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General string-theoretic considerations suggest that four-dimensional large-N gauge theories
should have dual descriptions in terms of two-dimensional conformal field theories. However, for
non-supersymmetric confining theories such as pure Yang-Mills theory, a long-standing challenge
has been to explicitly show that such dual descriptions actually exist. In this paper, we consider
the large-N limit of four-dimensional pure Yang-Mills theory compactified on a three-sphere in the
solvable limit where the sphere radius is small compared to the strong length scale, and demonstrate
that the confined-phase spectrum of this gauge theory coincides with the spectrum of an irrational
two-dimensional conformal field theory.

Introduction. Confining gauge theories in the large-
N limit are believed to have dual descriptions as weakly-
coupled string theories [1]. Since string theories have 2D
worldsheet conformal field theory (CFT) descriptions, it
is therefore expected that confining 4D gauge theories
may have alternative descriptions based on 2D CFTs.
However, for non-supersymmetric quantum field theories
(QFTs) such as Yang-Mills (YM) theory, no concrete re-
lation between large-N confining theories and 2D CFTs
has ever been found.

In this paper we tackle this problem by studying the
large-N limit of 4D pure SU(N) YM theory, formulated
at temperature T = β−1 and compactified on a three-
sphere S3 of radius R. One can thus view the theory
as living on S3

R × S1
β with Euclidean metric signature.

The virtues of this setting are two-fold. First, thanks to
asymptotic freedom, if we take ΛR � 1 where Λ is the
YM strong scale, then the ’t Hooft coupling λ ≡ g2N
becomes small — i.e. λ(1/R) → 0. As a result, the
theory becomes solvable for any temperature β ∼ N0.
Second, it is known [2] that large-N YM theory stays in
the confined phase when β/R & 1, even when λ→ 0. In
this context “confinement” means that the system has
an unbroken center symmetry and that its free energy
scales as N0. As sketched in Fig. 1, it is plausible that
the physics of YM theory is smooth as a function of ΛR.
Thus, the ΛR� 1 regime of the large-N confined phase
represents a particularly tractable 4D starting point in
our search for a dual 2D description.

Rather than attempt a string-theory construction of a
2D dual for large-N YM theory, we shall instead analyze
the confined-phase spectrum of YM theory in the solvable
ΛR � 1 limit. Remarkably, we find that a surprisingly
simple 2D CFT description emerges. Thus, in this limit,
we conclude that the large-N confined-phase spectrum of
4D YM theory coincides with the spectrum of a 2D CFT.

Specifically, recall that the spectrum of a QFT is en-
coded in its thermal partition function. We take 4D YM
theory to be minimally coupled to the S3 metric, so that
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FIG. 1. A conjectured phase diagram for large-N YM theory
on S3×S1. In the analytically tractable regime ΛR� 1, the
deconfinement transition occurs at β ∼ R, while for ΛR� 1,
lattice studies have shown that it occurs at β ∼ 1/Λ. This
sketch illustrates the natural conjecture that these two limit-
ing cases are smoothly connected. The results of this paper
apply in the ΛR→ 0 region indicated by the blue line.

the Kaluza-Klein energies on the three-sphere are given
by En = n/R in the λ → 0 limit [2]. The partition
function then takes the form

ZYM(β/R) =

∞∑
n=0

dne
−βEn =

∞∑
n=0

dnq
n (1)

where q = e−β/R and dn counts the number of states with
energy En. Our main result, then, will be the demonstra-
tion that ZYM coincides with a chiral partition function
of a 2D CFT:

ZYM(τ) = Z2D(τ) . (2)

In writing Eq. (2), we have analytically continued q to
e2πiτ with τ ∈ H, the complex upper half-plane. Thus
Im τ = β/(2πR). It can also be shown that Re τ =
µIβ/(2π), where µI ∈ R is an imaginary chemical po-
tential for a combination of the S3 angular momenta.



