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Abstract. We show that if X is a smooth uniruled projective variety
and L a big and semiample Q-divisor on X, then there exists a proper
closed subset W ⊂ X such that every subvariety Y satisfying a(Y,L) >
a(X,L) is contained in W .

1. Introduction

If X is a smooth projective variety and L is a big Q-divisor on X, then
the Fujita invariant, or a-constant is defined as follows

a(X,L) = inf{t > 0 | KX + tL is big}.
Note that a(X,L) ∈ R≥0 is well defined since KX + tL is big for all t > 0
sufficiently large, and that a(X,L) > 0 if and only if KX is not pseudo-
effective. It is easy to see that the a-constant is a birational invariant in
the sense that if ν : X ′ → X is a birational morphism of smooth varieties
and L′ = ν∗L, then a(X,L) = a(X ′, L′). Therefore we may also define the
a-constant for a big Q-Cartier Q-divisor L on an arbitrary normal projective
variety X by letting

a(X,L) := a(X ′, L′)

where ν : X ′ → X is a resolution of singularities and L′ = ν∗L. Note that
if X is smooth, then the a-constant is the usual pseudo-effective threshold,
however if X is singular, these numbers may be different.

In [8], motivated by a conjecture of Batyrev and Manin that relates arith-
metic properties of varieties with ample anticanonical class to geometric in-
variants, a-constants were intensively studied by Lehmann, Tanimoto and
Tschinkel. They show that ([8, Theorem 1.1]), if X is a smooth uniruled
projective variety and L an ample Q-divisor on X, then there exists a count-
able union of proper closed subsets W ⊂ X such that every subvariety Y
satisfying a(Y, L) > a(X,L) is contained in W . For the purpose of applica-
tions, it is expected that one may choose W to be a proper closed subset of
X. The purpose of this note is to prove that this is indeed the case:

Theorem 1.1. Let X be a smooth uniruled projective variety and L a big
and semiample Q-divisor on X. Then there exists a proper closed subset
W ⊂ X such that every subvariety Y satisfying a(Y,L) > a(X,L) is con-
tained in W .
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Note that this result is proven in [8, Theorem 1.2] assuming that a weak
version of the BAB conjecture holds in dimension n − 1 = dimX − 1. We
expect that Theorem 1.1 holds also if we just assume that L is nef and big
(rather than big and semiample).

Our idea is to replace the WBAB conjecture assumed in [8, Theorem 1.2]
by constructing non-klt centers (see Proposition 2.8) and applying finiteness
of a-constants (see Corollary 2.15). This is an application of a recent result
of Di Cerbo [3] based on a boundedness result proved by Birkar [2].
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2. Preliminaries

In this paper we work over the field of complex numbers C.

2.1. Facts on a-constants. In this subsection, for the convenience of the
reader, we collect several facts about a-constants that were proven in [8].

Proposition 2.1 ([8, Proposition 4.1]). Let X be a smooth projective variety
and L a big and nef Q-divisor. Let U →W be a family of subvarieties of X
such that U → X is dominant. Then a general member Y of the family U
satisfies a(Y, L) ≤ a(X,L).

Theorem 2.2 ([8, Theorem 4.2]). Let X be a smooth projective variety and
L a big and nef Q-divisor. Let π : U →W be a family of subvarieties of X.
There exists a proper closed subset V ⊂ X such that if a member Y of the
family U satisfies a(Y, L) > a(X,L) then Y ⊂ V .

Proposition 2.3 ([8, Proposition 4.6]). Let X be a smooth uniruled projec-
tive variety and L a big and nef Q-divisor. Then either

(1) X is covered by proper subvarieties Y satisfying a(Y,L) = a(X,L),
or

(2) X is birational to a Q-factorial terminal Fano variety X ′ of Picard
number 1.

Lemma 2.4 ([8, Lemma 4.7]). Let X be a smooth projective variety and L a
big and nef Q-divisor on X. Fix a constant C. Then the subset of Chow(X)
parametrizing subvarieties of X that are not contained in B+(L) and are of
L-degree at most C is bounded.

