
COMPACTIFICATIONS OF THE MODULI SPACE OF POINTS IN PROJECTIVE
SPACE

PATRICIO GALLARDO AND EVANGELOS ROUTIS

ABSTRACT. We introduce and study smooth compactifications of the moduli space of n labeled
points with weights in projective space, which have normal crossings boundary and are defined as
GIT quotients of the weighted Fulton MacPherson compactification. We show the more general re-
sult that the GIT quotient of a wonderful compactification is also a wonderful compactification under
certain hypotheses. We also study a weighted version of the configuration spaces parametrizing n
points in affine space up to translation and homothety. For dimension one, the above compactifica-
tions are isomorphic to Hassett’s moduli space of rational weighted stable curves.

1. INTRODUCTION

For any smooth variety X , Fulton and MacPherson constructed a smooth compactification X [n]
of the configuration space of n distinct labeled points in X , such that all points remain distinct in
the degenerate configurations [FM94]. This compactification was used by Hu and Keel to con-
struct M0,n as a GIT quotient of P1[n] by SL2 [HK00]. Recently, the second author extended X [n]
by including weight data which allow points to collide depending on the accumulation of their
weights [Rou14]. These generalizations can be used to recover the moduli spaces of weighted
stable rational curves defined by Hassett [Has03].

The purpose of this article is to introduce weighted compactifications PA
d,n of the moduli space

of n points in Pd . These spaces can be understood as the GIT quotients of the ‘weighted Fulton
MacPherson’ compactification Pd

A [n] (Section 3.2) of n points in Pd with respect to SLd+1 and as
an iterative blow up construction similar to the one used by Kapranov for the moduli space of stable
rational curves [Kap93]. The intuitive geometric picture is similar to the one for M0,n: we start
with an equivalence class of n points in Pd defined up to the usual SLd+1 action and an ordered
set of weights A , i.e. an ordered set of numbers between 0 and 1, and we attach each number
to the corresponding labeled point. If a subset of points in Pd with weight sum larger than one
collides, then we blow up the locus where it collides and attach a new Pd , which we glue along the
exceptional divisor. The points then ‘move’ to the new Pd and are not simultaneously coincident
anymore. Also, the points in this new component are defined up to the natural SLd+1 action that
fixes the exceptional divisor pointwise. We continue inductively until all colliding points with
weight larger than one are separated. The resulting degenerations are called weighted stable trees
with respect to the set of weights A (Section 2.6). Let PA

d,n be the open locus in PA
d,n parametrizing

n labeled points in Pd up to an action of SLd+1 with total weight less than or equal to 1 (Definition
4.2). The following theorem is proven in Section 4.1.

Theorem 1.1. For any set of admissible weights A :

(1) The compactification PA
d,n of PA

d,n is a smooth variety, whose boundary is a union of smooth
divisors that intersect with normal crossings.
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2 PATRICIO GALLARDO AND EVANGELOS ROUTIS

(2) There exists a smooth variety UA
d,n and a flat proper morphism

φ̂A : UA
d,n→ PA

d,n

equipped with n sections σ̂i : PA
d,n→UA

d,n such that
• the images of σ̂i lie in the relative smooth locus of φ̂A and
• the geometric fibers of φ̂A are precisely the weighted stable trees.

While our focus is the study of PA
d,n, the theoretical framework developed in this paper allows

for many more compactifications of moduli problems arising in different contexts. In particular, in
Section 3.3, we study GIT quotients of so called ‘wonderful compactifications’ (see [Li09]). Won-
derful compactifications are always smooth with normal crossings boundary and can be described
as a sequence of smooth blowups. Quite a few compactifications in the literature can be obtained
as wonderful compactifications: among these are the Fulton-MacPherson compactification, Keel’s
construction of M0,n, Kuperberg-Thurston’s compactifications, Ulyanov’s polydiagonal compacti-
fication and Hu’s compactification of open varieties (see Section 4 of [ibid.]). In Lemma 3.9, we
show that the GIT quotients of wonderful compactifications are also wonderful compactifications
under certain conditions. As a result, we can study degenerations of equivalence classes of points
in an arbitrary smooth variety X with a given group action (see Section 2.3 for a description). We
use stability conditions which are numerical generalizations of the ones used to define M0,ω . Our
requirement that the total weight of colliding points is less than or equal to one and away from the
double locus resembles the one asking for at worst log canonical pairs. We also require a mini-
mum weight on each component which is similar to the ampleness condition and is used to prevent
additional blow ups.
As far as applications of PA

d,n are concerned, we remark that the spaces PA
2,9−k can be viewed as

smooth weighted compactifications of the moduli of marked Del Pezzo surfaces for 1 ≤ k ≤ 4.
Indeed, a generic smooth Del Pezzo surface is the blow up of P2 along 9− k distinct points with
the labels of the points inducing markings on it. The comparison of PA

2,9−k with other compact-
ifications of the moduli space of marked Del Pezzo surfaces [HKT09] is the subject of work in
progress. We discuss the relationship of our work with the moduli space of hyperplane arrange-
ments constructed by Hacking-Keel-Tevelev [HKT06] and Alexeev [Ale08, Ale13] in Section 1.2.
Futhermore, by examining the boundary of PA

d,n we run into the space of so called weighted stable
rooted trees T A

d,n (Section 2.5), recently introduced by the second author [Rou15] for the purpose
of calculating the Chow ring of the Hassett’s spaces in genus 0. T A

d,n is a weighted generalization
of the Chen-Gibney-Krashen compactification, Td,n, of the parameter space of n distinct labeled
points in Ad up to translation and homothety ([CGK09]). The configuration spaces Td,n are smooth
projective varieties, their boundary is a union of smooth divisors that meet with normal crossings
and they can be understood as non-reductive Chow quotients [GG15]. The closed points of Td,n
parametrize a direct generalization of stable pointed rational curves known as stable pointed rooted
trees. We further explore the geometry of T A

d,n and generalize some of the main results in [CGK09].
Let A = {a1,a2, . . . ,an} be an admissible set of weights (see Section 2.1) and consider the admis-
sible weight sets A (I) := {ai | i ∈ I} and A+(Ic) := {ai | i 6∈ I}∪{an+1 = 1}.

Theorem 1.2. Let A = {a1,a2, . . . ,an} be an admissible set of weights (see Section 2.1). Then:
(1) T A

d,n is a smooth variety, whose boundary is a union of smooth divisors that intersect with
normal crossings.
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(2) Each divisor DI in the boundary of T A
d,n factors as:

T A (I)
d,|I| ×T A+(Ic)

d,n−|I|+1

Moreover, the spaces T A
d,n appear in the boundary of PA

d,n. In particular, every divisor EI ⊂ PA
d,n

factors as

EI ∼= T A (I)
d,|I| ×PA +(Ic)

n−|I|+1

The previous theorem is proven in Section 4.2. By varying the weights, we show the existence
of reduction morphisms among our configuration spaces(see Section 5). In particular, we obtain
toric ones (for the proof see Section 5.2).

Theorem 1.3. There exist birational contractions, obtained by decreasing the weights of the
marked points, of the form:

Td,n→ T LM
d,n → Pnd−d−1 Pd,n→ PLM

d,n→ (Pn−d−2)d

where T LM
d,n and PLM

d,n are toric varieties. Moreover, these toric varieties are ‘maximal’, in the sense

that any toric variety T A
d,n (resp. PA

d,n) obtained by a choice of admissible weights A , factors
through T LM

d,n → Pnd−d−1 (resp. PLM
d,n→ (Pn−d−2)d).

Our proofs are constructive. We show that relevant GIT quotients parametrizing configurations
with multiple points are products of projective spaces. Then, we characterize the loci parametrizing
non-stable configurations with respect to a given set of weights. These loci are unions of smooth
varieties intersecting cleanly (Definition 3.1) and the wall crossing associated to changing the
weights are smooth blow ups. For example, for the configuration spaces associated to points in Pd

we find (see Corollary 4.21 for the analogous result on Td,n):

Corollary 1.4. For n≥ d +3, the morphism Pd,n→
(
Pn−d−2)d can be understood as completing

the following (n−d−2) steps successively:
(1) blow up (n−d) disjoint points parametrizing configurations with a (n− (d +1)) multiple

point.
(2) blow up the strict transforms of the

(
P1)ds spanned by the previous (n−d) disjoint points;

they generically parametrize configurations with a (n− (d +2)) multiple point.
...

(n-d-2) blow up the strict transforms of
(
Pn−d−3)d’s spanned by the

(
Pn−d−4)d’s of step (n−d−

3); they generically parametrize configurations with a double point.

Finally, we recall that for T1,n ∼= M0,n+1 the product of forgerful morphism is injective (see
[GG10, Thm 1.3]). We generalize this result for all Td,n (see Example 5.4 and afterwards):

Theorem 1.5. For any 3 ≤ k ≤ n the product of forgetful morphisms πI : Td,n → Td,|I| over all
subsets I ⊂ {1, . . . ,n} of cardinallity |I|= k is injective

πk : Td,n→ ∏
|I|=k

Td,I

In contrast, if k = 2 the morphism π2 has positive dimensional fibers.
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1.1. Explicit examples. Next, we present a few examples to illustrate our results. Two points in
A2 have one degree of freedom up to translation and homothety, because we can always translate
one of them to the origin, and we can scale the second point along the line generated by the
two points. Therefore, T2,2 ∼= P1. To describe T2,3, we notice that the open loci parametrizing
configurations of three distinct points in A2 up to translation and homothety is P3 \{L12,L13,L23}
where Li j are disjoint lines. Each line Li j parametrizes a configuration with the double point
pi = p j.

T2,2×T2,2

L13
p2A2

p1 p3

A2

p1 = p3

p2 p1
p3

A2 BlxA2
p2

T2,3 ∼= Bl3P1P3 T LM
2,3 generic X ∈ T2,3 X ∈ L13 X ∈ T2,x×T2,2

(A) Space parametrizing three points in
A2 up to translation and homothety.

(B) Parametrized stable rooted trees by
the interior and the boundary.

FIGURE 1. (A) depicts the compactifications T LM
2,3 and T2,3, while (B) depicts the

objects they parametrize .

For weights equal to 1 those double points are not allowed. And, T2,3 is the blow up of P3 along
these three lines Li j. The boundary component can be interpreted as T2,2× T2,2; it parametrizes
stable rooted trees that decompose as the union of two components. On the other hand, we can
choose weights ALM allowing p1 = p3 while forbidding the other double points. The respective
model T LM

2,3 is the blow up of P3 along the lines L12 and L23.
The space P2,5 is the blow up of P1×P1 at three points and the boundary divisor is the union of
three disjoint T2,2’s. Indeed, we fix the points p1, p2 and p3 in general position and away from
the other ones. The open locus parametrizing five distinct points in P2 up to an action of Aut(P2)
is P1×P1 minus three zero-dimensional loci. These loci parametrize configurations with either
p4 = p5, p5 = p3 or p4 = p3. Blowing up these loci creates three boundary divisors Eik.

p1

p2

p3

p4
p5

P2 P2

p1

p2

p4 = p5

p3
C45

P2,5 ∼= Bl3pts(P1×P1)

E45

PLM
2,5 generic X X ∈C45 X ∈ E45

P2

BlxP2p1

p4
p5
p6
p3

(A) Space parametrizing five points in
P2 up to the SL3 action.

(B) Stable trees parametrized by the in-
terior and the boundary.

FIGURE 2. (A) depicts the compactifications PLM
2,3 and P2,3, while (B) depicts the

objects they parametrize

Each of them parametrizes a configuration with two distinct points pi, pk lying in a new P2

together with a distinguished hyperplane H glued along the original P2 blow up at a point, where
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the rest of the points lie. The two points pi and pk are thought to be in A2 = P2 \H because the
points never touch H. Then, the exceptional divisors are in fact isomorphic to T2,2.

1.2. Comparing Pd,n with the moduli space of hyperplane arrangements. The moduli space
of n generic points is related to the one of generic hyperplane arrangements because parametrizing
n distinct hyperplanes in Pd amounts to parametrizing n distinct points in the dual projective space
P̂d . The perspective of hyperplanes is a fruitful one. A compact moduli space M~w(P̂d,n) was
constructed for hyperplanes of weight one by Hacking-Keel-Tevelev [HKT06], and for arbitrary
weights by Alexeev [Ale08, Ale13]. The space M(P̂d,n) is quite intricate– it can be arbitrarily sin-
gular, and can contain many irreducible components. However, it has a main component Mm

(P̂d,n)
parametrizing n hyperplanes in the projective space and their log canonical degenerations. This
main component is isomorphic up to normalization to the Chow quotient (Pd)n//ChSLd+1 defined
by Kapranov [Kap93]. Therefore, there exists a morphism from the main component Mm

(P̂d,n) to
any GIT quotient of n points in Pd (see [Ale13, Sec 5.5]). In particular, by Lemma 4.1 there is a
blow up

Φ : Mm
(P̂d,n)→

(
Pn−d−2

)d

The center of this blow up is supported at the union of loci parametrizing configuration of hyper-
planes with non-log canonical singularities. We can classify these loci as follows:

Type I: They parametrize overlapping hyperplanes. In the dual projective space, they correspond
to the loci parametrizing colliding points.

