //_______

f ÃÃA
AA

AA
AA

A Y +

f+}}{{
{{

{{
{{

W

Here τ is an isomorphism in codimension 1 and for every curve Z ⊂ Y + contracted by f+ we have (KY + +

TY + + εMY +) · Z > 0, where TY + := τ∗TY , MY + = τ∗MY . Furthermore, threefold Y + is Q-factorial, the pair

(Y +, TY + + εMY +) is purely log terminal (see [67, Proposition 3.36, Lemma 3.38]), KY + + TY + ∼ 0 and the

pair (Y +, TY +) is canonical (see [88, Lemma 3.1]).

Lemma A.31. TY + is a normal surface with KTY + ∼ 0 and canonical singularities.

Proof. Since the pair (Y +, TY +) is canonical, the surface TY + is normal with canonical singularities, having

KTY,1 ∼ 0 (see e. g. [67, Proposition 5.51]). ¤

Further, consider some resolution of indeterminacies

V
g

ÄÄ~~
~~

~~
~

g+

ÃÃB
BB

BB
BB

B

Y τ
//_______ Y +

of τ over W , where we may take g to be a composition of blowups at smooth centers. Put TV := g−1
∗ TY =

g+−1
∗ TY + and denote the restriction of g (resp. g+) to TV by the same symbol. Then we have

TV

g

}}||
||

||
|| g+

!!DD
DD

DD
DD

TY τ
//_______ TY +
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a resolution of indeterminacies of the birational map TY 99K TY + induced by τ , which we again denote by the

same letter.

Lemma A.32. τ : TY 99K TY + is a regular birational morphism, which coincides with the contraction of all

LY,i, i. e. τ = f
∣∣
TY

on TY .

Proof. Notice that one may take g : TV −→ TY (resp. g+ : TV −→ TY +) to factor through the minimal

resolution of the surface TY (resp. TY +) near the g-exceptional (resp. g+-exceptional) curves.

Suppose τ is not that as stated. Then it follows from Lemmas A.29, A.31 and the identities KTY
= 0,

KTY + = 0 that Exc (g+) ⊆ Exc (g) for the exceptional loci, and hence either τ is an isomorphism or τ−1 is a

sequence of contractions of (−2)-curves. But then from (A.28), with disjoint LY,i, we deduce that

MY + · τ∗LY,i ≤ MY · LY,i < 0

for all those i for which LY,i is not contracted, a contradiction. Hence τ∗LY,i are points for all i. ¤

Lemma A.32, relation (A.28) and the construction of τ imply that divisor MY + is nef and MY +

∣∣
TY +

≡ 0.

Moreover, as the pair (Y +, TY + + εMY +) is purely log terminal and KY + + TY + + εMY + ≡ εMY + , the linear

system |mMY + | is basepoint-free for m À 1 (see [62, Theorem 1.1]).

Lemma A.33. MY + is big.

Proof. Assume the contrary. Put H+ := τ∗H. Then H+ and E+ generate the class group Cl Y +. Now, if

|mMY + | is a pencil, then the induced morphism Y + −→ P1 will be an extremal contraction, which implies (due

to MY +

∣∣
TY +

≡ 0) that the classes of MY + ≡ 2H+ − 3E+ and TY + ≡ H+ − 2E+ are linearly dependent in

N1(Y +)⊗Q. But this is clearly impossible.

Thus MY + must have Iitaka dimension 2. Note that the cone NE(Y +) is generated by two contractible

extremal rays, R1 and R2, say. Then the first one corresponds to f+, while R2 ≡ M2
Y + (i. e. R2 determines the

morphism given by |mMY + |). Then by construction of τ we get TY + ·R1 > 0 and TY + ·R2 < 0. On the other

hand, we have TY + ·R2 = M2
Y + · TY + ≥ 0, a contradiction. ¤

The identity MY +

∣∣
TY +

≡ 0 and Lemma A.33 imply that the morphism Φ|mM
Y + | is birational and contracts

TY + to a point.

Lemma A.34. m(o) 6 3/2.