2

The 4D partition function. We begin by briefly
explaining the computation of ZYM, leaving a more
leisurely exposition to Ref. [3]. To calculate the 4D par-
tition function ZYM(τ), we take the large-N limit with
Λ held fixed, which means taking the continuum limit
after the large-N limit. Working on S3 × S1, we al-
low an imaginary chemical potential µI for the Cartan
Q3
L + Q3

R charges associated to the two SU(2) angular
momenta on S3, which has the isometry group SO(4) '
SU(2)L × SU(2)R, and assume that β,R, µI ∼ N0. We
will not consider states with energies & N because they
lie beyond our UV cutoff. As is typical in studies of
large-N theories, we shall work with the U(N) version
of YM theory rather than the SU(N) version [4]. When
ΛR→ 0, the microscopic degrees of freedom of YM the-
ory reduce to an infinite collection of color-adjoint-valued
harmonic oscillators. These oscillators are counted by the
massless-vector partition function, which can be written
as zv(τ) = (6q2 − 2q3)/(1 − q)3. The physical states
are then determined by imposing the color Gauss law.
In the λ = 0 confined phase, the physical single-particle
states can be identified with single-trace operators, and
their energies are proportional to their scaling dimen-
sions. The counting problem for these states, and also for
the multi-particle states, has been solved [2, 5], and the
resulting grand-canonical confined-phase partition func-
tion is given by

ZYM(τ) =

∞∏
n=1

1

1− zv(qn)
=

∞∏
n=1

(1− qn)3

1− 3qn − 3q2n + q3n

= 1 + 6q2 + 16q3 + 72q4 + ... (3)

As expected in any confining large-N theory, we find
that the dn grow exponentially for large n. Thus, there
are Hagedorn singularities in ZYM(τ). In Eq. (3), we
find dn ∼ eCn and En ∼ n for large n, with C ≡ log(2 +√

3) ≈ 1.317. This contrasts with the behaviors dn ∼
e
√
n and En ∼

√
n that would arise for a string theory

with a flat target space. Of course, we are not in flat
space: the spacetime curvature is ∼ 1/R, which is of the
same scale as the effective string tension α′ ∼ 1/R2 that
follows from our spectrum. The scaling properties of dn
in Eq. (3) imply that the leading Hagedorn singularity of
ZYM(β, µI) is at βH/R = C, µI = 0. Consequently, at
µI = 0, there must be a phase transition to a deconfined
phase at βH . This is discussed in detail in Refs. [2, 6].
Modular symmetries. We now observe that the de-

nominator in Eq. (3) can be factorized with roots that
are inverses of each other:

1− 3qn− 3q2n + q3n = (1 + qn)(1− qnz)(1− qn/z) (4)

where z = 2 +
√

3. This pivotal algebraic observation
was first made in Ref. [7] in the context of uncovering a
subtle “temperature-reflection” symmetry for ZYM. For
our purposes, however, the key point is that this allows

ZYM to be written as

ZYM =

∞∏
n=1

(1− qn)3

(1 + qn)(1− qnz)(1− qnz−1)
. (5)

This observation is very important because the struc-
ture of Eq. (5) matches the structure of the product
representations of the Dedekind η-function and gener-
alized Jacobi ϑ-functions. (In the related context of
adjoint QCD, this was also noted in Ref. [8].) Specifi-
cally, the Dedekind η-function has the product represen-
tation η(τ) = q1/24

∏∞
n=1(1 − qn), while the generalized

ϑ-function ϑ
[
α
β

]
(τ) ≡

∑
n∈Z q

(n+α)2/2e2πinβ has a prod-
uct representation of the form

ϑ
[
α
β

]
(τ) = qα

2/2
∞∏
n=1

[
(1− qn)

× (1 + qn−
1
2 +αe2iπβ)(1 + qn−

1
2−αe−2iπβ)

]
.

(6)

Under the S : τ → −1/τ and T : τ → τ + 1 genera-
tors of the modular group SL(2,Z), we find η(−1/τ) =√
−iτ η(τ) and η(τ + 1) = eiπ/12 η(τ), while

S : ϑ
[
α
β

]
(−1/τ) =

√
−iτ e−2πiαβϑ

[
−β
α

]
(τ) ,

T : ϑ
[
α
β

]
(τ + 1) = eiπα

2

ϑ
[

α
β + α + 1/2

]
(τ) . (7)

Given these definitions, the structure of Eq. (5) allows
us to rewrite the 4D partition function ZYM as a finite
product of Dedekind η-functions and Jacobi ϑ-functions:

ZYM(τ) = η(τ)3

(
−
√

2e−iπbη(τ)

ϑ
[

1/2
b + 1/2

]
(τ)

)√
2 η(τ)

