
TWISTS AND BRAIDS FOR GENERAL 3-FOLD FLOPS

WILL DONOVAN AND MICHAEL WEMYSS

Abstract. Given a quasi-projective 3-fold X with only Gorenstein terminal singu-
larities, we prove that the flop functors beginning at X satisfy Coxeter-type braid

relations, with the combinatorics controlled by a certain simplicial hyperplane ar-

rangement. This incorporates known special cases with degree 3 braid relations into
a general theory, with higher degree relations occurring even for two smooth rational

curves meeting at a point. Considering compositions of flops then yields a new pure

braid group action on the derived category of any such 3-fold that admits algebraically
flopping curves. We also construct a group action in the more general case where in-

dividual curves may flop analytically, but not algebraically, and furthermore we lift
the action to a form of affine pure braid group under the additional assumption that

X is Q-factorial.

Along the way, we produce two new twist autoequivalences of the derived category
of X. One uses commutative deformations of the scheme-theoretic fibre of a flopping

contraction, and the other uses noncommutative deformations of the fibre with reduced

scheme structure, generalising constructions of [T07, DW1] which considered only the
case when the flopping locus is irreducible. For type A flops of irreducible curves, we

show that the two autoequivalences are related, but that in other cases they are very

different, with the noncommutative twist being linked to birational geometry via the
Bridgeland–Chen [B, C02] flop–flop functor.
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1. Introduction

The derived category, through the Bridgeland stability manifold and its autoequiv-
alences, is one of the fundamental tools that enriches and furthers our understanding of
birational geometry, especially in low dimension. Amongst other things it is widely ex-
pected, and proved in many cases, that the derived category allows us to run the minimal
model program [BM, BO, B, C02, T13, W] and track minimal models [CI, T08, W], to
illuminate new and known symmetries [D13, DS1, HLS, ST, T07], and to understand
wall crossing phenomena [CI, C14, N], in both a conceptually and computationally easier
manner.
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Consider a general algebraic 3-fold flopping contraction f : X → Xcon, where X has
only Gorenstein terminal singularities. It is known that there are derived equivalences
between X and its flops [B, C02], and a key result of this paper is that these functors
satisfy higher degree braid relations, with combinatorics controlled by the real hyperplane
arrangements appearing in [W, §5–§7], which need not be Coxeter.

Roughly speaking, by taking the fundamental group associated to the complexified
complement of the above hyperplane arrangement, we obtain new pure braid group actions
on the derived category of X. However the situation is complicated by the fact that
flops of individual curves in the fibres of f may exist analytically, but not algebraically.
To deal with this, we develop suitable new twist autoequivalences. Given the flopping
contraction f , for each subset J of curves in its fibres we produce in full generality a twist
autoequivalence, and in the case when the curves J are algebraically floppable we show
that our twist recovers the (inverse of the) flop–flop functor. We call these twists the
J-twists, and the fact that they exist regardless of whether the curves J flop algebraically
allows us to obtain a group action on Db(cohX), with appropriate elements naturally
corresponding to all possible choices of J .

It turns out that the above J-twists are obtained by twisting over the noncommutative
deformations of parts of the exceptional locus of the contraction, equipped with its reduced
subscheme structure. We also produce another new twist autoequivalence, twisting instead
over the deformations of the scheme-theoretic exceptional locus. We show that for a type
A irreducible curve, these two twists are related, but in other cases they are very different.
We explain why both must be understood in order to construct affine braid group actions
on the derived category of X.

1.1. Flops and Braids. In known special cases, braiding is already known to hold. For
example, in certain toric type A cases, degree 3 braid relations F1 ◦ F2 ◦ F1

∼= F2 ◦ F1 ◦ F2

exist between flops. This case is investigated in [S03, DS2], where the braiding of flops
corresponds to analogous degree 3 relations between Seidel–Thomas twists on surfaces, as
studied in [ST].

In this paper, we explain how the general picture is quite different to these special
cases. As a motivating example consider a minimal model f : U → SpecR, where R is
an isolated 3-fold cDV singularity with precisely two irreducible curves above the unique
singular point. Suppose that a generic hyperplane section g ∈ R cuts

f

SpecRSpecR/g

U
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to an ADE surface singularity R/g of Type E6. By Reid’s general elephant principle, the
left-hand morphism is a partial crepant resolution of singularities, so is dominated by the
minimal resolution. In the above picture, following Katz [K91] we describe the top-left
scheme by taking the minimal resolution and blowing down the curves corresponding to
the black vertices in the E6 Dynkin diagram.

We remark that even though the dual graph of f is the Type A configuration ,
by [P83] or [W, 7.2] the chamber structure controlling the number of minimal models of
SpecR comes from the hyperplanes given below, not the 3 hyperplanes of the familiar A2

arrangement.

ϑ1 = 0
ϑ2 = 0
ϑ1 + ϑ2 = 0
ϑ1 + 2ϑ2 = 0
ϑ1 + 3ϑ2 = 0

It follows that in this example there are precisely 10 minimal models, so in particular the
degree 3 braiding of flops cannot possibly hold, since all minimal models are connected
by flops and so such a braiding would imply that SpecR has only 6 minimal models. We
can however hope for higher length braid relations, given in the above example by

1

2

1

2

1

2

1

2

1

2

F1 ◦ F2 ◦ F1 ◦ F2 ◦ F1
∼= F2 ◦ F1 ◦ F2 ◦ F1 ◦ F2.

This example demonstrates that the braiding of 3-fold flops is not controlled by the dual
graph, and in particular, a Type A dual graph does not imply Type A braiding phenomena.
Instead, 3-fold geometry is controlled by the generic hyperplane section, and the same
applies to the braiding of flop functors. This shows that in dimension greater than two
there cannot be an axiomatic approach to braiding of twists along the lines of [ST], since
the axiomatics of the dual graph are not enough to encode the extra information coming
from the generic hyperplane section.

It is not the dual graph but a GIT chamber structure that controls the combinatorics
of the braiding, and there are two different ways to describe this chamber structure. The
first, due to Pinkham [P83], is by taking an intersection in some large root system. This
gives a hyperplane arrangement, but is cumbersome to calculate in practice, and is not well
suited to functorial arguments. The second, in [W], is by tracking moduli spaces under
mutation, and by taking a generic hyperplane section this reduces the combinatorics to
knitting on surface singularities. The latter method is much more convenient for the
purposes of this paper, since our strategy to establish functorial braiding is to track
skyscrapers under flop functors, which is precisely what moduli tracking does.

Our arguments work in general, and it turns out that the above E6 example is mis-
leadingly easy. To work in generality, with multiple curve configurations, the chamber
structures are not even the root system of some Coxeter group and so to describe them
effectively we must use the language of simplicial hyperplane arrangements.
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1.2. Braiding. We first describe the case where the flopping contraction f : X → Xcon

contracts precisely two irreducible curves, and furthermore that each curve is individually
(algebraically) floppable. The general case is described next in §1.3. In the case where
the curves intersect, passing to the formal fibre, using [W] we associate to f a chamber
structure ΘA, where A is a certain noncommutative algebra. We refer the reader to §2.4
and §3.1 for full details.

These two-curve configurations follow a predictable pattern based on the above mo-
tivating example. As in the example above, we write F1 and F2 for the Bridgeland–Chen
flop functors associated to the two flopping curves in X. By abuse of notation, we also
use F1 and F2 to denote flop functors at the varieties obtained after successive flops. The
functor associated to the flop of the two curves together is denoted by F.

Theorem 1.1 (=3.6). Suppose that X → Xcon is a flopping contraction between quasi-
projective 3-folds, contracting precisely two independently floppable irreducible curves. If
X has at worst Gorenstein terminal singularities, then

F1 ◦ F2 ◦ F1 ◦ · · ·︸ ︷︷ ︸
n

∼= F ∼= F2 ◦ F1 ◦ F2 ◦ · · ·︸ ︷︷ ︸
n

for some n ≥ 2. Furthermore:

(1) If the curves intersect, n is half the number of chambers in ΘA, and n ≥ 3.
(2) If the curves are disjoint, then n = 2.

The proof heavily uses moduli tracking, developed as part of the Homological MMP
[W]. The strategy is to track skyscrapers Ox, with the challenge being to show that the
composition (F−1

1 ◦ F−1
2 ◦ F−1

1 ◦ · · · ) ◦ (· · · ◦ F2 ◦ F1 ◦ F2) applied to Ox is also a skyscraper.
Constraints on the number of chambers in ΘA follow by the methods of [W], and it is
anticipated that n ≤ 8 in 1.1(1).

When there are more than two curves in the connected chain, the braiding is still
controlled by the hyperplane arrangement ΘA, but to describe this requires more effort.
We first prove, in 3.14, that in this setting ΘA is always a simplicial hyperplane arrange-
ment. This allows us to associate to ΘA the Deligne groupoid, in the knowledge that the
relations are determined by the codimension two walls [D72, 1.10, 1.12] (see also [CM]).

As a motivating example which is not a root system, consider the following example
which arises from certain D4 flops with three curves above the origin. It has 7 hyperplanes,
and 32 chambers:

ϑ2

ϑ3

ϑ1

ϑ1 = 0
ϑ2 = 0
ϑ3 = 0
ϑ1 + ϑ2 = 0
ϑ1 + ϑ3 = 0
ϑ2 + ϑ3 = 0
ϑ1 + ϑ2 + ϑ3 = 0

Figure 1. Chamber structure for the configuration

In 3.17, we prove in the general setting that crashing through a codimension two wall
corresponds to flopping two curves together, and so the relations in the Deligne groupoid
GA can be verified using 1.1. In the above example, four of these relations are illustrated
in Figure 2 below, corresponding to the four codimension two walls marked blue.
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F2

F1

F2

F1

F2

F1

F3

F2

F3

F2

F3

F2

F3

F1

F1
F3

F1
F2

Figure 2. Four relations for the configuration

Theorem 1.2 (=3.19). Suppose that X → Xcon is an algebraic flopping contraction with
precisely one connected chain of curves contracting to a point, where X has terminal
Gorenstein singularities and each of the curves is individually (algebraically) floppable.
Then:

(1) The flop functors form a representation of the Deligne groupoid GA.
(2) The group π1(GA) acts on Db(cohX).

It is well-known (see 3.16) that any vertex group π1(GA) of the groupoid GA is iso-
morphic to the fundamental group of the complexified complement of the real hyperplane
arrangement ΘA, and that this can be presented as generators and relations [A, R82, S87].
However, our approach differs from that of Seidel–Thomas [ST] in that we do not use gen-
erators and relations of π1(GA) in our proof.

1.3. New Intrinsic Autoequivalences. In order to describe the case when curves are
forced to flop together, and also to understand geometrically some of the generators
of π1(GA), we need to associate intrinsic symmetries to a given flopping contraction
X → Xcon. For this, it is important to view the exceptional fibres of the contraction
in two different ways: on the one hand taking the reduced scheme structure, with indexed
components, and on the other taking the full scheme-theoretic fibre. It will turn out
that suitably interpreted both choices yield new autoequivalences, with the former being
naturally related to the individual flop, when that exists.

Considering the noncommutative ring A obtained by passing to the formal fibre, as
in the previous subsection, taking factors we define certain finite dimensional algebras in
2.11. As explained in [W, 2.15], the presentation of A depends on the intersection theory
of curves; an example is given below:

1

2

For any subset of the curves J ⊆ {1, 2}, we define AJ by factoring out all other idempo-
tents:

A1 A2 A{1,2}
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In a similar way A0 is defined by factoring out the idempotents corresponding to both the
curves; see 2.11 for full details. The algebras AJ defined for subsets J of the curves are
a generalisation of the contraction algebras introduced in [DW1] to the case of multiple
curves, since it is shown in [DW2] that AJ represents the functor of noncommutative
deformations of the curves in J . By contrast, [DW2] also shows that A0 represents both
the commutative and noncommutative deformations of the whole scheme-theoretic fibre.
Using these objects, in this paper we construct functors

JTwist, FTwist : D(QcohX)→ D(QcohX)

in 5.13, called the J-twist and the fibre twist, which twist around AJ and A0 respectively.

Theorem 1.3 (=5.11). Suppose that X → Xcon is a flopping contraction, where X is
projective and has terminal Gorenstein singularities.

(1) For any subset J of the flopping curves, JTwist is an autoequivalence.
(2) If further X is Q-factorial, then FTwist is an autoequivalence.

In this level of generality both autoequivalences are new, but we remark that (1)
recovers [DW1] in the special case when there is only one curve, and (2) recovers [T07]
in the case where there is one curve of Type A. It is unclear whether the restriction to
Q-factorial in 1.3(2) is strictly necessary, but currently the proof requires this assumption.

After choosing a subset of curves J , in the case when the union of curves
⋃
j∈J Cj

flops algebraically, the J-twist and the associated flop functors are related as follows.

Theorem 1.4 (=5.15). For a choice of subset J of the flopping curves, suppose that⋃
j∈J Cj flops algebraically. Then JTwist ◦ (FJ ◦ FJ) ∼= Id .

Thus the J-twist gives an intrinsic characterisation of the inverse of the flop–flop
functor, but has the advantage of always existing. This leads to our main result in the
purely algebraic setting, which is the following.

Theorem 1.5 (=6.2). Suppose that X → Xcon is a flopping contraction, where X is
projective and has only Gorenstein terminal singularities. The subgroup K of π1(G)
generated by the J-twists, as J ranges over all subsets of curves, acts on Db(cohX).

The groupoid G here may be defined as an appropriate cartesian product of groupoids
GA. It can happen that K = π1(G) (see 6.3), but verifying this in any level of generality
seems group-theoretically difficult. Also, it is unclear geometrically whether the whole of
π1(G) should act on Db(cohX) in the algebraic setting, since it is not obvious whether
all the other complete local functors in π1(G) have an intrinsic algebraic characterisation,
or indeed whether this is needed. We discuss this briefly in §6. There also seems to be
an affine version of this algebraic action, with the fibre twist playing the role of the affine
element, however the combinatorics of this seems to be intriguingly new, and so we will
return to it in the future.

For now, we simply remark that in the simplest situation, for a smooth rational curve
of Type A, the fibre twist may be conjugate to the J-twist by a certain line bundle. The
following theorem shows that in general the two twists are not conjugate in this way, and
so both will be needed to understand the derived autoequivalence group.

Theorem 1.6 (=5.16). In the global projective flops setup of 2.2, for a contraction of
a single irreducible curve to a point p, where in addition X is Q-factorial, there exists a
functorial isomorphism

FTwist(x⊗F) ∼= JTwist(x)⊗F
for some line bundle F on X, if and only if the following conditions hold.

