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The notion of a perverse sheaf, introduced in [BBD], has come to play a
central role in algebraic geometry and representation theory. In particular,
appropriate categories of perverse sheaves provide “categorifications” of var-
ious representation spaces, these spaces being recovered as the Grothedieck
groups of the categories.

The goal of this paper is to suggest the possibility of categorifying the
very concept of a perverse sheaf. In other words, we propose to develop a
theory of perverse sheaves not of vector spaces but of triangulated categories.

Given a complex manifold X, an analytic Whitney stratification S =
(Xα)α∈A of X and a ground field k, one has the category Perv(X,S) of
perverse sheaves of k-vector spaces on X smooth with respect to S. Tradi-
tionally, there have been two ways of looking at Perv(X,S):

(1) General definition: as an abelian subcategory in the triangulated
category Db

constr(X,S) of constructible complexes of sheaves of k-vector
spaces on X, smooth with respect to S.

(2) Quiver description (for some particular (X,S)): as a category of
diagrams of some given type formed by vector spaces (Vi)i∈I and maps
between them subject to certain relations. These diagrams have the
following features:

(2a) Arrows come in pairs Vi
// Vjoo having the same ends but oppo-

site directions. This reflects the (Verdier) self-duality of Perv(X,S).

(2b) In most cases, the relations contain 2 or 3 summands, with coef-
ficients ±1.
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So far, there is no obvious direct way to categorify the approach (1) since
it is not clear what are complexes of triangulated categories.

On the other hand, we observe that the features (2a) and (2b) are of
the kind that immediately suggest a categorical generalization. We can
replace vector spaces Vi by triangulated categories Vi and arrows by exact
functors. The pairs of opposite arrows in (2a) can be interpreted as adjoint
pairs of functors, 2-term relations as isomorphisms of functors and 3-term
ones as exact triangles in appropriate functor categories (see Appendix for
the precise framework in which these make sense). By forming Grothendieck
groups Vi = K0(Vi) ⊗ k of such a diagram of categories, one would then
obtain a quiver in the original sense, i.e., a perverse sheaf. The idea that
the cone can be seen as a categorical analog of the difference, lies, of course,
at the very foundations of algebraic K-theory, especially in the Waldhausen
approach.

This strongly suggests that there should be meaningful objects which can
be understood as “perverse sheaves of triangulated categories" and which give
usual perverse sheaves by passing to the Grothendieck groups. We propose to
call such hypothetical objects perverse Schobers (or, sometimes, for brevity,
simply Schobers), using the German analog1 of the English word “stack"
which would be the correct (but overused) term for speaking of “sheaves of
categories".

In this paper we work out several basic examples of quiver descriptions of
perverse sheaves and define, in an ad hoc way, what should be the perverse
Schobers in these situations. In the simplest case, we propose, in §1, to
identify perverse Schobers on a disk with one allowed singular point, with
spherical functors of [A1][AL2].

For a disk with several allowed singular points we propose, in §2, a def-
inition in terms of certain diagrams of spherical functors, and explain the
invariance properties of such a definition. Among other things, we refor-
mulate the classical Picard-Lefschetz formula as a general statement about
perverse sheaves on a disk, and then lift it to a distinguished triangle as-
sociated to a perverse Schober and a certain configuration of paths. Such
“Picard-Lefschetz triangles" should therefore be considered as fundamental
features of perverse Schobers. It is natural to expect analogous features in

1A literal Russian analog would be the word стог. We learned the term “Schober" from
W. Soergel.
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the case dim(X) > 1 and even consider them as “codimension 1 data" of a
perverse Schober.

A series of examples of spherical functors is provided by representation
theory. More precisely, for a reductive group G we have spherical functors
acting in the derived category of sheaves on G/B and satisfying the relations
of the corresponding braid group Br(g). In §4 we review these examples and
suggest a conjectural interpretation in terms of perverse Schobers on h/W
the space of conjugacy classes of semisimple elements in the Lie algebra g.

Most of the known quiver descriptions of Perv(X,S) can be obtained
using a choice of “cuts" which are certain totally real subvarieties K ⊂ X
(of real dimension equal to dimCX). In §5 we summarize the features of
such cuts and note that Lagrangian varieties, used in constructing Fukaya
categories [FO3][Se], provide a reasonable class of candidates for cuts. One
can therefore expect Fukaya-categorical constructions to have a bearing on
the problem of classification of perverse sheaves.

Additionally, we discuss the idea of defining “Fukaya categories with co-
efficients". This idea was proposed by M. Kontsevich in order to study the
usual Fukaya category of a manifold by fibering it over a manifold of smaller
dimension. We suggest that perverse Schobers should be considered as the
right “coefficient data" for such a definition, just like sheaves are natural
coefficient data for defining cohomology.

We would like to thank A. Bondal, V. Ezhov, M. Finkelberg, P. Schapira,
W. Soergel, Y. Soibelman and B. Toën for useful discussions and correspon-
dence. V.S. is grateful to the Kavli IPMU for hospitality and support during
the visit when this paper was finished. The work of M. K. was supported
by World Premier International Research Center Initiative (WPI Initiative),
MEXT, Japan.
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1 Perverse Schobers on a disk: spherical func-
tors

A. Disk with one marked point. Let ∆ be the unit disk in C and
Perv(∆, 0) be the category of perverse sheaves on ∆ with the only possible
singularity at 0. The most iconic example of a quiver description of perverse
sheaves is the following classical statement [Be] [GGM].

Theorem 1.1. Perv(∆, 0) is equivalent to the category P1 of quadruples
(Φ,Ψ, u, v) where Φ,Ψ ∈ Vectk and

(1.2) Φ
v // Ψ
u
oo

are linear maps such that

(1.3) TΨ := IdΨ − vu is an isomorphism.

Exercise 1.4. Show that TΨ is an isomorphism iff TΦ : IdΦ − uv is an iso-
morphism.

0 b
K

∆

Figure 1: Defining Φ and Ψ topologically.

One way of constructing an explicit equivalence is as follows [GGM]. Choose
a base point b on the boundary of ∆ and connect it with 0 by a simple arc
K, see Fig. 1. Then to F ∈ Perv(∆, 0) we associate the spaces

Φ(F) := H1
K(F)0 ' H1

K(∆,F) (vanishing cycles),
Ψ(F) := Fb ' H1

K(F)b (nearby cycles).
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(We recall that F|∆−{0} is a local system in degree 0). The map v = vF is
the generalization map [GM][Cu] for the constructible sheaf H1

K(F) on K,
and u is the composition

(1.5) Fb
counterclockwise

continuation // H0(∆−K,F) δ // H1
K(∆,F).

Remark 1.6.Further, we have the following elementary statements which
we recall here as indicative of a certain pattern.

(1) Hi
K(F) = 0 for i 6= 1.

(2) The sheaf R(F) = H1
K(F) on K is constant on K − {0} so it has only

two essentially different stalks R(F)0 = Φ(F) and R(F)b = Ψ(F).

(3) Each of the two stalks, considered as a functor Perv(∆, 0)→ Vectk, is
an exact functor which takes Verdier duality to vector space duality.

(4) The map u = uF is the dual uF = (vF∗)
∗.

B. Spherical functors. As a natural categorical analog of the data (1.2)-
(1.3) we would like to suggest the following remarkable concept introduced
by R. Anno [A1].