ϑ2(τ)
(8)

where b = i log(z)/2π ≈ 0.21i, where ϑ2(τ) ≡ ϑ
[
1/2
0

]
(τ),

and where the identity 2η(2τ)2 = η(τ)ϑ2(τ) has been
used in passing from Eq. (5) to Eq. (8). The fact that
b is imaginary is the reason the degeneracy factors dn in
Eq. (3) grow as dn ∼ eCn. The expression in Eq. (8) —
and our interpretation of this expression in terms of spe-
cific 2D CFTs, as discussed below — are the key results
of our paper, with many striking consequences.
Modularity versus dimensionality. The first in-

teresting implication of Eq. (8) becomes apparent upon
realizing that it is extremely unusual for the partition
function of a 4D theory to be expressible as a finite prod-
uct of modular functions, as in Eq. (8). The large-|τ |
behavior of a modular function is tied, through the S
modular transformation, to its behavior near |τ | = 0.
For example, the Dedekind η-function has the large-|τ |
expansion η(τ) = q1/24(1 − q + ...); the S transforma-
tion then requires this function to behave at small |τ | as
η(τ) ∼ exp[−iπ/(12τ)]/

√
−iτ . Similar statements can be

made for the ϑ-functions. Thus, if a partition function
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can be written as a finite product of modular η-functions
and ϑ-functions, then it must have the leading behavior

lim
arg τ→π/2

[
lim
|τ |→0

logZmodular(τ)

]
= σR/β (9)

for a constant σ. This amounts to the statement that
logZmodular ∼ T as T →∞. This is indeed the expected
behavior for a 2D QFT. However, it is certainly not the
expected behavior for a 4D QFT, for which we generically
expect

logZ4D ∼ T 3 as T →∞ . (10)

In this sense, 4D QFTs whose partition functions can be
written in terms of modular functions behave as if they
were 2D QFTs, since they follow Eq. (9) rather than
Eq. (10).

In our case, |τ | = β
2πR

√
1 + (µIR)2 and arg τ =

cot−1(µIR). If we were to reverse the order of limits
on the left side of Eq. (9) and take the T → ∞ limit
with µI = 0, pure YM theory would follow the scaling in
Eq. (10). Such a limit cannot be studied from Eq. (3) due
to the Hagedorn singularities, and the physics is governed
by the deconfined phase. But with the order of limits in-
dicated in Eq. (9), which amount to taking β/R → 0
before µIR→ 0, Eq. (9) holds for pure YM theory. Note
that in other theories such as adjoint QCD with periodic
boundary conditions for fermions, the Hagedorn singu-
larities do not lie along arg τ = π/2; the two limits then
commute [8] and these theories exhibit 2D behavior in
the sense of Eq. (9) irrespective of the order of limits.

Vacuum energy. Another major consequence of
Eq. (8) is that the modular properties of the η- and ϑ-
functions fix the vacuum energy EYM of our large-N YM
theory to be zero.

To see this, we first recall that if we write the q-
series expansion of a modular function f(τ) in the form
f = q∆

∑∞
n=0 anq

n, then ∆ can be thought of as the
2D vacuum energy. Its value is fixed by the modular
properties of f and tied to the values of an. Were one
to abitrarily shift ∆ → ∆ + c, the modular properties
of f(τ) would be ruined because the S-transformation
would map qc = e(2πiτ)c to e(−2πi/τ)c, thereby prevent-
ing qcf(τ) from transforming as a modular function.

Next, we observe that the vacuum energy associated
to the η-function is 1/24, while ϑ

[
a
b

]
has vacuum energy

a2/2. Summing the vacuum energies of the individual
modular functions in Eq. (8) we obtain a striking result:

EYM = 0 . (11)

Indeed, this is the only value consistent with the q-
expansion for ZYM given in Eq. (3), provided that EYM

is calculated in a renormalization scheme which is consis-
tent with the modular properties of ZYM made evident
in Eq. (8). This value, EYM = 0, coincides with the re-
sult implied by T-reflection symmetry [7], and also agrees

with a direct evaluation of the sum over the confined-
phase spectrum of finite-temperature large-N YM theory
compactified on S3, as performed in Ref. [9].
CFT interpretation. The striking modular struc-

ture of Eq. (8) suggests that the spectrum of our 4D YM
theory coincides with that of a chiral (e.g., left- or right-
moving) 2D CFT. This motivates the central question
we shall now explore for the rest of this paper: what is
the 2D CFT which gives rise to Eq. (8), and thus gives a
2D description of 4D YM theory in the large-N limit?