(1) The point p is cDV of Type A.
(2) There exists a line bundle F on X such that deg(F|f−1(p)) = −1.
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The existence of both the J-twists and the fibre twist relies on the mutation theory
developed in [IW10, §6], then further in [DW1, W], together with the local-global methods
of [DW1, §7]. The rough idea is that we first work locally on some suitable open subset
U of X, on which there is a tilting bundle by [V]. Factors of this tilted algebra have
idempotents which then gives rise to ideals; these ideals are naturally (algebraically)
defined, and we prove they give tilting autoequivalences by reducing to the formal fibre.
We then pull these ideals across to give a FM kernel on U × U , then glue these functors
into X, using the procedure developed in [DW1, §7]. We refer the reader to §4 and §5 for
full details.

Along the way, especially when we restrict to Q-factorial varieties to obtain and
control the fibre twist, we use the theory of maximal modification algebras (=MMAs) as
recalled in 2.16. These are the noncommutative version of minimal models. It is an open
problem as to whether the property of being an MMA passes to localizations at maximal
ideals (it is known that it does not pass to the completion), however in this paper we do
establish and use the following, which may be of independent interest.

Theorem 1.7 (=2.17). Suppose that R is a three-dimensional Gorenstein normal domain
over a field, and that Λ is derived equivalent to a Q-factorial terminalization of SpecR.
Then Λ is an MMA, and further for all m ∈ MaxR, the algebra Λm is an MMA of Rm.

1.4. Conventions. We work over C. Unqualified uses of the word module refer to right
modules, and modA denotes the category of finitely generated right A-modules. The full
subcategory of finite length modules will be denoted flA. When left modules appear, we
will either emphasise the fact that they are left modules, or consider them as objects of
modAop. If M ∈ modA, we let addM denote all possible summands of finite sums of
M . We say that M is a generator if R ∈ addM . If S, T ∈ modR where S is a summand
of T , then we define the ideal [S] to be the two-sided ideal of EndR(T ) consisting of all
morphisms factoring through addS.

We use the functional convention for composing arrows, so f ·g means g then f . With
this convention, M is a EndR(M)op-module. Furthermore, HomR(M,N) is a EndR(M)-
module and a EndR(N)op-module, in fact a bimodule. Note also that HomR(SMR, TMR)
is an S–T bimodule and HomRop(RMS ,RMT ) is a T–S bimodule.

If X is a scheme, OX,x will denote the localization of the structure sheaf at the closed
point x ∈ X, whereas Ox will always denote the skyscraper sheaf at x. We will write

ÔX,x for the completion of OX,x at the unique maximal ideal. Throughout, locally will
always mean Zariski locally, and when we discuss the completion, we will speak of working
complete locally.

2. Flops Setting and Notation

In this section we fix notation, and provide the necessary preliminary results.

2.1. Perverse Sheaves. Consider a projective birational morphism f : X → Xcon be-
tween noetherian integral normal C-schemes with Rf∗OX = OXcon

, such that the fibres
are at most one-dimensional.

Definition 2.1. For such a morphism f : X → Xcon, recall [B, V] that 0Per(X,Xcon),
the category of perverse sheaves on X, is defined

0Per(X,Xcon) =

a ∈ Db(cohX)

∣∣∣∣∣∣
Hi(a) = 0 if i 6= 0,−1

f∗H
−1(a) = 0, R1f∗H

0(a) = 0
Hom(c,H−1(a)) = 0 for all c ∈ C0

 ,

where

C := {c ∈ Db(cohX) | Rf∗c = 0}
and C0 denotes the full subcategory of C whose object have cohomology in degree 0.
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2.2. Global and Local Flops Notation. In this subsection, and for the remainder of
this paper, we will make use of the following geometric setup.

Setup 2.2. (Global flops) We let f : X → Xcon be a flopping contraction, where X is a
projective 3-fold with only Gorenstein terminal singularities. This means that f is crepant
and an isomorphism in codimension two. We write Ram(Xcon) for the (finite) set of points
in Xcon above which f is not an isomorphism.

We will not assume that X is Q-factorial unless explicitly stated. With the assump-
tions in 2.2, around each point p ∈ Ram(Xcon) we can find an affine open neighbourhood
SpecR containing p but none of the other points in Ram(Xcon), as shown below.

p1

p2

f

Xcon

X

We set U := f−1(SpecR) and thus consider the morphism

f |U : U → SpecR.

By construction, this is an isomorphism away from a single point, and above that point
is a connected chain of rational curves. Many of our global problems can be reduced to
the following Zariski local setup.

Setup 2.3. (Zariski local flops, single chain) Suppose that f : U → SpecR is a crepant
projective birational contraction, with fibres at most one-dimensional, which is an isomor-
phism away from precisely one point m ∈ MaxR. We assume that U has only terminal
Gorenstein singularities. As notation, above m is a connected chain C of n curves with
reduced scheme structure Cred =

⋃n
j=1 Cj such that each Cj ∼= P1.

Passing to the completion will bring technical advantages.

Setup 2.4. (Complete local flops) With notation and setup as in 2.3, we let R denote the
completion of R at the maximal ideal m. We let ϕ : U→ SpecR denote the formal fibre.
Above the unique closed point is a connected chain C of n curves with Cred =

⋃n
j=1 Cj

such that each Cj ∼= P1. Because R is terminal Gorenstein, necessarily R is an isolated
hypersurface singularity, by [R83, 0.6(I)].
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2.3. The Contraction and Fibre Algebras. In the Zariski local flops setup in 2.3, it is
well-known [V, 3.2.8] that there is a bundle V := OU ⊕N inducing a derived equivalence

Db(cohU) Db(mod EndU (V))

0Per(U,R) mod EndU (V)

RHomU (V,−)

∼

∼

(2.A)

In this Zariski local setting there is choice in the construction of V, but in the setting of
the formal fibre later in §2.4, there is a canonical choice.

Throughout we set

Λ := EndU (V) = EndU (OU ⊕N ).

Recall that if F ,G ∈ cohU where F is a summand of G, then we define the ideal [F ] to
be the two-sided ideal of EndU (G) consisting of all morphisms factoring through addF .

Definition 2.5. With notation as above, we define the contraction algebra associated to
Λ to be Λcon := EndU (OU ⊕N )/[OU ].

We remark that Λcon defined above depends on Λ and thus the choice of derived
equivalence (2.A). In the complete local case there is a canonical choice for this; see §2.4
below.

Lemma 2.6. Under the Zariski local setup of 2.3, the basic algebra morita equivalent to
Λcon has precisely n primitive idempotents.

Proof. As in [DW1, 2.16], Λcon
∼= Λ̂con, and on the completion the assertion is clear, for

example using (2.F). �

Since f is a flopping contraction, it follows from [V, 4.2.1] that

Λ = EndU (V) ∼= EndR(R⊕ f∗N ). (2.B)

We set L := f∗N so that Λ ∼= EndR(R ⊕ L). Translating 2.5 through this isomorphism,
the contraction algebra associated to Λ becomes

Λcon
∼= EndR(R⊕ L)/[R] ∼= EndR(L)/[R].

There is a canonical ring homomorphism Λ → Λcon, and we denote its kernel by Icon.
Necessarily this is a two-sided ideal of Λ, so there is a short exact sequence

0→ Icon → Λ→ Λcon → 0 (2.C)

of Λ-bimodules. For global twist functors later, we need a more refined version of this.
Under the morita equivalence in 2.6, Λcon inherits n primitive idempotents e1, . . . , en. We
pick a subset J ⊆ {1, . . . , n} of these idempotents (equivalently, a subset of the exceptional
curves in 2.3), and write

ΛJ :=
Λcon

Λcon(1−
∑
j∈J ej)Λcon

.

The composition of the ring homomorphisms Λ → Λcon → ΛJ is a surjective ring homo-
morphism. We denote the kernel by IJ , which is a two-sided ideal of Λ, and thus for each
subset J ⊆ {1, . . . , n}, there is a short exact sequence

0→ IJ → Λ→ ΛJ → 0 (2.D)

of Λ-bimodules. This exact sequence is needed later to extract a Zariski local noncommu-
tative twist functor from the formal fibre.

Naively, we want to repeat the above analysis for Λ/[L] = EndR(R⊕L)/[L] to obtain
a similar exact sequence, as this later will give another, different, derived autoequivalence.
However, by the failure of Krull–Schmidt it may happen that R ∈ addL, in which case
Λ/[L] = 0. We get round this problem by passing to the localization Λm, where we can
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use lifting numbers. Indeed, localizing Λ with respect to the maximal ideal m in setup 2.3
gives Λm

∼= EndRm
(Rm ⊕ Lm), so we can then use the following well-known lemma.

Lemma 2.7. Suppose that (S,m) is a commutative noetherian local ring, and suppose
that T ∈ modS. Then we can write T ∼= Sa ⊕X for some a ≥ 0 with S /∈ addX.

Proof. Since Ŝ is complete local, we can write T̂ ∼= Ŝ⊕a⊕X⊕a1
1 ⊕· · ·⊕X⊕ann as its Krull–

Schmidt decomposition into pairwise non-isomorphic indecomposables, where a ≥ 0 and

all ai ≥ 1. Since Ŝ⊕a is a summand of T̂ , it follows that S⊕a is a summand of T (see e.g.
[LW, 1.15]), so we can write T ∼= S⊕a ⊕X for some X. Completing this decomposition,

again by Krull–Schmidt X̂ ∼= X⊕a1
1 ⊕ · · · ⊕ X⊕ann and so Ŝ /∈ add X̂. It follows that

S /∈ addX. �

By 2.7, we may pull out all free summands from Lm, and write

Λm
∼= EndRm

(R⊕am ⊕K)

for some K ∈ modRm with Rm /∈ addK.

Definition 2.8. With the Zariski local flops setup in 2.3, we define the fibre algebra Λ0

to be Λm/[K].

Since by construction Rm /∈ addK, the fibre algebra Λ0 is non-zero. Furthermore,
the composition of ring homomorphisms

Λ
ψ1−−→ Λm

ψ2−−→ Λm/[K] = Λ0

is a ring homomorphism, and we define I0 := Ker(ψ2ψ1).

Lemma 2.9. With the Zariski local flops setup as in 2.3, as an R-module Λ0 is supported
only at m, and further there is a short exact sequence

0→ I0 → Λ→ Λ0 → 0 (2.E)

of Λ-bimodules.

Proof. Since Rm is an isolated singularity, Λ0 = Λm/[K] has finite length as an Rm-module
by [IW10, 6.19(3)]. Thus, as an R-module, it is supported only at m. The only thing that
remains to be proved is that ψ2ψ1 is surjective. If we let C denote the cokernel, then since
Λ0 is supported only at m, (Λ0)n = 0 for all n ∈ MaxR with n 6= m, and so Cn = 0 for all
n 6= m. But on the other hand (ψ1)m is an isomorphism, and (ψ2)m is clearly surjective,
hence (ψ2ψ1)m is also surjective, so Cm = 0. Hence C = 0. �

2.4. Complete Local Derived Category Notation. In this subsection we consider
the complete local flops setup in 2.4, and fix notation. Completing the base in 2.3 with
respect to m gives SpecR and we consider the formal fibre ϕ : U → SpecR. The above
derived equivalence (2.A) induces an equivalence

Db(cohU) Db(mod Λ̂).
RHomU(V̂,−)

∼

This can be described much more explicitly. Let C = ϕ−1(m) where m is the unique
closed point of SpecR. Then the reduced scheme Cred =

⋃n
j=1 Cj with Cj ∼= P1. Let Lj

denote a line bundle on U such that Lj ·Ci = δji. If the multiplicity of Cj is equal to one,
set Mj := Lj , else define Mj to be given by the maximal extension

0→ O⊕(r−1)
U →Mj → Lj → 0

associated to a minimal set of r − 1 generators of H1(U,L∗j ) [V, 3.5.4].

Notation 2.10. In the complete local flops setup of 2.4,

(1) Set Nj :=M∗j , N0 := OU and VU :=
⊕n

j=0Nj .
(2) Set Nj := H0(Nj) and N := H0(VU). Set N0 := R, so that N =

⊕n
j=0Nj .
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(3) Put A := EndR(N).

By [V, 3.5.5], VU is a basic progenerator of 0Per(U,R), and furthermore is a tilting
bundle on U. The rank of Nj as an R-module, rankRNj , is equal to the scheme-theoretic
multiplicity of the curve Cj [V, 3.5.4]. Further, by [V, 3.5.5] we can write

V̂ ∼= O⊕a0

U ⊕
n⊕
j=1

N⊕ajj (2.F)

for some aj ∈ N and so consequently Λ̂ ∼= EndR(
⊕n

j=0N
⊕aj
j ), so that A is the basic

algebra morita equivalent to Λ̂.

Definition 2.11. For any J ⊆ {0, 1, . . . , n}, set

(1) NJ :=
⊕

j∈J Nj and NJc :=
⊕

k/∈J Nk, so that VU = NJ ⊕NJc .

(2) NJ :=
⊕

j∈J Nj and NJc :=
⊕

k/∈J Nk, so that N = NJ ⊕NJc .

There are three important special cases, namely

(3) When J ⊆ {1, . . . , n}, where we write

AJ := EndR(N)/[NJc ],

and call AJ the contraction algebra associated to
⋃
j∈J Cj.

(4) When J = {1, . . . , n}, where we call AJ the contraction algebra associated to ϕ,
and denote it by

Acon
∼= EndR(N)/[R] ∼= EndR

(
⊕nj=1Nj

)
/[R].

(5) When J = {0}, we put

A0 := EndR(N)/[⊕nj=1Nj ]
∼= EndR(R)/[⊕nj=1Nj ]

∼= R/[⊕nj=1Nj ],

and call A0 the fibre algebra associated to ϕ.

It follows from the definition that A0 is always commutative.

Remark 2.12. We conjectured in [DW1, 1.4] that Acon distinguishes the analytic type
of irreducible contractible flopping curves. We remark here that A0 certainly does not,
for example inspecting the Laufer flop in [DW1, 1.3] we see that A0 = C, and it is also
well-known that A0 = C for the Atiyah flop. This already demonstrates that Acon gives
more information than A0, although both play a role in the derived symmetry group.

Remark 2.13. Even though A0 does not distinguish analytic type, it still gives important
information since it encodes deformations of the scheme-theoretic fibre C [DW2]. In the
case of the higher order Laufer flop, from the presentation of A in [DW1, 3.14] it is easily
seen that A0

∼= C[ε]/εn, which corresponds to a single (n − 1)th order deformation. By
contrast, the noncommutative deformations of the reduced curve Cred are much more
complicated, with Acon

∼= C〈x, y〉/(xy = −yx, x2 = y2n+1).

The following is shown in a similar way to [DW1, 2.15].

Lemma 2.14. With the complete local setup as above, for all p ∈ SpecR,

(1) (AJ)p ∼= (Ap)J and (AJ)p ⊗Rp
R̂p
∼= (Âp)J for all J ⊆ {1, . . . , n}.

(2) (A0)p ∼= (Ap)0 and (A0)p ⊗Rp
R̂p
∼= (Âp)0.