2.2. Non-klt centers. We follow the standard notation and conventions of
the minimal model program, see eg. [5].

Definition 2.5. Let (X,∆) be a pair so that X is a normal variety, ∆ is
an effective Q-divisor, and KX + ∆ is Q-Cartier. We say that a subvari-
ety V ⊂ X is a non-klt center of (X,∆) if it is the image of a divisor of
discrepancy at most −1. We will denote by Nklt(X,∆) the union of all
non-klt centers of (X,∆). A non-klt place is a valuation corresponding to a
divisor of discrepancy at most −1. A non-klt center is pure if KX + ∆ is log
canonical at the generic point of V . If moreover there is a unique non-klt
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place lying over the generic point of V , we will say that V is an exceptional
non-klt center.

The following is a weak form of Kawamata’s subadjunction theorem.

Theorem 2.6 (Subadjunction, see [4, Proposition 5.1]). Let V ⊂ X be a
non-klt center of a pair (X,∆) which is lc at a general point of V . Let
ν : V ν → V be the normalization. Then there is an effective Q-divisor ∆V ν

on V ν such that
ν∗(KX + ∆)|Vν ∼Q KV ν + ∆V ν .

We have the following connectedness lemma of Kollár and Shokurov for
the non-klt locus (cf. Shokurov [9], Kollár [6, 17.4]).

Theorem 2.7 (Connectedness Lemma). Let f : X → Z be a proper mor-
phism of normal varieties with connected fibers and D a Q-divisor such
that −(KX + D) is Q-Cartier, f -nef, and f -big. Write D = D+ − D−

where D+ and D− are effective with no common components. If D− is f -
exceptional (i.e. all of its components have image of codimension at least
2), then Nklt(X,D) ∩ f−1(z) is connected for any z ∈ Z.

We can use the following proposition to construct non-klt centers.

Proposition 2.8 (cf. [7, Lemma 3.2]). Let X be a Q-factorial terminal
Fano variety of dimension n. Assume (−KX)n > (wn)n for some positive
rational number w. Then for every point p ∈ X there is an effective Q-
divisor ∆p ∼Q − 1

wKX such that the unique minimal non-klt center Vp ⊂
Nklt(X,∆p) containing p is exceptional.

Proof. Fix a point p. Fix a positive rational number w′ such that (−KX)n >
(w′n)n > (wn)n. By [5, 6.7.1 Theorem], there is an effective Q-divisor
∆′p ∼Q − 1

w′KX such that (X,∆′p) is not lc at p. Take 0 < t ≤ 1 the
unique rational number such that (X, t∆′p) is log canonical but not klt at
p. By [1, Proposition 3.2, Lemma 3.4], we can find an effective Q-divisor
Mp ∼Q − 1

w′KX and some rational number a > 0 such that for any rational
number 0 < ε � 1, the pair (X, (1 − ε)t∆′p + εaMp) has a unique minimal
non-klt center Vp passing through p which is exceptional. Note that

(1− ε)t∆′p + εaMp ∼Q −
(1− ε)t+ εa

w′
KX

and (1−ε)t+εa
w′ < 1

w for 0 < ε � 1. Since −KX is ample, by adding a Q-
divisor Q-linearly equivalent to a multiple of −KX to ∆′p, we conclude that

there exists an effective Q-divisor ∆p ∼Q − 1
wKX and (X,∆p) has a unique

minimal non-klt center Vp passing through p which is exceptional. �

Lemma 2.9. Keep the notation in Proposition 2.8. If w > 2, then dimVp >
0 for a general point p.

Proof. Assume to the contrary that there exist p1 ∈ X such that Vp1 = {p1}
and p2 ∈ X\Supp(∆p1) such that Vp2 = {p2}. Then p1 and p2 are contained
in Nklt(X,∆p1 +∆p2) and p2 is isolated by construction. On the other hand,

−(KX + ∆p1 + ∆p2) ∼Q

(
1− 2

w

)
(−KX)
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is ample. By the connectedness lemma, Nklt(X,∆p1 + ∆p2) is connected,
which is a contradiction. �

2.3. Finiteness of a-constants. We recall the main result of [3] in this
subsection.

Definition 2.10. Let X be a normal projective variety and H a big Q-
divisor. We define the pseudo-effective threshold to be

τ(X,H) := inf{t ≥ 0 | KX + tH is big}.

Note that if X is smooth, a-constant and pseudo-effective threshold just
coincide.

Definition 2.11 (cf. [3, Definition 3.1]). Fix a positive integer n and two
positive real numbers ε and δ. We define Dn(ε, δ) to be the set of lc pairs
(X,∆) such that:

(1) X is a normal projective variety of dimension n,
(2) ∆ is a big Q-divisor with coefficients ≥ δ, and
(3) (X, t∆) is ε-lc and KX + t∆ is pseudo-effective for some 0 ≤ t ≤ 1.

