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Abstract. On the projective plane there is a unique cubic root of the canonical bundle and this root is acyclic.
On fake projective planes such root exists and is unique if there are no 3-torsion divisors (and usually exists but
not unique otherwise). Earlier we conjectured that any such cubic root (assuming it exists) must be acyclic. In the
present note we give a new short proof of this statement and show acyclicity of some other line bundles on those
fake projective planes with at least 9 automorphisms. Similarly to our earlier work we employ simple representation
theory for non-abelian �nite groups. The novelty stems from the idea that if some line bundle is non-linearizable
with respect to a �nite abelian group, then it should be linearized by a �nite (non-abelian) Heisenberg group. Our
argument also exploits J. Rogawski's vanishing theorem and the linearization of an auxiliary line bundle.

This work was done in August 2014 as a part of our �Research in Pairs� at CIRM, Trento (Italy).

1. Introduction

1.1. In [10] Mumford gave an ingenious construction of a smooth complex algebraic surface with K ample, K2 = 9,
pg = q = 0. All such surfaces are now known under the name of fake projective planes. They have been recently
classi�ed into 100 isomorphism classes by Prasad � Yeung [11] and Cartwright � Steger [4]. Universal cover of any
fake projective plane is the complex ball and papers [11, 4, 5] describe explicitly all subgroups in the automorphism
group of the ball which are fundamental groups of the fake projective planes.

However, these surfaces are poorly understood from the algebro-geometric perspective, since the uniformization
maps (both complex and, as in Mumford's case, 2-adic) are highly transcendental, and so far not a single fake
projective plane has been constructed geometrically. Most notably the Bloch's conjecture on zero-cycles (see [3])
for the fake projective planes is not established yet.

Earlier we have initiated the study of fake projective planes from the homological algebra perspective (see [6]).
Namely, for P2 the corresponding bounded derived category of coherent sheaves has a semiorthogonal decomposition,
Db(P2) = 〈O,O(1),O(2)〉, as was shown by A. Beilinson in [2]. The �easy� part of his argument was in checking
that the line bundles O(1) and O(2) are acyclic, and that any line bundle on P2 is exceptional. All these results
follow from Serre's computation. In turn, the �hard� part consisted of checking that O, O(1), O(2) actually generate
Db(P2). But for fake projective planes, according to [6], one can not construct a full exceptional collection this way.
Anyhow, one still can de�ne an analogue of O(1),O(2) for some of these planes (cf. 1.2 below) and try to establish
the �easy part� for them. Then exceptionality of line bundles is equivalent to the vanishing of h0,1 and h0,2, which
is clear, while acyclicity is not at all obvious.

MS 2010 classi�cation: 14J29, 32N15, 14F05.
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We are going to treat acyclicity problem, more generally, in the context of ball quotients and modular forms.
We hope that our argument might be useful for proving the absence of modular forms of small weights on complex
balls (compare with [13]).

1.2. In the present paper we study those fake projective planes S whose group of automorphisms AS has order
at least 9. All these surfaces fall into the six cases represented in Table A below (cf. [5] and [6, Section 6]). There
one denotes by Π the fundamental group of S, so that S = B/Π for the unit ball B ⊂ CP2, and N(Π) denotes the
normalizer of Π in PU(2, 1).

One of the principle observations is that the group Π lifts to SU(2, 1). The lifting produces a line bundle OS(1) ∈
Pic S such that OS(3) := OS(1)⊗3 ' ωS , the canonical sheaf of S. Moreover, the preimage Ñ(Π) ⊂ SU(2, 1) of
N(Π) ⊂ PU(2, 1) acts �berwise-linearly on the total space TotOS(1) −→ S, which provides a natural linearization
for OS(1) (and consequently for all OS(k)). Furthermore, the action of the group Π ⊂ Ñ(Π) is trivial. Thus all
vector spaces H0(S,OS(k)), k ∈ Z, are endowed with the structure of G-modules, where G := Ñ(Π)/Π. In the same
way one obtains the structure of G-module on H0(S,OS(k)⊗ ε) for any AS-invariant torsion line bundle ε ∈ Pic S

(cf. 2.1 below).
Another observation is the use of vanishing result due to J. Rogawski (see Theorem 3.2 below), which we apply

to show that h0(S, ωS ⊗ ε) = 1 whenever ε 6= 0. Twisting H0(S,OS(2) ⊗ ε) (resp. H0(S,OS(2))) by the global
section of ωS ⊗ ε allows us to prove our main result:

Theorem 1.3. Let S be a fake projective plane with at least nine automorphisms. Then H0(S,OS(2) ⊗ ε) =

H0(S,OS(2)) = 0 for any non-trivial AS-invariant torsion line bundle ε ∈ Pic S.