Notation 2.15. For the Zariski local flops setup 2.3, and its formal fibre 2.4, as notation
for the remainder of this paper,

(1) Write F : Mod A→ Mod Λ̂ for the morita equivalence induced from (2.F).
(2) For each i ∈ {1, . . . , n} set Ei := OCi

(−1), considered as a complex in degree
zero. Further, set E0 := ωC [1].
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(3) For each i ∈ {0, 1, . . . , n}, define the simple Λ-modules Ti to be the modules
corresponding to the perverse sheaves Ei across the derived equivalence (2.A).

Further, set Si := F−1T̂i, which are the corresponding simple A-modules.
(4) For any J ⊆ {1, . . . , n}, viewing FAJ and FA0 as Λ-modules via restriction of

scalars, we put EJ := FAJ ⊗L
Λ V and E0 := FA0 ⊗L

Λ V. As in [DW1, 3.7], both
are perverse sheaves, with EJ concentrated in degree zero, and E0 concentrated in
degree −1.

The above notation is summarised in the following diagram.

Db(QcohU) Db(Mod Λ) Db(Mod Λ̂) Db(Mod A)
RHomU (V,−)

−⊗L
ΛV

⊗Rm R̂

res

F

Ei Ti T̂i Si

EJ FAJ FAJ AJ

E0 FA0 FA0 A0

2.5. Maximal Modification Algebras. Later the fibre twist autoequivalence requires
a restriction to Q-factorial singularities and some other technical results, which we review
here. For a commutative noetherian local ring (R,m) and M ∈ modR recall that the
depth of M is defined to be

depthRM := inf{i ≥ 0 | ExtiR(R/m,M) 6= 0},

which coincides with the maximal length of an M -regular sequence. Keeping the assump-
tion that (R,m) is local we say that M ∈ modR is maximal Cohen–Macaulay (=CM) if
depthRM = dimR.

In the non-local setting, if R is an arbitrary commutative noetherian ring we say that
M ∈ modR is CM if Mp is CM for all prime ideals p in R, and we denote the category
of CM R-modules by CMR. We say that R is a CM ring if R ∈ CMR, and if further
inj.dimRR <∞, we say that R is Gorenstein. We write ref R for the category of reflexive
R-modules.

Recall the following [IW10].

Definition 2.16. Suppose that R is a d-dimensional CM ring. We call N ∈ ref R a
maximal modifying (=MM) module if

addN = {X ∈ ref R | EndR(N ⊕X) ∈ CMR}.

If N is an MM module, we call EndR(N) a maximal modification algebra (=MMA).

Throughout, we say a normal scheme X is Q-factorial if for every Weil divisor D,
there exists n ∈ N for which nD is Cartier; this condition can be checked on the stalks
OX,x of the closed points x ∈ X. However this property is not complete local, so we say

X is complete locally Q-factorial if the completion ÔX,x is Q-factorial for all closed points
x ∈ X.

Recall that if X and Y are varieties over C, then a projective birational morphism
f : Y → X is called crepant if f∗ωX = ωY . A Q-factorial terminalization of X is a crepant
projective birational morphism f : Y → X such that Y has only Q-factorial terminal
singularities. When Y is furthermore smooth, we call f a crepant resolution.

In our geometric setup later, we will require that localizations of MMAs are MMAs.
There is currently no known purely algebraic proof of this, but the following geometric
proof suffices for our purposes.

Theorem 2.17. Suppose that R is a three-dimensional Gorenstein normal domain over
a field, and that Λ is derived equivalent to a Q-factorial terminalization of SpecR. Then
for all m ∈ MaxR, Λm is an MMA of Rm.



TWISTS AND BRAIDS FOR GENERAL 3-FOLD FLOPS 13

Proof. For m ∈ MaxR, after base change

X ′ X

SpecRm SpecR

k

j

ϕ f

Λm is derived equivalent to X ′. But the stalks of OX′ are isomorphic to stalks of OX , and
so in particular all stalks of OX′ are isolated Q-factorial hypersurfaces. By [IW14, 3.2(1)]

Dsg(Λm) ↪→
⊕

x∈SingX′

CMOX′,x

and so Dsg(Λm) is rigid-free since each CMOX′,x is [D10, 3.1(1)]. Since Λ has isolated
singularities [IW14, 4.2(2)], this implies that Λm is an MMA [IW14, 2.14]. �

2.6. Mutation Notation. Throughout this subsection we consider the complete local
flops setting 2.4, and use notation from 2.10 and 2.11, so in particular R is an isolated
complete local Gorenstein 3-fold, and A := EndR(N). We set (−)∗ := HomR(−,R).

Given our choice of summand NJ , we then mutate.

Setup 2.18. As in 2.11, write NJ =
⊕

j∈J Nj as a direct sum of indecomposables. For

each j ∈ J , consider a minimal right (addNJc)-approximation

Vj
aj−→ Nj

of Nj , which by definition means that

(1) Vj ∈ addNJc and (aj ·) : HomR(NJc , Vj)→ HomR(NJc , Nj) is surjective.
(2) If g ∈ EndR(Vj) satisfies aj = ajg, then g is an automorphism.

Since R is complete, such an aj exists and is unique up to isomorphism. Thus there are
exact sequences

0→ Ker aj
cj−→ Vj

aj−→ Nj (2.G)

0→ HomR(NJc ,Ker aj)
cj ·−−→ HomR(NJc , Vj)

aj ·−−→ HomR(NJc , Nj)→ 0

Summing the sequences (2.G) over all j ∈ J gives exact sequences

0→ Ker aJ
cJ−→ VJ

aJ−→ NJ (2.H)

0→ HomR(NJc ,Ker aJ)
cJ ·−−→ HomR(NJc , VJ)

aJ ·−−→ HomR(NJc , NJ)→ 0

Note that applying HomR(N,−) to (2.H) yields an exact sequence

0→ HomR(N,Ker aJ)
cJ ·−−→ HomR(N,VJ)

aJ ·−−→ HomR(N,NJ)→ AJ → 0 (2.I)

of A-modules.
Dually, for each j ∈ J , consider a minimal right (addN∗Jc)-approximation

U∗j
bj−→ N∗j

of N∗j , thus

0→ Ker bj
dj−→ U∗j

bj−→ N∗j

0→ HomR(N∗Jc ,Ker bj)
dj ·−−→ HomR(N∗Jc , U∗j )

bj ·−−→ HomR(N∗Jc , N∗j )→ 0

are exact. Summing over all j ∈ J gives exact sequences

0→ Ker bJ
dJ−→ U∗J

bJ−→ N∗J (2.J)

0→ HomR(N∗Jc ,Ker bJ)
dJ ·−−→ HomR(N∗Jc , U∗J )

bJ ·−−→ HomR(N∗Jc , N∗J )→ 0.
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Definition 2.19. With notation as above, in particular A := EndR(N), we define the
left mutation of N at NJ as

νJN := NJc ⊕ (Ker bJ)∗,

and set νJA := EndR(νJN).

One of the key properties of mutation is that it always gives rise to a derived equiv-
alence. With the setup as above, the derived equivalence between A and νJA is given by
a tilting A-module TJ constructed as follows. There is an exact sequence

0→ NJ
b∗J−→ UJ

d∗J−→ (Ker bJ)∗ (2.K)

obtained by dualizing (2.J). Applying HomR(N,−) induces (b∗J ·) : HomR(N,NJ) →
HomR(N,UJ), so denoting the cokernel by CJ there is an exact sequence

0→ HomR(N,NJ)
b∗J ·−−→ HomR(N,UJ)→ CJ → 0. (2.L)

The tilting A-module TJ is defined to be TJ := HomR(N,NJc) ⊕ CJ . It turns out that
EndA(TJ) ∼= νJA [IW10, 6.7, 6.8], and there is always an equivalence

ΦJ := RHom(TJ ,−) : Db(mod A)
∼−→ Db(modνJA),

which is called the mutation functor [IW10, 6.8].

3. On the Braiding of Flops

In this section we establish the braiding of flop functors in dimension three, and
describe the combinatorial objects that allow us to read off the length of the braid relations
which appear. To account for the inconvenient fact that, algebraically, curves are often
forced to flop together, we begin by establishing braiding in the complete local case, before
addressing the Zariski local and global cases. Throughout this section, we will assume
that the curves are all individually floppable, with the general situation being described
later in §6.

3.1. Moduli Tracking. Throughout this subsection we consider the complete local flops
setup of 2.4, and use the notation from §2.4. Thus there is a flopping contraction
ϕ : U → SpecR of 3-folds, where U has Gorenstein terminal singularities, and U is de-
rived equivalent to A := EndR(N) from 2.10, where N =

⊕n
i=0Ni. The Ni with i > 0

correspond to the n curves in the exceptional locus.
To prove the braiding of flops in this setting, we will heavily use the following moduli

tracking result. As notation, we present A as a quiver with relations, and consider King
stability; see for example [W, §5] for a brief introduction in this setting. In particular,
we define the dimension vector rk A := (rankRNi)

n
i=0, and denote the space of stability

parameters by Θ.
Given ϑ ∈ Θ, denote by Sϑ(A) the full subcategory of fl A which has as objects the

ϑ-semistable objects, and denote by Srk,ϑ(A) the full subcategory of Sϑ(A) consisting of
those objects with dimension vector rk A. We let Mrk,ϑ(A) denote the moduli space of
ϑ-stable A-representations of dimension vector rk A.

Since by definition any stability condition satisfies ϑ · rk A = 0, the fact that N0 = R
has rank one then implies that

ϑ0 = −
n∑
i=1

(rankRNi)ϑi

and so Θ = Qn, with co-ordinates ϑi for each i = 1, . . . , n.

Theorem 3.1 (Moduli Tracking). In the complete local flops setup of 2.4, choose a sub-
set of curves J , equivalently a subset J ⊆ {1, . . . , n}. Applying the mutation setup of
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2.18 to N =
⊕n

i=0Ni with summand NJ :=
⊕

j∈J Nj, consider the mutation exchange

sequence (2.K)

0→ Nj → Uj → (Ker bj)
∗,

for each j ∈ J . By Krull–Schmidt, Uj decomposes into

Uj ∼=
⊕
i/∈J

N
⊕bj,i
i

for some collection of bj,i ≥ 0. Write bJ for the data (bj,i) with j ∈ J , i /∈ J . Then for
any stability parameter ϑ ∈ Θ define the vector νbJ

ϑ by

(νbJ
ϑ)i =

{
ϑi +

∑
j∈J bj,iϑj if i /∈ J
−ϑi if i ∈ J.

If ϑj > 0 for all j ∈ J , then

(1) The mutation functor ΦJ restricts to a categorical equivalence

Srk,ϑ(A) Srk,νbJ
ϑ(νJA)

ΦJ

where the left-hand side has dimension vector rk A, and the right-hand side dimen-
sion vector rkνJA. This categorical equivalence preserves S-equivalence classes,
and ϑ-stable modules correspond to νbJ

ϑ-stable modules. Further, ϑ is generic if
and only if νbJ

ϑ is generic.
(2) As schemes

Mrk,ϑ(A) ∼=Mrk,νbJ
ϑ(νJA).

Proof. (1) This is a special case of [W, 5.12], using [W, 2.25, 3.5] to see that the assump-
tion (b) of [W, 5.12] is satisfied.
(2) This is [W, 5.13]. �

The stability parameter space Θ has a wall and chamber structure, and the combina-
torics of this turns out to control the braiding. The strictly semi-stable parameters cut out
codimension one walls, separating the generic stability conditions into chambers. Within
a given chamber, the set of semi-stable representations does not vary. The following is
known.

Proposition 3.2. In the complete local flops setup of 2.4

(1) The region

C+ := {ϑ ∈ Θ | ϑi > 0 for all i > 0}
of Θ is a chamber.

(2) Θ has a finite number of chambers, and the walls are given by a finite collection
of hyperplanes containing the origin. The co-ordinate hyperplanes ϑi = 0 are
included in this collection.

(3) Considering iterated mutations at indecomposable summands, tracking the cham-
ber C+ from νj1 . . .νjtA back to Θ gives all the chambers of Θ.

Proof. This follows immediately from [W, 5.16, 5.23]. �

Remark 3.3. Moduli tracking works in both directions, and this is important for our
application. First, 3.2(3) allows us to fix the input A, and track moduli from some iterated
mutation νj1 . . .νjtA back to A. This procedure computes the chamber structure for the
fixed A, which gives the combinatorial data needed to state theorems on braiding later
on, in §3.3. Second, 3.1 also allows us to track moduli starting from A to some iterated
mutation νj1 . . .νjtA. This second direction is needed to prove the theorems, in particular
to establish the braiding in 3.8.
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3.2. Chamber Structures. We keep the notation and setting from above. In this sub-
section we give an example of a chamber structure arising in 3-fold flops. Although not
strictly needed for the proof of the main theorem, this illustrates some new phenomena
and subtleties in the combinatorics.

With input the flopping contraction U → SpecR of 2.4, by Reid’s general elephant
principle [R83, 1.1, 1.14], cutting by a generic hyperplane section g ∈ R gives

Ug U

Spec(R/g) SpecR

φ ϕ

where R/g is an ADE singularity and φ is a partial crepant resolution. By general theory,
EndR/g(N/gN) is derived equivalent to Ug, and so the module Ni cuts to Ni/gNi, which
is precisely one of the CM modules corresponding to a vertex in an ADE Dynkin diagram
via the McKay correspondence.

Following the notation from [K91], we encode Ug pictorially by describing which
curves are blown down from the minimal resolution. The diagrams

represent, respectively, the minimal resolution of the E6 surface singularity, and the partial
resolution obtained from it by contracting the curves corresponding to the black vertices.

Example 3.4. There is an example [K91, 2.3] of a cD4 singularity R with crepant reso-
lution X → SpecR with two curves above the origin, that cuts under generic hyperplane
section to give the configuration

(3.A)

By 3.2(3), tracking moduli from iterated mutations back to A computes the chamber
structure of ΘA. We illustrate this in the easiest non-Type A example, referring the reader
to [W, 7.2] for more examples.

Example 3.5. This example computes the chamber structure for A = EndR(R⊕N1⊕N2)
in the situation of 3.4 above. As notation order the vertices

2 1

meaning that N1 corresponds to the middle curve, and N2 corresponds to the left-hand
curve. The mutation exchange sequences are obtained by knitting (for details, see [W,
5.19, 5.24]), so that in this example the b’s are determined by the data

U1
∼= N2 (3.B)

U2
∼= R⊕2 ⊕N⊕2

1 . (3.C)

First, we track the C+ chamber from ν1A to A. By 3.1,

φ1

φ2

(3.B)7→ −φ1

φ1 + φ2

since from (3.B) the relevant b is one, so we negate φ1 and add 1φ1 to its neighbour. Thus
the C+ chamber (namely φ1 > 0, φ2 > 0) from ν1A corresponds to the region ϑ1 < 0
and ϑ1 + ϑ2 > 0 of ΘA, and thus this gives a chamber for ΘA.
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Next, we track the C+ chamber from ν2ν1A to ν1A to A. By the same logic

φ1

φ2

(3.C)7→ φ1 + 2φ2

−φ2

(3.B)7→ −(φ1 + 2φ2)
−φ2 + (φ1 + 2φ2)

=
−φ1 − 2φ2

φ1 + φ2

which gives the region ϑ1 + 2ϑ2 > 0 and ϑ1 + ϑ2 < 0 of ΘA, and so this too is a chamber.
Next, tracking C+ from ν1ν2ν1A to ν2ν1A to ν1A to A gives

φ1

φ2

(3.B)7→ −φ1

φ1 + φ2

(3.C)7→ φ1 + 2φ2

−φ1 − φ2

(3.B)7→ −φ1 − 2φ2

φ2

which gives the region ϑ1 + 2ϑ2 < 0 and ϑ2 > 0.
Continuing in this fashion, ΘA has chamber structure as follows.