Unfortunately, we will not be able to give a complete
answer to this question. The reason ultimately has to do
with the fact that many distinct CFTs can have coinci-
dent spectra without being equivalent. They may differ,
for example, in their correlation functions. In general, the
most important aspects of a given 2D CFT are governed
by its central charge (conformal anomaly) c and its spec-
trum of operator conformal dimensions hi, i = 1, ..., n,
where n is the number of so-called “primary” fields in
the CFT. Along with the explicit traces over states,
knowledge of c and the hi’s goes a long way in nailing
down relevant aspects of the CFT such as its selection
rules and correlation functions. But partition functions

are only sensitive to the combinations h
(eff)
i ≡ hi − c/24,

rather than the values of c and hi individually. Conse-
quently, without additional assumptions about the CFT
in question (such as the assumption of unitarity, which
would additionally tell us that min {hi} = 0), this repre-
sents a fundamental limitation on our ability to specify
a unique CFT.

We will therefore answer a different but related ques-
tion: do there exist any 2D CFTs to which our large-N
YM theory is isospectral? Remarkably, we shall show
that at least one such 2D CFT indeed exists. To see this,
we first recall that a free c = 1 scalar CFT has a left-
moving spectrum whose trace is given by 1/η(τ), while
the Z2 orbifold of this CFT has a chiral sector whose
trace is (2η(τ)/ϑ2(τ))1/2. Furthermore, the direct prod-
uct of two copies of the c = −26 bc ghost CFT has a
left-moving spectrum whose trace is given by η(τ)4. Per-
haps the most challenging to interpret is the remaining
factor in Eq. (8), specifically

−
√

2e−iπbη(τ)

ϑ
[

1/2
b + 1/2

]
(τ)

. (12)

However, this can be identified as the trace of the chiral
(e.g., left-moving) states in the vacuum sector of the c =
2 bosonic βγ ghost CFT recently explored in Ref. [10].
This is a logarithmic CFT [11], and it has a U(1) con-
served charge. Thus the vacuum-sector chiral partition
function of the c = 2 βγ CFT depends on the choice of a
complex fugacity z = e+µβ . To match with our expres-
sions for YM theory, we set µβ = 2πi b = − log(2 +

√
3).

Putting this together, we therefore conclude that the
expression in Eq. (8) can be viewed as the trace over
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the chiral spectrum of a theory which is the direct prod-
uct of five known CFTs, one of which is irrational. This
then justifies the central claim of this paper in Eq. (2):
there is indeed an irrational 2D CFT which is isospectral
to the finite-temperature large-N 4D YM compactified
on S3 in the ΛR → 0 limit. Aside from explaining our
observations concerning EYM and the small-|τ | behav-
ior of ZYM, this fact has an intriguing further implica-
tion. Two-dimensional CFTs have infinite-dimensional
symmetries, which always include the Virasoro symme-
try. Eq. (2) then suggests that large-N YM theory has a
hidden Virasoro symmetry. It would be very interesting
to demonstrate this explicitly within YM theory.

Primary operator spectrum. We now collect infor-
mation concerning the spectrum of conformal dimensions

h
(eff)
i corresponding to the primary fields of this tensor-

product CFT. Our approach proceeds by determining
the diagonal modular-invariant associated with the ex-
pression in Eq. (8), and then computing the eigenvalues

of the modular T operator to extract h
(eff)
i .

We begin by defining the quantities

Tm,n ≡
−
√

2 e−iπbn η(τ)4

ϑ
[
mb + 1/2
nb + 1/2

]
(τ)

(
η(τ)

ϑ
[
P (m)/2
P (n)/2

]
(τ)

)1/2

, (13)

where {m,n} are relatively prime integers (a relationship
which we shall henceforth denote m ⊥ n), and P (k) ≡
1
2 (1 + (−1)k), k ∈ Z. Thus P (k) = 0, 1 for odd or even k,
respectively. The set {Tm,n} is a basis for a vector space
over the field C with two key properties: it contains the
“seed term” in Eq. (8), and it is the minimal set which is
closed under the action of the SL(2,Z) modular group.

The first property follows by noting that T0,1(τ) coin-
cides with Eq. (8). The verification of the second prop-
erty proceeds in two steps. First, it can be shown that, up
to overall phases and extraneous factors of

√
−iτ , the S

and T modular transformations map Tm,n to T−n,m and
Tm,n+m, respectively. Second, we observe that if {m,n}
are relatively prime, then {−n,m} and {m,n + m} are
also relatively prime. Since all modular transformations
can be generated by sequences of S and T , it then follows
that the full modular “orbit” of our seed term T0,1 is con-
tained within the set of coprime integers {m,n}. Indeed,
it is also possible to demonstrate [3] that the modular
orbit actually covers all coprimes.