Let us also point out that one can prove Theorem 1.3 directly by employing the arguments from [6] and the only
fact that the group G is non-abelian (see 4.2 for details).

l or C p T1 N #Π AS H1(S,Z) Π lifts? H1(S/AS ,Z) N(Π) lifts?
Q(
√−7) 2 ∅ 21 3 G21 (Z/2)4 yes Z/2 yes

{7} 21 4 G21 (Z/2)3 yes 0 yes
C20 2 ∅ 21 1 G21 (Z/2)6 yes 0 yes

C2 2 ∅ 9 6 (Z/3Z)2 Z/14 yes Z/2 no
{3} 9 1 (Z/3Z)2 Z/7 yes 0 no

C18 3 ∅ 9 1 (Z/3Z)2 Z/26× Z/2 yes 0 no

Table A

2. Preliminaries

2.1. We begin by recalling the next

Lemma 2.2 (see [6, Lemma 2.1]). Let S be a fake projective plane with no 3-torsion in H1(S,Z). Then there exists
a unique (ample) line bundle OS(1) such that ωS

∼= OS(3).
2



Let S and OS(1) be as in Lemma 2.2. We will assume for what follows that AS = G21 or (Z/3)2. This implies that
one has a lifting of the fundamental group Π ⊂ PU(2, 1) to SU(2, 1) (see Table A). Fix a lifting r : Π ↪→ SU(2, 1)

and consider the central extension

(2.3) 1 → µ3 → SU(2, 1) → PU(2, 1) → 1

(here µ3 denotes the cyclic group of order 3). Note that since H1(S,Z) = Π/[Π, Π] does not contain a 3-torsion in
our case, the embedding r is unique.

We thus get a linear action of r(Π) on C3. In particular, both Bl0 C3 = TotOP2(−1) and its restriction to the
ball B ⊂ P2 are preserved by r(Π), so that we get the equality

TotOS(1) = (TotOP2(−1)
∣∣
B)/r(Π)

(cf. [9, 8.9]). Further, since there is a natural identi�cation

Pic0 S = Hom (Π,C∗) = Hom (H1(S,Z),C∗),

every torsion line bundle ε ∈ Pic S corresponds to a character χε : Π → C∗. One may twist the �berwise r(Π)-action
on TotOP2(−1) by χε (we will refer to this modi�ed action as r(Π)χε) and obtain

TotOS(1)⊗ ε = (TotOP2(−1)
∣∣
B)/r(Π)χε .

1)

Observe that according to Table A there always exists such ε 6= 0. This table also shows that in two cases one
can choose ε to be AS-invariant.

2.4. Note that AS = N(Π)/Π for the normalizer N(Π) ⊂ PU(2, 1) of Π. Then (2.3) yields a central extension

1 → µ3 → G → AS → 1

for G := Ñ(Π)/r(Π) and the preimage Ñ(Π) ⊂ SU(2, 1) of N(Π). Further, the previous construction of OS(1) is
Ñ(Π)-equivariant by the AS-invariance of OS(1), which gives a linear G-action on all the spaces H0(S,OS(k)), k ∈
Z. Similarly, if the torsion bundle ε is AS-invariant, we get a linear G-action on all H0(S,OS(k)⊗ ε).

Recall next that when AS = G21, the bundle OS(1) is AS-linearizable (i. e. the group AS lifts to G and the
corresponding extension splits), and so the spaces H0(S,OS(k)) are some linear AS-representations in this case (see
Table A or [6, Lemma 2.2]). The same holds for all H0(S,OS(k)⊗ ε) and any AS-invariant ε.

In turn, if AS = (Z/3)2, then extension G of this AS does not split (see Table A), i. e. G coincides with the
Heisenberg group H3 of order 27. Again the G-action on H0(S,OS(k)) (resp. on H0(S,OS(k)⊗ ε)) is linear here.

