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Abstract

We consider renormalisable models extended in the scalar sector by a generic scalar field in
addition to the standard model Higgs boson field, and work out the effective theory for the latter in
the decoupling limit. We match the full theory onto the effective theory at tree and one-loop levels,
and concentrate on dimension-6 operators of the Higgs and electroweak gauge fields induced from
such matching. The Wilson coefficients of these dimension-6 operators from tree-level matching
are further improved by renormalisation group running. For specific SU(2)r, representations of the
scalar field, some “accidental” couplings with the Higgs field are allowed and can lead to dimension-
6 operators at tree and/or one-loop level. Otherwise, two types of interaction terms are identified
to have only one-loop contributions, for the Wilson coeflicients of which we have obtained a general
formula. Using the obtained results, we analyse constraints from electroweak oblique parameters

and the Higgs data on several phenomenological models.

*e-mail: chengwei@ncu.edu.tw

fe-mail: ran.huo@ipmu. jp



I. INTRODUCTION

After its discovery, the 125-GeV Higgs boson has been studied and found to be consistent
with the standard model (SM) expectation as we know at present. This observation suggests
that any new physics degrees of freedom that directly couple with the SM-like Higgs boson
should reside at a sufficiently high mass scale or be very weakly coupled with the SM particles
so that they do not affect its properties significantly. To study Higgs physics in this case, as
in the case of Fermi theory, it is useful and satisfactory to work with an effective field theory
(EFT) with higher dimensional operators of the SM fields organised in inverse powers of the
new physics scale A. Using the EFT approach, we can learn about possible types of new
interactions at low energies. By accumulating sufficient clues, a complete model of the new
physics may be constructed.

As a start, we assume that new physics does not violate known gauge and Lorentz sym-
metries in the SM so that the higher dimensional operators obtained by integrating out the
heavy degrees of freedom also satisfy the same symmetries. There is only one dimension-5
operator (for one family of fermions) consistent with this, i.e., the Weinberg operator that
gives rise to Majorana mass for neutrinos [1]. This operator violates the lepton number by
two units. In the case of dimension-6 operators, the original attempt to compile a com-
plete basis [2] was later found to be redundant [3-5], leaving 64 independent operators (also
for one family of fermions) [6] with five of them violating either baryon or lepton num-
ber [1, 7, 8]. For weakly interacting renormalizable gauge theories that are perturbatively
decoupling, the dimension-6 operators can be classified into potentially tree-generated and
loop-generated ones [9, 10]. A good discussion and comparison of different operator bases
of popular choices [2, 11, 12] can be found in Ref. [13].

There are some attractive motivations to consider models with an extended scalar sector.
For example, new scalar bosons in these models may facilitate a strong first-order phase
transition for successful electroweak baryogenesis, provide Majorana mass for neutrinos,
and/or have a connection with a hidden sector that houses dark matter candidates. Even
though it may not be possible to directly probe this sector due to the heavy masses of new
scalar bosons and/or their feeble interactions with SM particles, they can nevertheless leave
imprints in some electroweak precision observables.

In this paper, we analyse the EFT of the SM-like Higgs boson for a wide class of weakly



coupled renormalisable new physics models extended by one type of scalar field(s) ! and
respecting CP symmetry. It can be shown that only a few types of interactions contribute
to the Higgs dimension-6 operators. Two of them are pH'HS and pu (H from ) T¢, where
w1 is a dimensionful quantity, H is the SM Higgs doublet, S is a singlet field, 7% form a
triplet field, and 7% are the SU(2) generators. These interactions only arise for specific
representations of the new scalar and lead to dimension-6 operators when matching onto
the EFT at tree level. Another two are (H'H)(®'®) and (Hr¢H)(®t*®), where t* are the
SU(2) operators appropriate for the new scalar field ®. These interactions are more generic
and, after the heavy scalar fields are integrated out, give rise to dimension-6 operators at
one-loop level. We work out the effective operators and the associated Wilson coefficients
for an arbitrary new scalar field ®(m,n,Y’), where m and n denote its multiplicities under
SU(3)¢ and SU(2)r, respectively, and Y is its hypercharge. Phenomenological results of a
few benchmark models are studied in this framework.