Definition 1.7.Let
S : D0 −→ D1

be an exact functor between triangulated categories (see Appendix for con-
ventions). Assume that S admits a left adjoint L and a right adjoint R, so
that we have the unit and counit natural transformations

SR⇒ IdD1 , LS ⇒ IdD0 ,

IdD0 ⇒ RS, IdD1 ⇒ SL,

whose cones will be denoted by

T1 = Cone{SR⇒ IdD1}, T ′1 = Cone{IdD1 ⇒ SL}[−1] (the twist functors),
T0 = Cone{IdD0 ⇒ RS}[−1], T ′0 = Cone{LS ⇒ IdD0} (the cotwist functors).

We call S a spherical functor, if:

(SF1) T1 is an equivalence.
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(SF2) The composition R → RSL → T0L[1] is an isomorphism. In other
words, composition with T0 identifies R and L.

In this case T ′1 is quasi-inverse to T1 and T ′0 is quasi-inverse to T0.

More precisely, each of the pairs of adjoint functors

(1.8) D0
S // D1
R
oo , D1

L
// D0

Soo

can be regarded as an analog of (1.2). Further, (SF1) is an analog of (1.3),
the adjunction unit allowing us to take the “categorical difference", i.e., the
cone. Further still, the categorical analog of Exercise 1.4 can be found in the
following result of Anno and Logvinenko [AL2].

Theorem 1.9. In addition to (SF1) and (SF2) consider the following two
conditions:

(SF3) T0 is an equivalence.

(SF4) The composition LT1[−1]→ LSR→ R is an isomoprhism.

Then, any two of the conditions (SF1)-(SF4) imply the other two.

So we can consider a diagram (1.8), i.e., the data of a spherical functor,
as the data defining a “perverse Schober” over (∆, 0). By passing to K0 (or
to any Ki, or to any homological functor, Hochschild homology for example)
we get a perverse sheaf over (∆, 0).

B. Examples of spherical functors. We now give some examples, to be
used later.

Example 1.10.Let Sd be the d-dimensional sphere and q : Sd → pt be the
projection. We then have the functor

D0 := Db(Vect) = Db(pt)
S=q−1

−→ Db(Sd) =: D1

with right adjoint R = Rq∗ and left adjoint L ' Rq∗[−d]. The second ad-
junction is the Poincaré duality. Formaly, it comes from the adjoint pair
(Rq!, q

!) by noticing that q! ' q−1[d] (since q is smooth orientable of rel-
ative dimension d) and that Rq! = Rq∗ (since q is proper), see [KS2] for
background. More intrinsically, L is canonically identified with the tensor
product of Rq∗[−d] and Hd(Sd,k), the 1-dimensional k-vector space spanned
by global orientations of Sd.
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Proposition 1.11. (a) S is a spherical functor.
(b) More generally, for any Sd-fibration q : Z → Y of CW-complexes, the

functor
D0 := Db(Y )

S=q−1

−→ Db(Z) =: D1

is a spherical functor.

Proof: We prove (a), since (b), being a relative version, is proved in the same
way.

The functor T1 = Cone{SR ⇒ IdD1} is the endomorphism of Db(Sd)
defined as follows. Let

U = (Sd × Sd)−∆
j
↪→ Sd × Sd

be the embedding of the complement of the diagonal, π1, π2 : Sd × Sd → Sd
be the projections and p1, p2 : U → Sd be their restrictions to U . Then

T1(F) = Rp2!(p
∗
1F),

a formula remindful of the Fourier-Sato transform relating sheaves on dual
spheres [SKK]. To see this, we write the functor in the RHS in terms of a
“kernel", as

Rπ2∗((π
∗
1F)⊗k K), K = j!kU [1] ∈ Db(Sd × Sd)

and note the exact sequence

0→ K[−1] −→ kSd×Sd −→ k∆ → 0,

in which kSd×Sd is the kernel for SR while k∆ is the kernel for IdD1 .
The twist T ′1 = Cone{IdD1 ⇒ SL}[−1] can be found explicitly as

T ′1(F) = Rp2∗(p
∗
2F))[−1] = Rπ2∗((π

∗
1F)⊗k K′), K′ = Rj∗kU [−1].

Now, the condition (SF1), i.e., the fact that T1 and T ′1 are quasi-inverse to
each other, can be established directly by finding the “composition” of the
kernels K and K′

K ∗ K′ = Rπ13∗(π
−1
12 K ⊗k π

−1
23 K′), πij : Sd × Sd × Sd → Sd × Sd,
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and showing that both K ∗ K′ and K′ ∗ K are isomorphic to k∆ in degree 0.
This amounts to the fact that for distinct points x, y ∈ Sd we have

H•
(
Sd − {x}, j!

(
kSd−{x,y}

))
= 0,

while for x = y we have H•(Sd − {x}) = k and H•c (Sd − {x}) = k[−d].
Further, the cotwist T0 is the shift by (−d) tensored with Hd(Sd,k), the

1-dimensional vector space of orientations of Sd. So it is an equivalence and
(SF2) is also satisfied.

Example 1.12.Note the particular case d = 2, when S2 = CP1. Proposition
1.11 implies that for any P1-fibration q : Z → Y of complex algebraic vari-
eties, q−1 : Db(Y )→ Db(Z) is a spherical functor. Another class of examples
is provided by quaternionic geometry, since HP1 = S4.

Let us now mention some “coherent” examples.

Example 1.13.Recall that an n-dimensional smooth projective variety Z
over k is called Calabi-Yau (in the strict sense), if

H i(Z,OZ) =

{
k, if i = 0, or i = n,

0, otherwise.

Let X be a smooth algebraic variety over k, and q : Z → X be a smooth
proper family of Calabi-Yau manifolds. Then the pullback functor q∗ :
Db

coh(X) → Db
coh(Z) is a spherical functor. The proof is similar to that

of Proposition 1.11.

Example 1.14. ([A1]) Consider a diagram

Y
ρ←− D

i
↪→ X

of smooth complex varieties X,D, Y , where ρ is a P1-bundle and i an em-
bedding of a divisor. We then have a diagram of adjoint functors

L=ρ!i
∗

←−
D0 := Db

coh(Y )
S=i∗ρ∗−→ Db

coh(X)
R=ρ∗i!←−

and R = T0L where T0 = Cone{IdD0 ⇒ RS}.
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Lemma 1.15. (R. Anno, [A1]). S is spherical iff the intersection index of
D with a generic fiber of ρ is (−2).

Example 1.16.A particular case of Example 1.14 and Lemma 1.15 is ob-
tained for

Y = pt
ρ←− D = P1 i

↪→ X = T ∗P1

The corresponding spherical functor can be seen as a “quasi-classical approx-
imation” to that in Example 1.12.

Remark 1.17.More precisely, for a complex algebraic manifold Z, the co-
herent derived category Db

coh(T ∗Z) can be thought of as a quasi-classical
approximation to the derived category Db(Z) of arbitrary sheaves on Z.
Indeed, passing to solutions of D-modules gives a functor between derived
categories in the first line of the following table (a functor that restricts to
the Riemann-Hilbert equivalence between constructible and holonomic regu-
lar derived categories). It can be compared with the second line which is an
instance of Serre’s theorem for the affine morphism p : T ∗Z → Z.

