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Abstract. We show that the above-named property (after M. Larsen and V. Lunts) does not hold in general.

1. Introduction

1.1. Fix some ground field k ⊆ C. Consider the ring K0(Vark) of k-varieties, generated (over Z) by the iso-

morphism classes [X] of various quasi-projective such X, with multiplication given by [X] · [Y ] := [X ×k Y ] (for

all Y ) and addition [X] + [Y ] being just the formal sum subject to the relation [X] = [X \ Y ] + [Y ] whenever

Y ⊆ X is a closed subset. In particular, the class of a point can be identified with the unity 1 ∈ K0(Vark), so that

[A1
k \ {0}] = L− 1 for [A1

k] := L. We will suppress the reference to k in what follows for notations’ simplicity.

The ring K0(Var), or more precisely, motivic measures with values in K0(Var), was used in [8] for example to

show (via the celebrated motivic integration) that birationally isomorphic Calabi-Yau manifolds have equal Hodge

numbers (see [3], [4], [11], [12], [9], [10] and [5] for other results, applications and references). Despite this success,

however, the structure of K0(Var) is still poorly understood, although it is known that K0(Var) is not a domain

(see [13]) and one has an explicit description of “conical” subrings in K0(Var) (see [7]); see also [9] and [1] for

a description of quotients of K0(Var) by some ideals related to L (note that it is still not known whether L is a

0-divisor in K0(Var)). The present paper provides another (tiny) contribution to this interesting subject.

Namely, given two varieties X and Y let’s say (following [9]) that they satisfy the cut-and-paste property if

[X] = [Y ] in K0(Var) and additionally X =
k∐

i=1

Xi (resp. Y =
k∐

i=1

Yi) for some k ≥ 1 and constructible subsets

Xi ⊆ X (resp. Yi ⊆ Y ), with Xi ' Yi for all i.

Theorem 1.2. There exist two smooth projective varieties X and Y , with [X] = [Y ], which violate the cut-and-

paste property.1)

In order to prove Theorem 1.2 it suffices to exhibit such X and Y , not birational to each other, yet satisfying

[X] = [Y ]. Specifically, the idea is to take birationally rigid X and Y (provided, say, by the paper [14]), and then

show that [X] = [Y ]. For the latter, we want both X, Y to be “simple”, e.g. fibred over P1 onto surfaces all having

the same class in K0(Var) (this is also inline with [14]). The equality [X] = [Y ], for certain X and Y , can then be

established via direct technical (though elementary) argument (see 2.1, 2.5 below).

1)This also answers Question (b) in [6, 3.G′′′] at negative due to the results from [2].
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2. Proof of Theorem 1.2

2.1. Fix two cubic forms G := G(x0, . . . , x3) and F := F (x0, . . . , x3) over k. We will assume G generic and the

equation F = 0 define a cubic surface (in P3) with an ordinary double point as the only singularity. We also choose

F generic among such forms.

Consider the locus X ⊂ P3 × P1 given by an equation

α(t0, t1)G + β(t0, t1)F = 0(2.2)

of bidegree (3,m) for G,F as above and some m ≥ 3, with xi (resp. ti) being projective coordinates on P3 (resp.

on P1). We also assume both forms α, β to be generic.

Lemma 2.3. X is a smooth 3-fold.

Proof. Indeed, by Bertini theorem applied to the linear system of divisors (2.2), all possible singularities of X can

lie only on the surface B := (G = F = 0) ⊂ P3 × P1. This surface is smooth as being isomorphic to P1× the

smooth curve (G = F = 0) ⊂ P3. In particular, locally analytically near every point on B we may assume both

G,F to be some local coordinates. The claim now easily follows by taking partial derivatives of (2.2) w. r. t. ti and

G,F . ¤

Further, X carries a natural fibration X −→ P1 on cubic surfaces induced by the projection of P3 × P1 onto the

second factor. We will refer to X as a pencil (of cubic surfaces).

Let y0 := tm0 , y1 := tm−1
0 t1, . . . , ym := tm1 be the monomials entering α and β with some k-coefficients α0, . . . , αm

and β0, . . . , βm, respectively. We may regard yi as new transcendental variables. Consider the locus X ⊂ P3 ×
Pm × A1 given by equation

LαG + (Lβ + λ)F = 0,

where A1 = Speck[λ] and the linear forms Lα := Lα(y0, . . . , ym), Lβ := Lβ(y0, . . . , ym) are obtained from α, β,

respectively, via replacing each monomial with the corresponding yi, i.e., Lα =
∑

αiyi and Lβ =
∑

βiyi.