This paper is organised as follows. In Section II, we define our framework of UV-complete
models whose scalar sector is augmented from the SM by one new scalar field, and list
dimension-6 operators composed of the SM Higgs and electroweak gauge fields that are of
interest to us. For the new scalar field of a generic representation, the dimension-6 operators
are induced only from one-loop matching due to two specific types of quartic interactions
in the UV theory. We also identify accidental interaction terms for specific representations
of the new scalar field that can lead to the dimension-6 operators already from tree-level
matching. We first concentrate on the accidental interactions in Section III, and work out
the Wilson coefficients of induced operators from tree-level matching for these specific scalar
representations. These Wilson coefficients are further improved by renormalisation group
running. Section IV discusses the matching of the full theory onto the effective theory at one-
loop level for the new scalar of a general representation in the SM gauge group. In Section V,
we work out the results for a few benchmark models commonly considered in the literature.
Using the results, we show numerically how the model parameters are constrained by current
and future electroweak precision observables and SM Higgs data. Section VI summarises

our findings.

I Multiple new scalar fields are allowed provided they have a common mass scale, as will be seen in the
Zee-Babu model and the Georgi-Machacek model analysed in Sections V-A and V-C.



II. EFFECTIVE OPERATORS AND WILSON COEFFICIENTS

In the following, we will consider the renormalizable model having a scalar sector extended
with a generic scalar field that couples to the SM Higgs field, and match it at tree and one-
loop levels onto an effective theory with operators up to dimension-6. Moreover, we will
use the renormalization group equations (RGE’s) to evolve the Wilson coefficients obtained
from the tree-level matching from the new physics scale down to the electroweak scale, so
as to combine with those from the one-loop matching in a consistent way. Throughout this

paper, we will use H and ® to denote the SM Higgs field and the generic new scalar field,

respectively.
Symbol Operator expression Symbol Operator expression
oF |H|® Oww gPHTHW S, Wk
On L (8,|H?)? Onp g2H'HB,, B"
Or L (HTﬁ#Hf Ows  29¢ (H'r°H) (We,B)
Or  |H]?(D,H'DH) Ow g (HTﬁﬂaH) D, Wanw
Oce  g2HVHGE,Gom Op iq (Hfﬁuﬂ) 0, BH

TABLE I: Independent CP-even dimension-6 operators composed of only the Higgs and electroweak
boson fields that are relevant to the analysis in this work. Notations of fields and operators are

explained in the main text.

In Table I, we list ten CP-even dimension-6 operators composed of only the Higgs and
electroweak gauge boson fields that are relevant for the electroweak precision and Higgs
observables. In the table, D, denotes the SM covariant derivative; G, Wi, and B, are
respectively the field strength tensors of the SU(3)¢, SU(2);, and U(1)y groups with the
associated gauge couplings g,, g, and ¢’; and Aﬁ”B = A(D,B) — (D,A)B. The Wilson
coefficient corresponding to the operator O; will be denoted by ¢; and have mass dimension
—2.

Assuming that the new scalar field ® is a complex scalar, the kinetic and interaction

terms relevant to our discussions are
LD (D,®)(D'd) — M?®Td — N(HTH)(®T®) — N(H7°H)(®Tt°®) + Loce , (1)
where L,.. denotes the “accidental” part to be detailed below. For a real scalar field, terms
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quadratic in the new scalar should include an extra factor of 1/2 and @7 is identified as ®.
In Eq. (1), 7* = 0/2 are the SU(2) generators for the fundamental representation and ¢
are those for a generic representation, and the parameter M sets the new physics scale that
is assumed to be much higher than the electroweak scale. Note that other terms such as
the quartic interactions of the Higgs and the new scalar fields have been omitted, since they
are irrelevant to the dimension-6 operators. We will assume A, A’ > 0 and the other quartic
terms to be positive-definite as well to ensure that the potential is bounded from below.
The accidental part L,.. in Eq. (1) contains terms that are allowed only for specific
representations of ® and lead to dimension-6 operators from tree-level and/or one-loop
matching. It has two types of interactions. The first one involves dimension-3 operators,

and the only possibilities are:
pHT&H for a real singlet (1, 1,0),
Locez = § pHI®H for a real triplet (1,3,0), (2)
pH®t*H + h.c. for a complex triplet (1,3, —1),
The second one involves dimension-4 operators that are only possible when ® is an SU(2),,

doublet. For example,
Locea = —N'(H'®)> = N'|H?H'® +h.c.  for a complex doublet (1,2,1/2).  (3)