(Arbitrary) sheaves on Z Coherent DZ-modules on Z
Coherent sheaves on T ∗Z Coherent p∗OT ∗Z = gr(DZ)-

modules on Z

Note that the functor S = q−1 on sheaf-theoretic derived categories in
Example 1.12 matches, after being interpreted in terms of D-modules and
passing to the associated graded, the functor S = i∗ρ

∗ on coherent derived
categories in Example 1.16.
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2 Disk with several marked points
A. Quiver description of perverse sheaves. Let B = {b1, · · · , bn} be a
finite set of marked points in the unit disk ∆ and Perv(∆, B) be the category
of perverse sheaves on ∆ with possible singularities at B. We then have the
following [GMV, Prop. 1.2].

Proposition 2.1. Perv(∆, B) is equivalent to the category Pn of diagrams

formed by vector spaces Ψ,Φ1, · · · ,Φn and linear maps Φi

vi // Ψ
ui
oo such that

each TΨ,i := IdΨ − viui is an isomorphism.

The category Pn can be seen as an amalgamation of n copies of the
category P1 from Theorem 1.1. To construct an equivalence, we choose a
base point b ∈ ∂∆ and a “system of cuts" K, i.e., a set of simple arcs
{K1, · · · , Kn} with Ki connecting b with bi and with different Ki meeting
only at a small common interval near b, see Fig. 2. Notationally, we view K
as the union K =

⋃
Ki ⊂ ∆.

b

∆

b1

b2

...
bn

Kn

K1

K2

Figure 2: Equivalence depending on a system of cuts.

Given K, we have an equivalence FK : Perv(∆, B)→ Pn sending F to

(2.2) ΦK
i (F) = H1

K(F)bi , ΨK(F) = Fb ' H1
Ki

(F)b = H1
K(F)b.

Remark 2.3.We have the following elementary statements, continuing the
pattern of Remark 1.6.

10



(1) Hi
K(F) = 0 for i 6= 1.

(2) Each stalk of R(F), considered as a functor Perv(∆, B)→ Vectk, is an
exact functor which takes Verdier duality to vector space duality.

Remark 2.4.The space of cohomology with support H1
K(∆,F) can be seen

as “uniting” all the spaces of vanishing cyclies ΦK
i (F). As common in singu-

larity theory, we can imagine that F obtained as a deformation of a perverse
sheaf G ∈ Perv(∆, 0) with only one (but more complicated) singular point at
0. Then H1

K(∆,F) recovers Φ(F). Note that a categorification of the space
of vanishing cycles of an isolated singular point of a function is provided
by the Fukaya-Seidel category [Se], and the method of construction adopted
in loc. cit. uses precisely a deformation into several Morse critical points.
Therefore, the space H1

K(∆,F) for a perverse sheaf F ∈ Perv(∆, B), can be
seen as a de-categorified analog of the Fukaya-Seidel category.

The equivalence FK depends only on the isotopy class of K. Unlike the one
point case, there are now many such classes, forming a set which we denote
C. It is acted upon simply transitively by the Artin braid group

Brn =
〈
s1, · · · , sn−1

∣∣ sisi+1si = si+1sisi+1

〉
.

Indeed,
Brn = π0 Diff+(∆;B, b)

is the group of isotopy classes of diffeomorphisms of ∆, preserving orientation,
preserving b as a point and B as a set. The equivalences FK for different
K ∈ C are connected by self-equivalences fσ of Pn:

(2.5) Pn
fσ // Pn,

Perv(∆, B)

FK

ee

Fσ(K)

99 σ ∈ Brn .

The self-equivalence fsi corresponding to a generator si of Brn, is given by
[GMV, Prop. 1.3]:

(2.6)

fsi
(
Ψ,Φj, ui, vj

)
=
(
Ψ,Φ′j, u

′
j, v
′
j

)
,

Ψ′ = Ψ, Φ′j = Φj, u
′
j = uj, v

′
j = vj, j 6= i, i+ 1,

Φ′i+1 = Φi, Φ′i = Φi+1,

u′i = ui+1, v
′
i = vi+1, u

′
i+1 = uiTΨ,i+1, v

′
i+1 = T−1

Ψ,i+1vi.
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Remarks 2.7. (a) Note that perverse sheaves being a topological concept,
the group Diff+(∆;B, b) naturally acts on the category Perv(∆, B) from the
first principles, the action descending to that of Brn.

(b) We can turn Proposition 2.1 and formulas (2.6) around to produce an
intrinsic (i.e., not tied to any particular K and manifestly Brn-equivariant)
definition of Perv(∆, B) which does not appeal to any pre-existing concept
of a perverse sheaf. More precisely, we can define an object P ∈ Perv(∆, B)
to be a system of objects PK ∈ Pn, K ∈ C and compatible isomorphisms
fσ(PK) → Pσ(K), σ ∈ Brn so that each particular PK is just a particular
“shadow” of a more intrinsic object P .

B. Schobers on a disk with several marked points. To give an “in-
variant" definition of a perverse Schober on (∆, B), we adopt the approach
of Remark 2.7(b). That is, for each system of cuts K ∈ C we define a K-
coordinatized Schober to be a system of n spherical functors with a common
target

SK =
{
Si : Di −→ D, i = 1, · · · , n

}
.

Each SK gives rise to spherical reflection functors Ti = Cone{SiRi ⇒ IdD},
i = 1, · · · , n. According to our convention on working with triangulated
categories in terms of dg-enhancements, see Appendix, all K-coordinatized
Schobers form an∞-category which we denote SchK(∆, B). We define equiv-
alences fσ : SchK(∆, B)→ Schσ(K)(∆, B), σ ∈ Brn on generators si ∈ Brn by
the direct analog of (2.6):

(2.8)

fsi
{
Si : Di −→ D

}
=
{
S ′i : D′i −→ D′

}
,

D′ = D, D′j = Dj, S ′j = Sj, j 6= i, i+ 1,

D′i+1 = Di, D′i = Di+1,

S ′i = Si+1, S
′
i+1 = T−1

i+1Si.

We then extend to arbitrary σ ∈ Brn by verifying the braid relations for the
fi which is done in exactly the same way as for (2.6).

By definition, a perverse Schober on (∆, B) is a system S = (SK)K∈C
of coordinatized Schobers and compatible identifications fσ(SK) → Sσ(K).
The datum SK will be referred to as the K-shadow of S. We denote by
Sch(∆, B) the ∞-category of perverse Schobers on (∆, B).
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C. The Picard-Lefschetz formula. Underlying classical Picard-Lefschetz
theory, there is a general statement about perverse sheaves on a disk which
we now formulate.

Let F ∈ Perv(∆, B). In the approach of (2.2), “the” space of vanishing
cycles of F at some bi ∈ B can be defined in terms of a small segment of an
arc terminating in bi (which does not, a priori, have to be a part of a system
of cuts). Let now γ be a simple arc joining two marked points bi and bk and
not passing through any other marked points, as in Figure 3.

b

∆

bi

bk

bjγ
α

β
γ′
K

Figure 3: The Picard-Lefschetz situation.