Type II: They parametrize hyperplanes concurrent along a linear subspace. In the dual projective
space, they correspond to the loci parametrizing points satisfying a co-linearity condition.

We may consider Pd,n as an approximation of Mm
(P̂d,n), because our construction (see Theorem

1.1) is equivalent to a sequence of smooth blow ups of
(
Pn−d−2)d along the centers of Type I,

while the morphism Φ is a sequence of non-necessarily smooth blow ups along centers of Type I
and II:

Mm
(P̂d,n)

Φ

xx

OO

��

blowing up loci of Type I and IIks

(
Pn−d−2)d Pd,noo blowing up loci of Type Iks

We warn that in general, the behavior of the generic fiber of Φ at the centers of Type II is not
known and there is no explicit description of the morphism Φ. Moreover, we do not interpret Pd,n
as a configuration space of hyperplanes, because our universal family Ud,n→ Pd,n is constructed
from the one associated to the Fulton-MacPherson spaces. The objects in this family are surfaces
with n distintic points on them (see Figure 2).
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siracusa, and Danny Krashen for helpful discussions. The first author was supported by the NSF
grant DMS-1344994 of the RTG in Algebra, Algebraic Geometry, and Number Theory, at the Uni-
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1.4. Conventions. Throughout this paper, the term variety will be understood as a reduced and
irreducible scheme defined over an algebraically closed field of characteristic 0. Also we will often
denote the set of integers {1,2, . . . ,n} by the capital letter N.

2. DESCRIPTION OF THE PARAMETRIZED OBJECTS

Here, we describe the three types of parametrized objects that appear in our work. First, the
weighted stable degenerations of n labelled points in an arbitrary nonsingular variety X . Second,
the weighted stable rooted trees which are degenerations of n labelled points in Ad defined up to
translation and homothety. Third, the weighted stable trees which are degenerations of n points in
Pd defined up an action of SLd+1. Next, we discuss the weight domain for each of these cases.

2.1. Weight Domains. Let X be a smooth variety with dimX = d ≥ 1 and let n≥ 2. The domain
of admissible weights for the weighted compactifications of the configuration space of n labeled
points in X (section 3.2) is given by

DFM
d,n := {(a1, . . . ,an) ∈Qn : 0 < ai ≤ 1}

Now let d ≥ 1 and n ≥ 2. The domain of admissible weights for the space of weighted stable
rooted trees (Section 4.2) is given by

DT
d,n := {(a1, . . . ,an) ∈Qn : 0 < ai ≤ 1 and 1 < a1 + . . .+an}

Finally, let us fix d and n such that d ≥ 1 and n ≥ d + 2. Given arbitrarily small numbers ε̂ � ε ,
we consider the set of weights

w1 = . . .= wd = 1− ε̂, wd+1 = 1− (n− (d +1))ε +dε̂, wd+2 = . . .= wn = ε.

Then the domain of admissible weights for the space of weighted stable trees (Section 4.1) is

DP
d,n = {(a1, . . .an) ∈Qn : wi ≤ ai ≤ 1}

These last constraints are motivated by a technical requirement in Lemma 4.1. In the sequel, we
will often refer to the number ai as a weight (of some labeled point pi in a configuration). Given
I ⊂ N := {1, . . . ,n} and A = {a1, . . . ,an}, we define

A (I) := {ai | i ∈ I} and A+(Ic) := {ai | i 6∈ I}∪{an+1 = 1}.
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2.2. Weighted stable degenerations. (see also the descriptions in [FM94] and [Pan95] for the
case where all weights are equal to 1) Let X be a nonsingular variety of dimension d. Let
(x1,x2, . . . ,xn) be an ordered n tuple of labeled points xi ∈X and consider an ordered set A ∈DFM

d,n .
We say that xi has weight ai. A subset S⊂ {1, . . . ,n} is said to be coincident at x ∈ X if

• S contains at least two indices, that is, |S| ≥ 2;
• the total weight of the points labeled S is larger than one, that is, ∑

i∈S
ai > 1 and

• for all i ∈ S, xi = x.

A screen of a coincident set S at x consists of the data (ti)i∈S such that (see Example 2.1):
(1) ti ∈ Tx, the tangent space of X at x (i.e. the tangent direction at which xi approaches x);
(2) there exist i, j ∈ S such that ti 6= t j

Two data sets (ti)i∈S and (t ′i)i∈S are equivalent if there exist c ∈Gm and v ∈ Tx such that

c · ti + v = t ′i
for all i ∈ S. In other words, if we identify Tx with the affine space Ad , then (ti)i∈S defines an
equivalence class of points in Ad up to translation and homothety. Now, consider the n-tuple
(x1,x2, . . .xn) together with the collection of all coincident sets S. We construct the (weighted) n-
pointed A stable degeneration of X as follows. Let z be a coordinate that occurs multiple times in
(x1, . . .xn) and generates a coincident set at z. We blow up X at z and attach the projective comple-
tion P(Tz⊕1)∼=Pd along the exceptional divisor P(Tz)∼=Pd−1, which is identified with the infinity
section. Note that the complement P(Tz⊕1)\P(Tz) is isomorphic to the affine space Tz ∼= Ad . Let
Sz be the maximal coincident subset at z. The screen corresponding to Sz associates points of Tz
to the indices that lie in Sz. By condition (2) for screens, we see that some separation of those
points occurs inside the new component P(Tz⊕ 1) and these points are defined up to translation
and homothety. We continue this process by blowing up points in the new spaces Tz specified by
the subsequent screens until all screens have been used, for all such coordinates z. The resulting
variety is equipped with n points si lying in the smooth locus. By this description we see that if
S ⊂ {1, . . . ,n} and ∑

i∈S
ai > 1 then some separation of the points (si)i∈S necessarily occurs. This

means that if the sections (si)i∈S all coincide for some S, then ∑
i∈S

ai ≤ 1.

Example 2.1. (see Figure 3) We describe the weighted stable degeneration of a nonsingular variety
X associated to the coincident sets:

{1,2,3,4,5,6,7},{1,2,3,4,5},{6,7}.
The distinguished component is a blowup of the original variety X at a point. The two end com-
ponents are isomorphic to Pr, where r = dim(X); on each of the end components we have two
distinct loci of (possibly coincident) smooth markings. They satisfy a1 +a2 ≤ 1, a3 +a4 +a5 ≤ 1,
a1 +a2 +a3 +a4 +a5 > 1 and a6 +a7 > 1. �

To any A -stable degeneration we associate a tree, its dual graph, whose vertices are in one to one
correspondence with its components and whose vertices are in one to one correspondence with the
intersections of its components. In general, we have the following types of components:

(1) A distinguished component which is a blowup of X at a finite set of points.
(2) End components are the irreducible components whose vertex has valence equal to 1 and

are different from distinguished component. Any end component comes with at least three
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p1 = p2

p7

p6

p3 = p4 = p5

BlxX
Blx1,x2Pr

Pr Pr

{(1,2),(3,4,5)} {6,7}

distinguished
component

FIGURE 3. The weighted stable degeneration described in Example 2.1 and its associated dual graph.

distinct markings: at least two coming from distinct smooth points and exactly one from
an intersection with another component, which is a divisor of that end component.

(3) Ruled components are the irreducible components whose vertex has valence 2 ; they iso-
morphic to Pd blown up at a point. Any ruled component also come with three distinct
markings: at least one from a smooth point and exactly two from intersections with other
components (which are divisors of the ruled component).

(4) Any other component different to the above ones is isomorphic to Pd blown up at at least
two distinct points. It also comes with at least three distinct markings which can be either
from a smooth point or from intersections with other components.

In other words all components, except for the distinguished one, come with at least three distinct
markings, so there are no nontrivial automorphisms of an n-pointed A stable degeneration pre-
serving the distinguished component pointwise. This justifies the term stability.

2.3. Weighted stable degenerations of X with respect to a group action. If we have an alge-
braic group G acting on our variety X , then the construction of Section 2.2 can be generalized to
configurations of n labelled points in X defined up to the action of G. Indeed, we have

An equivalence class of n weighted points in X. Let (x1,x2, . . . ,xn) := {(gx1,gx2 . . .gxn)|g∈G}
be the G-orbit of the n tuple of labeled points xi ∈ X . For any x ∈ X , we write x̄ in place of the orbit
G · x for convenience. We say that x̄i has weight ai, and we say that a subset S⊂ N is coincident at
x̄ if |S| ≥ 2, ∑

i∈S
ai > 1 and for all i ∈ S, x̄i = x̄.

An equivalence class of screens can be associated to a coincident set S at the orbit x̄ as follows.
Indeed, let (ti)i∈S be the screen data of a coincident set S at x ∈ x̄. Any element g ∈ G induces a
map from the tangent space Tx to Tg·x. Then, we define the screen data (g · ti)i∈S in Tg·x to be the
image of ti via Tx→ Tg·x, and we consider them equivalent to (ti)i∈S in Tx. This equivalence relation
respects the equivalence under translation and homothety (∼) among the screen data. That is

(ti)i∈S ∼ (t ′i)i∈S ⇐⇒ (g · ti)i∈S ∼ (g · t ′i)i∈S

An equivalence class of n-pointed A stable degenerations of X with respect to G. Let (x1,x2, . . .xn)

be a n-tuple which is a representative of the equivalence class (x1,x2, . . . ,xn) together with the col-
lection of all coincident sets S. We construct the associated weighted stable degeneration of X
as in Section 2.2. The action of the group allows us to identify all weighted stable degenerations
constructed at the n tuples in the orbit. In particular, two degenerations are equivalent if and only
if
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(1) The markings on the distinguished component of each of the degenerations are equivalent
under the G action.

(2) Their non-distinguished components are equivalent in the following sense: each P(Tz⊕1)
arising in the construction of 2.2 from a multiple coordinate z in (x1, . . .xn) is identified
with P(Tg·z⊕ 1) via Tz → Tg·z. Moreover, P(Tz) is identified with P(Tg·z) and the corre-
sponding markings, which lie in Tz = P(Tz⊕1)\P(Tz) by construction, are identified with
the markings in Tg·z = P(Tg·z⊕1)\P(Tg·z).

Next, we describe how all geometric objects parametrized by XA [n], T A
d,n and PA

d,n are obtained by
the above procedure. They will be weighted pointed stable degenerations of X with respect to G
for suitably chosen input data X ,A ,G and an action G×X → X .

2.4. Weighted stable degenerations (revisited). (see Section 2.2) Let X be a nonsingular variety
over an algebraically closed field k and A ∈ DFM

d,n . The n-pointed A -stable degenerations of X
parametrized by the geometric points of XA [n] are obtained by the procedure in 2.3 for input data
X ,A and trivial group G.

2.5. Weighted stable rooted trees. Let A be a set of weights in DT
d,n. The geometric points of

T A
d,n are obtained by the procedure in Section 2.3 for input data Ad,A and G the group that acts by

translation and homothety.

H

Bl2ptPr

Pr Pr
p1

p5
p6p2

p3

p4 Pr Pr

BlxPr

p1 = p5 p2
p3

p4

p5

p2
p1p1

p3 p4

(A) weighted stable rooted tree (B) weighted stable trees

FIGURE 4. Examples of parametrized objects and their dual graphs

It is convenient to think of points in Ad as points in Pd that lie away from a fixed hyperplane
H ⊂ Pd which is called the root. Let G ∼= Gm oGd

a ⊂ Aut(Pd) be the group which fixes the root
pointwise. Under this interpretation, X =Pd \H and the equivalence class of n points is determined
by the restriction of the action of G to X = Pd \H. Informally, we say that we have n points in Pd

away from a given hyperplane H which is fixed pointwise by G.
The dual graph of the resulting variety is a rooted tree. The distinguished vertex corresponds to

the variety that contains the root H.

Lemma 2.2. For any weight A in DT
d,n, a stable rooted tree has only trivial automorphisms.

Proof. The conditions on the weights imply every component in a stable rooted tree have at least
two markings. Any subgroup of Gm oGd

a fixing them is necessarily trivial. �

2.6. Weighted stable trees. Let A be a set of weights in DP
d,n. The geometric points of PA

d,n are
obtained by the procedure in Section 2.3 for input data Pd,A , G∼= SLd+1 together with its natural
action in Pd and the condition that every representative of a configuration (p1, p2, . . . , pn) satisfy
the following conditions:
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(1) p1, . . . , pd, pd+1 are in general position;
(2) none of the pi, i ∈ {d +2, . . .n} can lie in the linear subspace spanned by p1, . . . , pd ;
(3) we cannot have pd+1 = . . .= pn and
(4) the points pi, i= d+2, . . . ,n cannot all lie on the hyperplane spanned by {p1, . . . p̂k . . . pd+1}

simultaneously.
The geometric meaning of these last conditions will become apparent in Lemma 4.1. The resulting
variety has a dual graph that is a tree whose distinguished vertex corresponds to the original Pd ,
where p1, . . . , pd, pd+1 lie.