ϑ1

ϑ2

ϑ1 = 0
ϑ2 = 0
ϑ1 + ϑ2 = 0
ϑ1 + 2ϑ2 = 0

3.3. Braiding: Two-Curve Case. The aim of this subsection is to prove the following.

Theorem 3.6. Suppose that X → Xcon is a flopping contraction between quasi-projective
3-folds, contracting precisely two independently floppable irreducible curves. If X has at
worst Gorenstein terminal singularities, then

F1 ◦ F2 ◦ F1 ◦ · · ·︸ ︷︷ ︸
n

∼= F{1,2} ∼= F2 ◦ F1 ◦ F2 ◦ · · ·︸ ︷︷ ︸
n

for some n ≥ 2. Furthermore:

(1) If the curves intersect, n is half the number of chambers in ΘA, and n ≥ 3.
(2) If the curves are disjoint, then n = 2.

The statement and proof of 3.6(1) is contained in 3.12, and similarly 3.6(2) is con-
tained in 3.13.

We first prove 3.6(1). To do this, we give a complete local version of the result in 3.8.
We then establish a Zariski local version in 3.10, before finally giving the result globally
in 3.12. Before beginning the proof, which is notationally complicated, we first illustrate
the strategy in an example.

Example 3.7. We continue the complete local example 3.5. Label the minimal models
arising from the chambers by

U

U1

U21

U121

U1212

U212

U12

U2

By [W, 4.9], the above chamber structure implies that

ν2ν1ν2ν1N ∼= ν1ν2ν1ν2N
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since the chamber C+ for both EndR(ν2ν1ν2ν1N) and EndR(ν1ν2ν1ν2N) gives, under
moduli tracking, the same chamber on ΘA. Hence there is a diagram of mutation functors

Db(ν1ν2ν1ν2A)

Db(ν2ν1ν2A)Db(ν1ν2A)Db(ν2A)

Db(A)

Db(ν1A) Db(ν2ν1A) Db(ν1ν2ν1A)

Φ2

Φ1 Φ2

Φ1

Φ1

Φ2 Φ1

Φ2

(3.D)

Further, by [W, 4.2] the inverse of the flop functor is functorially isomorphic to mutation,
so (3.D) is functorially isomorphic to the diagram of functors

Db(U1212)

Db(U212)Db(U12)Db(U2)

Db(U)

Db(U1) Db(U21) Db(U121)

F−1
2

F−1
1 F−1

2

F−1
1

F−1
1

F−1
2 F−1

1

F−1
2

(3.E)

Now choose a skyscraper Ox in Db(U). By [K14, §5.2], this corresponds to some ϑ-stable
module M in Db(A) for ϑ ∈ C+. Remarkably, under the mutation functors in (3.D), this
module M is always sent to a module. This follows by using 3.1(1) repeatedly. Indeed
the new module is stable for some stability parameter, which may be calculated using the
formula given in 3.1. Tracking this data we see that under mutation the module M gets
sent to modules stable for parameters as follows.

−ϑ1

−ϑ2

ϑ1

−ϑ1 − ϑ2

−ϑ1 − 2ϑ2

ϑ1 + ϑ2

ϑ1 + 2ϑ2

−ϑ2

ϑ1

ϑ2

−ϑ1

ϑ1 + ϑ2

ϑ1 + 2ϑ2

−ϑ1 − ϑ2

−ϑ1 − 2ϑ2

ϑ2

Φ2

Φ1 Φ2

Φ1

Φ−1
1

Φ−1
2 Φ−1

1

Φ−1
2

(3.F)

It follows immediately that the composition of mutations

Φ−1
1 ◦Φ

−1
2 ◦Φ

−1
1 ◦Φ

−1
2 ◦Φ1 ◦Φ2 ◦Φ1 ◦Φ2

sends M , which is ϑ-stable for ϑ = (ϑ1, ϑ2) ∈ C+, to a module which is also ϑ-stable.
Since (3.D) is functorially isomorphic to (3.E), it follows that

Ψ := F1 ◦ F2 ◦ F1 ◦ F2 ◦ F−1
1 ◦ F−1

2 ◦ F−1
1 ◦ F−1

2

sends the skyscraper Ox to some object in Db(cohU) corresponding to a ϑ-stable module.
But again by [K14, §5.2] these are precisely the skyscrapers. Hence we obtain that Ψ is a
Fourier–Mukai equivalence that takes skyscrapers to skyscrapers, fixes OU and commutes
with the pushdown Rf∗. It follows that Ψ ∼= Id and so

F1 ◦ F2 ◦ F1 ◦ F2
∼= F2 ◦ F1 ◦ F2 ◦ F1.

The following proposition is a simple extension of the above example. Recall that
Φ{1,2} denotes the mutation functor for the summand N1 ⊕N2.

Proposition 3.8. Suppose that U→ SpecR is a complete local flopping contraction with
precisely two floppable curves meeting at a point. If U has at worst Gorenstein terminal
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singularities, then

Φ1 ◦Φ2 ◦Φ1 ◦ · · ·︸ ︷︷ ︸
n

∼= Φ{1,2} ∼= Φ2 ◦Φ1 ◦Φ2 ◦ · · ·︸ ︷︷ ︸
n

and

F1 ◦ F2 ◦ F1 ◦ · · ·︸ ︷︷ ︸
n

∼= F{1,2} ∼= F2 ◦ F1 ◦ F2 ◦ · · ·︸ ︷︷ ︸
n

for some n ≥ 3, where n is half the number of chambers of ΘA.

Proof. Consider A = EndR(N), which is derived equivalent to U. By 3.2, ΘA is a hy-
perplane arrangement in Q2, with C+ being a chamber. This implies that the chamber
structure for ΘA is

`1
`2
`3

`n−2
`n−1`n

(3.G)

for some lines given by `1 = 0, `2 = 0, . . . , `n = 0, where

`1 = ϑ2 and `n = ϑ1.

The fact that n ≥ 3 follows immediately by knitting on the AR quivers of Kleinian
singularities, as in [W, 5.23, 5.19].

We first claim that the above chamber structure (3.G) implies that

. . .ν2ν1ν2︸ ︷︷ ︸
n

N ∼= ν{1,2}N ∼= . . .ν1ν2ν1︸ ︷︷ ︸
n

N. (3.H)

For notation, as in 3.7, we let U...kji denote the scheme obtained from U by first flopping
curve i, then curve j, then curve k and so on (in that order). By [W, 4.2], we have

ν1N ∼= H0(VU1
) and ν2N ∼= H0(VU2

).

Iterating, again by [W, 4.2] the left- and right-hand terms of (3.H) are H0(VU...212
) and

H0(VU...121
), respectively. Further, by [K14, 5.2.5], the scheme U...212 can be obtained as

the moduli in the chamber C+ for . . .ν2ν1ν2A, and U...121 can be obtained as the moduli
in the chamber C+ for . . .ν1ν2ν1A. Tracking these chambers back to ΘA, which we can
do by 3.2(3) (see also the proof of [W, 5.22]), both give the region

C− = {ϑ | ϑi < 0 for i = 1, 2} ⊂ ΘA,

and so U...212
∼= U...121 as schemes over SpecR. In fact, again by moduli tracking, both

U...212 and U...121 are isomorphic to the scheme obtained from U by flopping C1

⋃
C2, which

we denote by U{1,2}. Using [W, 4.2] once again, the middle term of (3.H) is H0(VU{1,2}).
Taking global sections of the progenerator of perverse sheaves on U{1,2} gives (3.H), as
claimed.

Because of (3.H), there exists a diagram of mutation functors

Db(. . .ν2ν1ν2A)

Db(. . .ν1ν2A). . .Db(ν2A)

Db(A)

Db(ν1A) . . . Db(. . .ν2ν1A)

Φ2

Φ1

Φ1

Φ2

Φ{1,2}

(3.I)
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where the functors on the right-hand side depend on whether n is odd or even; respectively
they are

Db(. . .ν2ν1ν2A)

Db(. . .ν1ν2A)

Db(. . .ν2ν1A)

Φ2

Φ1

and Db(. . .ν2ν1ν2A).

Db(. . .ν1ν2A)

Db(. . .ν2ν1A)

Φ1

Φ2

We next chase moduli around (3.I), repeatedly applying 3.1 using the characterisation of
the chamber structure (3.G). Consider a ϑ-stable A-module M , for ϑ ∈ C+. Tracking
M around (3.I), we find that it is sent to a module which is stable for the following
parameters: when n is even

−`n
−`1

=
−ϑ1

−ϑ2

`n
−`n−1

−`n−2

`n−1

. . .−`2
`3

`2
−`1

ϑ1

ϑ2
=

`n
`1

−`n
`n−1

`n−2

−`n−1

. . . `2
−`3

−`2
`1

Φ2

Φ1 Φ2

Φ1

Φ1

Φ2 Φ1

Φ2

and when n is odd

−`1
−`n

=
−ϑ2

−ϑ1

−`n−1

`n
. . .−`2

`3

`2
−`1

ϑ1

ϑ2
=

`n
`1

−`n
`n−1

`n−2

−`n−1

. . . `1
−`2

Φ2

Φ1

Φ2

Φ1

Φ2

Φ1

In either case,

(Φ−1
1 ◦Φ

−1
2 ◦Φ

−1
1 ◦ · · · ) ◦ (· · · ◦Φ2 ◦Φ1 ◦Φ2) (3.J)

sends a ϑ-stable module to a ϑ-stable module. Similarly, since Φ{1,2} negates both pa-
rameters,

Φ−1
{1,2} ◦ (· · · ◦Φ2 ◦Φ1 ◦Φ2) (3.K)

sends a ϑ-stable module to a module stable for some parameter in C+.
Now by [W, 4.2] mutation is functorially isomorphic to the inverse of the flop functor,

and by [K14, §5.2] under the derived equivalence skyscrapers correspond precisely to ϑ-
stable modules, for ϑ ∈ C+. Hence (3.J) and (3.K) are functorially isomorphic to the
corresponding chain of inverse flop functors, and it follows that

(F1 ◦ F2 ◦ F1 ◦ · · · ) ◦ (· · · ◦ F−1
2 ◦ F−1

1 ◦ F−1
2 )

and F{1,2} ◦ (· · · ◦ F−1
2 ◦ F−1

1 ◦ F−1
2 )

are equivalences that take skyscrapers to skyscrapers. Since they also fix the structure
sheaf OU, and commute with the pushdown Rf∗ as in [DW1, 7.16(1)], it follows that both
are naturally isomorphic to the identity. Finally, we deduce that (3.J) and (3.K) are also
naturally isomorphic to the identity, and the result follows. �

We next lift the above into the algebraic setting. To do this, we use the Zariski local
tilting bundle V in §2.3.
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Lemma 3.9. Suppose that U → SpecR is an algebraic flopping contraction with precisely
two independently floppable curves meeting at a point. Denote by U+ the flop of U at one
of the curves, and consider the tilting bundles V and V+ from §2.3. Set Λ := EndU (V)
and Λ+ := EndU+(V+), then

(1) Z := HomR(H0(V), H0(V+)) is a tilting Λ-module with EndΛ(Z) ∼= Λ+.
(2) The following is a commutative diagram of equivalences.

Db(cohU)

Db(cohU+)

Db(mod Λ)

Db(mod Λ+)

RHomU (V,−)

RHomU+ (V+,−)

F−1 RHomΛ(Z,−) (3.L)

Proof. (1) For the statement on endomorphism rings, by repeated use of (2.B) we see that

EndΛ(Z) ∼= EndEndR(H0(V))

(
HomR(H0(V), H0(V+))

) ∼= EndR(H0(V+)) ∼= Λ+,

where the second isomorphism is reflexive equivalence. Now the property of being a tilting

module can be checked complete locally, and certainly Ẑn is a tilting Λ̂n-module for all
n ∈ MaxR with n 6= m. Further, for the point m, by (2.F) we know that add(H0(V) ⊗R
R) = addN and similarly add(H0(V+) ⊗R R) = addN+. But exactly as in [DW1, 5.8]
(or in 4.4 below), there is a commutative diagram

Db(mod A)

Db(mod A+)

Db(mod Λ̂)

Db(mod Λ̂+).

morita

morita

RHomA(HomR(N,N+),−) RHomΛ̂(Ẑ,−) (3.M)

Say curve i has been flopped, then by [W, 4.17(1)] N+ = νiN , and so the left-hand
functor is the mutation functor (see e.g. [W, 2.22(1)] or 4.2(2)), which is an equivalence.
Hence the right-hand functor is also an equivalence, and the statement follows.
(2) For each n ∈ MaxR consider the formal fibre version of the diagram. If n 6= m then
the diagram clearly commutes, since f : U → SpecR is an isomorphism away from m. If
n = m then the diagram commutes by combining (3.M) with [W, 4.2].

Now write Ψ for a composition of the four equivalences in the square (3.L) to give an
autoequivalence of Db(cohU). Consider a skyscraper Ou ∈ Db(cohU). Since the formal
fibre versions of the diagram (3.L) commute, it follows that Ψ fixes Ou. Furthermore
Ψ fixes OU , and commutes with the pushdown Rf∗ by the compatibility result of [W,
2.14(2)]. We conclude that Ψ is functorially isomorphic to the identity, and thence that
(3.L) is functorially commutative. �

Using the above, we can now extend 3.8 into the Zariski local setting:

Theorem 3.10. Suppose that U → SpecR is an algebraic flopping contraction with pre-
cisely two independently floppable curves meeting at a point. If U has at worst Gorenstein
terminal singularities, then

F1 ◦ F2 ◦ F1 ◦ · · ·︸ ︷︷ ︸
n

∼= F{1,2} ∼= F2 ◦ F1 ◦ F2 ◦ · · ·︸ ︷︷ ︸
n

for some n ≥ 3, where n is half the number of chambers in ΘA.