We can then define the spaces of vanishing and nearby cycles of F relative
to γ:

Φi,γ = H1
γ(F)bi , Φk,γ = H1

γ(F)bk ,

Ψγ = H1
γ(F)gen (generic stalk).

which are connected by the maps

Φi,γ

vi,γ // Ψγui,γ
oo

uk,γ
// Φk,γ.

vk,γoo

The definition of these maps is similar to §1A: the maps v are generalization
maps, and the maps u are obtained by counterclockwise continuation, as in
(1.5). We define the transition map along γ as

Mik(γ) = uk,γ ◦ vi,γ : Φi,γ −→ Φk,γ.
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The data of the Φi(F), i = 1, · · · , n as local systems on the circles around bi
and of all theMik(γ) describe the image of F in the localization of Perv(∆, B)
by the subcategory of constant sheaves [GMV, §2].

One can say that “abstract Picard-Lefschetz theory” is the study of how
Mik(γ) changes when we replace γ by a different (non-isotopic) arc γ′.

More precisely, assume that γ′ is obtained from γ by an “elementary
move” past another marked point bj so that the bigon formed by γ′ and γ
contains bj and two arcs α and β, but no other marked points as in Fig. 3.
In particular, we assume that the closed path obtained by following γ from bi
to bk and then γ′ from bk to bi, has orientation compatible with the standard
(counterclockwise) orientation of ∆. Note that homotopy inside the bigon
and the clockwise rotation around bj give identifications

(2.9) Φi,γ ' Φi,β ' Φi,γ′ , Φk,γ ' Φk,α ' Φk,γ′ , Φj,β ' Φj,α,

so we can consider them as single spaces denoted by Φi,Φk and Φj respec-
tively.

Proposition 2.10 (Picard-Lefschetz formula for perverse sheaves). We have
the equality of linear operators Φi → Φk:

Mik(γ
′) = Mik(γ) +Mjk(α)Mij(β).

This statement is a version of [GMV, Prop. 2.4], formulated in a more
invariant way and without localizing by constant sheaves. It holds for per-
verse sheaves on any oriented surface. It is convenient to give two proofs of
Proposition 2.10.

Invariant proof: To eliminate the need for the first two identifications in
(2.9), let us deform the paths α, β, γ, γ′ so that:

• γ, β, γ′ have a common segment [bi, b
′
i] near bi.

• γ, α, γ′ have a common segment [b′k, bk] near bk. See Fig. 4.

We denote by γ, γ′ the parts of γ and γ′ lying between b′i and b′k, by β the
part of β between b′i and bj, and by α the part of α between bk and b′j.
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bi

b′i

γ β
γ′

b′k

bk

γ
α

γ′

Figure 4: The Picard-Lefschetz situation, deformed.

The points b′i, b′k being smooth for F , both sides of our putative equality
factor through the maps

v[bi,b′i]
: Φi −→ Fb′i , u[b′k,bk] : Fb′i −→ Φk.

Our statement would therefore follow from the next lemma which is an in-
variant version of the statement that the map (1.3) is indeed the monodromy
around 0.

Lemma 2.11. We have an equality of operators Fb′i → Fb′k :

Tγ′ = Tγ + vαRuβ,

where:

(1) uβ : Fb′i → H1
β
(F)bj is the coboundary of the counterclockwise continu-

ation map, cf. (1.5).

(2) R : H1
β
(F)bj → H1

α(F)bj is the identification obtained by deforming, by
clockwise rotation aroung bj, the path β into the path α, i.e., R is the
third identification in (2.9).

(3) vα : H1
α(F)bj → H1

α(F)gen ' Fb′k is the generalization map of the sheaf
H1
α(F).

Proof of the lemma: Let U be a small disk around bj. We fix a ∈ Fb′ and
compare the two sides of the putative equality when applied to a. For this,
let sa ∈ Γ(U − β,F) be the section obtained by continuing a on the left
side of β towards and around bj. Then uβ(a) is equal to the class of sa in
H1
β
(F)bj . Next, Ruβ(a) is similarly represented by the section ta obtained

15



from sa by continuously moving the branch cut clockwise from α to β. This
means that ta = sa on the left side of α ∪ β. Finally, vαRuβ(a) is obtained
as the difference of the two boundary values if ta when continued along both
sides of α all the w ay to b′k. It remains to notice that these boundary values
are equal, in virtue of the above, to Tγ(a) and Tγ′(a). .

Proof using shadows: Choose a system of cuts K (depicted by dotted lines
in Fig. 3) adopted to our situation. We assume that the arcs Ki, Kj and
Kk are positioned as in the figure, i.e., that γ together with Ki and Kk

form a triangle containing Kj, α and β and not containing any other marked
points. We orient each Kν to run from b to bν . Consider the quiver FK(F) =
(Ψ,Φi, ui, vi). Note that we have isotopies of oriented paths rel. B:

α ∼ Kk ∗K−1
j , β ∼ Kj ∗K−1

i , γ′ ∼ Kk ∗K−1
i ,

γ ∼ Kk ∗ ∂∆ ∗K−1
i .

Here ∗ means composition of the paths and ∂∆ is the boundary circle of ∆,
oriented anticlockwise and run from b to b. We can use these isotopies to
calculate the transition maps, obtaining

Mij(β) = uj,Kvi,K , Mjk(α) = uk,Kvj,K , Mik(γ
′) = uk,Kvi,K ,

Mik(γ) = uk,KTj,Ψvi,k,

and the claim follows from the identity Tj,Ψ = Id− viuj.

D. The Picard-Lefschetz triangle. Let S be a perverse Schober on
(∆, B). The transition maps constructed in n◦C categorify to functors be-
tween triangulated categories. More precisely, if γ is an oriented arc joining
bi and bk as above, then we have a diagram of triangulated categories and
spherical functors which depends “canonically" (i.e., up to a contractible set
of choices) only on the isotopy class of γ rel. B:

(2.12) Φi,γ(S)
Si,γ // Ψγ(S) Φk,γ(S).

Sk,γoo

To define it, we choose K ′ ∈ C so that K ′i (oriented from b to bi), together
with γ and (K ′k)

−1 form a positively oriented triangle not containing any
other marked points. (Note: the choice of K as in Fig.3 is not good.) We
consider the K ′-shadow SK′ =

{
SK

′
ν : DK′ν → DK

′}n
ν=1

of S and define

Ψγ(S) = DK′ , Φi,γ(S) = DK′i , Φk,γ(S) = DK′k ,

Si,γ = SK
′

i , Sk,γ = SK
′

k .
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It is straightforward to see (by looking at the subgroup in Brn permuting all
K ′ with our property) that this definition is indeed “canonical” in the sense
described. So we consider the data (2.12) as intrinsically associated to S and
γ.

Denote Rk,γ the right adjoint to the spherical functor Sk,γ. Define now
the transition functor

Mik(γ) = Rk,γ ◦ Si,γ : Φi,γ(S) −→ Φk,γ(S).

Consider now a situation when we have arcs γ, γ′, α, β depicted in Fig. 3.
Using identifications of categories similar to (2.9), we can speak about trian-
gulated categories Φi(S) and Φk(S).

Proposition 2.13 (Picard-Lefschetz triangle). We have a canonical triangle
of exact functors Φi(S)→ Φk(S):

Mik(γ) −→Mik(γ
′) −→Mjk(α) ◦Mij(β) −→Mik(γ)[1].

Proof: This is obtained identically to the “shadow" proof of Proposition 2.10
with the identity Tj,Ψ = Id − vjuj replaced by the triangle coming from the
fact that Tj = Cone{Id→ RjSj}.