Proof. Suppose that m(o) > 3/2. Then there exists δ > 0 such that generic element D ∈ |m(H − (3/2 +

δ)E)|,m À 1, is an irreducible surface on Y . But then, since τ : Y 99K Y + is an isomorphism in codimension

1, we find that D+ := τ∗D ∼ m(H+ − (3/2 + δ)E+) is also an irreducible surface on Y +. On the other hand,

from the preceding properties of Φ|mM
Y + | we deduce that

D+ · Z = m
(
H+ − (

3/2 + δ
)
E+

) · Z = −δE+ · Z < 0

for every curve Z ⊂ TY + , which implies that TY + ⊂ D+, i. e. TY + = D+, a contradiction. ¤

From Lemma A.34 and the fact that |MY | 6= ∅ we obtain m(o) = 3/2.
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Remark A.35. The above discussion shows that s(·) 6= m(·) on a smooth quartic threefold X = X4. Indeed, if

X caries a non-linear Halphen pencil, then m(o) = 2 w. r. t. a special point o ∈ X (see [7]), which implies that

the function m(·) is not lower semi-continuous (cf. Lemma A.26), hence not equal to s(·). One can also easily

see that for o ∈ Li in the previous notation, threefold Y is a Mori dream space, which complements the results

of e. g. [58], where the case of the blowup of some manifolds with Pic ' Z at generic points was considered. It

would be interesting to find out whether this Mds property holds for the blowup at any point on the manifolds

in question (or obtain some sort of a characterization, in terms of s(·),m(·), etc, of when does Mds occur).

The last case we consider is that of K3 surfaces. Let us just quote the following result:

Theorem A.36 (see [64]). If S is a K3 surface with Pic(S) = Z · L for some ample divisor L such that (L2)

is a square, then s(·) =
√

(L2) identically on S.

Once again, we indicate that Propositions A.15, A.19 (cf. Remark A.23), previous computations for general

quartic threefolds and Theorem A.36 confirm (on the speculative level so far) Conjecture A.4,12) since the

functions s(·) and m(·) are obviously measurable with respect to the usual volume form coming from projective

embeddings of the manifolds we have considered.

Remark A.37. It would be intersecting to compute the functions s(·) and m(·) for the manifolds X constructed

in Section 3 (by using Proposition 3.5, say, together with the technique of A.14 and A.24). It might also be

worth to test for these X all matters raised in Remark A.2 (like Conjecture A.4 for instance). Note at this

point that (−KX)n = 3 · 2n−3, but −KX is not in general very ample, for otherwise X with n = 5 would

contain an elliptic curve of degree 2. Hence one lacks the explicit projective embedding for X (in addition, X

has non-trivial moduli and no automorphisms — these claims are easily seen from the previous constructions,

— i. e. one should not expect any “symmetric” defining equations here).
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[47] A. Höring and C. Voisin, Anticanonical divisors and curve classes on Fano manifolds, Pure Appl. Math. Q. 7 (2011), no. 4,

Special Issue: In memory of Eckart Viehweg, 1371 – 1393.

[48] S. Hosono and H. Takagi, Determinantal quintics and mirror symmetry of Reye congruences, Comm. Math. Phys. 329 (2014),

no. 3, 1171 – 1218.

[49] J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds, in School on Vanishing Theorems and Effective Results

in Algebraic Geometry (Trieste, 2000), 335 – 393, ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste.

[50] J.-M. Hwang, Log canonical thresholds of divisors on Fano manifolds of Picard number 1, Compos. Math. 143 (2007), no. 1,

89 – 94.

[51] J.-M. Hwang, On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math. 556 (2003), 225 – 235.

[52] J.-M. Hwang, On the multiplicities of pluri-anti-canonical divisors and the degrees of Fano manifolds, Asian J. Math. 7 (2003),

no. 4, 599 – 607.

[53] J.-M. Hwang and N. Mok, Uniruled projective manifolds with irreducible reductive G-structures, J. Reine Angew. Math. 490

(1997), 55 – 64.

[54] V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516 – 562, 717.

[55] V. A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506 – 549.

[56] V. A. Iskovskih and Yu. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.)
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[67] J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge

Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998.
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