Proof. Since each algebraic flop, after passing to the formal fibre, is still a flop, iteratively
flopping all possible combinations of all possible subsets of the two curves (which, since
the two curves are individually floppable, we may do) gives the same number of schemes
in both cases, and the combinatorics are the same for both. In particular n ≥ 3 by 3.8.
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To show braiding for a chain of algebraic flops, again we track skyscrapers Ou under
the chain

(F1 ◦ F2 ◦ F1 ◦ · · · ) ◦ (· · · ◦ F−1
2 ◦ F−1

1 ◦ F−1
2 ). (3.N)

Using 3.9(2), we can reduce the problem to tracking ϑ-stable Λ-modules M for ϑ ∈ C+.
Since M is supported only at a single point n as an R-module,

RHomΛ(Z,M)⊗R R̂n
∼= RHomΛ̂n

(Ẑn,M)

and so it suffices to track M complete locally. If n 6= m it is clear that M tracks to

itself. If n = m then by (3.M) RHomΛ̂(Ẑ,−) is naturally isomorphic to the mutation
functor. Hence by 3.8 all skyscrapers track to skyscrapers under (3.N), so again since
the structure sheaf is fixed and the functors all commute with the pushdown, (3.N) is
functorially isomorphic to the identity. A similar argument shows that

F{1,2} ◦ (· · · ◦ F−1
2 ◦ F−1

1 ◦ F−1
2 )

is functorially isomorphic to the identity, and the result follows. �

Next we focus on the global setting of 3.6, for the case of two intersecting curves.
Recall that we have a contraction f : X → Xcon mapping these curves to a point p. As
in §2.2, put C = f−1(p), so that Cred = C1 ∪ C2 with Ci ∼= P1. Then we choose an affine
open neighbourhood Ucon

∼= SpecR around p, so that setting U := f−1(Ucon), we have
the commutative diagram

C U X
e i

p Ucon Xcon∈

ff |U

where e is a closed embedding, and i is an open embedding. Choose one of the curves Ci,
and write U+ and X+ for the schemes obtained by flopping Ci in U and X respectively.
The following is similar to [DW1, 7.8], and is well-known to experts.

Lemma 3.11. In the setting of 3.6, and with notation as above, the following diagram is
naturally commutative:

D(QcohU) D(QcohX)

D(QcohU+) D(QcohX+).

Ri∗

Ri+∗

Fi Fi

Proof. Write ΓU (respectively ΓX) for the fibre product of U (respectively X) with its
flop, over the contracted base Ucon (respectively Xcon). Then there are maps

gU : ΓU → U × U+ and gX : ΓX → X ×X+,

and a natural inclusion ι : ΓU → ΓX . Using this notation to translate the claim into the
language of Fourier–Mukai kernels [H, 5.12], we require that

L(i× Id)∗gX∗O ∼= R( Id×i+)∗gU∗O.
This follows by considering the diagram

ΓU U ×X+

ΓX X ×X+

h

gX

ι i×Id
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where h is the natural map (Id×i+)◦gU . Under the birational correspondence between X
and X+, points of U correspond to points of U+ and vice versa, so this square is cartesian.
The right-hand map is flat, and so base change gives L(i×Id)∗RgX∗ ∼= Rh∗Lι

∗. The result
follows by applying this isomorphism to O on ΓX . �

Using 3.10 and 3.11, we can extend 3.10 to the global setting:

Corollary 3.12. Suppose that X → Xcon is a flopping contraction between quasi-projective
3-folds, with precisely two independently floppable curves intersecting at a point. If X has
at worst Gorenstein terminal singularities, then

F1 ◦ F2 ◦ F1 ◦ · · ·︸ ︷︷ ︸
n

∼= F{1,2} ∼= F2 ◦ F1 ◦ F2 ◦ · · ·︸ ︷︷ ︸
n

for some n ≥ 3, where n is half the number of chambers in ΘA.

Proof. Once again, we track skyscrapers Ox under the chain

F{1,2} ◦ (· · · ◦ F−1
2 ◦ F−1

1 ◦ F−1
2 ). (3.O)

If x /∈ U , then certainly x /∈ C, so all the flop functors take Ox to Ox, and hence the
composition does. On the other hand, if x ∈ U then we can combine 3.10 and 3.11
to conclude that the chain of functors in (3.O) takes Ox to Ox. Thus, either way, (3.O)
preserves skyscrapers, so again since the structure sheaf is fixed and the functors commute
with the pushdown, (3.N) is functorially isomorphic to the identity. This gives one of the
isomorphisms in the statement, and the other follows by symmetry. �

In contrast, the disjoint curves case is easy, and is well-known.

Lemma 3.13. Suppose that X → Xcon is a flopping contraction between quasi-projective
3-folds, with precisely two independently floppable disjoint curves. If X has at worst
Gorenstein terminal singularities, then

F1 ◦ F2
∼= F{1,2} ∼= F2 ◦ F1.

Proof. Since the curves are disjoint, from the definition of flop it is immediate that the
order of flops does not matter. Further, since flop functors are local over the common
singular base, chasing skyscrapers and using 3.9 the result is immediate, using the same
argument as in 3.12. �

3.4. Braiding: Multiple Curves. The combinatorics of braiding of multiple curves
requires knowledge of the structure of the hyperplane arrangements ΘA. Recall that a
real hyperplane arrangement is simplicial if the intersection of all the hyperplanes is {0},
and furthermore every chamber is an open simplicial cone. The following result, which is
an immediate consequence of the Homological MMP, will be used heavily.

Lemma 3.14. With notation as in §3.1, ΘA is a simplicial hyperplane arrangement.

Proof. By 3.2(2), the codimension-one walls of ΘA are given by a finite collection of
hyperplanes, all of which contain the origin, and furthermore the co-ordinate hyperplanes
xi = 0 are included in this collection. It follows that the intersection of all the hyperplanes
is the origin. Further, since C+ is clearly an open simplicial cone, and by 3.2(3) every
chamber of ΘA is given by tracking the chambers C+ under moduli tracking, it follows
that all chambers are open simplicial cones. �

Simplicial hyperplane arrangements were studied in the seminal work of Deligne [D72],
and the resulting Deligne groupoid has many equivalent definitions in the literature. Here
for convenience we follow Paris [P93, §2.A, §2.B].
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Definition 3.15. Given the real hyperplane arrangement ΘA, we first associate the ori-
ented graph X1 which has vertices vi corresponding to the chambers of ΘA, with an arrow
a : vi → vj between pairs of vertices corresponding to adjacent chambers. A path of
length n in X1 is defined to be a formal symbol

aε11 a
ε2
2 . . . aεnn

with each εi ∈ {±1}, whenever there exists a sequence of vertices v0, . . . , vn of X1 such
that ai : vi−1 → vi if εi = 1, and ai : vi−1 ← vi if εi = −1. A path is said to be positive
if each εi = 1. Such a path is called minimal if there is no positive path in X1 of smaller
length, and with the same endpoints.

Let ∼ be the smallest identification (an equivalence relation satisfying appropriate
properties, see [P93, p152]) on the set of paths of X1 such that if f and g are both positive
minimal paths with the same endpoints then f ∼ g. Then the pair (X1,∼) determines a
groupoid, the Deligne groupoid GA, where the objects are the vertices, and the morphisms
are the equivalence classes of paths.

Figure 3. The front part of the oriented graph X1 for ΘA in Figure 1.

Remark 3.16. By [P93, S87] (see [P00, 2.1]), any vertex group of the groupoid GA

defined above is isomorphic to the fundamental group of the complexified complement of
the real hyperplane arrangement ΘA. We thus let π1(GA) denote a vertex group of the
Deligne groupoid.

By [D72, 1.10, 1.12], to produce a representation of the Deligne groupoid, it is suffi-
cient to check certain codimension-two relations. As in the previous subsection, we first
consider this problem in the formal fibre setting.

Lemma 3.17. With notation as in the complete local setup of §3.1, suppose that c is a
chamber in ΘA with a codimension-two wall w. Then

(1) From c, crashing through w corresponds to flopping a pair of curves Ci1
⋃
Ci2

in Mrk,c(A), where Mrk,c(A) is the scheme of c-stable A-modules of dimension
vector rk corresponding to the chamber c in ΘA.

(2) Iterating · · · ◦ Fi1 ◦ Fi2 ◦ Fi1 traverses one direction around the codimension two
wall w, whilst · · · ◦ Fi2 ◦ Fi1 ◦ Fi2 traverses the other direction.

Proof. Viewing Mrk,c(A) abstractly, we associate an algebra B to it using the procedure
in §2.4. In turn, this algebra has a chamber structure, which we denote ΘB. By 3.2(3),
the chamber c in ΘA is the tracking, under moduli tracking, of the chamber C+ in ΘB.
Furthermore, since under moduli tracking walls get sent to walls, the codimension-two wall
w corresponds to one of the codimension-two walls of C+ in ΘB, which without loss of
generality we can assume is x1 = x2 = 0. Thus, since as schemes Mrk,c(A) =Mrk,C+

(B),
to prove (1) it suffices to prove that, from C+ in ΘB, crashing through the codimension-
two wall x1 = x2 = 0 corresponds to flopping C1

⋃
C2. But this is immediate by [W, 4.16]

and moduli tracking.
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To prove (2), since in all the chamber structures crossing codimension-one walls
corresponds to a flop [W, §5], it suffices to show that iterating · · · ◦ F1 ◦ F2 ◦ F1 traverses
one direction around the codimension two wall x1 = x2 = 0 in ΘB, whilst · · · ◦F2 ◦F1 ◦F2

traverses the other direction.
Beginning in the chamber C+ of ΘB, flopping F1 corresponds to crashing through the

single codimension one-wall ϑ1 = 0 [W, 5.21], and produces a new chamber that by the
moduli tracking formula has a codimension two wall x1 = x2 = 0. This new chamber can
then be viewed as C+ on another algebra. Repeating the argument for that chamber then
tracking back to ΘB, the iterate F2 ◦ F1 corresponds to crashing through two consecutive
walls of ΘB. Further, by the moduli tracking formula, both of the obtained chambers share
the codimension-two wall x1 = x2 = 0. By induction, iterating · · · ◦F1 ◦F2 ◦F1 produces a
series of chambers, at each stage crossing a single codimension-one wall, and each chamber
has a codimension-two wall x1 = x2 = 0. It follows that iterating · · · ◦ F1 ◦ F2 ◦ F1

traverses one direction around the codimension two wall x1 = x2 = 0. By symmetry of
the argument, necessarily · · · ◦ F2 ◦ F1 ◦ F2 traverses the other direction. �

Definition 3.18. Suppose that X → Xcon is a flopping contraction between quasi-projective
3-folds, with precisely one connected chain of n independently floppable curves. Given this
data, the derived flops groupoid DFlop is defined by the following generating set. It has ver-
tices Db(cohX), running over all varieties obtained from X by iteratively flopping the n
curves, and as arrows we connect vertices by the Bridgeland–Chen flop functors, running
through all possible combinations of single flopping curves.

The following is the main result of this section.

Theorem 3.19. Suppose that X → Xcon is an algebraic flopping contraction with pre-
cisely one connected chain of curves contracting to a point, where X has terminal Goren-
stein singularities and each of the curves is individually (algebraically) floppable. Then:

(1) There is a homomorphism of groupoids GA → DFlop.
(2) The group π1(GA) acts on Db(cohX).

Proof. As in 3.10, since each algebraic flop, after passing to the formal fibre, is still a flop,
iteratively flopping all possible single curves gives the same number of schemes in both
cases, and the combinatorics are the same for both. Hence the braiding of the algebraic
flop functors is governed by the same simplicial hyperplane arrangement ΘA which we
considered in the complete local setup.

By [D72, 1.10, 1.12] (see also [CM]), to prove (1) we only need to check that the
relations on the flop functors in 3.18 arising from each codimension-two wall are satisfied
by the algebraic flop functors. But this follows immediately from 3.6 and 3.17. Part (2)
follows directly from (1). �

Remark 3.20. The above proof does not require a presentation of π1(GA), which is
convenient since we do not know one in general. It is known how to obtain a presentation
given the explicit hyperplanes [A, R82, S87], but all the possible simplicial hyperplane
arrangements arising from flops have not yet been fully classified.

4. Mutation in the Flops Setting

We now work towards dropping the assumption that all the curves are individually
floppable. The aim of this section is to apply the mutation in §2.6 to the setting of flops
to obtain on the formal fibre various intrinsic derived autoequivalences. These will then
be made algebraic in §5, and will give intrinsic algebraic autoequivalences regardless of
whether the curves flop individually.

The results related to the fibre twist in §4.3 and §4.4 will require an additional
assumption on the singularities.
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4.1. Mutation for Flops. We keep the complete local flops setup of §2.4, and in partic-
ular the notation of 2.10 where A := EndR(N). As in 2.11, for any J ⊆ {0, 1, . . . , n} we
set NJ :=

⊕
j∈J Nj and NJc :=

⊕
i/∈J Ni, so that N = NJ ⊕NJc .

Remark 4.1. In later sections we will be interested in two special cases. The first is
J = {0}, which will give the ‘fibre twist’ corresponding to deformations of the scheme-
theoretic fibre OC . The second will be when J ⊆ {1, . . . , n}, as this will give the J-twist
corresponding to the noncommutative deformations of the family {Ej | j ∈ J}.

The following is elementary.

Lemma 4.2. In the complete local flops setup of 2.4, for any J ⊆ {0, 1, . . . , n}
(1) AJ is a finite dimensional algebra.
(2) TJ ∼= HomR(N,νJN), and is a tilting A-module of projective dimension one.

Proof. Since R is an isolated singularity, (1) is [IW10, 6.19(3)]. Part (2) then follows by
[IW10, 6.14]. �

As in §2.6, the mutation functor gives an equivalence

ΦJ := RHomA(TJ ,−) : Db(mod A)
∼−→ Db(modνJA).

If further νJνJN ∼= N (see 4.6 and 4.10 later) then we can mutate EndR(νJN) back to
obtain EndR(N) ∼= A. Applying 4.2 to νJN , WJ := HomR(νJN,N) is a tilting νJA-
module, giving rise to an equivalence which by abuse of notation we also denote

ΦJ := RHomνJ A(WJ ,−) : Db(modνJA)
∼−→ Db(mod A).

The following is an easy generalisation of [DW1, 5.9, 5.10, 5.11].

Proposition 4.3. In the complete local flops setup of 2.4, for any J ⊆ {0, 1, . . . , n} such
that νJνJN ∼= N , the following statements hold.

(1) ΦJ ◦ΦJ ∼= RHomA([NJc ],−), where [NJc ] is the two-sided ideal defined in §1.4.
(2) ΦJ ◦ΦJ(AJ) ∼= AJ [−2].
(3) ΦJ ◦ΦJ(S) ∼= S[−2] for all simple AJ -modules S.

Proof. (1) By the assumption νJνJN ∼= N it follows that (Ker bJ)∗ ∼= Ker aJ . From here,
the proof is then identical to [DW1, 5.10].
(2) Since (Ker bJ)∗ ∼= Ker aJ , combining (2.H) and (2.K) gives us a complex of R-modules

0→ (Ker bJ)∗
cJ−→ VJ

b∗J ·aJ−−−→ UJ
d∗J−→ (Ker bJ)∗ → 0.