E. Schobers on a Riemann surface. Let Σ be an oriented topological
surface, possibly with boundary ∂Σ, and B ⊂ Σ is a finite set not meeting
∂Σ. One can then define a perverse Schober on (Σ, B) by decomposing Σ as
∆ ∪C U , where ∆ ⊂ Σ is a closed disk with boundary circle C = ∂∆ which
contains all points of B, and U is the closure of Σ − ∆. Then a perverse
Schober S is, by definition, a datum of:

(1) A perverse Schober S∆ on (∆, B), defined as in n◦B.

(2) A local system of triangulated categories SU on U identified with S∆

over C.

While one can work with objects thus defined (for instance, one can construct
transition functors and Picard-Lefschet triangles for arcs not necessarily con-
tained in ∆), a more intrinsic definition is desirable.
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3 Spherical functors and spherical pairs
A. Symmetric description of Perv(∆, 0). In [KS1, §9] we have given a
different quiver description of Perv(∆, 0) obtained as a particular case of a
general result for real hyperplane arrangements:

Proposition 3.1. The category Perv(∆, 0) is equivalent to the category formed
by diagrams of vector spaces

(3.2) E−
δ−
// E0

γ−oo γ+ //
E+

δ+
oo

satisfying the two following conditions:

(1) γ−δ− = IdE− , γ+δ+ = IdE+.

(2) The maps γ−δ+ : E+ → E−, γ+δ− : E− → E+ are invertible.

This is obtained by choosing not one but two base points b+, b− ∈ ∂∆
and considering a cut K which joins b+ with b− and passes through 0, as in
depicted in Fig. 5.

0 b+
K

∆

b−

Figure 5: A symmetric cut.

The spaces E±, E0 are obtained as the stalks of the sheaf H1
K(F) at b± and

0 respectively, the maps γ± are the generalization maps for this sheaf, and
the δ± can be obtained by duality.

Remarks 3.3. (a) Note that in this description the maps P+ = δ−γ− and
P+ = δ+γ+ are projectors in E0, that is P 2

± = P±. We can consider E± as
subspaces in E0 which are the images of P±.
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(b) The pattern of Remarks 1.6 and 2.3 continues here: Hi
K(F) = 0 for

i 6= 1 and each stalk of H1
K considered as a functor into Vectk, takes Verdier

duality into vector space duality.

B. Reminder on semi-orthogonal decompositions. A categorification
of diagrams (3.2) is naturally formulated in the language of semi-orthogonal
decompositions of triangulated categories [BK1] [KuL] which we now recall.

Let B be a full triangulated subcategory of a triangulated category A,
with i : B → A being the embedding functor. We denote by

⊥B = {A ∈ A|Hom(A,B) = 0 ∀B ∈ B},
B⊥ = {A ∈ A|Hom(B,A) = 0 ∀B ∈ B}

the left and right orthogonals to B We say that B is left admissible, resp.
right admissible, if i has a left adjoint ∗i, resp. a right adjoint i∗. If B is left
(resp. right) admissible, we have a semi-orthogonal decomposition

A = 〈⊥B,B〉, resp. A = 〈B,B⊥〉

which means that each object A ∈ A is included in functorial exact triangles

C −→ A −→ B → C[1], C ∈⊥ B, B = ∗i(A) ∈ B,
resp. B′ −→ A −→ D′ → B′[1], B′ = i∗(A) ∈ B, D′ ∈ B⊥.

In particular, ⊥B = Ker(∗i), resp. B⊥ = Ker(i∗). We will call ∗i the projection
on B along ⊥B and i∗ the projection on B along B⊥.

If B is left admissible, then ⊥B is right admissible, and (⊥B)⊥ = B.
Similarly, for a right admissible B we have that B⊥ is left admissible and
⊥(B⊥) = B.
C. Spherical pairs. Let E0 be a triangulated category and E+, E− ⊂ E0

be a pair of left admissible subcategories, so that we have the diagrams of
embeddings

E−
δ−−→ E0

δ+←− E+,
⊥E−

j−−→ E0
j+←− ⊥E+

with δ± having a left adjoint γ± and j± having a right adjoint k±.

Definition 3.4.The pair of left admissible subcategories E± is called a spher-
ical pair, if:
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(SP1) The compositions

γ+δ− : E− −→ E+, γ−δ+ : E+ −→ E−

are equivalences.

(SP2) The compositions

k+j− : ⊥E− −→ ⊥E+, k−j+ : ⊥E+ −→ ⊥E−

are equivalences.

Remark 3.5.Note that unlike a spherical functor, the definition of a spheri-
cal pair does not appeal to any enhancement of the triangulated category E0,
as no functorial cones are taken. In the following (as elsewhere in the paper)
we will, however, assume that we are in an enhanced situation as described
in Appendix.

D. From a spherical pair to a spherical functor. Let E± be a spherical
pair. Consider the diagram

D0 = ⊥E− = Ker(γ+)
S−→ E+ = D1,

where S = γ+|⊥E+ .

Proposition 3.6. S is a spherical functor.

This follows from Theorem 1.9 (which gives that (SF1) and (SF3) imply
sphericity) and from the next more precise statement.

Proposition 3.7. (a) The functor R : E+ → ⊥E− defined as the composi-
tion E+

δ+−→ E0
k−−→ ⊥E− is right adjoint to S.

(b) The functor

T1 = Cone{SR⇒ IdD1} : D1 = E+ −→ E+ = D1

is identified with the composition γ+ ◦ δ− ◦ γ− ◦ δ+ : E+ → E+. In
particular, it is invertible.
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(c) The functor

T0 = Cone{IdD1 ⇒ RS}[−1] : D0 = ⊥E− −→ ⊥E− = D0

is identified with the composition k+ ◦ j− ◦ k− ◦ j+ : ⊥E− → ⊥E−. In
particular, it is invertible.

Proof: (a) S is the composition γ+◦j−. By definition, γ+ = ∗δ+ and therefore
δ+ = γ∗+. Therefore S∗ = j∗− ◦ γ∗+ = k− ◦ δ+.

(b) Let us make k− = j∗− : E0 → ⊥E− into an endofunctor of E0 by
composing it with the embedding j− :⊥ E− → E0. Then the functorial triangle
for the orthogonal decomposition E0 = 〈⊥E−, E−〉 gives that

(3.8) j− ◦ k− = Cone{IdE0 ⇒ δ−γ−} [−1].

We now write SR = S ◦ k− ◦ δ+ and note that S = γ+ ◦ j−, so SR is the
composition

E+
δ+−→ E0

k−−→ ⊥E−
j−−→ E0

γ+−→ E+.

Identifying δ+ on the left and γ+ on the right with the corresponding arrows
in the proposed formula for T1, we reduce part (b) of our proposition to the
statement that

δ− ◦ γ− = Cone{j− ◦ k− ⇒ IdE0},

which is equivalent to (3.8).

(c) is proved similarly to (b).

We do not know whether each spherical functor can be obtained from a
spherical pair. but the following construction provides some geometric hint.

Example 3.9 (Polar coordinates).Let Y be a CW-complex and p : V →
Y be a real vector bundle. Denote by i : Y ↪→ V the embedding of the zero
section, and by j : V ◦ ↪→ V the embedding of the complement of the zero
section. Let q : S = V ◦/R∗>0 → Y be the spherical bundle associated to V ,
and τ : V ◦ → S the natural projection. Let also π = qτ : V ◦ → Y be the
composite projection.