Definition 2.12 (cf. [3, Definition 3.2]). Fix a positive integer n and two
positive real numbers ε and δ. We define the set

Tn(ε, δ) := {τ(X,∆) | (X,∆) ∈ Dn(ε, δ)}.

Theorem 2.13 ([3, Corollary 3.6]). Fix a positive integer n and three pos-
itive real numbers ε, δ and η. Then the set Tn(ε, δ) ∩ [η, 1] is a finite set.

To apply this theorem in our situation, we have the following corollary.

Definition 2.14. Fix a positive integer n. We define Pn to be the set of
pairs (Y,L) such that:

(1) Y is a normal projective variety of dimension n,
(2) L is a base point free big Cartier divisor.

Corollary 2.15. Fix a positive integer n and a positive real number η. Then
the set

{a(Y, L) | (Y,L) ∈ Pn} ∩ [η,∞)

is a finite set.

Proof. We may assume that η ≤ 1
4(n+1) .

Firstly, we show that the set

{a(Y,L) | (Y,L) ∈ Pn} ∩
[
η,

1

2

]
is a finite set. Take (Y,L) ∈ Pn and assume that a(Y,L) ∈ [η, 12 ]. Note that

a(Y, 12L) = 2a(Y, L) ∈ [2η, 1]. By taking a resolution, we may assume that

Y is smooth. In this case a(Y, 12L) = τ(Y, 12L). Replacing L by a general
element in |L|, we may assume that L is irreducible and smooth. Moreover,
(Y, 12L) is 1

2 -lc and KY + 1
2L is pseudo-effective, that is, (Y, 12L) ∈ Dn(12 ,

1
2).

This implies that the set{
a
(
Y,

1

2
L
) ∣∣∣ (Y,L) ∈ Pn

}
∩ [2η, 1]
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is finite by Theorem 2.13, and so is {a(Y,L) | (Y, L) ∈ Pn} ∩ [η, 12 ].
Then we show that the set

{a(Y, L) | (Y, L) ∈ Pn} ∩
[1

2
,∞
)

is a finite set. Take (Y,L) ∈ Pn and assume that a(Y,L) ≥ 1
2 . By taking

a resolution, we may assume that Y is smooth. By [8, Proposition 2.10],
a(Y,L) ≤ n+ 1. Now we consider (Y, 2(n+ 1)L) ∈ Pn. Note that a(Y, 2(n+
1)L) = 1

2(n+1)a(Y,L), hence a(Y, 2(n+ 1)L) ∈ [ 1
4(n+1) ,

1
2 ]. By the first step,

a(Y, 2(n + 1)L) belongs to a finite set. Hence a(Y,L) belongs to a finite
set. �

3. Proof of Theorem 1.1

We prove the following proposition suggested by B. Lehmann.

Proposition 3.1. Fix a positive real number t. Let X be a smooth projective
variety and L a big and semiample Q-divisor. Then there is a bounded
family U of subvarieties of X such that any subvariety Y not contained in
B+(L), with a(Y,L) > t is dominated by some members Z of U , such that
a(Z,L) = a(Y, L).

Proof. Note that for a subvariety Y not contained in B+(L), L|Y is nef
and big, and so a(Y,L) is well defined. Therefore we will only consider
subvarieties not contained in B+(L).

Replacing L by some multiple, we may assume that L is a base point free
Cartier divisor.

We construct U inductively by increasing induction on the dimension of
Y .

For a subvariety Y with a(Y, L) > t and dimY = 1, it is easy to see that
Y is a rational curve with

degY (L) = Y · L =
2

a(Y,L)
<

2

t
.

By Lemma 2.4, such Y form a bounded family U1.
Suppose that we have constructed a bounded family Ui of subvarieties

such that every subvariety Y with a(Y, L) > t and dimY ≤ i is dominated
by some members Z of U such that a(Z,L) = a(Y,L). We construct Ui+1

as follows. Suppose that Y is an (i + 1)-dimensional subvariety satisfying
a(Y,L) > t. By taking a resolution, we may assume that Y is smooth.
Proposition 2.3 shows that either

(1) Y is covered by proper subvarieties Z with a(Z,L) = a(Y,L), or
(2) Y is birational to a Q-factorial terminal Fano variety Y ′ of Picard

number 1.