From here the proof of (2) is word-for-word identical to [DW1, 5.9(1–2)], since although
the above complex need not be exact, whereas it was in [DW1, 5.9], this does not affect
anything.
(3) Since by (1) ΦJ ◦ΦJ(−) ∼= RHomA([NJc ],−), part (3) follows by tensoring both sides
of (2) by AJ/Rad(AJ), just as in [DW1, 5.11], then applying idempotents. �

Since by (2.F) Λ̂ ∼= EndR(
⊕n

i=0N
⊕ai
i ), which is only morita equivalent to A, we

need to describe the compatibility between mutation and morita equivalence. For the

positive integers ai from (2.F), we set Z :=
⊕n

i=0N
⊕ai
i so that Λ̂ = EndR(Z). For

a choice of J ⊆ {0, 1, . . . , n}, consider the summand ZJ =
⊕

j∈J N
⊕aj
j of Z and set

ZJc :=
⊕

i/∈J N
⊕ai
i . In an identical way to the above, there is a mutation functor

Φ′J := RHomΛ̂(HomR(Z,νJZ),−) : Db(mod Λ̂)
∼−→ Db(modνJ Λ̂).

where νJ Λ̂ := EndR

((⊕
j∈J (Ker bj)

∗⊕aj)⊕(⊕i/∈J N
⊕ai
i

))
. The following is elementary.
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Lemma 4.4. The following diagram commutes.

Db(mod A)

Db(modνJA)

Db(mod Λ̂)

Db(modνJ Λ̂)

morita

morita

ΦJ Φ′J

Proof. This was stated in [DW1, 5.8], but since we are working more generally we give the
proof here. For simplicity, we drop all J from the notation. As in 2.15 we denote the top
morita functor by F, and we also denote the bottom by G. Since P := HomR(N,Z) is a
progenerator, it gives a morita context (A,EndA(P ), PA,HomA(P,A)) which by reflexive

equivalence is (A, Λ̂, PA,AQ) where Q = HomR(Z,N). Standard morita theory gives an
equivalence of categories, and natural isomorphisms

mod A mod Λ̂.
F:=HomA(P,−)∼=−⊗AQ

HomΛ̂(Q,−)∼=−⊗Λ̂P
(4.A)

There is a similar left version, namely

mod Aop
mod Λ̂op.

HomAop (Q,−)∼=P⊗A−

HomΛ̂op (P,−)∼=Q⊗Λ̂−
(4.B)

Now on one hand

Φ′ ◦ F ∼= RHomA(HomR(Z,νZ)⊗Λ̂ P,−) (by adjunction)

∼= RHomA(HomΛ̂(Q,HomR(Z,νZ)),−) (by (4.A))

∼= RHomA(HomR(N,νZ),−). (by reflexive equivalence)

On the other hand G = HomνA(P ′,−) for P ′ := HomR(νN,νZ), with inverse given by
Q′ = HomR(νZ,νN). Thus

G ◦Φ ∼= RHomA(P ′ ⊗νA HomR(N,νN),−) (by adjunction)

∼= RHomA(Hom(νA)op(Q′,HomR(N,νN)),−) (by (4.B)′)

∼= RHomA(HomνA(HomR(N,νN)∗, (Q′)∗),−) ((−)∗ duality on first term)

∼= RHomA(HomνA(HomR(νN,N),HomR(νN,νZ)),−)

∼= RHomA(HomR(N,νZ),−) (by reflexive equivalence)

and so Φ′ ◦ F ∼= G ◦Φ, as required. �

Corollary 4.5. In the complete local flops setup of 2.4, and with notation as in 2.15, for
any J ⊆ {0, 1, . . . , n} such that νJνJN ∼= N , the following statements hold.

(1) Φ′JΦ
′
J(FAJ) ∼= FAJ [−2].

(2) Φ′JΦ
′
J(FS) ∼= FS[−2] for all simple AJ -modules S.

Proof. Since minimal approximations sum, it follows that νJνJZ ∼= Z. Thus applying 4.4
twice gives a commutative diagram

Db(mod A)

Db(mod A)

Db(mod Λ̂)

Db(mod Λ̂).

F

F

ΦJΦJ Φ′JΦ
′
J

Hence the result follows from 4.3(2) and 4.3(3). �
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4.2. Application 1: The J-Twists. In this subsection we exclude 0 and consider the
special case J ⊆ {1, . . . , n} of §4.1. The situation n = 1 was considered in [DW1].

Proposition 4.6. In the complete local flops setup of 2.4, for any J ⊆ {1, . . . , n},
(1) νJνJN ∼= N .
(2) The simple AJ -modules are precisely Sj for j ∈ J .

Proof. Contract the curves in J to obtain U→ Ucon → SpecR. Since U has only Goren-
stein terminal singularities, and this is a flopping contraction, Ucon has only Gorenstein
terminal singularities. Locally, it follows that Ucon has only hypersurface singularities, so
part (1) follows from [W, 2.25]. Part (2) is clear. �

The following is then the multi-curve analogue of [DW1, 5.6, 5.7].

Proposition 4.7. In the complete local flops setup of 2.4, for any J ⊆ {1, . . . , n},
(1) The minimal projective resolution of AJ as an A-module has the form

0→ P → Q1 → Q0 → P → AJ → 0

where P := HomR(N,NJ), and Qi ∈ addQ for Q := HomR(N,NJc).

(2) pdΛ̂ Λ̂J = 3 and pdΛ̂ ÎJ = 2.
(3) We have

ExttΛ(FAJ , Tj) ∼= Extt
Λ̂

(FAJ , T̂j) ∼= ExttA(AJ , Sj) ∼=
{

C if t = 0, 3
0 else,

for all j ∈ J , and further AJ is a self-injective algebra.

Proof. (1) This is [W, A.7(3)].
(2) Since projective dimension is preserved across morita equivalence, using (1) it follows

that pdΛ̂ FAJ = 3. But addΛ̂ FAJ = addΛ̂ Λ̂J , so pdΛ̂ Λ̂J = pdΛ̂ FAJ = 3. The statement

for ÎJ is then obvious from the completion of (2.D).
(3) The first two isomorphisms are consequences of the fact that the Ext groups are
supported only at m, and the third isomorphism is a consequence of (1). Since mod AJ is
extension-closed in mod A we have

Ext1
AJ

(Sj ,AJ) = Ext1
A(Sj ,AJ) ∼= DExt2

A(AJ , Sj) (4.C)

where the last isomorphism holds since A is 3-sCY [IW10, 2.22(2)], pdA AJ <∞ and Sj
has finite length. Thus (4.C) shows that Ext1

AJ
(Sj ,AJ) = 0 for all j ∈ J . Since AJ is

finite dimensional, every finitely generated module is filtered by simples, so it follows that
AJ is self-injective. �

4.3. Application 2: The Fibre Twist. This subsection considers the special case
J = {0} of §4.1, in which case AJ is the fibre algebra A0 of 2.11. Since J = {0},
this involves mutating the summand R, which results in reflexive modules that are not
Cohen–Macaulay. Consequently, there is no easy reason for the assumption in 4.3 to be
satisfied, and so this subsection is technically much harder than the previous §4.2. As a
result, this subsection requires additional assumptions.

In the Zariski local setup in 2.3, of which the complete local flops setup 2.4 is the
formal fibre, f : U → SpecR is a Zariski local crepant contraction, where U has only
terminal Gorenstein singularities, contracting precisely one connected chain C of curves
with Cred =

⋃n
j=1 P1 to a point m of SpecR. We have that Λ := EndR(R⊕ L) is derived

equivalent to U and recall from §2.3 that we write Λm
∼= EndRm

(R⊕am ⊕ K). Since f is
crepant Λm ∈ CMRm, so necessarily K ∈ CMRm.

In this subsection, we make the additional assumption that U (not U) is Q-factorial
with only Gorenstein terminal singularities, so that Λm is an MMA by 2.17.
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Remark 4.8. If we assume in addition that U is complete locally Q-factorial, equivalently

U is Q-factorial (which happens for example if U is smooth), then Λ̂ and A are MMAs
and so all the results in this subsection follow immediately from [IW10, §6.3]. However,
later we will be working algebraically and it is well-known that the property of being
Q-factorial does not pass to the completion. Thus, since we are working with algebraic
assumptions, this subsection requires some delicate global–local arguments.

Theorem 4.9. Consider the formal fibre setup 2.4 where in the Zariski local flops setting
2.3, U is in addition Q-factorial. Then

(1) pdΛ̂ Λ̂0 = 3, pdΛ̂ Î0 = 2 and pdA A0 = 3.
(2) The minimal projective resolution of the A-module A0 has the form

0→ Q→ P1 → P0 → Q→ A0 → 0

where Q := HomR(N,R), and Pi ∈ addP for P := HomR(N,
⊕n

j=1Nj).

Proof. (1) Since Λm is an MMA of Rm by 2.17, and by definition Λ0 = Λm/[K], it follows

that pdΛm
Λ0 <∞ by [IW14, 4.16]. By 2.14, Λ0⊗Rm

R ∼= Λ̂0. Since completion preserves

finite projective dimension, it follows that pdΛ̂ Λ̂0 ≤ 3. Since Λ̂0 is finite dimensional,
a projective dimension strictly less than three would contradict the depth lemma, so

pdΛ̂ Λ̂0 = 3. The statement pdΛ̂ Î0 = 2 follows by completing (2.E). Finally, addΛ̂ FA0 =

addΛ̂ Λ̂0, so pdΛ̂ FA0 = pdΛ̂ Λ̂0 = 3. Since projective dimension is preserved across morita
equivalence, pdA A0 = 3 follows.
(2) This is very similar to the arguments in [IR, 4.3, 5.6] and [IW10, 6.23], but our
assumptions here are weaker, so we include the proof. Since by (1) A0 has finite projective
dimension as an A-module, it follows that inj.dimA0

A0 ≤ 1 by e.g. [IW10, 6.19(4)], in
particular the injective dimension is finite. This being the case, since A0 is local we deduce
that

depthR A0 = dimR A0 = inj.dimA0
A0

by Ramras [R69, 2.15]. Since A0 is finite dimensional, this number is zero and in particular
A0 is a Cohen–Macaulay R-module of dimension zero.

Let e be the idempotent in A corresponding to the summand R, so that Q = eA,
P = (1− e)A and A0 = A/A(1− e)A. By (1) we have a minimal projective resolution

0→ P3 → P2 → P1
f→ eA→ A0 → 0 (4.D)

with f a minimal right (add (1 − e)A)-approximation since it is a projective cover of
eA(1− e)A. In particular, P1 ∈ addP . Now A0 is finite dimensional and A is perfect, so
since A is 3-sCY we have

ExttA(A0,A) ∼= DExt3−t
A (A,A0)

which is zero for t 6= 3. Hence applying (−)∨ := HomA(−,A) to (4.D) we obtain an exact
sequence

0→ (eA)∨ → (P1)∨ → (P2)∨ → (P3)∨ → Ext3
A(A0,A)→ 0 (4.E)

which is the minimal projective resolution of Ext3
A(A0,A) as an Aop-module. But we have

Ext3
A(A0,A) ∼= Ext3

R(A0,R)

by [IR, 3.4(5)], and this is a projective Aop
0 -module by [GN, 1.1(3)]. Since A0 is a local ring,

it is a free Aop
0 -module. Further, since A0 is a Cohen–Macaulay R-module of dimension

zero, we have

Ext3
R(Ext3

R(A0,R),R) ∼= A0.

and so the rank has to be one, forcing Ext3
R(A0,R) ∼= A0 as Aop

0 -modules. Hence (4.E) is
the minimal projective resolution

0→ HomA(eA,A)→ HomA(P1,A)→ HomA(P2,A)→ HomA(P3,A)→ A0 → 0
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of A0 as an Aop-module. Thus we have HomA(P3,A) ∼= Ae and so P3
∼= eA = Q. Similarly

HomA(P2,A) ∈ add A(1− e) forces P2 ∈ add (1− e)A = addP . �

The following corollary ensures that the assumption in 4.3 is satisfied.

Corollary 4.10. Consider the formal fibre setup 2.4 where in the Zariski local flops setting
2.3, U is in addition Q-factorial. Then for I = {0}, νIνIN ∼= N .

Proof. Set M :=
⊕n

i=1Ni so that N = N0 ⊕M = R⊕M . By 4.2,

TI ∼= HomR(N, (Ker b0)∗ ⊕M)

is a tilting A-module with pdA TI = 1. We claim that

T := HomR(N, (Ker a0)⊕M)

is also a tilting A-module with pdA TI = 1. Then, since the projective dimension of both
being one implies that both are not isomorphic to the ring A, and further as A-modules TI
and T share all summands except possibly one, by a Riedtmann–Schofield type theorem
[IR, 4.2] they must coincide, i.e. HomR(N, (Ker b0)∗⊕M) ∼= HomR(N, (Ker a0)⊕M). By
reflexive equivalence and Krull–Schmidt it then follows that (Ker b0)∗ ∼= Ker a0, proving
the statement.

Now T = HomR(N,M) ⊕ HomR(N,Ker a0), and the first summand is projective.
Further the sequence (2.I) becomes

0→ HomR(N,Ker a0)
c·−→ HomR(N,V0)

a·−→ HomR(N,R)→ A0 → 0

which is the beginning of the minimal projective resolution of A0. Since pdA A0 = 3 by
4.9 it follows that pdA HomR(N,Ker a0) = 1 and so pdA T = 1.

Now by reflexive equivalence EndA(T ) ∼= EndR(M ⊕ (Ker a0)), and this is a CM
R-module by [IW10, 6.10]. Thus it follows that depthR Ext1

A(T, T ) > 0 by the depth
lemma (see e.g. [IW10, 2.7]). But on the other hand for any prime p ∈ SpecR of
height two, Tp ∈ CM Ap since reflexive modules are CM for two-dimensional rings.
Since pdAp

Tp ≤ 1, Auslander–Buchsbaum then implies that Tp is projective, and so

Ext1
A(T, T )p = Ext1

Ap
(Tp, Tp) = 0, implying that the Ext group has finite length. Com-

bining, it follows that Ext1
A(T, T ) = 0, and since pdA T = 1 we deduce that ExtiA(T, T ) = 0

for all i > 0. Hence T is a partial tilting A-module with exactly n non-isomorphic sum-
mands. By the Bongartz completion and Krull–Schmidt, it follows that T is a tilting
A-module with projective dimension one. �

4.4. Summary of Complete Local Twists. The following corollary summarises the
main results in the previous two subsections.

Corollary 4.11. With the Zariski local setup in 2.3, and its formal fibre setup in 2.4,
then with notation as in (2.D) and (2.E),

(1) For any J ⊆ {1, . . . , n},

Φ′J ◦Φ′J ∼= RHomΛ̂(ÎJ ,−)

is an autoequivalence of Db(mod Λ̂), and ÎJ is a tilting Λ̂-module of projective
dimension two. This autoequivalence sends
(a) FAJ 7→ FAJ [−2].
(b) FSj 7→ FSj [−2] for all j ∈ J .