Let E0 = E0(V ) := Db
conic(V ) ⊂ Db(V ) be the full subcategory of R∗>0-

conic complexes, i.e., of complexes F such that each H i(F) is constant on
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each orbit of R∗>0 in V , see [KS2]. Consider the subcategories E± = E±(V ) ⊂
E0 defined as follows. First, let

E+ = E+(V ) := j!π
−1Db(S) ' Db(S), so that ⊥E+ = i∗D

b(Y ) ' Db(Y ).

Second, let E− = E−(V ) consist of complexes F with Rp∗F = 0, so that
⊥E− = p−1Db(Y ) ' Db(Y ). Then (E+, E−) is a spherical pair, and the
functor

Db(Y ) ' ⊥E−
S=γ+j−−→ E+ ' Db(S)

is identified with the spherical functor q−1 from Example 1.10.

Remark 3.10. In the situation of Example 3.9, let V ∗ be the vector bundle
dual to V , so that the Fourier-Sato transform [KS2] gives an identification

E0(V ) = Db
conic(V )

F−→ Db
conic(V

∗) = E0(V ∗).

This identification takes the category E±(V ) to E∓(V ∗).
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4 Derived categories on the G/P and Schobers
on symmetric products h/W .

A. The braid group action on Db(G/B) and Dcoh(T ∗(G/B)). Let g be a
split reductive Lie algebra over C, with Cartan subalgebra h and Weyl group
W . We denote by hR ⊂ gR the real parts of h and g. Let ∆sim ⊂ ∆+ ⊂ ∆ be
the systems of simple and positive roots of g inside the set of all roots. The
complex vector space h has an arrangement of hyperplanes {α⊥}α∈∆+ and so
has a natural stratification by flats of this arrangements, see [KS1].

We consider the complex manifold h/W . It has the induced stratification,
denote it S. The open stratum (h/W )0, is the classifying space of the braid
group of g, which we denote by Br = Br(g). By definition, Br is generated
by elements sα, α ∈ ∆sim subject to the relations defining the Weyl group W
with the exception of the relations s2

α = 1.

Example 4.1. In the case g = gln, the manifold h/W is space of monic
polynomials f(z) of degree n in one variable. The stratification S is the
stratification by types of coincidence of roots of f(z) and is labelled by (un-
ordered) partitions of n. The group Br(gln) is the usual Artin braid group
Brn.

Let B ⊂ G be the standard Borel subgroup corresponding to the choice
of ∆+. For any I ⊂ ∆sim let PI ⊃ B be the standard parabolic subgroup
generated by B and the exponents of the Chevalley generators associated
to (−α), α /∈ I. Thus P∅ = G and P∆sim = B. We write Pα = P∆sim−{α},
α ∈ ∆sim, for the “next to minimal" parabolic subgroup associated to {α}.
We have the P1-fibration

G/B
qα−→ G/Pα

and therefore, by Proposition 1.11, a spherical functor

Db(G/Pα)
Sα=q−1

α−→ Db(G/B)

and the corresponding twist functor Tα : Db(G/B) → Db(G/B) written
directly as

(4.2)
Tα(F) = R(pα,2)!p

∗
1,αF [−1],

pα,i :
((

(G/B)×G/Pα (G/B)
)
− rel. diagonal

)
−→ G/B, i = 1, 2.

The following fact was known before the concept of a spherical functor
was discovered, cf. [BBM].
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Proposition 4.3. The functors Tα defined by (4.2), are equivalences which
satisfy the relations of Br(g), i.e., define an action of Br(g) on the derived
category Db(G/B).

Remarks 4.4. (a) Proposition 4.3 for g = gl(n) has a quaternionic analog.
We consider the space HFn of complete flags of (left) quaternionic subspaces
V1 ⊂ · · · ⊂ Vn−1 ⊂ Hn, dimH(Vi) = i. It fits into the HP1-fibrations

qi : HFn −→ HF (i)
n =

{
(V1 ⊂ · · · ⊂ Vi−1 ⊂ Vi+1 ⊂ · · · ⊂ Hn

}
over the spaces of next-to-complete flags. We note that HP1 = S4 is the 4-
sphere. By Proposition 1.11 this gives, for each i = 1, · · · , n− 1, a spherical
functor SH

i = q−1
i : Db(HF (i)

n ) → Db(HFn) and the induced twist auto-
morphism TH

i of Db(HFn). One can see directly by analyzing the Schubert
correspondences in HFn, that the TH

i satisfy the relations of the Artin braid
group Brn.

(b) One has also a real analog for any g, using the real loci of the flag
varieties which fit into RP1 = S1-fibrations.

A quasi-classical analog of the action in Proposition 4.3 has been con-
structed in [KhT, BR]. It uses the diagram

Yα := T ∗(G/Pα)
ρα←− Dα := T ∗(G/Pα)×G/Pα G/B

iα−→ T ∗(G/B) := X

which produces a spherical functor

Scoh
α = iα∗ρ

∗
α : Db

cohT
∗(G/Pα)→ Db

cohT
∗(G/B)

It was proved in [KhT] for g = gln and in [BR] for arbitrary g, that the
corresponding twist functors T coh

α define an action of Br(g) on Db
cohT

∗(G/B)
(which, in fact, extends to an action of the affine braid group).

These constructions can be seen as giving local systems of triangulated
categories on (h/W )0 = K(Br(g), 1) with general stalk being Db(G/B), resp.
Db

coh(T ∗(G/B)). We would like to suggest that these local systems extend
to natural perverse Schobers on the entire h/W . For this, we review some
features of usual perverse sheaves in this situation.

B. Perverse sheaves on h/W and double cubical diagrams. Denote
Perv(h/W ) the category of perverse sheaves on h/W smooth with respect to
the stratification S from n◦A. A complete quiver description on Perv(h/W ) is
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not yet available. However, the results of [KS1] provide the following partial
picture which aligns with the examples we considered earlier.

Let hR ⊂ h be the real form of h. Inside h/W we consider the “real
skeleton" (or “cut”)

K = hR/W ⊂ h/W.

It can be thought of as a “curvilinear cone", the image of the dominant
Weyl chamber h+

R ⊂ hR. Let r = |∆sim| be the rank of g. Let SR be the
stratification of K by the 2r strata which are the images of the faces of h+

R .
We denote these strata by SI , I ⊂ ∆sim, so that dimR(SI) = |I|.

Note that each SI is contractible. Therefore (cf. [GM]) a sheaf G on K
constructible with respect to SR can be recovered from the cubical diagram of
vector spaces GI = Γ(SI ,G) and generalization maps γII′ : GI → GI′ , I ⊂ I ′

which are required to form a representation of the poset 2∆sim (so that the
diagram is commutative).

The following is deduced by pulling F back to a perverse sheaf on h
smooth with respect to an arrangement of hyperplanes {α⊥}α∈∆+ and apply-
ing the results of [KS1].

Proposition 4.5. (a) For F ∈ Perv(h/W ) we have Hi
K(F) = 0 for i 6=

dimR(K), and the sheaf RF = Hdim(K)
K (F) on K is constructible with respect

to the stratification SR.
(b) Let I ⊂ ∆sim. Denoting EI(F) = Γ(SI ,RF), we have that EI :

Perv(h/W ) → Vectk is an exact functor which takes the Verdier duality to
the vector space duality.