As a result, the minimal “diagonal” modular-invariant
generated from Eq. (8) is given by

Zdiagonal = (Im τ)3/2
∑
m⊥n

∣∣Tm,n∣∣2 . (14)

The appearance of the factor of (Im τ)3/2 is standard
when combining holomorphic and anti-holomorphic com-
ponents, such as our Tm,n factors, each of which has mod-
ular weight k = 3/2. It also ensures that Zdiagonal is fully
modular-invariant. Moreover, it can be verified numeri-
cally that the infinite sum in Eq. (14) converges except

FIG. 2. The numerical values of Eq. (14) with |m|, |n| ≤ 10,
plotted within the unit-q disk.

for an isolated set of points corresponding to the Hage-
dorn singularities. The numerical values of Zdiagonal on
the interior of the unit-q disk are shown in Fig. 2.

In order to extract the spectrum of effective conformal

dimensions h
(eff)
i , we now rewrite Zdiagonal in a basis of

eigenfunctions of the modular T : τ → τ+1 operator. We
do this because such eigenfunctions χ(τ) will have eigen-

values exp[2πih
(eff)
i ] under T , allowing us to read off the

values of h
(eff)
i (mod 1). Fortunately, constructing eigen-

functions of the T -operator from linear combinations of
the Tm,n’s in Eq. (13) is relatively straightforward. Since

Tm,n(τ + 1) = eπi{[1−P (m)]/8+m2|b|2} Tm,n+m(τ) , (15)

we see that any linear combination which includes Tm,n
must also include Tm,n+m, Tm,n+2m, and indeed all
Tm,n+km where k ∈ Z. Our T -invariant linear combi-
nations can therefore be indexed by an arbitrary integer
m and a second integer ` ⊥ m obeying 0 ≤ ` < m.
Hence T -eigenfunctions can be constructed analogously
to Bloch eigenfunctions, by summing over all components
Tm,`+km with k ∈ Z with a Bloch phase α ∈ [0, 1) ⊂ R:

χm,`,α =
∑
k∈Z

e2πiαk Tm,`+mk . (16)

It then follows that

χm,`,α(τ + 1) = e2πih
(eff)
m,`,α χm,`,α(τ) , (17)

where

h
(eff)
m,`,α =

1

2

[
1− P (m)

8
+m2|b|2

]
− α . (18)

One might wonder whether {χm,`,α} is the complete
set of T -eigenfunctions. However, we have verified this by
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checking that summing over χm,`,α reproduces Eq. (14):

Zdiagonal = (Im τ)3/2
∑
m∈Z

∑
0≤`<m
`⊥m

∫ 1

0

dα |χm,`,α|2. (19)

This confirms that Eq. (18) is the desired set of effec-
tive conformal dimensions (mod 1) of the primary opera-
tors in our CFT. The fact that these dimensions depend
on α — a continuous real variable — confirms that we are
dealing with an irrational CFT [12]. Our observations
are consistent with the 2D logarithmic CFT interpreta-
tion discussed above, since it is known that logarithmic
CFTs typically have a continuously infinite number of
primary operators [13].

Outlook. We have presented evidence that the con-
fined phase of finite-temperature 4D non-supersymmetric
large-N pure Yang-Mills theory compactified on a three-
sphere of radius R is isospectral to an irrational 2D CFT
in the ΛR→ 0 limit. This gives credence to the hope and
expectation that non-supersymmetric large-N confining
gauge theories are dual to 2D CFTs. Moreover, as we
shall demonstrate in a separate paper [3], modularity in
the sense of Eq. (8) turns out to be a generic property of
large-N confined-phase gauge theories with adjoint mass-
less matter in the λ → 0 limit. In Ref. [3] we shall also
show that this structure is present in the large-N limit
of the N = 4 superconformal index.

Our results suggest a large number of interesting top-
ics for future research. For example, it is important to
understand whether our large-N 4D-2D spectral equiv-
alence extends to correlation functions, and to explore
how it is related to other known 4D-2D relations, such as
those discussed in Refs. [14]. It would also be interesting
to understand the origin of Eq. (8) within string theory,
perhaps by making contact with the ideas in Refs. [15].
Given recent progress in the understanding of the bulk
duals of 2D CFTs (see, e.g., Ref. [16]), it is tempting to
wonder whether our results may help to uncover the bulk
dual of YM theory and of other non-supersymmetric 4D
adjoint-matter theories. It would also be interesting to
understand whether the continuous spectrum of primary
operators in the 2D theory suggested by our analysis has
an interpretation in 4D YM theory. Finally, there re-
mains the very important question of determining how
our 4D-2D relation might evolve for λ > 0.
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