(2) If further U is Q-factorial then

Φ′0 ◦Φ′0 ∼= RHomΛ̂(Î0,−)

is an autoequivalence of Db(mod Λ̂), and Î0 is a tilting Λ̂-module of projective
dimension two. This autoequivalence sends
(a) FA0 7→ FA0[−2].
(b) FS0 7→ FS0[−2].
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Proof. (1) The two-sided ideal [ZJc ] of Λ̂ = EndR(Z) is ÎJ , so the first statement Φ′JΦ
′
J
∼=

RHomΛ̂(ÎJ ,−) is identical to 4.3(1). Since mutation is an equivalence, this means that

ÎJ must be a tilting module, and it has projective dimension two by 4.7(2). Statements
(a) and (b) are special cases of 4.5.

(2) The two-sided ideal [K̂] of EndR(Z) is Î0, so the proof is identical to (1), except now

4.9(1) is used to establish that the projective dimension of Î0 is two. �

5. Global and Zariski Local Twists

5.1. Zariski Local Twists. We revert to the Zariski local setup in 2.3, namely f : U →
SpecR is a Zariski local crepant contraction, where U has only terminal Gorenstein singu-
larities, contracting precisely one connected chain C of curves with Cred =

⋃n
j=1 Cj such

that each Cj ∼= P1. We have that U is derived equivalent to Λ := EndR(R⊕ L), with the
basic complete local version A = EndR(R⊕N).

The aim of this subsection is to produce two new types of derived autoequivalences
on U . The first type depends on a choice of subset of the reduced curves Cj , whereas
the second type is associated to deformations of the whole scheme-theoretic fibre C, and
requires the additional assumption that U is Q-factorial.

Given the work in §4, leading up to the key 4.11, together with the short exact
sequences of bimodules (2.C) and (2.E), the construction of these new autoequivalences
follows using the same strategy as for [DW1, §5–7].

Corollary 5.1. With the Zariski local flops setup in 2.3,

(1) For any J ⊆ {1, . . . , n}, IJ is a tilting Λ-module of projective dimension two.
(2) If U is Q-factorial, then I0 is a tilting Λ-module of projective dimension two.

In either case, if we let I denote either IJ or I0, viewing I as a right Λ-module we have
Λ ∼= EndΛ(I), and under this isomorphism the bimodule EndΛ(I)IΛ coincides with the
natural bimodule structure ΛIΛ.

Proof. (1) The statement is local, and since ΛJ is supported only at m, it is clear that
(IJ)n is free for all n ∈ MaxR with n 6= m. Thus it suffices to check that (IJ)m is a tilting
Λm-module of projective dimension two. Since Rm is local, and a module being zero can

be detected on the completion, the statement is equivalent to ÎJ = IJ⊗RR being a tilting

Λ̂-module of projective dimension two. But this is just 4.11(1).

(2) By the same logic as in (1), the statement is equivalent to Î0 being a tilting Λ̂-module
of projective dimension two. Again, since U is now Q-factorial, this is just 4.11(2).

The final statements follow immediately by repeating the argument in [DW1, 6.1]. �

The following is the extension of 4.11 to the Zariski local setting.

Proposition 5.2. With the Zariski local setup in 2.3,

(1) For all J ⊆ {1, . . . , n},

RHomΛ(IJ ,−) : Db(mod Λ)
∼−→ Db(mod Λ), (5.A)

and further this autoequivalence sends
(a) FAJ 7→ FAJ [−2],
(b) Tj 7→ Tj [−2] for all j ∈ J .

(2) If further U is Q-factorial,

RHomΛ(I0,−) : Db(mod Λ)
∼−→ Db(mod Λ), (5.B)

and further this autoequivalence sends
(a) FA0 7→ FA0[−2],
(b) T0 7→ T0[−2].
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Proof. (1) By 4.11(1), RHomΛ̂(ÎJ ,FAJ) ∼= FAJ [−2]. Since FAJ is supported only at the
point m, RHomΛ(IJ ,FAJ) ∼= FAJ [−2] is a formal consequence, as in [DW1, 6.3]. Since

FSj = T̂j by 2.15, the second statement is also a formal consequence of 4.11(1).

(2) Similarly RHomΛ̂(Î0,FA0) ∼= FA0[−2] by 4.11(2), and again FA0 is supported only at
the point m. �

By passing across the equivalence Db(mod Λ) ∼= Db(cohU), (5.A) and (5.B) give
autoequivalences on U . To describe these, consider the projections p1, p2 : U × U → U ,
and set V∨ � V = p∗1V∨ ⊗L

OU×U
p∗2V. Then there is an induced derived equivalence

Db(cohU × U) Db(mod Λ⊗C Λop)
RHomU×U (V∨�V,−)

−⊗L
Λe (V∨�V)

(5.C)

as in [BH], where we denote the enveloping algebra by Λe := Λ⊗CΛop. Applying the lower
functor in (5.C) to (2.D) and (2.E), we obtain exact triangles of Fourier–Mukai kernels on
U × U denoted

W ′J → O∆,U
φ′J−−→ Q′J → (5.D)

W ′0 → O∆,U
φ′0−−→ Q′0 → . (5.E)

Dualizing (2.D) to obtain an exact triangle

RHomΛ(ΛJ ,Λ)→ Λ→ RHomΛ(IJ ,Λ)→
then applying the lower functor in (5.C), and similarly for (2.E), we obtain exact triangles
of Fourier–Mukai kernels on U × U denoted

QJ
φJ−−→ O∆,U →WJ → (5.F)

Q0
φ0−−→ O∆,U →W0 → . (5.G)

Then, using the obvious adjunctions given by restriction and extension of scalars from the
ring homomorphisms Λ→ ΛJ and Λ→ Λ0, passing through the above derived equivalence
and the morita equivalence F from 2.15, exactly as in [DW1, 6.10, 6.11, 6.16], (5.F) and
(5.G) yield functorial triangles

RHomU (EJ ,−)⊗L
AJ
EJ → Id→ FM(WJ)→

RHomU (E0,−)⊗L
A0
E0 → Id→ FM(W0)→,

where FM(WJ) is the autoequivalence on U corresponding to (5.A), and FM(W0) is the
autoequivalence on U corresponding to (5.B).

Translating 5.2 through the derived equivalences immediately gives the following.

Corollary 5.3. With the Zariski local setup in 2.3,

(1) FM(WJ) : Db(cohU)→ Db(cohU) is an autoequivalence, sending
(a) EJ 7→ EJ [−2],
(b) Ej 7→ Ej [−2] for all j ∈ J .

(2) If further U is Q-factorial then FM(W0) : Db(cohU) → Db(cohU) is an autoe-
quivalence, sending
(a) E0 7→ E0[−2],
(b) E0 7→ E0[−2].

5.2. Global Twists. We finally consider the global projective flops setup f : X → Xcon

of 2.2. As explained there, for each point p ∈ Ram(Xcon) we choose an affine open
neighbourhood containing p but none of the other points in Ram(Xcon), and consider the
open set in X given by the inverse image of this affine open, under f , which we denote
by Up. As further notation, for each point p ∈ Ram(Xcon) we let np denote the number
of curves above p.
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We now fix p ∈ Ram(Xcon) and from it produce autoequivalences on X. To ease
notation, since Up is fixed, throughout this subsection we will denote it simply by U , and
write the inclusion as i : U ↪→ X. We will compose these (over all p ∈ Ram(Xcon)) to get
the overall twists in §5.3. The following result is one of the key technical statements in
this paper, and is a consequence of our local study of mutation. Here per(X) denotes the
category of perfect complexes.

Theorem 5.4. Consider the global projective flops setup f : X → Xcon of 2.2. For a fixed
p ∈ Ram(Xcon),

(1) For any J ⊆ {1, . . . , np}, Ri∗EJ ∼= i∗EJ ∈ per(X), and by abuse of notation we
denote this simply by EJ . Furthermore, EJ ⊗ ωX ∼= EJ .

(2) If further U is Q-factorial then Ri∗E0 ∼= i∗E0 ∈ per(X), and by abuse of notation
we denote this simply by E0. Furthermore, E0 ⊗ ωX ∼= E0.

Proof. (1) By 4.7 pdΛ̂ FAJ = 3, so since FAJ is supported only at m, it follows that FAJ is
a perfect Λ-module. Since by 2.15 EJ corresponds to FAJ across the derived equivalence,
it follows that EJ is perfect on U . This in turn implies that i∗EJ is a perfect complex
on X, since we can check this locally. Since EJ has a finite filtration by objects OCj

(−1)
for j ∈ J , it follows that Ri∗EJ = i∗EJ . Lastly, FAJ is supported only at m, so just as
in [DW1, 6.6] the Serre functor on Λ acts trivially on FAJ . Across the equivalence, by
uniqueness of Serre functor this means that the Serre functor on U acts trivially on EJ .
This then implies the last statement, since

Ri∗EJ ⊗L
X ωX ∼= Ri∗(EJ ⊗L

U i
∗ωX) ∼= Ri∗(EJ ⊗L

U ωU ) ∼= Ri∗EJ .
(2) The proof is identical to (1), using 4.9 instead to give pdΛ̂ A0 = 3. �

This subsection now builds towards showing 5.10, that the twist functors JTwistp and
FTwistp defined below are autoequivalences. This follows a parallel argument to [DW1,
§7], using the Fourier–Mukai kernels Q′J , W ′J , Q′0, and W ′0 from the previous subsection
§5.1. We outline this argument now for the convenience of the reader, and to fix notation.

As in [DW1, §7], it is technically easier to construct the inverse twist functors JTwist∗p
and FTwist∗p, and this proceeds by gluing in the Zariski local construction of §5.1.

Definition 5.5. With the global projective flops setup f : X → Xcon of 2.2,

(1) For J ⊆ {1, . . . , np}, the inverse J-twist functor JTwist∗p is the Fourier–Mukai
functor FM(Coneψ′J) where

ψ′J : O∆
η∆−−→ R(i× i)∗O∆,U

R(i×i)∗φ′J−−−−−−−→ R(i× i)∗Q′J . (5.H)

The notation here comes from (5.D), and the natural morphism η∆ is described
explicitly in [DW1, 7.3]. The J-twist functor JTwistp is defined

JTwistp := FM(D(Coneψ′J))

where D := (−)∨ ⊗ p∗1ωX [dimX].
(2) If U is Q-factorial, the inverse fibre twist FTwist∗p and fibre twist FTwistp are

defined in an identical way, using instead φ′0 from (5.E).

A formal consequence of this definition is the following intertwinement of JTwist∗p
and FTwist∗p with their counterpart functors acting on D(QcohU).

Proposition 5.6. For Ri∗ : D(QcohU)→ D(QcohX),

JTwist∗p ◦Ri∗ ∼= Ri∗ ◦ FM(W ′J)

FTwist∗p ◦Ri∗ ∼= Ri∗ ◦ FM(W ′0),

where the latter only holds when U is in addition Q-factorial.

Proof. This is a standard application of Fourier–Mukai techniques, following [DW1, 7.8]
line for line. �
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The next result describes JTwist∗p and FTwist∗p as ‘twists’ by fitting them into certain
functorial triangles, and shows that they preserve the bounded derived categories, and
possess adjoints.

Proposition 5.7. With the global projective flops setup of 2.2,

(1) For each J ⊆ {1, . . . , np}, there exist adjunctions

D(Mod AJ) D(QcohX)GJ

GLA
J

GRA
J

where GJ := Ri∗(−⊗L
AJ
EJ) ∼= −⊗L

AJ
EJ . Furthermore

(a) For all x ∈ D(QcohX),

JTwist∗p(x)→ x→ GJ ◦GLA
J (x)→

is a triangle in D(QcohX).
(b) JTwist∗p preserves the bounded derived category Db(cohX), and has left and

right adjoints with the same property.
(2) If further U is Q-factorial then there exist adjunctions

D(Mod A0) D(QcohX)G0

GLA
0

GRA
0

where G0 := Ri∗(−⊗L
A0
E0) ∼= −⊗L

A0
E0. Furthermore

(a) For all x ∈ D(QcohX),

FTwist∗p(x)→ x→ G0 ◦GLA
0 (x)→

is a triangle in D(QcohX).
(b) FTwist∗p preserves the bounded derived category Db(cohX), and has left and

right adjoints with the same property.

Proof. Part (1) follows as in [DW1, 7.4, 7.5, 7.6], with the statement on adjoints following
using the projective Gorenstein assumption of 2.2. The proof of part (2) is very similar. �

We continue to build towards showing that JTwist∗p and FTwist∗p are autoequiva-
lences. The following lemma constructs spanning classes that will be used in the proof.
The key result for this is 5.4, which shows that EJ and E0 are perfect. Then, we use 5.6
and 5.7 to describe the action of the functors JTwist∗p and FTwist∗p on parts of the classes.

Lemma 5.8. With the global projective flops setup of 2.2,

(1) For any J ⊆ {1, . . . , np}, ΩJ := EJ ∪ E⊥J is a spanning class in Db(cohX).
(2) JTwist∗p sends EJ to EJ [2], Ej to Ej [2] for all j ∈ J , and is functorially isomorphic

to the identity on E⊥J .

If further U is Q-factorial then we also have

(3) Ω0 := E0 ∪ E⊥0 is a spanning class in Db(cohX).
(4) FTwist∗p sends E0 to E0[2], E0 to E0[2], and is functorially isomorphic to the

identity on E⊥0 .

Proof. Part (1) is a formal consequence of the definitions, as in [DW1, 7.9], since by 5.4(1)
EJ is perfect and is fixed by the canonical. Part (3) is similar, using instead 5.4(2).

The last statements in parts (2) and (4) are consequences of the functorial triangles in
5.7. The other statements in (2) and (4) follow by combining 5.3 with 5.6, after inverting
the local twists appearing there. �
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As in [DW1], we need the following lemma, which gives an appropriate sufficient
condition for a fully faithful functor to be an equivalence.

Lemma 5.9 ([DW1, 7.11]). Let C be a triangulated category, and F : C → C an exact fully
faithful functor with right adjoint FRA. Suppose that there exists an object c ∈ C such that
F (c) ∼= c[i] for some i, and further F (x) ∼= x for all x ∈ c⊥. Then F is an equivalence.

Combining the above gives the following.

Theorem 5.10. With the global projective flops setup of 2.2,

(1) For any J ⊆ {1, . . . , np}, the inverse J-twist

JTwist∗p : Db(cohX)→ Db(cohX)

is an equivalence.
(2) If furthermore U is Q-factorial then the inverse fibre twist

FTwist∗p : Db(cohX)→ Db(cohX)

is an equivalence.