Therefore we can associate to any F ∈ Perv(h/W ) a double cubical dia-
gram E(F) formed by the vector spaces EI(F) and the maps

(4.6) EI(F)
γIJ // EJ(F)
δJI

oo , I ⊂ J.

Here γIJ is the generalization map for EF , and δJI is the dual to the gen-
eralization map for EF∗ , where F∗ is the perverse sheaf Verdier dual to F .
Each of the collections (γIJ), (δJI) forms a commutative cube. It seems very
plausible that the functor F 7→ E(F) from Perv(h/W ) to the category of
double cubical diagrams is fully faithful, i.e., F can be recovered from E(F).

Example 4.7.For g = sl2 we have h/W = C and K = R≥0 so the above
reduces, very precisely, to the construction of §1A, except with the disk
replaced by C.
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C. A double cubic diagram related to flag varieties. We now note that
geometry of flag varieties provides a natural double cubic diagram of cate-
gories of the same shape as (4.6). More precisely, we have an ordinary cubi-
cal diagram of algebraic varieties G/PI and projections qIJ : G/PJ → G/PI ,
I ⊂ J . We have then the double cubical diagram formed by triangulated
categories Db(G/PI) and the adjoint pairs of functors

(4.8) Db(G/PI)
q−1
IJ // Db(G/PJ)

RqIJ∗
oo , I ⊂ J.

As in Example 1.10, we can also consider the left adjoint to q−1
IJ which differs

from the right adjoint by a shift.
At the “quasi-classical level” one has a similar diagram formed by the cat-

egories Db
coh(T ∗(G/PI)) and the functors between them obtained by trans-

lating q−1
IJ and RqIJ∗ into the language of D-modules and passing to the

associated graded modules.

We would like to suggest that the diagram (4.8) comes from a more fun-
damental object: a perverse Schober on h/W extending the local system
discussed in n◦A.

Similarly for the quasi-classical analog with the Db
coh(T ∗(G/PI)). In this

situation we have in fact more: an actions the affine braid group. These
can possibly come from Schobers not on h/W but on T/W where T is the
maximal torus in the algebraic group corresponding to g.
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5 “Fukaya-style” approach to perverse sheaves:
cuts, real skeletons and Langangian varieties

A. Maximally real cuts. Since our preliminary definitions of a perverse
Schobers were based on quiver descriptions of perverse sheaves, let us look
at some general features of such descriptions.

Let (X,S) be a stratified complex manifold of dimension n. Obtaining
a quiver description of Perv(X,S) requires, in particular, construction of
many exact functors Perv(X,S) → Vectk. Indeeed, any component of the
putative quiver must be such a functor. Arrows of the quiver are then natural
transformations between these exact functors.

The common tool for that, used in examples in this paper, is a choice of
a closed subset K ⊂ X with the following property:

(Cut) For any F ∈ Perv(X,S) we have Hi
K(F) = 0, i 6= n.

This property implies that the functor of abelian categories

R : F 7−→ R(F) := Hn
K(F), Perv(X,S) −→ ShK

is exact. So stalk of R(F) at any point x ∈ K can be used as a component of
a quiver, while generalization maps between the stalks provide some of the
arrows.

We will call eachK satisfying (Cut) an (admissible) cut for (X,S) and de-
note by C(X,S) the set of all such cuts. It is natural to look for a description
of Perv(X,S) in terms of some data associated to all the cuts.

Recall that by the Riemann-Hilbert correspondence we can realize each
F ∈ Perv(X,S) as RHomDX (M,OX) for a left DX-moduleM whose char-
acteristic variety satisfies the inclusion

Ch(M) ⊂ ΛS :=
⋃
α

T ∗XαX.

We denote by DMod(X,S) the category of such DX-modules. In these terms,
a more detailed scenario (sufficient condition) for (Cut) to hold would be for
K to satisfy the following two properties:

(Cut1) We have Hi
K(OX) = 0 for i 6= n.

27



(Cut2) Assuming (Cut1), the sheaf BK = Hn
K(OX) (which, considered as a

sheaf on X, is automatically a sheaf of left DX-modules), satisfies

ExtjDX (M,BK) = 0, ∀M ∈ DMod(X,S), j > 0.

The property (Cut1) is not related to a choice of S and holds for any
totally real subset of X, see [Har]. More precisely, we recall, see [BER] for
background:

Definition 5.1. (a) Let V be a C-vector space of finite dimension n. A
real subspace L ⊂ V is called totally real, if L ∩ iL = 0. We say that L is
maximally real, if it is totally real of dimension n.

(b) Let X be a complex manifold of dimension n. A C∞-submanifold
K ⊂ X is called totally real, resp. maximally real if for each x ∈ K the
subspace TxK ⊂ TxX is totally real resp. maximally real.

The results of Harvey [Har] imply:

Proposition 5.2. Any closed subset of a totally real submanifold of X sat-
isfies (Cut1).

More precisely, the result of loc. cit. is for arbitrary totally real subsets
of X, a class of sets which includes totally real submanifolds [Har, §3.6 Ex.
2] and is closed under passing to closed subsets [Har, Cor. 3.2].

For example, Rn, as well as Rn
≥0 satisfies (Cut1). The sheaf BRn is the

sheaf of hyperfunctions of Sato [SKK].

We now consider the condition (Cut2). Sufficient criteria for it to hold
were given by Lebeau [Le] and Honda-Schapira [HS]. The criterion of [HS]
is based on the concept of positive position of two real Lagrangian subman-
ifolds in a complex symplectic manifold such as T ∗X. We do not recall this
concept here, referring to [Sch] and references therein for more background.
Informally, the essense of the criterion can be formulated like this.

(5.3)
For (Cut2) to hold, K must be “maximally real with respect to

the stratification S”, in particular, the intersection of K
with each stratum Xα should be maximally real in Xα.

Here is a precise but more restrictive statement which is a reformulation of
Example 1 of [HS].
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Proposition 5.4. Suppose S is such that ΛS is contained in the union of
T ∗ZβX for a collection of smooth closed complex submanifolds Zβ ⊂ X. Sup-
pose K ⊂ X is a maximally real analytic submanifold such that each K ∩Zβ
is maximally real in Zβ. Then K satisfies (Cut2).

B. Maximally real vs. Lagrangian cuts. Let V be a complex vector
space of dimension n and GR(n, V ) the Grassmannian of real n-dimensional
subspaces in V . We denote by Gmax(V ) the open subset in GR(n, V ) formed
by maximally real subspaces.

Suppose V is equipped with a positive definite hermitian form h. Sepa-
rating the real and imaginary parts h = g+iω, we have that ω is a symplectic
form on V . Let LGω(V ) be the closed subset inGR(n, V ) formed by subspaces
Lagrangian with respect to ω. The following is well known.

Proposition 5.5. LGω(V ) is contained in Gmax(V ) and the embedding is
a homotopy equivalence. In other words, LGω(V ) can be seen as a compact
form of Gmax(V ).

Proof: For V = Cn with the standard hermitian form we have

LGω(V ) = O(2n)/U(n) ⊂ GL(2n,R)/GL(n,C) = Gmax(V ).