Note that the above term is allowed because Yo = Yy = 1/2. The effects of the \” terms
have been discussed, for example, in Refs. [14, 15]. The X’ terms only lead to the operator

Og of no interest to our analysis.

ITII. TREE-LEVEL MATCHING AND RGE IMPROVEMENT

For the dimension-3 interaction terms in Eq. (2), one can integrate out the new scalar
field from the UV-complete theory by solving the associated equation of motion and plugging
it back into the original Lagrangian. This gives rise to the following dimension-6 operators

and some renormalization corrections for |H|* in the EFT:

( ,LL2
—4(9H for a real singlet (1,1,0),
12
LD OT + 2 OR for a real triplet (1,3,0), (4)
12 u? 12
\ ]\/[4 — Oy — (’)T + 2WOR for a complex triplet (1,3, —1).



Note that the operator Op will lead to corrections of the oblique T parameter, given by
T = aglthvQ with the fine-structure constant agy = 1/128 and v ~ 246 GeV. Therefore,
the T parameter measured to a high precision imposes a stringent constraint on the triplet
models in Eq. (4), as the corresponding Wilson coefficients are not loop suppressed. Using
the measured electroweak p parameter [16], one can obtain an upper bound on |u/M?| to
be 12.0 x 107 and 3.4 x 107° GeV ! at 95% confidence level (CL) for the real and complex
triplet cases, respectively. These bounds can be translated into the corresponding bounds on
the vacuum expectation values of the triplet field in the models. By combining the real and
complex triplet fields with a common M parameter, corresponding to the Georgi-Machacek
(GM) model, one gets a cancellation for the operator Or so that ¢r = 0. That is, the GM
model has only nonzero cy and cg at tree level. We note in passing that the GM model also
has other contributions from one-loop matching, which is to be discussed in Section V-C.

In addition to the above-mentioned contributions directly from tree-level matching, it
is also possible to have additional corrections through RGE running of the other Wilson
coefficients from the new physics scale M to the electroweak scale, characterized by the
W boson mass My, (or sometimes the Higgs mass M, = 125 GeV is used). Here we will
focus on the electroweak oblique corrections, of which 7" has been discussed above and
S = 4mv?(dewp + e + cg). Note that with only tree-level matching and no RGE running,
S would be zero in the above-mentioned models. The oblique U parameter is not considered
here because it first arises from a dimension-8 operator. The anomalous dimensions for the
RGE’s are given in Ref. [17-21]. In particular, Ref. [18] also includes the redundant operator
Or explicitly and has

d C —L% ’2(0 _c)+...
din QT (amz2? TR ’

~—

d 1 (1)
dnQP = n2 \"3)™ ’

where we have kept only the tree-level generated Wilson coefficients while leaving the other
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contributions in the “ --” parts.
It is readily seen that the list of models that can lead to dimension-6 operators from
tree-level matching is rather limited [14, 22]. So is the list of models that can have oblique

corrections induced at the tree-level matching with RGE improvements. With the assump-
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FIG. 1: Corrections to the S and T parameters from RGE-improved tree-level matching for the
real singlet model (red line) and the GM model with A’ = 0 (blue line). The inner green (outer
yellow) ellipse corresponds to the 1o (20) level. The marks on each of the lines correspond to the
parameter choices of y = M = 500 GeV, 1 TeV, 2 TeV, and 5 TeV from the outer end toward the

origin.