Lemma 2.3. For any weight A in DP
d,n, a weighted stable tree has only trivial automorphisms.

Proof. By the conditions on the weights, the distinguished component has at least d +2 markings
and the other components have at least two. The result follows on the components associated to the
non-distinguished vertices by Lemma 2.2, and on the distinguished component from the fact that
a configuration of d +2 labelled points in general position in Pd has trivial automorphisms. �

3. WONDERFUL COMPACTIFICATIONS AND GIT

To construct our compactifications we make use of two technical tools: the theory of wonder-
ful compactifications ([Li09]; Section 3.1) and relative GIT ([Hu96]; Section 3.3). Wonderful
compactifications will allow us to describe the behavior of iterated blow ups along smooth loci.
In section 3.9 we show that wonderful compactifications descend to wonderful compactifications
after taking GIT quotients under certain hypotheses. We also need a master space whose role
is similar to the role played by the Hilbert scheme in the construction of the moduli of curves;
this space is, in our case, a weighted generalization of the Fulton-MacPherson compactification
([Rou14]; Section 3.2).

3.1. Wonderful Compactifications. In this section we give a brief account of the theory of won-
derful compactifications. For details and full proofs see [Li09].

Definition 3.1. [Li09, Sec 2.1] An arrangement of subvarieties of a nonsingular variety Y is a
finite set S = {Si} of nonsingular closed subvarieties Si ⊂ Y such that

(1) any two varieties Si and S j intersect cleanly, i.e. their scheme-theoretic intersection is
nonsingular and Ty = TSi,y∩TS j,y for all y ∈ Si∩S j.

(2) Si∩S j is either equal to some Sk or empty.
We say that Si and S j intersect transversally if, for every point y in Y , Ty = TSi,y +TS j,y; if y /∈ Si,
then we adopt the convention that TSi,y := Ty.
A subset G ⊂S is called a building set of S if for all S ∈S the minimal elements of G contain-
ing S intersect transversally and their intersection is equal to S (this condition is trivially satisfied
if S ∈ G ). These minimal elements are called the G -factors of S.
A finite set G of nonsingular subvarieties of Y is called a building set if the set of all possible
intersections of collections of subvarieties of G forms an arrangement S and G is a building set
of S . In this situation, S is called the arrangement induced by G .

Definition 3.2. [Li09, Def 1.1] Let G be a building set. The wonderful compactification YG of G
is the closure of the image of the natural embedding

Y 0 := Y \
⋃

Sk∈G
Sk ↪→ ∏

Sk∈ G

BlSkY

Sometimes, we also denote it as BlGY by reasons that will be made apparent in Theorem 3.4 (2).
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Definition 3.3. The dominant transform of a variety under a blowup is either the strict transform,
in case the variety is not contained in the center or the blowup, or the inverse image of the variety
via the blowup map if the variety is contained in the center.

The following theorem will be central for our construction:

Theorem 3.4. ([Li09, Thm 1.3, Proposition 2.13]) Let Y be a nonsingular variety and G =
{S1,S2, . . . ,SN} be a building set of subvarieties of Y . Then,

(1) the wonderful compactification YG is a nonsingular variety. Moreover, for each Si ∈ G
there is a nonsingular divisor DSi ⊂ YG , such that
(a) The union of the divisors is YG \Y o.
(b) Any set of divisors, with not empty intersection, intersects transversally.
(c) The divisors DSi are the iterated dominant transforms of the Si under YG → Y

(2) if we arrange the elements of G in an ascending dimension order or in such an order that
the first i terms S1,S2, . . . ,Si form a building set for all 1≤ i≤ N, then

YG = BlS̃N
· · ·BlS̃2

BlS1Y

where YG is the wonderful compactification of Y with respect to G and the ˜ sign on top
of each Si stands for the iterated dominant transform of the latter in the corresponding
blowup.

(3) let Ii be the ideal sheaf of Si. Then, the wonderful compactification YG is equal to the
blowup of Y along the ideal sheaf I1I2 . . . IN ,

YG
∼= BlIN . . .BlI2BlI1Y ∼= BlI1I2...INY

3.2. Weighted Compactifications of Configuration Spaces. We recall some results from [Rou14].
Let X be a nonsingular variety over an algebraically closed field k and A := {a1,a2, . . . ,an} be a
set of rational numbers such that 0 < ai ≤ 1, i = 1,2, . . . ,n. Also, let

KA := {∆I ⊂ Xn|I ⊂ N and ∑
i∈I

ai > 1}, where ∆I := {(x1, . . . ,xn) ∈ Xn|xi1 = . . .= xik , is ∈ I}

and list its elements in ascending dimension order. The above set is shown in [Rou14] to be a
building set which satisfies the hypothesis of Theorem 3.4(2). The work [ibid] is concerned with
the study of a natural compactification of the configuration space Xn \

⋃
∆I∈KA

∆I , i.e. the parameter

space of n labeled points in X carrying weights ai subject to the following condition:
• for any set of labels I ⊂ N of coincident points we have ∑

i∈I
ai ≤ 1 .

Definition 3.5. The weighted compactification XA [n] of Xn \
⋃

∆I∈KA

∆I is the wonderful compact-

ification of KA .

We have the following result ([Rou14, Theorems 2 and 3]):

Theorem 3.6. For any set of admissible weights A ,
(1) XA [n] is a nonsingular variety. The boundary XA [n]\(Xn\

⋃
∆I∈KA

∆I) is the union of |KA |

divisors DI, where I ⊂ N, |I| ≥ 2 and ∑
i∈I

ai > 1 .
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(2) Any set of boundary divisors intersects transversally. An intersection of divisors DI1∩DI2∩
. . .DIk is nonempty precisely when the sets are nested in the sense that any pair {Ii, I j}
either has empty intersection or one set is contained in the other.

(3) XA [n] is the iterated blowup of Xn along the dominant transforms of the elements of KA .
Moreover, each divisor DI is the iterated dominant transform of ∆I in XA [n].

(4) There exists a ‘universal’ family φA : XA [n]+ → XA [n] equipped with n sections σi :
XA [n]→ XA [n]+, i = 1, . . .n whose images lie in the relative smooth locus of φA . It is
a flat morphism between nonsingular varieties, whose fibers are the n pointed A stable
degenerations of X described in Section 2.2.

Now, with notation as above, consider X = Pd with the natural SLd+1 action. We will use the
following lemma in our subsequent construction of PA

d,n:

Lemma 3.7. (1) There is a lift of the SLd+1 action on Pd to Pd
A [n] and Pd

A [n]+. Moreover,
the morphisms πA : Pd

A [n]→ (Pd)n (cf Theorem 3.6(3)) and φA : Pd
A [n]+ → Pd

A [n] (cf
Theorem 3.6(4)), as well as the sections σi : Pd

A [n]→ Pd
A [n]+, i = 1, . . . ,n are SLd+1-

equivariant.
(2) φA : Pd

A [n]+→ Pd
A [n] is a projective morphism.

Proof. (1) Pd
A [n] is obtained by successively blowing up strict transforms of diagonals, which

are SLd+1-invariant. Therefore the SLd+1 action on Pd lifts to Pd
A [n] so that πA becomes SLd+1

equivariant. Also, by the construction in [Rou14, Section 3], Pd
A [n]+ is the iterated blowup of

Pd
A [n]× Pd along strict transforms of diagonals in (Pd)n × Pd , hence a blowup along SLd+1-

equivariant centers. Therefore the morphism Pd
A [n]+→ Pd

A [n]×Pd is SLd+1-equivariant. Since
the projection Pd

A [n]×Pd → Pd
A [n] is also SLd+1-equivariant, we deduce that φA is equivariant.

Finally, the sections σi are obtained by blowing up centers inside Pd
A [n]×Pd that are isomorphic to

the divisor DN corresponding to the small diagonal ∆N [ibid.]; indeed those centers are the graphs
of the morphisms DN ↪→ Pd

A [n]
pi−→ Pd , where pi is the projection to the i-th factor. Since ∆N is

invariant under the SLd+1 action, so are the above centers, hence so are σi.
(2) As noted above, φA is the composition of a sequence of blowups Pd

A [n]+→ Pd
A [n]×Pd with

the projection Pd
A [n]×Pd → Pd

A [n], i.e. a composition of projective morphisms, hence projec-
tive. �

3.3. Relative GIT and blowing up. In order to construct our compactification PA
d,n, we will de-

scend the blowup construction of the weighted Fulton MacPherson space Pd
A [n] to appropriately

defined GIT quotients. To this end, we will make use of the machinery of relative GIT developed
by Hu [Hu96]:

Lemma 3.8. [Hu96, Thm 3.11, Thm 3.13] Let π : Y → Z be a G-equivariant projective morphism
between two (possibly singular) quasi-projective varieties. Given any linearized ample line bundle
L on Z such that the GIT stable loci of Z is equal to its strictly semistable point that is

Zss(L) = Zs(L)

and choose a relatively ample linearized line bundle M on Y . Then
(1) there exists n0 such that when n≥ n0, we have

Y ss (π∗Ln⊗M) = Y s (π∗Ln⊗M) = π
−1 (Zs(L))
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(2) Given L̃ := π∗Ln⊗M, then there is a projective morphism

π̂ : Y//L̃G→ Z//LG

(3) for any z ∈ Zs(L) with stabilizer Gz, we have

π̂
−1 ([G · z])∼= π

−1(z)/Gz

(4) if π is a fibration and G acts freely on Zs(L), then π̂ is also a fibration with the same fibers
as π .

The following result shows that blowing up along building sets is compatible with taking GIT
quotients under certain hypotheses.

Lemma 3.9. Let Y be a nonsingular projective variety such that
(1) Y admits an action by a reductive algebraic group G, and
(2) there is a G-linearized ample line bundle L on Y such that Y s(L) = Y ss(L) and G acts with

trivial stabilizers on Y s(L).
Let G be a building set that consists of G-invariant subvarieties of Y listed in ascending dimension
order. Then

(1) Let G s := {Sk∩Y s|Sk ∈G and Sk∩Y s 6= /0} and let Ĝ be the set which consists of the images
of its elements under Y s→ Y s//G. Then G s and Ĝ are building sets.

(2) Let p : BlG sY s → Y s be the iterated blowup of Y s along the dominant transforms of the
elements of G s in ascending dimension order. Also, let L̃d := p∗(Ld)⊗O(−E) on BlG sY s,
where E is the total boundary divisor i.e. the union of the exceptional divisors of this blow
up. Then, for sufficiently large d, L̃d admits a linearization such that (BlG sY s)ss(L̃d) =

(BlG sY s)s(L̃d) = p−1(Y s(L)) and p descends to a morphism

p̂ : (BlG sY s)s//G→ Y s//G

which is the iterated blowup of Y s//G along the dominant transforms of the elements of Ĝ
in ascending dimension order.

Proof. We modify the arguments in [Hu03, Section 7]. For (1), note that by Definition 3.1 all
defining properties of a building set and its induced arrangement are Zariski local, so the restriction
G s is readily seen to be a building set. We now show that Ĝ is a building set. Let {Ti}, {T s

i } and
{T̂i} be the sets that consist of all possible intersections of the varieties in G , G s and Ĝ respectively.
Claim: The set {T̂i} is an arrangement of subvarieties of Ĝ .

Proof: We only need to show {T̂i} intersect cleanly. It suffices to check this locally. Let x be a
point in Y s; then, since G acts with trivial stabilizers on Y s, by Luna’s étale slice Theorem, there
exists a locally closed smooth subvariety Wx of Y s containing x and an open G-invariant subvariety
Ux ⊂ Y s containing x such that the morphism

G×Wx→Ux

is strongly étale and G ·Wx = Ux. Therefore, by pulling back via Ux ∩ Ti → Ux, we obtain étale
morphisms

G× (Wx∩Ti)→Ux∩Ti(1)

By the hypothesis, any Ti and Tj intersect cleanly so their restrictions to Ux must also intersect
cleanly. Since the morphism 1 induces an isomorphism on tangent spaces the intersection (Wx∩Ti)
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with (Wx ∩Tj) must also be clean. Now, the morphism G×Wx →Ux induces an étale surjective
morphism Wx→Ux//G, hence also étale surjective morphisms

(Wx∩Ti)→ (Ux∩Ti)//G = T̂i∩ (Ux//G) and (Wx∩Tj)→ (Ux∩Tj)//G = T̂j∩ (Ux//G)

which take ((Wx∩Ti)∩ (Wx∩Tj)) to (Ux∩Ti∩Tj)//G = T̂i∩ T̂j ∩ (Ux//G). Consequently, T̂i∩ T̂j
is a clean intersection. End.