Put t0 := 1 (resp. y0 := 1) and consider the open loci

X0 := X ∩ (t0 = 1) \ (GF = 0) ⊂ X

and

X0 := X ∩ (y0 = 1) \ (GF = 0) ⊂ X .

Notice that X0 ⊂ X0 × A1 as a closed subset, with (tautological) equations y1 = t, . . . , ym = tm, where t := t1.

In what follows, we will not distinguish between X0 (resp. X0) and any affine scheme, whose reduced structure

equals X0 (resp. X0). Then we have

Lemma 2.4. X0 × Am+1 ' X0 × A1 and (X0 × Am+1) ∩ (yi = 0) ' (X0 × A1) ∩ (yi = t) for all i, where Am+1

(resp. A1) is provided with affine coordinates y1, . . . , ym, λ (resp. t).
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Proof. Consider A2 = Speck[λ, z] and identify X0 × A1 with the closed subset (y1 = z − t − λ) ⊂ X0 × A2. Let’s

construct an isomorphism ϕ : X0 × Am+1 ∼→ X0 × A1 as follows:

[x0 : . . . : x3]× t× (y1, . . . , ym, λ) 7→ [x0 : . . . : x3]× (y′1, y
′
2, . . . , y

′
m, λ′)× t× y1,

y′1 := y1 + t + λ, y′2 := y2 + t2, . . . , y′m := ym + tm, λ′ := (−β1 − α1
G(x)
F (x) )λ− Lβ(y) + β0 − G(x)

F (x) (Lα(y)− α0),

where x := (x0, . . . , x3) and similarly for y.2)

The obtained morphism ϕ : X0 × Am+1 −→ X0 × A1 is easily seen to be dominant (by dimension count) and

one-to-one (for it is this on the fibers = cubic surfaces of the form (2.2)). Indeed, we may fix xi (all i), y1 and t.

Then ϕ reduces to an affine map on x × t × Am sending (y2, . . . , ym, λ) to (y′2, . . . , y
′
m, λ′) as is indicated above.

(The corresponding equation Lα(y′)G(x) + (Lβ(y′) + λ′)F (x) = 0 turns into y′1 = y1 + t + λ.) It’s now immediate

from the construction that ϕ
∣∣
x×t×Am is an isomorphism (of possibly non-reduced schemes).

Thus ϕ is an isomorphism. The last assertion of lemma is evident. ¤

2.5. Consider another locus X̃ ⊂ P3 × P1, defined similarly as X with the same G,F , but having other (still

generic) degree m forms α̃(t0, t1), β̃(t0, t1). All the previous gadgets such as X , X0, etc. are defined verbatim for

X̃, and we will distinguish them (from those for X) by simply putting extra ˜.

One may assume w. l. o. g. the fiber over the point [0 : 1] for X −→ P1 (resp. for X̃ −→ P1) to be smooth.

Further, observe that both X and X̃ have the same number of singular fibers, all being of that type as the surface

(F = 0) (cf. the beginning of 2.1). Indeed, the pencils X, X̃ correspond to smooth rational curves (C, C̃, say) in

the space of all cubics in P3, with F corresponding to generic point in the (closed) locus Σ of all singular such

cubics. But C and C̃ can be chosen to intersect Σ only at generic points (for instance, use the parameter count

and generality of X, X̃), and the claim follows as χtop(X) = χtop(X̃) = 18− s for s = the number of singular fibers

in each of X, X̃.3)

Remark 2.6. More precisely, letting m := 1 in the definition of X (see (2.2)), one obtains the blowup BlZ(P3) of

P3 at the curve Z := (G = F = 0). This immediately gives χtop = −14 for such X. In general, there is a finite

morphism X −→ BlZ(P3) of degree m and with only simple branch locus, concentrated on smooth fibers. Then

we get χtop(X) = m(−14− 9(2m− 2)) + 9(2m− 2)(m− 1) = −14m− 9(2m− 2) = −32m + 18 and thus s = 32m.

Observe further that the scheme S := X ∩ (GF = 0) equals the union of Z and a disjoint sum of m copies of

the surfaces (G = 0), (F = 0) ⊂ P3. Thus S is independent of X, X̃. With this setup we argue as follows:

Proposition 2.7. [X] · Lk = [X̃] · Lk for all 1 ≤ k ≤ m + 1. Furthermore, there is an isomorphism X0 ×Am+1 '
X̃0 × Am+1, and similarly for m instead of m + 1.