tion of vanishing tree-level T (but still allowing corrections from RGE), only two models
are left: the real singlet model and the GM model. In Fig. 1, we show the corrections to
the S and T parameters from RGE-improved tree-level matching for the two models in red
(the real singlet model) and blue (the GM model) lines. Also shown in the plot are the
measured ranges of the parameters at 1o level in the inner green ellipse and 20 level in
the outer yellow ellipse. In both cases, the oblique corrections arise solely from one-loop
RGE running. The slope of each line on the S-T' plane is fixed and determined by the
tree-level Wilson coefficients ¢y and cg. It is —9/(4 cos? fy) in the real singlet case, and
27/(4 cos? Byy) in the case of GM model. The exact location on each line is proportional to
(u?v? /M*) In (M /My, ). For each of the lines, we fix /M = 1. The marks from the outer
end toward the origin have the parameter choices of M = 500 GeV, 1 TeV, 2 TeV, and 5
TeV. At the 20 level, we find that the lower bound on the new scale is M 2 700 GeV for the
real singlet model and M 2 800 GeV for the GM model. Since these bounds are obtained
under the assumption that p/M = 1, they will thus become more relaxed (stringent) when

W< M (p> M). Again, we note that the result for the GM model is purely based on



the RGE-improved tree-level matching. A more complete analysis including the one-loop

matching will be presented in Section V-C.

IV. ONE-LOOP MATCHING

Let’s now turn our attention to the interactions that lead to dimension-6 operators only
at the one-loop level. Eq. (1) already contains all the relevant terms for ® of a generic
representation (m,n,Y) under the SM gauge groups, where m and n denote its multiplicities
under SU(3)c and SU(2)y, respectively, and Y is the hypercharge 2. The argument goes
as follows. Any interaction term contributing in the covariant derivative expansion (CDE)
approach to higher dimensional operators needs to be bilinear in the new scalar, and so is
the SM Higgs fields according to our setup. The SM Higgs bilinear under SU(2), can only
be decomposed as 2 ® 2 — 1 & 3, with the singlet case corresponding to the A term and
the triplet case to the X term in Eq. (1). If the new scalar field is a trivial representation of
SU(2)r, then only the A term is possible. In other words, only a nontrivial representation
(n > 2) of ® can give rise to the A term.

After identifying the interaction terms, we then implement the CDE for the Coleman-
Weinberg potential, as detailed in Refs. [14, 22]. Without going into details of the formalism,
we just comment that what one needs are the coupling matrices of the new scalar field with
the SM Higgs and gauge fields. Since the coupling terms are all bilinear in the SM Higgs
field and no linear term appears, the collection of contributing terms are limited and the
calculations become straightforward. For ® of the generic representation (m,n,Y’), we find
that the dimension-6 operators along with the associated Wilson coefficients induced by

one-loop matching are given by

m [ n\? n(n® — 1)\ n(n® — 1)\
2 ne (602 Ont —osgarz 7 " e Or
nY?2\ N n(n? — 1))\0 n(n? — 1)YXO
1202 P8 ganr VY 14402 P
f(m) nA
T amnz " ee (©6)

2 We use the normalisation that the electric charge of a particle Q = I3 + Y with I3 being its third weak

isospin component.



where the value of f(m) depends on the representation m of SU(3)s. For some simple
representations, f(1) =0, f(3) = 1/24, f(6) = 5/24 and f(8) = 1/4. In Eq. (6), we have
assumed that the scalar is a complex field (Y # 0). For a real scalar field, one should
multiply an overall factor of 1/2. It is noted that each operator receives the contribution
from either A or X', but not both. The operators Oy, Ogg, Oww and Ogq are induced by
the A term, while Or, Og and Oy g by the X’ term and thus only for ® of nontrivial SU(2),
representations. The coefficients of Oy, Ogp and Ogg are all linear in n, while those of Oy,
Ogr, Oww and Oy g are proportional to the Dynkin index of the representation n and thus

vanish for SU(2);, singlets. ?

V. A FEW PHENOMENOLOGICAL EXAMPLES

Observable Wzz W W Hyy Lbh Ly

ATLAS[23]  1.447033 1.09%023 1174027 0524040 1437043

CMS [24] 1.00+£0.29 0.83+0.21 1.12+0.24 0.844+0.44 0.91+0.28

TABLE II: Signal strengths of various modes, indicated by the subscript in the first column, as

measured at the LHC.