Now let T̂ be an arbitrary element in the induced arrangement of Ĝ . It remains to show that the
minimal elements of Ĝ that contain T̂ intersect transversally. Assume that these minimal elements
are Ŝ1, Ŝ2, . . . Ŝm. Then we see that Si are the minimal elements of G that contain T . Indeed, if
Ŝi ⊃ Ŝ′ ⊃ T̂ for some S′ ∈ G , then Si ∩Y s ⊃ S′ ∩Y s, therefore Si = Si∩Y s ⊃ S′∩Y s = S′. Now,
since, by definition, Si intersect transversally, we may repeat the argument of the previous para-
graph (with Si in place of the Ti above) to actually deduce that Ŝi intersect tranversally as well.
Hence we have verified part (1) of the lemma.

Next, we show part (2); let G s
k be the subset which consists of the first k elements of G s. Also,

let Tk+1 be the unique element of G s
k+1 such that G s

k+1 = {Tk+1}∪G s
k . We will show by induction

that, for any k such that 0≤ k ≤ |G s|, the following statement is true:

i Let pk : BlG s
k
Y s→Y s be the natural blowup morphism and set Lk,d := p∗k(L

d)⊗O(−
k
∑

i=1
Ei),

where Ei are the exceptional divisors of BlG s
k
Y s. Then, for sufficiently large d, Lk,d admits a

linearization such that (BlG s
k
Y s)s(Lk,d)= (BlG s

k
Y s)ss(Lk,d)= p−1

k (Y s(L)) and BlG s
k
Y s//Lk,d G=

(BlG s
k
Y s)s//G is the iterated blowup of Y s//G along the iterated dominant transforms of

T̂1, . . . T̂k.
ii There is a commutative diagram

(BlG s
k
Y s)s qk //

pk

��

(BlG s
k
Y s)s//G

p̂k
��

Y s
q0

// Y s//G

such that for every l with |G | ≥ l > k the iterated strict transform (T̂l)
(k) of T̂l in (BlG s

k
Y s)s//G

is the image of the iterated strict transform (T s
l )

(k) of T s
l in (BlG s

k
Y s)s via qk.

For k = 0 there is nothing to prove. Assume the above statement is true for some k ≥ 0. Then

p∗k(L
d)⊗O(−

k
∑

i=1
Ei) is well known to be relatively ample for large d. Therefore, by lemma 3.8(1)-

after twisting by a large enough power of p∗k(L) if necessary- we deduce that (BlG s
k
Y s)s(Lk,d) =

(BlG s
k
Y s)ss(Lk,d) = p−1

k (Y s(L)). Now, by [Kir85, Lemma 3.11], it holds that

(BlG s
k+1

Y s)s//G =
(

Bl(T s
k+1)

(k)(BlG s
k
Y s)
)s

//G

is the blowup of (BlG s
k
Y s)s//G along the image of (T s

k+1)
(k) via qk, which, by the inductive hypoth-

esis, is equal to the iterated strict transform of T̂k+1 along p̂k. Therefore, by part (i) of the inductive
hypothesis for k, we establish part (i) for k+1. We also obtain a commutative diagram
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(BlG s
k+1

Y s)s qk+1//

pk+1,k

��

(BlG s
k+1

Y s)s//G

p̂k+1,k
��

(BlG s
k
Y s)s

qk
// (BlG s

k
Y s)s//G

It remains to show that for l > k+1 the strict transform of (T̂l)
(k) along p̂k+1,k is equal to the im-

age of (T s
l )

(k+1) via qk+1. But the strict transform of (T̂l)
(k) along p̂k+1,k is, by definition, equal to

the blowup of (T̂l)
(k) along its intersection with the center (T̂l)

(k)∩ (T̂k+1)
(k), which is nonsingular;

indeed, by [Li09, Definition 2.8] and the remark following it, for any k, the set {(T̂l)
(k)| T̂l ∈ Ĝ }-

given an ascending dimension order - is a building set and the element (T̂k+1)
(k) is minimal. There-

fore, by [Li09, Lemma 2.6 (i)] (T̂l)
(k)∩(T̂k+1)

(k) is nonsingular and also equivariant by the hypoth-
esis. By part (ii) of the inductive hypothesis, the blowup of (T̂l)

(k) along (T̂l)
(k)∩ (T̂k+1)

(k) is equal
to the blowup of qk((T s

l )
(k)) along qk((T s

l )
(k)∩ (T s

k+1)
(k)), which in turn, by [Kir85, Lemma 3.11],

is equal to (Bl(T s
l )

(k)∩(T s
k+1)

(k)(T s
l )

(k))s//G = ((T s
l )

(k+1))s//G, so we are done. �

The following result shows that, under the hypotheses of Lemma 3.9, a wonderful compactifi-
cation descends to a wonderful compactification in the GIT.

Corollary 3.10. We suppose that the hypotheses of Lemma 3.9 are satisfied. Let G be a building
set of subvarieties of Y , let G s be its restriction to the stable locus, and let L̃d , L be the line bundles
of Lemma 3.9 (2). Then, the following hold:

(1) The variety BlG sY s//
L̃d G is the wonderful compactification of the arrangement Ĝ of subva-

rieties of Y//LG.
(2) Let p̄ : BlGY→Y be the iterated blowup of Y along the dominant transforms of the elements

of G in ascending dimension order. Also, let L̄d := p̄∗(Ld)⊗O(−E) on BlG sY s, where E is
the total boundary divisor, i.e. the union of the exceptional divisors of this blow up. Then
BlG sY s//

L̃d G∼= BlGY//L̄d
G.

Proof. (1) follows immediately by Theorem 3.4(2) and Lemma 3.9 (2). For (2) note that blowing
up is compatible with restricting to an open set. Therefore, we have the commuting diagram

BlG sY s //

��

BlGY

p̄
��

Y s // Y

where (p̄)−1(Y s)=BlG sY s. By Lemma 3.8, we have (p̄)−1(Y s)= (BlGY )s. Consequently, BlG sY s =
(BlGY )s and

BlG sY s//L̃d
G∼= BlGY//L̄d

G

�

4. THE COMPACTIFICATIONS PA
d,n AND T A

d,n (THEOREMS 1.1 AND 1.2).

In this section, we construct our configuration spaces, their respective universal families and we
describe their boundary.
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4.1. Points in projective space. Our first step is to give a model of PA
d,n isomorphic to a product

of projective spaces.

Lemma 4.1. There exists an ample SLd+1-linearized line bundle Ld,n such that the GIT quotient

(Pd)n//Ld,nSLd+1 is isomorphic to
(
Pn−d−2)d . Futhermore,

(1) there is no strictly semistable locus in (Pd)n with respect to Ld,n and
(2) we can choose coordinates so that the point

d−1

∏
k=0

[bk
d+2 : . . . : bk

n] ∈
(
Pn−d−2

)d

parametrizes the equivalence class of n points induced by:

p1 = [1 : . . . : 0], p2 = [0 : 1 : . . .0], pd+1 = [0 : . . . : 1] and pi = [b0
i : . . . : bd−1

i : 1]

with d +2≤ i≤ n.

Proof. We define Ld,n to be the fractional line bundle O(w1,w2, . . . ,wn) on (Pd)n such that

w1 = . . .= wd = 1− ε̂,wd+1 = 1− (n− (d +1))ε +dε̂ andwd+2 = . . .= wn = ε

with 1� ε � ε̂ > 0 with its canonical SLd+1 linearization ([Dol03, Chapter 11]) and we take the
GIT quotient of n points in Pd with respect to that linearization. A configuration of points is GIT
semistable (resp. stable) if and only if ∑pi∈W wi ≤ (dim(W )+1) (resp. ∑pi∈W wi < (dim(W )+1))
for any proper subspace W ⊂ Pd (see [Dol03, Thm 11.2]). Observe that the total GIT weights of
any subset of points is never equal to an integer, so the above inequality is always strict. Therefore,
there is no strictly semistable locus. The above inequality is equivalent to the following conditions:

(1) p1, . . . , pd, pd+1 must be in general position
(2) none of the pi, i ∈ {d +2, . . .n} can lie in the linear subspace spanned by p1, . . . , pd
(3) we cannot have pd+1 = . . .= pn and
(4) the points pi, i= d+2, . . . ,n cannot all lie on the hyperplane spanned by {p1, . . . p̂k . . . pd+1}

simultaneously.
Then, we can fix the configuration of points {p1, . . . , pn} to be as in the statement. Consequently,
the automorphism group of the resulting configuration is isomorphic to Gd

m. By our conditions on
the weights, the parameter space of each point pi with (d +2)≤ i≤ n is contained in Ad , because
pi cannot lie in the hyperplane (xn+1 = 0) determined by the points {p1, . . . , pd}. The only other
restriction on the points pi, i = d +2, . . . ,n is that they cannot all lie on the hyperplane spanned by
{p1, . . . p̂k . . . pd+1} at the same time. This means that configurations with points with

bk
d+2 = . . .= bk

n = 0

are forbidden as well. We denote the loci parametrizing these last configurations of points as
A(d−1)(n−(d+1))

k with 0≤ k ≤ d−1. Then, we obtain(
n

∏
i=d+2

Ad ∖ d−1⋃
k=0

A(d−1)(n−(d+1))
k

)
//Gd

m =

(
(An−(d+1))d \

d−1⋃
k=0

A(d−1)(n−(d+1))
k

)
//Gd

m

=
(
An−(d+1) \0

)d
//Gd

m =
(
Pn−(d+2)

)d
.

�
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We now define the open locus in (Pd)n//Ld,nSLd+1 that we want to compactify. Let A ∈DP
d,n be an

admissible weight set for the weighted compactification Pd
A [n]. Also, let KA = {∆I ⊂ (Pd)n|I ⊂

N and ∑
i∈I

ai > 1} be the set associated to the construction of Pd
A [n] (see Section 3.2) and consider

the line bundle Ld,n of Lemma 4.1. Following the notation of Lemma 3.9, let ∆̂I be the descent of
∆I ∈KA , such that ∆I ∩

(
(Pd)n)s 6= /0, to (Pd)n//Ld,nSLd+1 and let K̂A be the set of all such ∆̂I .

Definition 4.2. The weighted moduli space of n labeled points in (P)d with respect to A and Ld,n
is

PA
d,n :=

(
(Pd)n//Ld,nSLd+1

)
\
⋃

∆̂I∈K̂A

∆̂I

Recall that, by Theorem 3.6, there is a sequence of blowups πA : Pd
A [n] −→ (Pd)n along the

dominant transforms of the elements of a building set KA . Let E be the total boundary divisor,
i.e the union of the exceptional divisors of this blowup. Now let Ld,n be the line bundle of lemma
4.1; then, the strictly semistable locus of (Pd)n with respect to Ld,n is empty, by [ibid.], so the
hypotheses of Lemma 3.9(2) are satisfied. Hence, there is a canonically linearized line bundle
L̃A := π∗A (L⊗e

d,n)⊗O(−E), such that, for e sufficiently large, (Pd
A [n])ss(L̃A ) = (Pd

A [n])s(L̃A ) =

π
−1
A [
(
(Pd)n)s

], where the stable locus
(
(Pd)n)s is induced by Ld,n.

Definition 4.3. Let A ∈DP
d,n and let L̃A be the line bundle defined above. The weighted compact-

ification of PA
d,n is

PA
d,n := (Pd

A [n])//L̃A
SLd+1

Remark 4.4. We will see below (Lemma 4.8 and Corollary 4.9) that ˆKA is a building set and PA
d,n

is the wonderful compactification of ˆKA .

Remark 4.5. When A is such that a1 = . . . = ad = 1− ε̂, ad+1 = 1− (n− (d + 1))ε + dε̂ and
ad+2 = . . . = an = ε , then A coincides with the set of GIT weights corresponding to Ld,n. Then
PA

d,n is the GIT quotient of Lemma 4.1. Indeed,

PA
d,n = (Pd

A [n])s(L̃A )//SLd+1 = π
−1
A [
(
(Pd)n

)s
]//SLd+1 =

(
(Pd)n

)s
//SLd+1.

The last equality follows because
(
(Pd)n)s is contained in the locus where the points with la-

bels {1, . . . ,d} are distinct, that is, in the open locus (Pd)n \
⋃

∆I∈KA
∆I , hence π

−1
A [
(
(Pd)n)s

] is
isomorphic to

(
(Pd)n)s. The above equalities still hold if we increase a1, . . . ,ad to any number

between 1− ε̂ and 1, because KA remains invariant. PA
d,n changes only if we increase the weights

ad+1, . . . ,an.

We now describe the loci parametrizing coincident points in the GIT of Lemma 4.1.