Remark 2.5. Let ξ, η ∈ G = H3 be two elements that map to order 3 generators of AS = (Z/3)2. Then their
commutator [ξ, η] generates the center µ3 ⊂ G and one obtains the following irreducible 3-dimensional (Schr�odinger)
representation of G:

ξ : xi 7→ ω−ixi, η : xi 7→ xi+1 (i ∈ Z/3, ω := e
2π
√−1
3 ),

with xi forming a basis in C3. (This representation, together with its complex conjugate, are the only 3-dimensional
irreducible representations of H3.) Observe at this point that according to the discussion above, [ξ, η] acts on S

1)All these matters are extensively treated in [9, Ch. 8]
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trivially and on OS(1) via �berwise-scaling by ω. Furthermore, given any AS-invariant ε ∈ Pic0 S, the commutator
[ξ, η] acts non-trivially on OS(k)⊗ ε whenever k is coprime to 3.

2.6. Let us conclude this section by recalling two supplementary results.
Firstly, it follows from the Riemann � Roch formula that

χ(OS(k)⊗ ε) =
(k − 1)(k − 2)

2

for all k ∈ Z and ε ∈ Pic0 S. In particular, we get H0(S,OS(k)⊗ ε) ' C(k−1)(k−2)/2 when k > 4 because

Hi(S,OS(k)⊗ ε) = Hi(S, ωS ⊗OS(k − 3)⊗ ε) = 0

for all i > 0 by Kodaira vanishing.
Secondly, for every τ ∈ AS with only isolated set of �xed points P1, . . . , PN and any line bundle L ∈ Pic S

satisfying τ∗L ∼= L, one has the Holomorphic Lefschetz Fixed Point Formula (see [1, Theorem 2]):
2∑

i=0

(−1)i Tr τ
∣∣
Hi(S,L)

=
N∑

i=1

Tr τ |LPi

(1− α1(Pi))(1− α2(Pi))
,

where α1(Pi), α2(Pi) are the eigenvalues of τ acting on the tangent spaces TS,Pi to S at Pi (resp. LPi are the closed
�bers of L at Pi).

3. Automorphic forms of higher weight

3.1. We retain the notation of Section 2. Fix some AS-invariant torsion line bundle ε.
Recall that fundamental group Π of S is a torsion-free type II arithmetic subgroup in PU(2, 1) (see [8, 14]). The

same applies to any �nite index subgroup of Π. In particular, for the unrami�ed cyclic covering φ : S′ −→ S

associated with ε one has [Π : π1(S′)] < ∞ and the following important result takes place (without any assumption
on AS and invariance of ε):

Theorem 3.2 (see [12, Theorem 15. 3. 1]). The surface S′ is regular. That is rankH1(S′,Q) := q(S′) = 0.

We have

S′ = SpecS

(
m−1⊕

i=0

εi

)
, 2)

where m is the order of ε ∈ Pic0 S, and hence

φ∗OS′ =
m−1⊕

i=0

εi.

From Leray spectral sequence and Theorem 3.2 we deduce

0 = q(S′) = h1(S,OS′) = h1(S, φ∗OS′) =
m−1⊕

i=0

h1(S, εi).

Thus h1(S, εi) = 0 for all i ∈ Z.

Lemma 3.3. h0(S, ωS ⊗ εi) = 1 for all i not divisible by m.

2)We are using the notation εi := ε⊗i.
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Proof. Indeed, we have χ(S, ωS ⊗ εi) = 1 (see 2.6) and also

h2(S, ωS ⊗ εi) = h0(S, εi) = 0 = h1(S, εi) = h1(S, ε−i) = h1(S, ωS ⊗ εi)

by Serre duality, which gives h0(S, ωS ⊗ εi) = χ(S, ωS ⊗ εi) = 1. ¤

3.4. Let τ ∈ AS be any element of order 3 with a faithful action on S. Choose any linearization of the action of
τ on TotOS(1).

Lemma 3.5. The automorphism τ has only three �xed points, and in the holomorphic �xed point formula all
denominators coincide (and are equal to 3) and all numerators are three distinct 3rd roots of unity. In other words,
one can choose a numbering of the �xed points Pi and weights αj(Pi) in such a way that the following holds:

q αj(Pi) = ωj for all i, j;

q wi := Tr τ |OS(1)Pi
= ωi for all i.