In this section, we explicitly work out the Wilson coefficients of relevant dimension-6
operators for a few well-motivated models whose scalar sector is extended with one new
scalar field or multiple scalar fields of a common type, and discuss how the models are
constrained by the electroweak precision data and the Higgs data, both for existing data and
future expected measurements. We have already seen that most such models have effective
dimension-6 operators starting only at the one-loop level. For current measurements we refer

to the U = 0 oblique parameter measurements of Ref. [25] and the ATLAS (CMS) Higgs

3 In Ref. [14], it is pointed out that there are additional universal contributions to the pure gauge dimension-
6 operators Osp, Oy, Osw, Osg and Osz¢ defined in the reference. The last two will not affect the
electroweak and Higgs physics, while the first three are usually small in effect because they are proportional
to the SM gauge couplings. For completeness, we also quote the general result here and include them in
the following fits:

m  [nY?2g? n(n?—1)

n(n? —1)g?
9 n L
@z | 3002 O28

360M2

2
g Oow +

L RS s
= 360M2

Osw | - (7)



data with 4.5 (5.1) fb~" integrated luminosity at v/s = 7 TeV and 20.3 (19.7) fb! integrated
luminosity at /s = 8 TeV [23, 24], as listed in Table II. We do not include tri-gauge boson
precision measurements in our fitting. For future expected sensitivities, we take the most
aggressive oblique parameter measurements expected from the Tera Z experiment [26] and

the projected Higgs data from Table 4 of Ref. [27].

A. Zee-Babu model

The Zee-Babu model [28-30] is one of the simplest phenomenological models that lead to
dimension-6 operators only from the one-loop matching. The model has one singly-charged
and one doubly-charged singlet scalar fields without a color charge. Assuming a common
mass parameter M for both of them and noticing that these fields cannot have the \ term
in Eq. (1), we find that only the Opp and Oy operators are induced at one-loop level:

1 VY 2N
£ e {(12]\42 +5112) O+ (535 * ) 0| (®)

where Ay and A; are used to denote the coefficient A in Eq. (1) for the singly-charged
and doubly-charged fields, respectively. The operator Ogp results in a deviation in the
Higgs diphoton decay rate from the SM expectation. The ATLAS and CMS data can set a
constraint on the Wilson coefficient: \,/M? < 0.6 (1.2) x 107* GeV ™2 at 1o (20) level for
the singly-charged scalar boson, and \g/M? < 1.5 (3) x 107 GeV ™2 at 1o (20) level for the
doubly-charged scalar boson. The current LHC bound for a doubly-charged scalar mass is
about 400 GeV [31] assuming 100% decay branching ratio to light leptons, while that for the
singly-charged one is as low as 90 GeV [32]. Setting the new scalars at the corresponding
mass bounds, the current LHC measurement can constrain Ay < 2.3 (4.8) at 1o (20) level
for the doubly-charged scalar boson assuming As = 0, or A\; < 0.5 (1.0) at 1o (20) level for
the singly-charged scalar boson if Ay = 0.

While current constraints mostly come from the Higgs diphoton rate, the universal
Higgs correction Oy, entering several channels to be well-measured at a lepton collider,
can become equally or even more important in Higgs phenomenology. The expected con-
straint for the singly-charged scalar boson at the future circular et-e~ collider (FCC-ee) is
As/M < 6 x 1073 GeV ™! at 20 level. For the doubly-charged scalar boson, the constraint is
still dominated by the Higgs diphoton rate, and A\g/M? < 6 x 107% GeV ™2 at 20 level is a

10



good approximation for the mass regime of M < 800 GeV.