Lemma 4.6. The loci of coincident points in (Pn−d−2)d labeled by I ( {d + 1, . . .n} such that
2≤ |I| ≤ (n−d−1) are given by

HI =

{⋂
i, j∈I(b

0
i −b0

j = . . .= bd−1
i −bd−1

j = 0) | if d +1 /∈ I⋂
i∈I\d+1(b

0
i = . . .= bd−1

i = 0) | if d +1 ∈ I
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They parametrize configurations with either the multiple point {pi | i ∈ I} with i ∈ I or a degener-
ation of it. Furthermore, HI ∼= (P(n−|I|)−d−1)d .

Next, we define the set of subvarieties of (Pn−d−2)d parametrizing coincident points. Let A ∈
DP

d,n, set D := {d + 1, . . .n} and consider the subset A (D) of A that consists of the elements of
A whose labels lie in D (see Section 2.1). Let HI be the subvarieties of (Pn−d−2)d defined in 4.6.

Definition 4.7. The set of subvarieties of (Pn−d−2)d parametrizing coincident points is

GA (D) := {HI ⊂ (Pn−d−2)d | ∑
i∈I

ai > 1}

Now let KA = {∆I ⊂ (Pd)n|I ⊂ N and ∑
i∈I

ai > 1} be the set associated to the construction of

Pd
A [n] (see Section 3.2) and let Ld,n be the line bundle used in Lemma 4.1. The set KA is given

an ascending dimension partial order. In addition, consider its descent K̂A (see Lemma 3.9) to
(Pd)n//Ld,nSLd+1, which is given also an ascending dimension partial order compatible with the
order of KA .

Lemma 4.8. Let KA and K̂A as above. Then
• K̂A is a building set and
• K̂A = GA (D).

Proof. By Lemma 3.9(1), K̂A is a building set. Then, we only need to prove that the equality
holds. The equivalence class [SLd+1 · (p1, . . . pn)] is in GA (D) if and only if we can select a rep-
resentative (p1, . . . pn) of the orbit such that it is contained in the stable locus and it has at least a
subset of overlapping points {pi1 = . . .= pis | is ∈ I} such that ∑ik∈I ai > 1. These two conditions
are the ones defining K s

A = KA ∩ ((Pd)n)s. �

Corollary 4.9. (Pd
A [n])//L̃A

SLd+1 is the wonderful compactification of the arrangement K̂A .

Proof. By Section 3.2, the weighted Fulton-Macpherson spaces Pd
A [n] are wonderful compacti-

fications with respect to the building set KA ; and the blow up πA : Pd
A [n] −→ (Pd)n is SLd+1

equivariant by Lemma 3.7. Moreover, the conditions required in Lemma 3.9 and Corollary 3.10
are satisfied by (Pd)n if we take the line bundle Ld,n used in Lemma 4.1. Indeed, there is no
strictly semistable locus induced by Ld,n (Lemma 4.1); and from the smoothness of the quotient in
Lemma 4.1 we conclude the stabilizers are trivial. Therefore, by Lemma 3.8 and Corollary 3.10,
(Pd

A [n])s ∼= (Pd
A [n])ss and the variety (Pd

A [n])//L̃A
SLd+1 is the wonderful compactification of the

building set K̂A . �

Proof of Theorem 1.1:
Part 1: Follows immediately from Corollary 4.9 and Theorem 3.4 (1).
Part 2: First we define φ̂A and its sections σ̂i by descending the analogous morphisms that ap-
pear in the weighted Fulton MacPherson construction. Let φA : Pd

A [n]+→ Pd
A [n] be the universal

family of the weighted Fulton MacPherson compactification Pd
A [n] (Theorem 3.6(4)). We have

already seen that the action of SLd+1 on Pd lifts to Pd
A [n] and Pd

A [n]+ so that φA becomes equi-
variant (Lemma 3.7). Now let L̃A be the line bundle of definition 4.3. Recall by Lemma 3.7(2)
that φA is projective. Now let us choose an arbitrary relatively ample linearized line bundle M+

A
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for φA . Set L+
A = M+

A ⊗ L̃⊗m
A for sufficiently large m and UA

d,n := Pd
A [n]+//L+

A
SLd+1. By 3.8(1),

the above GIT quotient is independent of the choice of M+
A for large m. Then, by Lemma 3.8 (2),

we may descend φA to obtain a morphism

φ̂A : UA
d,n→ PA

d,n

Moreover, φA is equipped with n sections σi : Pd
A [n]→ Pd

A [n]+([ibid.]), which are SLd+1 equi-
variant by Lemma 3.7. By Lemma 4.1(1), we have Pd

A [n]ss(L̃A ) = Pd
A [n]s(L̃A ). Consequently, by

Lemma 3.8(1), we deduce that φ
−1
A (Pd

A [n]s(L̃A )) = (Pd
A [n]+)ss(L+

A ) = (Pd
A [n]+)s(L+

A ). There-
fore, the restriction σ s

i of the section σi to Pd
A [n]s(L̃A ) maps to the subvariety (Pd

A [n]+)s(L+
A ) of

Pd
A [n]+. Let φ s

A be the restriction of φA to the stable locus. We may now descend σ s
i to the asso-

ciated geometric quotients to obtain sections σ̂i : PA
d,n→UA

d,n, i = 1, . . . ,n, that fit in the following
commutative diagram

(Pd
A [n]+)s

φ s
A
��

// (Pd
A [n]+)s//SLd+1

φ̂A
��

Pd
A [n]s //

σ s
i

JJ

(Pd
A [n])s//SLd+1

σ̂i

JJ

By Theorem 3.6(4), σi lie in the relative smooth locus of φA . Now, SLd+1 acts with trivial
stabilizers on Pd

A [n]s, so, by Lemma 3.8(3) the fiber of φ̂A over a geometric point (orbit) in the
stable locus is isomorphic to the fiber of φ s

A over any point in that orbit. Therefore, we see that
the relative smooth locus of φ s

A maps to the relative smooth locus φ̂A via the quotient morphism.
Hence, by the commutativity of the above diagram we establish part (1) of the lemma. Additionally,
since Pd

A [n] and Pd
A [n]+ are projective, the GIT quotients PA

d,n and UA
d,n are projective, so φ̂A is

proper. By Lemma 3.8 (3) again and the fact that fibers of φ s
A are equidimensional, it follows that

the fibers of φ̂A are also equidimensional. Moreover, since φ s
A is equivariant and SLd+1 acts with

trivial stabilizers on Pd
A [n]s, we see that SLd+1 acts with trivial stabilizers on the smooth variety

(Pd
A [n]+)s as well. Therefore (Pd

A [n]+)s//SLd+1 is smooth (for example, by Luna’s étale slice
theorem) and, since PA

d,n is also smooth (Theorem 1.1), we deduce that φ̂A is flat. It remains to
verify part (2); once again, Lemma 3.8 (3) guarantees that if x is a geometric point in Pd

A [n]s, then
φ̂
−1
A ([SLd+1 · x]) ∼= φ

−1
A (x). Then (2) is equivalent to saying that the weighted stable n-pointed

degeneration (φ−1
A (x),σ s

i (x)) is isomorphic to (φ̂−1
A ([SLd+1 ·x]), σ̂ s

i ([SLd+1 ·x])). Then (2) follows
immediately from the descriptions in Sections 2.6 and 3.2. �

Corollary 4.10. For every weight set A ∈DP
d,n:

(1) PA
d,n is the iterated blowup of (Pn−d−2)d along the elements of GA (D) in ascending dimen-

sion order.
(2) The boundary PA

d,n \PA
d,n is the union of |GA (D)| divisors EI .

(3) Each of the divisors EI is the iterated dominant transform (cf definition 4.25) of HI in the
sequence of blowups PA

d,n→ (Pn−d−2)d .
(4) Any set of boundary divisors intersects transversely.
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Proof. By Theorem 3.4(2) the first statement is equivalent to the claim that PA
d,n is the wonderful

compactification with respect to the elements of GA (D). This last claim is proven in the first part
of the proof of Theorem 1.1. The other statements follow from Theorem 3.4 (1). �

4.2. Points in affine space. We first recall the definition of weighted Td,n and then we give a
birational model of Td,n isomorphic to a projective space.
Let XA [n] be the weighted compactification of the weighted configuration space of n points in a

smooth variety X (Section 3.2), where A ∈ DT
d,n, that is

n
∑

i=0
ai > 1. The above inequality implies

that ∆N ∈KA . Now let DN ⊂ XA [n] be the divisor corresponding to the locus where all n points in
the various weighted stable degenerations of X lie over an arbitrary point in X . This is precisely the
iterated dominant transform of the small diagonal ∆N under the sequence of blowups XA [n]→ Xn

(Theorem 3.6(3)). We have a morphism (induced by the blowdown)
qA : DN → ∆N ∼= X .

Definition 4.11. [Rou15] Let X be a smooth variety of dimension d and consider a geometric point
x ∈ X . We define T A

d,n := qA
−1(x).

T A
d,n

//

��

DN

qA

��

// XA [n]

��
x // ∆N ∼= X // Xn

Remark 4.12. It is shown in [ibid.] that the above definition is independent of x and X , as long as
d,n and A are fixed.

Remark 4.13. The universal family (T A
d,n)

+→ T A
d,n is constructed in [Rou15]. Its geometric fibers

are precisely the objects described in Section 2.5.

Recall that given a configuration of n points in affine space defined up to translation and ho-
mothety, it is convenient to think of them as points in Pd that lie away from a fixed hyperplane
H ⊂ Pd called the root and defined up to the action of the subgroup G⊂ SLd+1 that fixed the root
pointwise.

Lemma 4.14. Let B :=
(1

n + ε, . . . , 1
n + ε

)
∈ DT

d,n. Then T B
d,n
∼= Pdn−d−1 and there is a choice of

coordinates so that the point

[x11 : x12 : . . . : x1d : . . . : x21 : x22 : . . .x2d : . . . : x(n−1)1 : x(n−1)2 : . . . : x(n−1)d] ∈ T B
d,n

parametrizes the equivalence class associated to the collection of n points:

p1 := [1 : x11 : . . . : x1d], . . . pn−1 := [1 : x(n−1)1;x(n−1)2 : . . . : x(n−1)d], pn := [1 : 0 : . . . : 0]

Proof. By Definition 4.11, T B
d,n is the fiber q−1

B (x) of a point in the divisor DN over X where DN is
the iterated dominant of the small diagonal ∆N along the sequence of blowups XB[n]→Xn. For our
choice of weights there is only one blow up involved, hence the dominant transform of ∆N in XB[n]
is the projective bundle P(N∆N/Xn). Therefore, its fiber over ∆N = X is isomorphic to the projective
space Pdn−d−1. To obtain the coordinates, we describe an alternative and instructive construction.
We consider Pd with homogeneous coordinates [x0; . . . ;xd] and take the root H to be (x0 = 0). We
can choose the location of one of the points, say pn, to be [1 : 0 · · · : 0] ∈ (Pd \H) = Ad . The
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location of the other (n− 1) points can be anywhere in Pd \H, but they cannot all overlap with
pn simultaneously. The automorphism group of Pd that fixes the hyperplane H pointwise and the
point pn is Gm. Then, we conclude that the our parameter space is(

(Ad)n−1 \ (0,0, . . .0)
)
//Gm ∼= Pd(n−1)−1.

with the coordinates described in the statement. �

Next, we describe the loci in the above T B
d,n that parametrize configurations with overlapping

points.

Lemma 4.15. Let B be as in lemma 4.14. The loci of coincident points in T B
d,n are given by

δI =

{⋂
i, j∈I(xi1− x j1 = . . .= xid− x jd = 0) | if n /∈ I⋂
i∈I\n(xi1 = . . .= x1d = 0) | if n ∈ I

with 2≤ |I| ≤ (n−1). The locus δI is isomorphic to Pd(n−|I|)−1, and it parametrizes configurations
where points whose labels lie in I coincide.

Proof. It follows from Lemma 4.14. �

Definition 4.16. Given the set of weights A = {a1, . . . ,an} ∈DT
d,n , we define the partially ordered

set

HA =
{

δI ⊂ Pd(n−1)−1| ∑i∈I ai > 1
}

with partial order (<) given by δI < δJ, if and only if |J|< |I|.

Lemma 4.17. The ordered set (HA ,<) is a building set.

Proof. Consider an arbitrary nonempty intersection S := δI1∩·· ·∩δIk of varieties that belong to the
set HA . We need to establish that the minimal elements of HA containing S intersect transversally
and their intersection is S. To see this, observe that the above intersection can be written uniquely
as an intersection of the form δI′1

∩ ·· ·∩δI′m , where m ≤ k, the I′i are pairwise disjoint and each of
the I′i is a union of I j’s. Each of the δI′i

’s belongs to HA , because I′i cannot be the set {1, . . . ,n}
(otherwise S would be empty), and since I′i contains some I j, we have

∑
k∈I′i

ak ≥ ∑
k∈I j

ak > 1.

By construction, the δI′’s are the minimal elements of HA that contain S. Finally, since the indices

I′i are disjoint, we see that the varieties δI′1
, . . . ,δI′m intersect transversally. �

Definition 4.18. Let A ∈DT
d,n. The weighted configuration space of n points in Ad up to transla-

tion and homothety with respect to A is

(T A
d,n)

o := Pd(n−1)−1 \
⋃

∆I∈HA

δI

Lemma 4.19. T A
d,n is isomorphic to the wonderful compactification of the arrangement HA .