Moreover, for any τ -invariant ε ∈ Pic0 S of order m coprime to 3 we can choose a linearization such that Tr τ |εPi
=

1. In particular, Tr τ |(OS(k)⊗εl)Pi
= ωik for all i, k, l.

Proof. The claim about Pi and αj(Pi) follows from [7, Proposition 3.1].
Further, we have V := H0(S,OS(4)) ∼= C3 (see 2.6). Let v1, v2, v3 be the eigen values of τ acting on V .

Then v3
i = 1 for all i and Tr τ

∣∣
V

= v1 + v2 + v3. At the same time, as follows from de�nitions and 2.6 (with
N = 3, L = OS(4)), we have

Tr τ
∣∣
V

=
w4

1 + w4
2 + w4

3

(1− ω)(1− ω2)
=

w1 + w2 + w3

3

The latter can be equal to v1 + v2 + v3 only when all vi (resp. all wi) are pairwise distinct (so that both sums are
zero). This is due to the fact that the sum of three 3rd roots of unity has the norm ∈ {0,

√
3, 3} and is zero i� all

roots are distinct.
Finally, since (m, 3) = 1, we may replace ε by ε3, so that the action of τ on the closed �bers εPi is trivial. The

last assertion about OS(k)⊗ εl is evident. ¤

Recall that the group G from 2.4 acts linearly on all spaces V := H0(S,OS(k)⊗ ε).

Proposition 3.6. Let G = H3. Then for k > 4 the following holds (cf. Table B below):
q for k ≡ 0 mod 3 we have V = V0 ⊕ C[(Z/3)2]a as G-representations, where a :=

k

6
(
k

3
− 1) and V0 ' C

(resp. C[(Z/3)2]) is the trivial (resp. regular) representation;

q for k ≡ 1 mod 3 we have V = V⊕(k−1)(k−2)/6
3 as G-representations, where V3 is an irreducible 3-dimensional

representation of H3;

q for k ≡ 2 mod 3 we have V = V⊕(k−1)(k−2)/6

3 as G-representations, where V3 is the complex conjugate to
V3 above.
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4 6 k mod 3 0 1 2

H0(S,OS(k)⊗ ε) V0 ⊕ C[(Z/3)2]a V⊕(k−1)(k−2)/6
3 V⊕(k−1)(k−2)/6

3

Table B

Proof. Suppose that k ≡ 0 mod 3. Then, since every element in H3 has order 3, applying Lemma 3.5 to any
non-central τ ∈ G we obtain (1− α1(Pi))(1− α2(Pi)) = 3 for all i and Tr τ

∣∣
V

= 1 (cf. 2.6).
Further, the element [ξ, η] ∈ G from Remark 2.5 acts trivially on OS(k) (via scaling by ωk = 1). Also, since

the order of any ε 6= 0 is coprime to 3 (see Table A) and ε is �at (cf. its construction in 2.1), from Lemma 3.5
we �nd that [ξ, η] acts trivially on OS(k) ⊗ ε, hence on V as well. This implies that the G-action on V factors
through that of its quotient (Z/3)2. Then the claimed decomposition V = V0 ⊕ C[(Z/3)2]a follows from the fact
that 1 + 9a = dim V = Tr [ξ, η]

∣∣
V

and that Tr τ
∣∣
V

= 1 for all non-central τ ∈ G.
Let now k ≡ 1 mod 3 (resp. k ≡ 2 mod 3). Then it follows from Remark 2.5 that [ξ, η] scales all vectors in

V = H0(S,OS(k)⊗ ε) ∼= C(k−1)(k−2)/2 by ωk 6= 1. Furthermore, since Tr ξ
∣∣
V

= 0 = Tr η
∣∣
V

according to Lemma 3.5
and 2.6, all irreducible summands of V are faithful G-representations, hence isomorphic to V3 (resp. to V3). This
concludes the proof. ¤

Proposition 3.7. Let G ⊃ AS = G21. Then for k > 4 and V = H0(S,OS(k) ⊗ ε) we have the following equality
of (virtual) G-representations