B. Two-Higgs doublet model

As a second example for loop-induced dimension-6 operators, we consider the two-Higgs
doublet model (2HDM). We follow the notation and convention of Ref. [33], except that

each of our \’s is twice bigger, and write down the scalar potential:

Vorpm =mi; (®1®1) + mZy(®5Ps) — m2y(®]ds) — mi2(BIdy)
+ A (DTD1)2 + My (BLD3)? + 203(DT D1 ) (BLD,) + 20 (DI D) (D1 D) |
+ A5 (D1 D2)? + N (@1 P1)? 9)

where we have left out the A\g 7 terms that are forbidden by the Zy symmetry ®; — ®; and
®y — —®d,. As usual, we define the angle § in terms of tan 5 = vs/vy, the ratio of the
vacuum expectation values of ®, and ®,, and the angle o as the rotation from the above
basis to the mass eigenbasis for the CP-even neutral Higgs bosons. In the decoupling limit,
cos(f8 — a) — 0 and the SM-like Higgs boson is much lighter than the other Higgs bosons.
In this limit, the above potential is turned into a form consistent with Eqgs. (1) and (3) after

the basis rotation of angle 5. We then determine

1
A :g [3)\1 + 3)\2 + 10)\3 + 2/\4 - 6)\5 - 3()\1 + )\2 - 2)\3 - 2/\4 - 2)\5) COS 4&] s

1
)\/ 25 [)\1 + )\2 — 2)\3 -+ 6)\4 — 2)\5 — ()\1 -+ )\2 — 2)\3 — 2)\4 — 2)\5) COS 4ﬁ] . (10)

At this point, it is useful to make a comparison with results already existing in the
literature, as we use a different parameterisation from others. Using the identity 77, =
20406 — 10,50k, we have A(HTH)(®T®) + N (HITH)(®T7°®) = (A — IN)(HTH)(®T®) +
SN (H'®)(®TH). We therefore make the identification A = Ay 4+ $Xo, X' = 2, where A1
here are those used in Ref. [14]. Without the X" terms in Eq. (3), our most generic result
corresponds to the “Simpler 2HDM theory” in Ref. [14].

In Fig. 2, we use the red curves to show the behaviour of S and T parameters for the
2HDM in the decoupling limit. For the set of solid red curves, we take M = 200, 400 and
600 GeV from right to left in the left plot and 600, 800, and 1000 GeV in the right plot.
It is seen that there is a sensitive dependence on the mass scale M. From top to bottom,

the dashed lines are for fixed A’ = 2, 1, and 0.5 in both plots. One can see that the current

11
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FIG. 2: Oblique corrections of the decoupling 2HDM (red), where we have omitted the accidental
A’ term in Eq. (3), and Y = 1 complex Higgs triplet model (blue), where we have omitted the
RGE-improved tree-level contributions. The left plot also shows the current LEP2 constraints at
lo (green region) and 20 (yellow region) levels, while the right plot shows the most aggressive
constraints expected from the future Tera Z experiment. For each set of the red and blue curves,
the solid ones have fixed M with the values of 200 GeV, 400 GeV, 600 GeV from right to left in
the left plot, and 600 GeV, 800 GeV, 1000 GeV in the right plot. The dashed lines have fixed

couplings X with the values of 2, 1, and 0.5 from top to bottom.

precision of data barely constrains the case with M = 200 GeV and X' = 2 at the 20 level.
With sufficiently small X' (e.g., < 0.5), even the future Tera Z experiment cannot probe the
mass scale above about 200 GeV.

The Higgs sector of the minimal supersymmetric standard model (MSSM) is identical
to the 2HDM except that the A’s in Eq. (9) should be replaced by either £(g* + ¢’%) or
—% g? at tree level. Therefore, in the decoupling limit of the MSSM, the relevant interaction
coefficients A and X are (0.5). As seen in Fig. 2, the oblique parameters are not very
constraining even in the case of future lepton colliders. In certain models such as the inert
2HDM where § = 0, A = 2A3 + Ay and X' = 4)\4, which are not constrained by the SM

Higgs coupling/mass and potentially large. In this case, the precision measurements alone

can probe a much larger parameter region.
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C. Georgi-Machacek model

Our third example is the GM model, which is special in that it is the only model that
has contributions from both RGE-improved tree-level matching and the one-loop matching.
In addition to the SM Higgs doublet, the scalar sector of the GM model has a Y =1
complex triplet scalar field X = (x**,x",x°/v2)" and a Y = 0 real triplet scalar field

—_—
—
—

(€7,€° ¢7)T with the scalar potential
1
Vaun =M? (XTX + 55*5) +p[(HI7°H) X* + he] — vVou (H'm°H) =

+ A(H'H) (XTX + %ETE) + X (H'mH) (X" X)
N ptragCY (She
—i—E(HTH)(HtX%—h.C.)jL---, (11)
where H® = io? H*, terms have been written in accordance with Eqs. (1) and (2), and the
“...7 part contains the irrelevant ones. Note that the one-loop matching is not simply a
sum of separate Y = 1 complex and Y = 0 real triplet contributions, as the last term mixes
the real and complex fields.