22 PATRICIO GALLARDO AND EVANGELOS ROUTIS

Proof. Let X as in Definition 4.11. For any Y ⊂ Xn (resp. Y ⊂ Pd(n−1)−1), we denote by Y (i) the
iterated dominant transform of Y in the i-th step of the sequence of blowups XA [n]→ Xn (resp.
BlHA

Pd(n−1)−1 → Pd(n−1)−1). The i-th dominant transform ∆
(i)
N is the blowup of the (i− 1)-th

dominant transform ∆
(i−1)
N along the intersection ∆

(i−1)
N ∩∆

(i−1)
I , where ∆

(i−1)
I is the center of the

i-th blowup. We show that the fiber of the i-th iterated dominant transform of DN is the (i−1)-th
blowup of Pd(n−1)−1. The proof of the lemma follows from this if we set i equal to the total number
of blowups in XA [n]→ Xn. To this end, we show by induction that, for every ∆I ⊂ Xn and i≥ 1:

(1) the fiber ∆
(i)
N ×X x is isomorphic to the (i−1)-th iterated blowup of Pd(n−1)−1 along HA ;

(2) the fiber (∆(i)
N ∩∆

(i)
I )×X x is isomorphic to δ

(i−1)
I .

To prove the above claim for i = 1, observe that ∆
(1)
N is the exceptional divisor of the first blowup,

hence isomorphic to P(N∆N/Xn) = P(TXn/TX) and ∆
(1)
I ∩∆

(1)
N = P(N∆N/∆I) = P(T∆I/TX). Also,

observe that the δI in lemma 4.15 are obtained by descending the diagonals of (Ad)n−1 labeled by
I (i.e. the loci in (Ad)n−1 where all factors of (Ad)n−1 labeled by I are equal) to the quotient(
(Ad)n−1 \ (0,0, . . .0)

)
//Gm ∼= Pd(n−1)−1. Therefore the embedding P(T∆I/TX) ↪→ P(TXn/TX)

over X pulls back to δI ↪→ Pd(n−1)−1 via x→ X .
Now let ∆

(i)
J be the center of the i+1-th blowup of Xn and assume the claim is true for some i≥ 1.

We will show the claim is true for i+ 1. By [Li09, Proposition 2.8], the set that consists of the
i-th iterated dominant transforms of the elements of a building set (which is given an ascending di-
mension order) is also a building set, so the set {∆(i)

I |∆I ∈KA } is a building set, where KA is the
building set described in section 3.2. Therefore, by [Li09, Lemma 2.6], the center ∆

(i)
J intersects

transversally with the divisor ∆
(i)
N , so the embedding (∆

(i)
N ∩∆

(i)
J ) ↪→ ∆

(i)
N is regular; let I be the

ideal sheaf corresponding to this embedding. Therefore, I n/I n+1 is locally free, hence flat over
O

∆
(i)
N
/I . Then, by the exact sequence

0→ I n

I n+1 →
O

∆
(i)
N

I n+1 →
O

∆
(i)
N

I n → 0

we deduce by induction that O
∆
(i)
N
/I n is also flat over O

∆
(i)
N
/I for all n. But, by part (2) of the

claim, O
∆
(i)
N
/I is flat over OX , so O

∆
(i)
N
/I n is also flat over OX for all n. Also , by (1) and (2) for i,

we deduce that ∆
(i)
N and ∆

(i)
N ∩∆

(i)
J are equidimensional over X , hence flat over X . Now, by [I+82],

we deduce claim (1) for i+1.
To see (2) also holds, let (∆(i)

N ∩∆
(i)
I )̃ be the strict transform of ∆

(i)
N ∩∆

(i)
I in the i+ 1-th blowup

of Xn. Then observe that (∆(i)
N ∩∆

(i)
I )̃ = ∆

(i+1)
N ∩∆

(i+1)
I : indeed, as noted above, ∆

(i)
N intersects

transversally with the center ∆
(i)
J . Also, since {∆(i)

I |∆I ∈KA } is a building set, by [Li09, Lemma
2.6] again, we see that any ∆

(i)
I either intersects transversally or contains the center ∆

(i)
J . Then, by

a repeated application of lemma 6.1 we may deduce that

• the intersection of ∆
(i)
N ∩∆

(i)
I with the center ∆

(i)
J is transversal (possibly empty) and conse-

quently (by part (b) and (c) of the same lemma)
• (∆

(i)
N ∩∆

(i)
I )̃ = ∆

(i+1)
N ∩∆

(i+1)
I .
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Therefore, the embedding (∆
(i)
N ∩∆

(i)
I ∩∆

(i)
J ) ↪→ (∆

(i)
N ∩∆

(i)
J ) is regular and now we may repeat the

argument of the previous paragraph to deduce that

(∆
(i+1)
N ∩∆

(i+1)
I )×X x = (∆

(i)
N ∩∆

(i)
I )̃×X x = ((∆

(i)
N ∩∆

(i)
I )×X x)̃ = (δ

(i−1)
I )̃ = δ

(i)
I

, where the third equality holds because of the inductive hypothesis for i. This concludes part (2)
of the claim for i+1.

�

Proof of Theorem 1.2(1): Immediate by Lemma 4.19 and Theorem 3.4.

Corollary 4.20. For every weight set A ∈DT
d,n,

(1) T A
d,n is the iterated blowup of Pd(n−1)−1 along the dominant transforms of the varieties that

belong to HA in ascending dimension order.
(2) The boundary T A

d,n \ (T A
d,n)

o is the union of |HA | divisors DI .
(3) Each of the divisors DI is the iterated dominant transform (cf definition 4.25) of δI in the

sequence of blowups T A
d,n→ Pd(n−1)−1.

(4) Any set of boundary divisors intersects transversally.

Proof. The proof is a direct consequence of Lemma 4.17 and Theorem 3.4. �

Corollary 4.21. For dn≥ d +3, the morphism Td,n→ Pdn−d−1 can be understood as completing
the following steps successively

(1) blow up n disjoint loci isomorphic to Pd−1 parametrizing configurations with a (n− 1)-
multiple point.

(2) blow up the strict transforms of the (2d− 1)-dimensional planes spanned by d + 1 dis-
tinct loci isomorphic to Pd−1; they generically parametrize configurations with a (n−2)-
multiple point.

...
(n-2) blow up the strict transforms of (d(n− 2)− 1) planes spanned by the Pd(n−3)−1’s of step

(n−3); they generically parametrize configurations with a double point.

Proof. This is the loci H associated to all weights equal to one (see Definition 4.16) and described
in Lemma 4.15. �

4.3. Structure of the boundary. From the theory of wonderful compactifications, we obtain a
criterion for deciding whether a set of divisors intersect or not.

Corollary 4.22. A set of divisors DI1, . . .DIr in T A
d,n (resp. PA

d,n) has nonempty intersection if and
only if the indices Ik are either pairwise contained in each other or disjoint. Equivalently, the
divisors DIk have nonempty pairwise intersection.

Proof. We only show the statement for T A
d,n, since the proof of the statement for PA

d,n is identical.
We first show the condition about the divisors. If the divisors intersect, then every pair intersects
as well. Next, suppose that DIk ∩DI j 6= /0 for every I j and Ik in our set I = {I1, . . . Ir}. Then either
Ik ∩ I j = /0 or one set of indexes is contained in the other one. This implies Ik ∩ I j = /0 for every Ik
and I j in the minimal set of I (N.B. the minimal elements with respect to the containment order).
Clearly, we can find a configuration of points with multiple points defined by disjoint Ik and I j.
Let S be the loci parametrizing these configuration of points. By [Li09, Def 2.3] and [Li09, Thm
1.2.ii], a set of divisors DI1 ∩DI2 ∩ . . .DIk has not empty intersection if and only if there exist a SI
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in the arrangement generated by HA such that all the HA -factors of SI are the minimal elements
of I (see Definition 3.1). We can take S to be our SI . The first condition follows from the fact
that if two divisors DI and DK intersect, then either I ⊂ K or I∩K 6= /0. �

Next, we give a proof of Theorem 1.2 (2). We only prove the result about T A
d,n; by our proof it

will be made apparent that the proof for PA
d,n follows in the exact same way from its construction

as the iterated blowup of (Pn−d−2)d (Corollary 4.10). Recall that the divisor DI is the domi-
nant transform of the locus δI which generically parametrizes configurations with a multiple point
pI := ∩i∈I pi. Let DI ⊂ T A

d,n be the divisor corresponding to the set I and consider the ordered sets
A (I) := {ai | i ∈ I} and A+(Ic) := {ai | i 6∈ I}∪{an+1 = 1}.

First, consider the set HA and the varieties δI ∼= Pd(n−|I|)−1 as in Definition 4.16. We now give
a different order (≺) on the above set by reshuffling its elements.

Definition 4.23. The degenerations of a multiple point pI = ∩i∈I pi induce the following partition
of the set HA .

(1) The set H1 := {δJ ∈HA |J ) I} parametrizes multiple points obtained as a degeneration
of pI .

(2) The set H2 := {δJ ∈HA |J∩ I = /0} parametrizes multiple points than can coexist with pI
in a given configuration.

(3) The set H3 := {δJ ∈HA |J overlaps with I} parametrizes multiple points that cannot co-
exist with pI in any configuration.

(4) The set H4 := {δJ ∈HA |J ⊆ I} parametrizes pI and multiple points that degenerate to
pI .

The partial order (≺) on the set HA is determined by the following rules:
• let i ∈ {1,2,3,4}. Then the δJ ∈Hi are given an ascending dimension order.
• δJi ≺ δJ j for any δJi ∈Hi and δJ j ∈H j such that i < j.

Also, for any i ∈ {1,2,3,4} we denote by P[i] the sequence of blowups of Pd(n−1)−1 along the
iterated dominant transforms of the varieties that belong to H1∪·· ·∪Hi with order (≺).

Lemma 4.24. The ordered set (HA ,≺) satisfies the condition of part (2) of Theorem 3.4. There-
fore, T A

d,n is isomorphic to the iterated blowup of Pd(n−1)−1 along the varieties that belong to HA

with the order (≺) defined above.

Proof. Almost identical to the proof of Theorem 1.2 (1) �

To prove Theorem 1.2 (2) suffices to consider the iterated dominant transform of δI along HA

in the order (≺) described above. First, we look at the iterated dominant transform of δI in the
sequence of blowups of Pd(n−1)−1 along the varieties that belong to H1∪H2∪H3. We will show
the following:

Lemma 4.25. T A+(Ic)
d,n−|I|+1 is isomorphic to the sequence of blowups of δI ∼= Pd(n−|I|)−1 along the

iterated strict transforms of the varieties in H1∪H2∪H3 in the order (≺) described above.

Proof. See Appendix 6. �

Let δ̃I be the strict transform of δI in the sequence of blowups of P[3] → Pd(n−1)−1 along the
centers corresponding to H1∪H2∪H3. Next, we look at the iterated dominant transform of δ̃I
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in the sequence of blowups P[4]→ P[3] along the centers corresponding to H4. We will need the
following lemma:

Lemma 4.26. With notation as above
(1) Let δ̃I be the strict transform of δI in P[3]. The normal bundle of δ̃I in P[3] is isomorphic to

the direct sum
d(|I|−1)⊕

i=1
O(p−1), where p is the cardinality of H1.

(2) Let δI′ ∈H4 so that δI′ ⊃ δI and let δ̃I′ be its strict transform in P[3]. Then the normal

bundle of δ̃I in δ̃I′ is isomorphic to
d(|I|−|I′|)⊕

i=1
O(p−1), where p is the cardinality of H1.

Proof. See Appendix 6. �

Now, we are ready to finish the proof of our main theorem.