V = C[G]⊕ak ⊕ Uk

for some ak ∈ Z expressed in terms of dim V , where Uk depends only on k mod 21 and is explicitly given in the
table below, with rows (resp. columns) being enumerated by k mod 3 (resp. k mod 7)

0 1 2 3 4 5 6

0 C V3 ⊕ V3 ⊕ C V3 ⊕ V3 ⊕ C C V⊕2
3 ⊕ V3 ⊕ C (V3 ⊕ V3)⊕2 ⊕ C V3 ⊕ V⊕2

3 ⊕ C
1 or 2 (−V3)⊕ (−V3) 0 0 (−V3)⊕ (−V3) V3 V3 ⊕ V3 V3

Proof. From 2.6 we obtain

Trσ
∣∣
V

=
ζ6k

(1− ζ)(1− ζ3)
+

ζ5k

(1− ζ2)(1− ζ6)
+

ζ3k

(1− ζ4)(1− ζ5)

Here ζ := e
2π
√−1
7 and σ ∈ G21 is an element of order 7. The value Trσ

∣∣
V

depends only on k mod 7 and by direct
computation we obtain the following table:

k 0 1 2 3 4 5 6

Trσ
∣∣
V

1 0 0 1 b̄ −1 b

(Here b := ζ + ζ2 + ζ4 and b̄ = −1− b = ζ3 + ζ5 + ζ6.)
Let τ ∈ G21 be an element of order 3 such that G21 = 〈σ, τ〉. Recall the character table for the group G21 (see

e. g. the proof of Lemma 4.2 in [6]):
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1 Trσ Trσ3 Tr τ Tr τ2

C 1 1 1 1 1

V1 1 1 1 ω ω

V1 1 1 1 ω ω

V3 3 b b 0 0

V3 3 b b 0 0

(Here � � � signi�es, as usual, the complex conjugation and Vi are irreducible i-dimensional representations of G21.)
Now from Lemma 3.5 (cf. 2.6) and the previous tables we get the claimed options for V . This concludes the

proof. ¤

4. Proof of Theorem 1.3

4.1. We retain the earlier notation.
Suppose that G = H3 and H0(S,OS(2) ⊗ ε) 6= 0. Let also ε 6= 0 (cf. the end of 2.1). Consider the natural

homomorphism of G-modules

H0(S,OS(2)⊗ ε)⊗H0(S,OS(2)⊗ ε) → H0(S,OS(4)⊗ ε2).

Since h0(S,OS(4)⊗ ε2) = χ(S,OS(4)⊗ ε2) = 3 (see 2.6), from [9, Lemma 15. 6. 2] we obtain h0(S,OS(2)⊗ ε) 6 2

(cf. the proof of Lemma 4.2 in [6]).
On the other hand, there is natural homomorphism of G-modules

H0(S, ωS ⊗ ε−1)⊗H0(S,OS(2)⊗ ε) → H0(S,OS(5)),

and so Lemma 3.3 implies that H0(S,OS(2) ⊗ ε) is a non-trivial subrepresentation in H0(S,OS(5)) of dimension
6 2. But the latter contradicts Proposition 3.6 and Theorem 1.3 follows in this case.

Similarly, consider the natural homomorphism of G-modules

H0(S,OS(2))⊗H0(S,OS(2)) → H0(S,OS(4)),

where again h0(S,OS(2)) 6 2. Then the G-homomorphism

H0(S, ωS ⊗ ε)⊗H0(S,OS(2)) → H0(S,OS(5)⊗ ε)

gives contradiction with Proposition 3.6 whenever H0(S,OS(2)) 6= 0. This concludes the proof of Theorem 1.3 for
AS = (Z/3)2. Finally, the case of AS = G21 is literally the same, with Proposition 3.7 used instead.

4.2. Alternatively, consider the natural homomorphism of G-modules for any G as in 2.4:

S2H0(S,OS(2)⊗ ε) → H0(S,OS(4)),

where ε is 2-torsion (cf. Table A) and the case ε = 0 is also allowed. Again we have h0(S,OS(2) ⊗ ε) 6 2. Then,
applying Propositions 3.6 and 3.7 we conclude that H0(S,OS(2) ⊗ ε) = 0, exactly as in the proof of [6, Theorem
1.3]. This is another proof of Theorem 1.3.
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