In Case (1), by induction, Z is dominated by some members Z ′ of Ui such
that a(Z ′, L) = a(Z,L), and so is Y .

In Case (2), by taking a resolution, we may assume φ : Y 99K Y ′ is a
morphism. By the proof of [8, Proposition 4.6], KY ′ + a(Y,L)φ∗(L|Y ) ≡ 0.

We define constant c0 < 1 and w > 2 as follows: since L is base point
free, we know that the set

{a(Z,L) | Z is a subvariety of X} ∩ (t,∞]
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is finite by Corollary 2.15. Hence we may take a rational number c0 < 1
such that the set

{a(Z,L) | Z is a subvariety of X} ∩ [c0a(Z ′, L), a(Z ′, L))

is empty for any subvariety Z ′ with a(Z ′, L) > t. Take w = 1
1−c0 . We may

assume w > 2 by decreasing c0.
If (−KY ′)i+1 ≤ (w(i+ 1))i+1, then

(L|Y )i+1 ≤ (φ∗(L|Y ))i+1 ≤ (w(i+ 1))i+1

a(Y,L)i+1
<

(w(i+ 1))i+1

a(X,L)i+1
.

Then by Lemma 2.4, such Y form a bounded family U ′i+1.

Now we assume that (−KY ′)i+1 > (w(i+1))i+1. By Proposition 2.8, for a
general point p ∈ Y ′, there exists an effective Q-divisor ∆′p ∼Q − 1

wKY ′ such
that V ′p ⊂ Nklt(Y ′,∆′p) is the minimal exceptional non-klt center containing

p. Note that by Lemma 2.9 and w > 2, dimV ′p > 0. Let ν : Ṽ ν
p → V ′p be the

normalization. For any Q-Cartier divisor G on V ′p , we denote G|Ṽ νp = ν∗G.

By Theorem 2.6, there is an effective Q-divisor ∆Ṽ νp
such that

(KY ′ + ∆′p)|Ṽ νp ∼Q KṼ νp
+ ∆Ṽ νp

.

Note that since KY ′ + a(Y,L)φ∗L ≡ 0, we have

KṼ νp
+ ∆Ṽ νp

+
(

1− 1

w

)
a(Y,L)φ∗L|Ṽ νp ∼Q 0.

Let Vp be the strict transform of V ′p on Y . Let Ṽp be a common resolution

of Ṽ ν
p and Vp, f : Ṽp → Vp, g : Ṽp → Ṽ ν

p . Then

KṼp
+
(

1− 1

w

)
a(Y,L)f∗(L|Vp)

= g∗
(
KṼ νp

+ ∆Ṽ νp
+
(

1− 1

w

)
a(Y,L)φ∗L|Ṽ νp

)
− g−1∗ ∆Ṽ νp

+ E

∼Q − g−1∗ ∆Ṽ νp
+ E,

where E is a g-exceptional Q-divisor. Note that the Q-divisor −g−1∗ ∆Ṽ νp
+E

is not big. Hence KṼp
+ (1− 1

w )a(Y,L)f∗(L|Vp) is not big and therefore

a(Vp, L) ≥
(

1− 1

w

)
a(Y,L) = c0a(Y,L).

By the definition of c0, this implies that a(Vp, L) ≥ a(Y, L). Since p is a
general point, Y is dominated by such Vp. By induction, Vp is dominated
by some members Z of Ui such that a(Z,L) = a(Vp, L) ≥ a(Y,L). Hence
Y is dominated by some members Z of Ui such that a(Z,L) ≥ a(Y,L).
By Proposition 2.1, by taking general members, Y is dominated by some
members Z of Ui such that a(Z,L) = a(Y,L).

Hence we may take Ui+1 = Ui ∪ U ′i+1, and the proof is completed. �

Proof of Theorem 1.1. Take t = a(X,L) in Proposition 3.1, there is a bounded
family U of subvarieties of X such that any subvariety Y not contained in
B+(L), with a(Y, L) > a(X,L) is dominated by some members Z of U , such
that a(Z,L) = a(Y,L) > a(X,L). By Theorem 2.2, there exists a proper
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closed subset W ⊂ X such that any member Z of the family U satisfy-
ing a(Z,L) > a(X,L) is contained in W . Hence any subvariety Y with
a(Y,L) > a(X,L) is contained in W . �
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