Proof. (Theorem 1.2(2)) With notation as above, let δ̃I be the sequence of blowups corresponding
to elements of H3. We need to keep track of the iterated dominant transform of δ̃I in the sequence
of blowups P[4]→ P[3] defined above. By definition, the first blowup in this sequence has center
δ̃I . As a result, the dominant transform of δ̃I in this first blowup is the exceptional divisor. The
latter is equal to P(N

δ̃I/P[3]), which in turn is equal to (cf Lemma 4.26(1))

P

d(|I|−1)⊕
i=1

O
δ̃I
(p−1)

∼= P

(

d(|I|−1)⊕
i=1

O
δ̃I
(p−1))⊗O

δ̃I
(1− p))

= P

d(|I|−1)⊕
i=1

O
δ̃I


= Pd(|I|−1)−1× δ̃I = Pd(|I|−1)−1×T A+(Ic)

d,n−|I|+1

where the last equality follows from Lemma 4.25. Moreover the dominant transform of δ̃I′ in the
blowup of P[3] along δ̃I intersects the above exceptional divisor in P(N

δ̃I/δ̃I′
). As above, using

Lemmas 4.25 and 4.26(2) we have

P(N
δ̃I/δ̃I′

)∼= Pd(|I|−|I′|)−1×T A+(Ic)
d,n−|I|+1

From the above we deduce that the further stepwise dominant transforms of δ̃I in the sequence
P[4] → P[3] are iterated blowups of T A+(Ic)

d,n−|I|+1×Pd(|I|−1)−1 along T A+(Ic)
d,n−|I|+1×Pd(|I|−|I′|)−1 in as-

cending dimension order. Equivalently, since the formation of blowup commutes with smooth
base change, the further stepwise dominant transforms of δ̃I are isomorphic to the product

BlHA (I)
Pd(|I|−1)−1×T A+(Ic)

d,n−|I|+1

where BlHA (I)
Pd(|I|−1)−1 is the iterated blowup of Pd(|I|−1)−1 along the set

HA (I) := {Pd(|I|−|I′|)−1 ⊂ Pd(|I|−1)−1| I′ ( I and ∑
i∈I′

ai > 1}

in ascending dimension order. This is precisely the set of loci of coincident points of Definition
4.15 for input data d,A (I) and I, where A (I) is defined in Section 2.1. This concludes the proof
of our theorem. �
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5. REDUCTION, FORGETFUL MORPHISMS AND TORIC MODELS (THEOREMS 1.3 AND 1.5)

5.1. Reduction and forgetful morphisms. By modifying the weights appropriately, we induce
morphisms among our compactifications.

Proposition 5.1. Let A := {a1,a2, . . . ,an} and B := {b1,b2, . . . ,bn} be two weight sets in DT
d,n

(resp. DP
d,n) as in Section 2.1 such that bi ≤ ai for all i = 1,2, . . .n (resp. for all i = d + 2, . . .n).

There exists a natural reduction morphism

ρB,A : T A
d,n→ T B

d,n (resp. ρ̂B,A : PA
d,n→ PB

d,n)

which is a blowdown in case one of the above inequalities is strict. At the level of k-points, the
morphism ρB,A (resp. ρ̂B,A ) reassigns the weights of the sections of an A -stable rooted tree
(resp. A -stable tree) and then successively collapses all components that are unstable with respect
to B.

Proof. Our argument follows closely the argument in the proof of [Rou14, Theorem 5]. Let HA

and HB with notation as in Lemma 4.16. with partial order (<) given by δI < δJ, if and only if
|J| < |I|. By Theorem 4.20, we know that HA and HB are building sets and, by the hypothesis,
HB ⊂HA . For ease of notation, denote the ideal sheaves of the δI ∈HA by I1,I2, . . .Ik in
order preserving bijection with the δI in HA . Similarly, let {Ii1,Ii2, . . .Iil} ⊂ {I1,I2, . . .Ik}
be the set of ideal sheaves of the δI ∈HB, listed again in order preserving bijection with the δI in
HB. By Theorem 3.4(3), we have

T A
d,n
∼= BlIk . . .BlI2BlI1P

d(n−1)−1 ∼= BlIk . . .
(

BlIil
. . .BlIi2

BlIi1
Pd(n−1)−1

)
where the ideal sheaves outside the parenthesis belong to {I1,I2, . . .Ik} \ {Ii1,Ii2, . . .Iil}..
Therefore, T A

d,n
∼= BlIk . . .T

B
d,n from which we obtain the morphism ρB,A : T A

d,n→ T B
d,n. The proof

for ρ̂B,A is entirely analogous so we omit it. �

FIGURE 5. Example of reduction morphisms for stable rooted trees with n = 6.

1,2,3,4,5
x

6

Pd

H

1,2,3

x′

4,5

x′′

BlxPd

6
H

Pd2,3
1

6

4

5

BlxPd

PdPd

Blx′,x′′Pd

H

ρC ,BρB,A

A =

{
1,

1
3
+ ε,

1
3
+ ε,1,1,1

}
, B =

{
1
5
+ ε, . . . ,

1
5
+ ε,1

}
, C =

{
1
6
+ ε, . . . ,

1
6
+ ε,1

}

The above morphisms behave favourably under weight reduction, as the following proposition
suggests. We omit its proof, since it is identical to the proof of [Rou14, Proposition 5].
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Proposition 5.2. Let A := {a1,a2, . . . ,an}, B := {b1,b2, . . . ,bn} and C := {c1,c2, . . . ,cn} be
weight sets in DT

d,n (resp. DP
d,n) such that ci ≤ bi ≤ ai for all i = 1,2, . . .n. Then:

ρC ,A = ρC ,B ◦ρB,A , (resp. ρ̂C ,A = ρ̂C ,B ◦ ρ̂B,A )

We can also pass from weighted (pointed) trees with fixed data to others, by forgetting subsets
of points and stabilizing.

Proposition 5.3. Let R be a subset of N = {1,2, . . . ,n} and A be a weight set in DT
d,n (resp. DP

d,r,
where r = |R|). Let A (R) be the subset of A := {a1,a2, . . . ,an} described in 2.1 (resp. with the
additional assumption that R⊇ {1, . . . ,d +1}) . Then, there exists a natural forgetful morphism

φA ,A (R) : T A
d,n→ T A (R)

d,r (resp. φ̂A ,A (R) : PA
d,n→ PA (R)

d,r )

At the level of k-points, the above morphism successively collapses all components of an A -stable
pointed rooted tree (resp. A (R)-stable pointed tree) that are unstable with respect to A (R).

Proof. We start with the morphism φA ,A (R). By [Rou14, Theorem 6] and its proof, there exists a
morphism

Pd
A [n]→ Pd

A (R)[r]× (Pd)n−r

Let DN ⊂ Pd
A [n] and DR ⊂ Pd

A (R)[r] be the divisors corresponding to the small diagonals ∆N ⊂
(Pd)N and ∆R ⊂ (Pd)R respectively.

Claim: The restriction of Pd
A [n]→ Pd

A (R)[r]× (Pd)n−r to DN surjects onto (a subvariety iso-
morphic to) DR.
Proof of Claim: By the proof of [Rou14, Theorem 6], Pd

A (R)[r]× (Pd)n−r→ (Pd)n is obtained as

a sequence of blowups of (Pd)n along the iterated dominant transforms of the set

KA (R) = {∆I ⊂ (Pd)n| I ⊂ Rand ∑
ik∈I

aik > 1}

in ascending dimension order.
Moreover, Pd

A [n] is obtained from Pd
A (R)[r]× (Pd)n−r by blowing up ideal sheaves correspond-

ing to KA \KA (R). By [Li09], DN is the iterated dominant transform of ∆N along the sequence
of blowups Pd

A [n]→ Pd
A (R)[r]× (Pd)n−r→ (Pd)n. It therefore suffices to observe that the iterated

dominant transform of ∆N along the sequence of blowups Pd
A (R)[r]× (Pd)n−r→ (Pd)n is isomor-

phic to the divisor DR ⊂ Pd
A (R)[r]. Indeed, consider the embedding j : (Pd)r → (Pd)r× (Pd)n−r,

which is obtained as the graph of the morphism (Pd)r pi−→ Pd diag−−→ (Pd)n−r where pi is the projec-
tion to the i-th factor. Then ∆N ⊂ (Pd)n is the image of ∆R ⊂ (Pd)r via j. Therefore, since the
iterated dominant transform of ∆R along Pd

A (R)[r]→ (Pd)r is DR (theorem 3.4), we conclude that

the iterated dominant transform of ∆N is the graph of DR→ (Pd)n−r. End.
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T A
d,n

//

!!

��

DN

��

��

// Pd
A [n]

))

��

T A (R)
d,r

}}

// DR

��

// Pd
A (R)[r]× (Pd)n−r

uu

x // Pd ”diag”// (Pd)n = (Pd)r× (Pd)n−r

In view of the claim, we have a morphism of DN to DR over Pd , which pulls back to a morphism
T A

d,n→ T A (R)
d,r between their fibers over x ∈ Pd .

Next we prove the existence of the map φ̂A ,A (R). By [Rou14, Theorem 6], there exists a nat-
ural forgetful morphism ψR : Pd

A [n]→ Pd
A (R)[r]. This morphism is SLd+1 invariant because it is

constructed by blowing up and then projecting invariant loci with respect to our action. To verify
our statement, we check that ψR takes (Pd

A [n])s to (Pd
A (R)[r])

s. From the proof in [ibid.], ψR is the

composition of a blowdown Pd
A [n]→ Pd

A (R)[r]× (Pd)n−r and the projection of Pd
A (R)[r]× (Pd)n−r

to the first factor. Therefore we have a commutative diagram

Pd
A [n] //

πA ))

Pd
A (R)[r]× (Pd)n−r

πA (R)×id
��

// Pd
A (R)[r]

πA (R)
��

(Pd)r× (Pd)n−r pR // (Pd)r

where the morphism pR is the projection from (Pd)n = (Pd)r× (Pd)n−r to (Pd)r. Now, recall that
(Pd

A [n])s is equal to the preimage of ((Pd)n)s under πA (see discussion before Definition 4.3). It
would therefore suffice to show that the preimage of ((Pd)n)s under πA (R)× id maps to (Pd

A (R)[r])
s

via the projection Pd
A (R)[r]× (Pd)n−r→ Pd

A (R)[r]. But (Pd
A (R)[r])

s is in turn equal to the preimage

of ((Pd)r)s under πA (R). Consequently, it is enough to show that the projection pR takes ((Pd)n)s

to ((Pd)r)s, which can be seen directly using [Dol03, Thm 11.2].
Since ψR-at the level of k-points- successively collapses all components of an A stable degener-

ation that are unstable with respect to A (R), we deduce, by (3) in Lemma 3.8, that the morphism
PA

d,n→ PA (R)
d,n has the desired moduli interpretation at geometric points. �

Next, we denote as πI the forgetful map πI : Td,n → Td,|I| obtained by forgetting the points
{pi | i ∈ Ic} and stabilizing afterwards. First, we illustrate a particular case which leads us to
Theorem 1.5.

Example 5.4. Consider the three dimensional loci T2,2× (T2,2×T2,2) ⊂ T2,4 that parametrizes a
stable tree X = X1∪X2∪X3 as on the adjacent figure.
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p4

p2

p3

π234(X)π123(X)

p3
p2

p1

p2

p1

p3

p4

X = X1∪X2∪X3∪X4

The points p1 and p2 are supported in the first surface X1 ∼= P2. The point p3 is at the second
surface X2 ∼= Blx(Pd), and the point p4 are at the rooted component X3 ∼= Bly(Pd). The morphism
πI with I = {1,2,3} contracts the last component X3 to a line. We obtain a configuration of points
parametrized by T2,2×T2,2 with the point p1 and p2 supported in the first surface and p3 supported
in the last one.

We can recover the position of p1, p2 and p3 in X from πI(X) but we lost the information of
p4. Similarly, the morphism πJ with J = {2,3,4} contracts X1 and we lost the information of the
points p1 and p2, but the position of the points p3 and p4 can be recovered from πJ(X). By using
all possible subsets |I|= 3 we can recover the initial configuration of points in X uniquely.

The following argument is essential the one used in above example.

Proof. (of Theorem 1.5) We first show the statement for the open loci T 0
d,n that parametrizes n

distinct points. Let X be one of those stable rooted trees, and let p1, . . . pn be its marked points. For
the sake of clarity and only in this paragraph we write the argument for k = 3, the one for general
k follows verbatim. Select a set I with three indices say I = {1,2, j}. Recall that πI : Td,n→ Td,|I|,
the support of both X and πI(X) is Pd , and without loss of generality, we can fix the same position
for p1 and p2 in both X and πI(X). The key observation is that fixing p1 and p2 fixes the location
of p j in both X and πI(X) completely. The situation is identical to the one for M0,n where fixing
three points in a P1 assigns unique coordinates to the other (n− 3) points in that projective line.
Then, we can uniquely recover the coordinates of p j in X from πI(X). Since we are considering all
subsets I with |I|= 3, we recover uniquely all points in the stable tree X from their images πI(X).

Next, we consider a stable rooted tree X = ∪vXv parametrized by the boundary. Let k be a fixed
integer with 3 ≤ k ≤ n and let I(v) be the set of indices of the marked points contained in the
component Xv. For instance, in Example 5.4, we have I(1) = {1,2}, I(2) = {3} and I(3) = {4}.
Suppose that Xv is a component such that |I(v)| ≤ k. Then, there is a set of indices K with |K|= k
such that πK leaves the positions of the points in Xv unchanged because we can choose it to be
I(v) ⊂ K. This means that from X → πK(X), we recover all the points pi ∈ Xv. For instance in
Example 5.4, the set K = {1,2,3} allows us to recover the points in the component X1. Next,
suppose that Xṽ is a component such that 3≤ k < |I(ṽ)|. If we choose a J ⊂ I(ṽ) then it holds that
X → πJ(X)∼= Pd . We can uniquely determine the points in Xṽ by using all the indices J such that
J ⊂ I(ṽ) and |J|= k. The argument is the same as the one used in the previous paragraph: Fixing
two points, say pi1 and pi2 in both Xṽ and πJ(X), will completely determine the positions of all
pi with i ∈ J. Therefore, the position of the points in any component of X can be recovered by
considering all such subsets J and our statement follows.