Corrections to the oblique parameters are

1 [2p*0? M 2 No?
S=—|zc—In|{— | +-—| ,
4w |3 M4 My 3 M?
1 20 (M 1 %2
po L9 vy + vl (12)
47 | 2 cos? 0W M4 MW 967TOéEM M?2

Note that all these contributions are positive-definite. The logarithmic part in each of

the expressions comes from the one-loop RGE-induced Wilson coefficients after tree-level
matching and is numerically presented in Fig. 1, while the second part is the result from
one-loop matching. To demonstrate purely one-loop contributions to the oblique parameters,
we plot in Fig. 2 the blue curves for the case with a single Y = 1 complex triplet without
the dimension-3 accidental interactions in Eq. (2) using the same set of parameters M and
A as for the 2HDM in the decoupling limit. Apparently, the oblique parameter data are
more constraining in this case.

By combining the RGE-improved tree-level and one-loop contributions to oblique param-
eters and the Higgs observables in Table II, we perform a x? fit on the plane of A and N
for fixed values of p and M. Fig. 3 shows the 1o and 20 contours by fitting to the current
data for p = 50 GeV and M = 200, 300 and 400 GeV in the left plot, and by fitting to the

13
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FIG. 3: Constraints on the A\-\" parameter space of the GM model from a global fit to both the
electroweak oblique corrections and the Higgs data. The left plot uses the current LEP2 oblique
parameters and the current ATLAS and CMS Higgs data. The right plot uses the most aggressive
Tera Z result for the oblique parameters and the expected FCC-ee Higgs measurement constraints.
In the left (right) plot, we fix u© = 50 (5) GeV. Green dashed and orange curves are respectively

contours at 1o and 20 levels for different choices of M.

future expectations for p =5 GeV and M = 500, 700 and 1000 GeV in the right plot. Note
that in making these plots, we keep in mind that A”) < \/47 to ensure the perturbativity. If
i is chosen to have a larger (smaller) value, the allowed region will become more stringent

(relaxed).

D. Loop-generated neutrino mass models

There are models with other types of exotic scalar fields. Here we consider the exotic
scalars introduced to induce effective AL = 2 operators at the loop level for generating
Majorana mass for neutrinos. Refs. [34, 35] provide a comprehensive list of such operators,
which we reorganise into Table III. In fact, the Zee-Babu model discussed in Section V-A
belongs to this category (Group I in the table). In the table, we also show the current
constraints and the expected future constraints at the 2o level for each type of exotic scalar

field(s). These are bounds on A\/M? or sometimes A\/M (N /M) when assuming X' = 0
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Group Model SM Charge Current constraints at 20 level Future constraints at 20 level
' Zee (1,1,1) 57 $1.2x107% Gev—2 2 <6x1073 GeV!
Zee-Babu | (1,1,2) 7 $3x107% GeV 2 7 $6x 1076 GeV 2
L70Q¢>, ctug| (3.1.1/3) o7 STx107% GeV 2 27 $5x 1076 Gev 2
Q°Q¢, ucdg|(3,1,-1/3)
. dede (3,1,2/3) 27 ST x107° GeV—2 37 $5x 1070 Gev—2
crdo (8 1,4/3) 7 $3x107% GeV 2 27 $3x1076 Gev 2
wcup |(3,1,-4/3)
QcQo, ucdp|(6,1,—1/3) 27 S1.3x107° GeV 2 97 S1x 1076 Gev—2
111 dede (6,1,2/3) 57 S13x107° GeV 2 97 S1x 1076 Gev—2
uCug (6,1,—4/3) 7 S12x107° GeV 2 97 S9x 1077 Gev—?
v dL¢ (3,2,1/6) | 3z S3x 1075 GeV ™2, Aﬁ $5x1073 GeV™! | 7 $2.5x 1076 GeV 2, % <1.3x1073 Gev!
Qed, G | (3,2,7/6) |12 S 1.5x 1075 GeV =2, 2L <6 x 1073 GeV ! | 25 S 1.9 x 1076 GeV =2, 4L < 1.6 x 1073 GeV !
V| Qué, dQo |(8,2,-1/2)| 2y S5x 1076 GeV=2, A £3x 1073 GeV™! | 25 S4x 1077 GeV=2, 2L <7x 107* GeV ™!
v [eQé (3,3,1/3) | 107 S2x107° GeV™2, 2 <3x 1073 GeV™! | 25 S1.6x 1076 GeV™2, 27 <7 x 107 GeV~!
Q°Qé  [(3,3,-1/3)| 27 S2x107° GeV™2, 2 <25x 1073 GeV™!| 25 S1.8x 1076 GeV™2, 27 <6 x 107 GeV~!
VII Q°Qep  |(6,3,—1/3)| 57z S 4x 1076 GeV 2, % $25x 1073 GeVTH 25 <4 x 1077 GeV ™2, % <5x107% GeV~!