Proof. Putting together 5.7, 5.8 and 5.9, we find that JTwist∗p and FTwist∗p are equiva-
lences provided that they are fully faithful. This fact follows by a simple calculation on
the spanning classes of 5.8, as given in [DW1, 7.12]. In this calculation, the crucial point
is 5.6, which allows us to prove the hard case by using the fact that locally the twist is an
autoequivalence. �

Corollary 5.11. With the global projective flops setup of 2.2,

(1) For any J ⊆ {1, . . . , np}, the J-twist

JTwistp : Db(cohX)→ Db(cohX)

is an equivalence. If furthermore U is Q-factorial then the fibre twist

FTwistp : Db(cohX)→ Db(cohX)

is an equivalence.
(2) When the twists are defined, there are functorial triangles

GJ ◦GRA
J (x)→ x→ JTwistp(x)→

where GJ ◦GRA
J (x) ∼= RHomX(EJ , x)⊗L

AJ
EJ , and

G0 ◦GRA
0 (x)→ x→ FTwistp(x)→

where G0 ◦GRA
0 (x) ∼= RHomX(E0, x)⊗L

A0
E0.

Proof. This follows by standard facts on adjunctions, as in [DW1, 7.14]. �

The following result is used in the next subsection to compare autoequivalences.

Corollary 5.12. The J-twist JTwistp commutes with the pushdown Rf∗, i.e.

Rf∗ ◦ JTwistp ∼= Rf∗.

Proof. This is shown by the method of [DW1, 7.15]. The key point is that EJ is filtered
by the Ej , and so Rf∗EJ = 0. �
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5.3. Comparison of Autoequivalences. The input to this subsection is a flopping
contraction in the global projective flops setup f : X → Xcon of 2.2.

Definition 5.13. With the global projective flops setup of 2.2, we enumerate the points
of the non-isomorphism locus Ram(Xcon) as {p1, . . . , pt}, and let J denote a collection
(J1, . . . , Jt) of subsets Ji ⊆ {1, . . . , npi}. We then define the J-twist to be

JTwist := J1Twistp1
◦ · · · ◦ JtTwistpt .

The twists JiTwistpi are provided by 5.11. Similarly, when X is Q-factorial we set

FTwist := FTwistp1
◦ · · · ◦ FTwistpt .

and call it the fibre twist.

Remark 5.14. The order of the compositions in the definitions does not matter, since the
individual functors all commute. This may be shown, for instance, by tracking skyscraper
sheaves as in 3.13, or using 6.1(1) later.

Being the composition of equivalences by 5.11, these functors are all equivalences
regardless of whether or not the curves in J algebraically flop. Being able to vary J
without worrying about whether the curves in J flop is the key later to obtaining group
actions on derived categories without strong assumptions on the flopping contraction.

In the case when the curves in J do algebraically flop, JTwist is inverse to the
Bridgeland–Chen flop–flop functor.

Proposition 5.15. With the global projective flops setup of 2.2, suppose that a subset J
of the exceptional curves flops algebraically (e.g. when J equals all exceptional curves).
Then JTwist ◦ (FJ ◦ FJ) ∼= Id.

Proof. Since the curves in J flop algebraically, there exists some factorisation of f into

X
g−→ XJ → Xcon

where g is a flopping contraction. First, note that {Ej | j ∈ J} generates

Cg := {c ∈ Db(cohX) | Rg∗c = 0},
since C splits as a direct sum over the points p of the non-isomorphism locus of g, so we
may follow the argument of [KIWY, 5.3].

We next argue that Ψ := JTwist◦(FJ ◦FJ) preserves 0Per(X,XJ), since the remainder
of the proof then follows exactly as in [DW1, 7.18]. For this, note that

JTwist(Ej) = Ej [−2] (5.I)

for all j ∈ J , since
JTwistp(Ej) = Ej [−2] if Cj ∈ g−1(p)
JTwistp(Ej) = Ej if Cj /∈ g−1(p)

where the top line holds by 5.8, and the bottom also by 5.8 since if Cj /∈ g−1(p), then
Ej ∈ (ip∗EJp)⊥. On the other hand

(FJ ◦ FJ)(Ej) = Ej [2] (5.J)

for all j ∈ J , using the description in [T08, §3(i)] of the action of the flop on the sheaves
Ej = OCj

(−1), noting a correction given in [T14, Appendix B] to the sign of the shift
in [B]. Combining (5.I) and (5.J), we find that Ψ fixes the set {Ej | j ∈ J} and thus
preserves Cg.

Next we note that Ψ commutes with the pushdown Rg∗. This follows because JTwistp
commutes with the pushdown by 5.12, and the flop–flop commutes with the pushdown
exactly as in [DW1, 7.16(1)]. It then follows by the argument of [DW1, 7.17] that Ψ
preserves 0Per(X,XJ).

Finally, by combining as in [DW1, 7.16(2)], we have that Ψ(OX) ∼= OX . Using this,
and the fact that Ψ commutes with the pushdown Rg∗ as noted above, the proof now
follows just as in [DW1, 7.18]. �
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The final result of this section compares the functors FTwist and JTwist for flopping
contractions of smooth rational curves. In the simplest case, when the curve is of type A,
these functors may be conjugate by a certain line bundle. When the curve is not of type A,
however, we next show that the two functors are never related in this way. As stated in
the introduction, the functor FTwist is not expected to be related to the flop–flop functor
in general, instead it is expected to be the affine element in some (pure) braid action.
Because of the intricacy of the combinatorics, we will return to this more general affine
action in the future.

Theorem 5.16. In the global projective flops setup of 2.2, for a contraction of a single
irreducible curve to a point p, where in addition X is Q-factorial, there exists a functorial
isomorphism

FTwist(x⊗F) ∼= JTwist(x)⊗F
for some line bundle F on X, if and only if the following conditions hold.

(1) The point p is cDV of Type A.
(2) There exists a line bundle F on X such that deg(F|f−1(p)) = −1.

Proof. By assumption J = {1}, corresponding to the single irreducible curve in the fibre
C = f−1(p).

(⇐) We require a natural isomorphism of functors

FTwist ∼= (−⊗F) ◦ JTwist ◦ (−⊗F−1) =: JTwistF . (5.K)

Observe that, using 5.11(2), there are functorial triangles for all x ∈ D(QcohX),

RHomX(E0, x) ⊗L
A0

E0 → x → FTwist(x) →
RHomX(EJ ⊗F , x) ⊗L

AJ
(EJ ⊗F) → x → JTwistF (x) →.

By the arguments of [DW1, §3], the objects E0 and EJ are universal families, corresponding
to the representing objects A0 and AJ respectively, for the noncommutative deformations
of

E0 = ωC [1] and E1 = OCred(−1).

Under our assumption (1), we have that C = Cred ∼= P1, and so ωC ∼= OP1(−2), and
thence using (2)

E0
∼= E1 ⊗F [1].

The functor (−⊗F)[1] is an equivalence, and so we obtain an isomorphism of representing
objects A0

∼= AJ , and an isomorphism of universal families

E0 ∼= EJ ⊗F [1], (5.L)

respecting the module structures over the algebras A0 and AJ . We thus obtain isomor-
phisms between the objects in the functorial triangles above, and the natural isomor-
phism (5.K) follows.

(⇒) Suppose as in the statement that the twists are conjugate by some line bundle F .
It will be more convenient to work with perverse sheaves in the category −1Per, and so
we conjugate by the dualizing functor D to find

(D JTwistD−1) ◦ (−⊗F) ∼= (−⊗F) ◦ (DFTwistD−1).

Recall that D exchanges E0 = ωC [1] and OC [V, 3.5.8], so that by 5.8(4) we have

(DFTwistD−1)(OC) ∼= OC [2].

It follows immediately that

(D JTwistD−1)(OC ⊗F) ∼= OC ⊗F [2].

The functor D JTwistD−1 commutes with the pushdown Rf∗, by the argument
of 5.12. The key point there was that Rf∗EJ = 0, whereas here we use Rf∗(D EJ) = 0,
which is obtained from relative Serre duality, as stated for instance in [DW1, 6.17]. We
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then deduce that Rf∗(OC ⊗ F) = 0 by boundedness. As in §2.4 we may work complete
locally around p, on a formal fibre U. It follows by base change that

Rf∗(OC ⊗F|U) = 0. (5.M)

We now analyse this pushdown via the tilting equivalence on U, and use its vanishing to
control the degree of F on the contracted curve C.

From §2.4, we have that OU⊕N1 is a tilting bundle on U, so its dual W := OU⊕M1

is also a tilting bundle, and so gives an equivalence

Db(cohU) Db(mod Aop).

Φ=RHomU(W,−)

∼
Ψ

We will place the natural surjection OC → OCred into a distinguished triangle, by passing
through the equivalence Φ.

Recall that there is an exact sequence

0→ O⊕(r−1)
U →M1 → L → 0

where L is a line bundle having degree 1 on Cred, and r ≥ 1, with r = 1 occurring
precisely when p is cDV of Type A. We see immediately from the standard calculation of
the cohomology of line bundles on Cred ∼= P1 that RHomU(L,OCred) = 0, and we thence
obtain that

RHomU(OU,OCred) = C

RHomU(M1,OCred) = Cr−1 .

In particular, Φ(OCred) is a module in degree zero, which when viewed as a quiver repre-
sentation has C at the vertex 0, and Cr−1 at the vertex 1.

SinceΦ is an equivalence, Φ(OC → OCred) is a non-zero morphism. ButΦ(OC) = S0,
which is just C at the vertex 0, and so this is simply a non-zero morphism between
representations. Since Φ(OC) is one-dimensional, necessarily this is injective, so we set G
to be the cokernel and so obtain an exact sequence

0→ Φ(OC)→ Φ(OCred)→ G → 0.

By the above, G is a module with a filtration consisting of r− 1 copies of S1. Applying Ψ
we get a triangle

H := Ψ(G)[−1]→ OC → OCred → (5.N)

where H is a sheaf with a filtration consisting of r − 1 copies of Ψ(S)[−1] ∼= OCred(−1).
Tensoring (5.N) by F|U, and writing d = deg(F|Cred) for convenience, we have a short

exact sequence

0→ H(d)→ OC ⊗F|U → OCred(d)→ 0

where as above H is filtered by objects OCred(−1). Applying Rf∗, and using the coho-
mology vanishing (5.M), we find

Rf∗(OCred(d)) ∼= Rf∗(H(d))[1].

We now make further use of the cohomology of line bundles on Cred ∼= P1 to deduce our
result. The fibres of f are at most one-dimensional, so R>1f∗(H(d)) = 0, and therefore
R1f∗(OCred(d)) = 0 which implies d ≥ −1. Suppose, for a contradiction, that furthermore
d ≥ 0. Then, using the filtration of H, R>0f∗(H(d)) = 0 whereas f∗(OCred(d)) 6= 0. It
follows that d = −1, yielding (2). We then have Rf∗(H(−1)) = 0, forcing H = 0, so that
r = 1, giving (1). �



TWISTS AND BRAIDS FOR GENERAL 3-FOLD FLOPS 39

6. Pure Braid-Type Actions

In this section we piece together the previous sections, and give a group action for
any algebraic flopping contraction in the global setup of 2.2.

Proposition 6.1. Under the Zariski local setup 2.3, or the global setup of 2.2,

(1) JTwist(Ox) ∼= Ox for all x /∈
⋃
j∈J Cj.

(2) Choose p ∈ Ram(Xcon) and a collection J1, . . . , Jm of subsets of {1, . . . , np}. If
the twists J1Twistp, . . . , JmTwistp satisfy some relation on the formal fibre above
p, then they satisfy the same relation Zariski locally.

Proof. We give the proof in the Zariski local setup 2.3, since the proof of the global setup
is obtained by simply replacing U by X throughout.
(1) Since EJ is filtered by OCj (−1) with j ∈ J , it follows that RHomU (EJ ,Ox) = 0 for all
x /∈

⋃
j∈J Cj , since x /∈ Supp EJ [BM, 5.3]. Thus, the triangle

RHomU (EJ ,Ox)⊗L
AJ
EJ → Ox → JTwist(Ox)→

implies that JTwist(Ox) ∼= Ox.
(2) Suppose that the relation on the formal fibre above p can be written as

(Ji1Twistp)
a1 . . . (Ji`Twistp)

a` ∼= Id (6.A)

for some a1, . . . , a` ∈ Z and some i1, . . . , i` ∈ {1, . . . ,m}. We again track skyscrapers.
By (1), certainly the skyscrapers not supported on

⋃np

i=1 Ci are fixed under the left-hand
side of (6.A), so we need only track the skyscrapers on

⋃np

i=1 Ci. As in the latter stages
of the proof of 3.10, we can do this by passing to the formal fibre, and by assumption
we know that the relation (6.A) holds there. Hence on the formal fibre these skyscrapers
are fixed under the left-hand side of (6.A). Hence overall every skyscraper Ox gets sent
to some skyscraper under the left-hand side of (6.A), so since the twists commute with
pushdown, as before it follows that the relation holds Zariski locally. �

Combining 5.14 with 6.1(2) shows that globally we can still view the J-twists as a sub-
group of

∏
i π1(GAi

). Since the J-twists are equivalences by 5.10, this then immediately
gives the following, which is our main result.

Corollary 6.2. Suppose that X → Xcon is a flopping contraction, where X is projective
and has only Gorenstein terminal singularities. The subgroup K of

∏
i π1(GAi

) generated
by the J-twists, as J ranges over all subsets of curves, acts on Db(cohX).

We remark that the subgroup K can equal
∏
i π1(GAi), as the following example

illustrates. As stated in the introduction, it is unclear in what level of generality this
holds, and indeed this seems to be an interesting problem, both geometrically and group-
theoretically.

Example 6.3. Consider an algebraic flopping contraction X → Xcon of two intersecting
curves contracting to a cAn singularity. In this situation the chamber structure and
subgroup K are illustrated as follows:

J={1}

J={2}

J={1,2}

Thus inside π1(G), which is the pure braid group, K = 〈a2, b2, (aba)2〉 where a and b are
the standard braids in the classical presentation of the braid group on three strands. Now

f := a2ba2b = ababab = (aba)2 ∈ K,
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and hence also a−2fb−2 = ba2b−1 ∈ K. But it is well-known that the pure braid group is
generated by a2, b2, and ba2b−1 (see e.g. [BB, p5]), and hence K = π1(G) in this case.
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de France 135, fascicule 1 (2007), 119–134.

[T08] Y. Toda, Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008),
no. 11, 6149–6178.

[T13] Y. Toda, Stability conditions and extremal contractions, Math. Ann. 357 (2013), no. 2, 631–685.

[T14] Y. Toda, Non-commutative width and Gopakumar-Vafa invariants, arXiv:1411.1505.
[V] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122

(2004), no. 3, 423–455.

[W] M. Wemyss, Aspects of the homological minimal model program, arXiv:1411.7189.

Will Donovan, Kavli Institute for the Physics and Mathematics of the Universe (WPI),
The University of Tokyo Institutes for Advanced Study, Kashiwa, Chiba 277-8583, Japan.

E-mail address: will.donovan@ipmu.jp

Michael Wemyss, The Maxwell Institute, School of Mathematics, James Clerk Maxwell

Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

E-mail address: wemyss.m@googlemail.com


	1. Introduction
	2. Flops Setting and Notation
	3. On the Braiding of Flops
	4. Mutation in the Flops Setting
	5. Global and Zariski Local Twists
	6. Pure Braid-Type Actions
	References