2)Heuristically, we “spread out” the locus X0 ⊂ X0 × A1 over the whole X0 × A1, shifting it by yi and λ.
3)In the latter argument, we have used that χtop (a. k. a. χét) of the cubic surface (G = 0) equals 9, while χtop = 8 for the surface

(F = 0) (with the obvious equality χtop(X) = χtop(X̃)). In particular, since [(G = 0)] = [P2] + 6L and [(F = 0)] = L2 + 4L + [P1],

both X′ := X \ {all singular fibers} and X̃′ := X̃ \ {all singular fibers} satisfy [X′]− [X̃′] = [X]− [X̃], with all the fibers on X′ (resp.

on X̃′) having the same class (= [P2] + 6L) in K0(Var). It is then tempting to propose that [X′] = [X̃′], but we don’t have a rigorous

argument for the proof, unfortunately.
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Proof. Firstly, since

[X] = [X0] + [the fiber over [0 : 1]] + [S]

(same for X̃) and [any smooth cubic surface] = [P2]+6L, it suffices to consider X0, X̃0 in place of X, X̃, respectively.

Further, we have X0 ' X̃0, since one may perform a linear transformation of yi (resp. of λ) which brings Lα to

Lα̃ (resp. Lβ + λ to Lβ̃ + λ). Then Lemma 2.4 yields X0 ×Am+1 ' X̃0 ×Am+1 and so [X0] ·Lm+1 = [X̃0] ·Lm+1.

In the same way we obtain [X0] ·Lm = [X̃0] ·Lm (using the second assertion of Lemma 2.4). The claim now follows

by induction on the number of variables yi in the linear forms Lα, Lα̃, etc. ¤

Corollary 2.8. [X] · Lk · (L− 1)m−k = [X̃] · Lk · (L− 1)m−k for all 0 ≤ k < m.

Proof. Again, it suffices to consider X0, X̃0 in place of X, X̃.

Set Li := Am ∩ (yi = 0), 1 ≤ i ≤ m, and observe that X0 × Ak × (A1 \ {0})m−k ' X0 × Am \
m−k⋃

i=1

X0 × Li

(resp. X̃0 ×Ak × (A1 \ {0})m−k ' X̃0 ×Am \
m−k⋃

i=1

X̃0 ×Li) for all k < m. Moreover, since X0 ×Li ' X̃0 ×Li (see

Proposition 2.7) and the schemes X0×Li (resp. X̃0×Li) are the same for all i, the isomorphisms X0×Li ' X̃0×Li

glue together and give

(2.9) X0 × Am \
m−k⋃

i=1

X0 × Li ' X̃0 × Am \
m−k⋃

i=1

X̃0 × Li.

Namely, each isomorphism X0 × Li ' X̃0 × Li extends to that between X0 × Am and X̃0 × Am, mapping yi to

yi. Then, given any two 0 ≤ i, j < m, we glue two copies of X0 × Am (resp. of X̃0 × Am) over X0 × Am \ Li

and X0 × Am \ Lj , respectively (same for X̃0), where the gluing isomorphism just interchanges yi and yj . The so

obtained variety contains X0×Li ∪X0×Lj whose complement coincides with X0×Am \ (X0×Li ∪X0×Lj) (and

similarly for X̃0). We also have X0 ×Am \ (X0 ×Li ∪X0 ×Lj) ' X̃0 ×Am \ (X̃0 ×Li ∪ X̃0 ×Lj) by construction.

Iterating this procedure yields (2.9).

The pertinent equalities now follow from the fact that

[X0 × Am \
m−k⋃

i=1

X0 × Li] = [X0] · (Lm − [
m−k⋃

i=1

Li]) = [X0] · Lk · (L− 1)m−k

(same for X̃0). ¤

Letting k = 0 in Corollary 2.8 we get the identity [X]·(L−1)m = [X̃]·(L−1)m. This together with Proposition 2.7

gives [X] = [X̃] (we have expanded (L− 1)m = Lm−mLm−1 + . . .+(−1)m in (commutative) K0(Var) in the usual

way).

2.10. Both X and X̃ satisfy the genericity assumption from [14, §1] concerning the pencils of degree 3 del Pezzo

surfaces (cf. Lemma 2.3 and 2.5 above). Hence X, X̃ are not birational to each other (see [14, Corollary 2.1,(i)]).

On the other hand, we have shown that [X] = [X̃], and Theorem 1.2 follows.
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