TABLE III: More exotic scalar fields, their SM quantum numbers, current constraints and future

constraints at the 2o level.

(A = 0) and approximately valid for the regime of M < 800 GeV.

The models in Groups IT and IIT of Table IIT have an SU(2), singlet scalar charged under

SU(3)c and U(1)y. In this case, the electroweak oblique corrections vanish identically, and

the dominant constraints come from the gluon fusion production of the SM Higgs boson and

its digluon and diphoton decays. That is, the theory parameter \/M? is restricted by the

allowed Wilson coefficients cge and cpp in these models (mostly by the former), as shown

in Fig. 4. The other Wilson coefficients ¢y (and ¢yp) are nonzero but much less important.

For nontrivial representations of SU(2),, in the other groups of Table III, they involve

the additional coupling \'. In this case, the T parameter, which scales like (X' /M)?, plays

an important role in restricting the parameter space. Therefore, the bounds are usually for

N /M instead of \'/M? from the S parameter.
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FIG. 4: Wilson coefficients cgg and cpp for models having a new SU(2), singlet scalar field with
Y = 1 and in the SU(3)¢c representation of 1 (black), 3 (red), 8 (blue) and 6 (brown) at one-
loop level. The left (right) plot shows the current LHC constraints (the future prospect) at the
lo (green) and 20 (yellow) level. The marks on each line correspond to A/M? = 1076 GeV~2,

2x 1075 GeV™2, 5 x 1079 GeV~2 and 107° GeV~2 from the origin outward.
VI. SUMMARY

Although it is widely believed that the standard model (SM) is at best a good effective
theory at low energies, the fact that the observed 125-GeV Higgs boson has properties very
close to that in the SM suggests that the new physics scale is high and the new degrees
of freedom are likely to be in the decoupling limit. Therefore, it is useful to work out an
effective field theory (EFT) in terms of operators up to dimension 6 and composed of only
the SM fields.

In this paper, we have analysed the EFT of the SM Higgs field for a wide class of
weakly coupled renormalisable new physics models extended by one type of scalar fields and
respecting CP symmetry, concentrating on the dimension-6 operators that have corrections
to the electroweak oblique parameters and current Higgs observables. We have shown that
for the new scalar field of specific representations (SU(2) singlet, doublet, and triplet),
there are “accidental” interactions between the scalar and the SM Higgs fields that lead
to dimension-6 operators at both tree and one-loop level. For the scalar field of a general
representation under the SM gauge groups, we have pointed out that there are only two

generic quartic interactions that will lead to dimension-6 operators only at one-loop level.

16



We work out the Wilson coefficients associated with these operators for the general case in
terms of the new physics parameters.

Using the existing LEP oblique parameter measurements and LHC Higgs data, we s-
tudy the current constraints on the parameters of several benchmark models. The same is
also done for the projected results expected in the future experiment. Although indirec-
t, comparing the higher dimensional operators in the effective field theory with precision

measurements is always a useful probe and complementary to the direct search method.
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