Let now X be a complex manifold equipped with a Kähler metric h =
g + iω. Then ω makes X into a symplectic manifold, and we have

Corollary 5.6. Any Lagrangian submanifold of X is maximally real.

Note that all the cuts used in this paper as well as in [GGM] [KS1], are
Lagrangian. This suggests a possibility of describing more general Perv(X,S)
in terms of data coming from Lagrangian cuts.

On the other hand, Lagrangian submanifolds of a Kähler manifold X are
organized into a far-reaching structure: the Fukaya category F(X) (as well as
its modifications such as the Fukaya-Seidel and wrapped Fukaya categories),
see [FO3] [Se] for background. We briefly recall that F(X) is an (a priori
partially defined) C-linear A∞ category whose objects are, in the simplest
setting, compact Lagrangian submanifolds K ⊂ X. The space Hom(K1, K2)
is defined when K1 and K2 meet transversely and in this case is formally
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spanned by the set K1 ∩ K2 (with appropriate grading, see loc. cit.). The
A∞-composition

µK1,··· ,Km :
m−1⊗
i=1

Hom(Ki, Ki+1) −→ Hom(K1, Km), m ≥ 1,

is given by counting holomorphic2 disks D ⊂ X with boundary on K1∪ · · ·∪
Km. Each D gives a contribution exp

(
−
∫
D
ω
)
to the appropriate matrix

element of µK1,··· ,Km .

One can expect that the Fukaya structure on the collection of admissi-
ble Lagrangian cuts for (X,S) has some significance for explicit description
of Perv(X,S). In particular, a holomorphic disk D with boundary on the
union of admissible cuts K1, · · · , Km may provide a link between the sheaves
Hn
Kν (F), F ∈ Perv(X,S) for different ν, via the structure of perverse sheaves

on a disk (§2).

Remarks 5.7. (a) Any collection K1, · · · , Km of maximally real (not neces-
sarily Lagrangian) submanifolds in X provides a natural boundary condition
for holomorphic disks. It has been noticed [Se] that many ingredients of the
Fukaya category construction have an “intrinsic" meaning and can be defined
without explciit reference to the symplectic structure. In particular:

• The role of the grading on Hom(K1, K2) is to make the count of disks
possible by ensuring that in evaluating matrix elements of µ between
basis vectors of the same degree, the index of the linearlized elliptic
problem is 0 (so the corresponding linear ∂-operator is, generically,
invertible).

• The quantity exp
(
−
∫
D
ω
)
can be intepreted as the determinant of the

invertible ∂-operator above.

They could therefore make sense for more general maximally real submani-
folds. The usual technical reason for restricting to Lagrangian submanifolds
in defining F(X) is that the Gromov compactness theorem (which, via the
properties of 1-dimensional moduli spaces, is used to prove the A∞-axioms)

2Here we leave aside the additional complication that it may be necessary to deform
the complex structure on X to ensure generic position.
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has originally been established only in that setting. However, see [FZ] for a
recent generalization to the maximally real case.

(b) the above mentioned role of cuts (in particular, Lagrangian cuts)
for description of perverse sheaves on X, is different from the classical “mi-
crolocal” point of view [KS2] which empasizes complex, conic Lagrangian
subvarieties in T ∗X rather than real ones in X itself. For the relation of the
microlocal approach to the Fukaya category (of T ∗X), see [NZ][Na]. A more
general idea that the Fukaya category of any symplectic manifold should have
an interpretation in terms of its geometric quantization, was proposed earlier
in [BS].

C. Perverse Schobers as coefficients data for Fukaya categories.
The Fukaya category F(X) of a symplectic manifold X can be seen as a
categorification of its middle (co)homology (or, rather, of the part represented
by Lagrangian cycles). Here “cohomology” is understood as H•(X,C), the
cohomology with constant coefficients, a particular case of a more general
concept of H•(X,F), the cohomology with coefficients in a sheaf F or even
more generally, in a complex of sheaves.

This point of view leads to the idea of introducing coefficients into the
definition of the Fukaya category as well. It was proposed by M. Kontsevich
with the goal of understanding the (usual) Fukaya category of a manifold by
projecting it onto a manifold of smaller dimension.

In this direction we would like to suggest that perverse Schobers are the
right coefficient data for defining Fukaya categories. That is, to a perverse
Schober S on a Kähler manifold X there should be naturally associated a
triangulated category F(X,S), which for the constant Schober Db(VectC)
reduces to F(X). If we think about perverse sheaves in terms of some vector
space data associated to Lagrangian cuts and then categorify these data to
define Schobers, then it is natural to try to define F(X,S) in terms of these
categorified data.

For example, when X is a Riemann surface with marked points, the
Fukaya category of X with coefficients in a constant (Z/2-graded) triangu-
lated category A was defined in [DK]. One can easily modify this definition
when A is replaced by a local system of triangulated categories on X, i.e.,
by the next simplest instance of a perverse Schober. We leave the case of an
arbitrary perverse Schober on a Riemann surface (§2E) for future work.
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A Conventions.
For the considerations of this paper to make sense, we should work in some
framework of “refined”, or “enhanced” triangulated categores having functorial
cones. Let us describe one such framework, to be followed in the main body.
(Another one would be that of stable ∞-categories [Lu].)

All our categories will be k-linear, where k is a fixed base field. We recall
that Tabuada [Ta1, Ta2] has introduced a Morita model structure on the
category of dg-categories. Dg-categories fibrant with respect to this model
structure are called perfect, see also [TV]. Perfect dg-categories form a sub-
class of pre-triangulated categories in the sense of [BK2]. That is, a perfect
dg-category A gives rise to a triangulated category H0(A) which is, in addi-
tion, idempotent complete.

In the main body of this paper the word “triangulated category" will al-
ways mean “a triangulated category D together with an identification D '
H0(A) where A is a perfect dg-category", and “exact functor" will mean “an
exact functor of triangulated categories obtained, by passing to H0, from a
dg-functor between perfect dg-categories" and similarly for “natural trans-
formation". With this understaning we will speak about “the” exact functor
Cone{T : F ⇒ G} where T is a natural transformation of exact functors.

For a finite CW-complex Z we denote Db(Z) the bounded derived cate-
gory of all sheaves of k-vector spaces on Z. For a smooth complex algebraic
variety X we denote by Db

coh(X) the bounded derived category of coherent
sheaves on X.

The condition of perversity for constructible complexes on a complex
manifold X is normalized in such a way that a constant sheaf in degree 0 is
perverse.
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of Springer resolutions. Ann. Sci. Éc. Norm. Supér. 45 (2012), 535-599.

[BK1] A. I. Bondal, M. M. Kapranov. Representable functors, Serre functors and
mutations. Math. USSR Izv. 35 (1990), 519-541.

[BK2] A. I. Bondal, M. M. Kapranov. Enhanced triangulated categories. Math.
USSR Sbornik, 70 (1991) 93-107.

[BS] P. Bressler, Y. Soibelman. Mirror symmetry and deformation quantization.
arXiv hep-th/0202128.

[BT] C.Brav, H.Thomas, Braid groups and Kleinian singularities, Math. Ann. 351
(2011), 1005 - 1017.

[CG] Neil Chriss, Victor Ginzburg, Representation Theory and Complex Geome-
try. Birkhäuser, 1997.
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