Finally, we treat k = 2. The problem is that we cannot distinguish configurations where all points
are collinear. Let I ⊂ {1, . . . ,n} be a subset of two elements and let l(I) be the line in Pd generated
by two points pi with i∈ I. Notice that the image of forgetful morphism πI : T o

d,n→ Td,|I| ∼= Pd−1 is
defined by intersecting the line l(I) with the root H. Indeed, without loss of generality we may take
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I = {1,2}. After making an appropriate translation, we may assume p1 = [1 : 0 : · · · : 0]. After this
choice, our automorphism group is Gm. This Gm-action fixes both the root and the point p1. It acts
on the line l(I) by translating p2 along it. Therefore, all pairs of distinct points p1, p2 supported
on l(I) define the same G-orbit; and we can take l(I)∩H to be the image of X in Pd−1. The other
points are not relevant because we assign weight zero to them. The above argument implies that
the product of forgetful morphisms π2 is generated by the intersection of the root H with the lines
l(I) such that I ⊂ {1 . . . ,n} and |I| = 2. If the n points are collinear, there is only one line l(I)
generated by all points. This line intersects the root at the same point regardless of the points’
positions inside l(I). The loci parametrizing configurations of n collinear distinct points is positive
dimensional in T 0

d,n for any n≥ 3 and it will be contracted by π2. �

5.2. Toric Compactificiations. There is a toric compactification of M0,n known as the Losev-
Manin space [LM00]. This toric model can be identified with Hassett’s moduli space of weighted
stable curves for the set of weights ALM = (1,1,ε, . . . ,ε), and its associated polytope is known
as the Permutahedron (see [Has03, Sec 6]). Similarly, we can also find toric models for our con-
figuration spaces by choosing appropriate weights. These models are maximal in the sense that
any other toric model obtained from a set of weights will be necessarily a blow down of them. To
describe the toric model of Td,n, we denote the rays of the fan associated to Pd(n−1)−1 as

{~e1
1, . . . ,~e

d
1,~e

1
2 . . . ,~e

d
2, . . .~e

1
n−1, . . . ,~e

d
n−1} with ~ek

i ∈ Zd(n−1)/∑
i,k
~ek

i = 0

where~ek
i has its unique non-zero entry at the index d(i−1)+ k−1. For example, for P3 we have

~e1
1 = (1,0,0,0), ~e2

1 = (0,1,0,0), ~e1
2 = (0,0,1,0), ,~e2

2 = (0,0,0,1)

Corollary 5.5. The compactification T LM
d,n associated to the set of weights {1,ε, . . .ε} ∈ DT

d,n is a
toric variety whose fan has rays of the form ~e1

1, . . . ,~e
d
n−1 and ∑i∈I

(
~e1

i + . . .+~ed
i
)

where 1 ≤ |I| ≤
n−2 and I ( {1, . . . ,n−1}.

Proof. The building set associated to this set of weights is the largest one contained in the toric
boundary of Pd(n−1)−1. This claim follows at once by restricting the building set of Corollary 4.21,
i.e. the set where all weights are equal to 1, to the toric boundary of Pd(n−1)−1. In the notation of
Lemma 4.15, the center of the blow ups have the form:

[0 : . . .0,ak11 : . . . : ak1d : . . . : aks1 : . . . : aks(n−1) : 0 . . .0] kr ∈ {1, . . . ,n−1}\ I

for some I ⊂ {1, . . . ,n−1} with 1≤ |I| ≤ n−2. Each center is the intersection of divisors associ-
ated to the rays~e1

ik , . . .~e
d
ik where ik ∈ I. The wonderful compactification involves blowing up these

loci, each of which generates a divisor associated to the ray ∑i∈I
(
~e1

i + . . .+~ed
i
)
, because the blow

up is smooth. �

Example 5.6. T LM
2,3 is the blow up of P3 along two disjoint lines. T LM

2,4 is the sequence of successive
blow ups of P5 along three disjoint lines followed by the blowups of the strict transforms of three
P3’s.

Next, we describe the toric model of Pd,n. We denote the rays of the fan of
(
Pn−d−2)d as

{ei
d+2, . . .e

i
n} where ei

k ∈ Zd(n−1)−1 with 1≤ i≤ d.
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Corollary 5.7. The compactification PLM
d,n associated to the weights a1 = . . . = ad+1 = 1,ad+2 =

. . .= an = ε is a toric variety whose fan has rays of the form ei
d+2, . . . ,e

i
n and ∑i∈I

(
e1

i + . . .+ ed
i
)

where 1≤ |I| ≤ n−d−2 and I ⊂ {d +2, . . . ,n}.

Proof. The proof is the same as the proof of Corollary 5.5, only now we use Corollary 1.4. By
Lemma 4.8, PLM

d,n is the wonderful compactification of the building set associated to the weights

of the statement. Therefore, by Theorem 3.4 and Corollary 4.9, PA
d,n is a sequence of blowups of(

Pn−d−2)d , whose centers are the dominant transforms of the elements of that building set. In the
notation of Lemmas 4.1 and 4.6, these centers have the form:

d−1

∏
k=0

[0 . . .0 : bk
r1

: . . . : bk
rs

: 0 . . .0] rs ∈ {d +2, . . .n}\ I

where 1 ≤ |I| ≤ n− d− 2. Each center is the intersection of the divisors associated to the rays
e1

i1, . . .e
1
is with ik ∈ I. Then, the rays obtained by blowing up these loci are the ones in the statement.

�

Example 5.8. PLM
2,5 is the blow up of P1×P1 at two points. PLM

2,6 is the sequence of successive blow
ups of P2×P2 at three points followed by the strict transforms of three P1×P1’s.

Proof of Theorem 1.3: Immediate from Proposition 5.1 and Corollaries 5.5, 5.7. �

6. APPENDIX

We complete the details required for the proof of Theorem 1.2 (2). First, we state the following
basic lemma, which we will use in the sequel.

Lemma 6.1. Let Z be a smooth subvariety of a smooth variety Y and let π : BlZY → Y be the
blowup, with exceptional divisor E = π−1(Z).

(1) Let V be a smooth subvariety of Y , not contained in Z, and let Ṽ ⊂ BlZY be its strict trans-
form. Then,

(a) if V meets Z transversally (or is disjoint from Z), then Ṽ = π−1(V ) and Iπ−1(V ) =IṼ .
Moreover

NṼ/BlZY
∼= π∗NV/Y

(b) if V ⊃ Z, then Iπ−1(V ) = IṼ ·IE . Moreover

NṼ/BlZY
∼= π∗NV/Y ⊗O(E)

Also, if Z has codimension 1 in V, the projection from Ṽ to V is an isomorphism.

(2) Let Z1,Z2 be smooth subvarieties of Y intersecting transversally.

(a) Assume Z1∩Z2⊇ Z. Then their strict transforms Z̃1 and Z̃2 intersect transversally and
Z̃1∩ Z̃2 = Z̃1∩Z2; in particular, if Z1∩Z2 = Z, then Z̃1∩ Z̃2 = /0.

(b) Assume Z intersects transversally with Z1 and Z2, as well as with their intersection
Z1∩Z2. Then their strict transforms Z̃1 and Z̃2 intersect transversally and Z̃1∩ Z̃2 =
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Z̃1∩Z2.

(c) If Z1 ⊇ Z and Z2 intersects transversally with Z, then the intersections

Z̃1∩ Z̃2 and (E ∩ Z̃1)∩ Z̃2

are transversal. Moreover, Z̃1∩ Z̃2 = Z̃1∩Z2.

Proof. (1) is standard; the proof of (2) follows from [Li09, Lemma 2.9]. �

In order to prove Lemma 4.25, we give a description of the iterated strict transform of δI in P[3].
To this end, we consider the intersections of the iterated strict transforms of δI with the centers
of each of the blowups in the sequence P[3]→ Pd(n−1)−1, that is intersections of the form δ̃I ∩ δ̃J ,
where δJ ∈Hi, i= 1,2,3 (here the˜sign above a variety stands for its strict transform). In addition,
we distinguish two types of subvarieties of δI under the identification of δI with

Pd(n−|I|)−1 = [x11;x12; . . . ;x1d; . . . ;x21;x22; . . .x2d; . . . ;x(n−|I|)1;x(n−|I|)2; . . . ;x(n−|I|)d]
as follows

(a) Let δJ ∈H1 (i.e J contains I). In this case δJ ∩ δI = δJ ∼= V ({xi j}|i ∈ J, j = 1, . . .d) ∼=
Pd(n−|I|−|J|)−1

(b) Let δJ ∈H2 (i.e J is disjoint from I). In this case δJ ∩ δI ∼= V ({xik − x jk}|i, j ∈ J,k =

1, . . .d)∼= Pd(n−|I|−|J|)−1

Now consider the set of the above subvarieties of δI = Pd(n−|I|)−1 of type (a) and (b) with partial
order compatible with the partial order (≺) above, that is:

• subvarieties of the same type are given an ascending dimension order and
• any subvariety of type (a) is smaller than any subvariety of type (b).

Remark 6.2. It is clear that the subvarieties of δI = Pd(n−|I|)−1 of type (a) and (b) are precisely
the loci of coincident points in Pd(n−|I|)−1 introduced in Definition 4.15, for input data d,(N \ I)∪
{n+1} and A+(Ic) as in Theorem 1.2 and Definition 2.1. In other words, they are the elements of
the set HA+(Ic), however listed in a different order compatible with (≺), which we also denote by
(≺) .

Lemma 6.3. The ordered set (HA+(Ic),≺) satisfies the condition of Theorem 3.4 (2).

Proof. The proof is almost identical to the proof of Lemma 4.17, so we omit it. �

Proof Lemma 4.25 Consider the sequence of blowups P[1]→ Pd(n−1)−1 of Pd(n−1)−1 along all
varieties in H1 (cf definition 4.23) and let Ṽ denote the dominant transform of an arbitrary variety
V ⊂ Pd(n−1)−1 in P[1]. In order to prove the claim, it suffices, by the above remark and Lemma 6.3,
to show that

(i) δ̃I ∩δJ = δ̃I ∩ δ̃J for any δJ ∈H2 and
(ii) δ̃I ∩ δ̃J = /0 for any δJ ∈H3

For (i), let k > 0 and consider the center of the k-th blowup Pk in the sequence of blowups
P[1]→ ·· · → Pk→ . . .Pd(n−1)−1; we denote by V (k) the dominant transform of an arbitrary variety
V ⊂ Pd(n−1)−1 in Pk. Then the center of is a minimal element of the set (H1∪H2∪H3)

(k−1) :=
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{δJ
(k−1) ⊂ Pk−1|δJ ∈H1∪H2∪H3} with order (≺). Therefore, by repeated use of [Li09, Propo-

sition 2.8], we infer that the set (H1∪H2∪H3)
(k) with partial order (≺) is a building set for all

the above k. Then, by [Li09, Lemma 2.6(i)], each iterated strict transform of δJ ∈H2 in Pk must
either intersect the corresponding center transversally or it must contain that center. Also, observe
that for δJ ∈H2 we have that the intersection δI ∩δJ is transversal. Moreover, each iterated strict
transform of δI in Pk contains the corresponding center by the assumptions. Therefore, by repeated
use of Lemma 6.1(2)(a) and (c) we deduce the validity of (i).

Now we prove (ii). For any δJ ∈H3, by definition, the set J overlaps with I. Consider an element
j ∈ J∩ I and set J′ := j∪ (J \ I). Since δ̃J′ ⊇ δ̃J , it is enough to show that δ̃I ∩ δ̃J′ = /0. While δJ′

may not be an element of HA , the argument as in Lemma 4.17 shows that the set H1∪{δJ′}, with
H1 given an ascending dimension order and δJ listed last, is a building set. Now the intersection
δI ∩ δ ′J = δI∪J′ is in H1; assume it is the m-th element of that set with respect to (≺) for some
m > 0. Consider the (m−1)-th blowup Pm−1→ Pd(n−1)−1 and the iterated strict transforms δ

(m−1)
I

and δ
(m−1)
J′ of δI and δJ′ respectively. Since the intersection δI ∩ δ ′J is transversal, by using the

argument of the previous paragraph we see that δ
(m−1)
I ∩δ

(m−1)
J′ = δ

(m−1)
I∪J′ . Now consider the m-th

blowup Pm→ Pm−1. By Lemma 6.1(2), we deduce that δ
(m)
I ∩δ

(m)
J′ = /0, so δ̃I ∩ δ̃J′ = /0 in P[1]. �

Proof of Lemma 4.26 First, note that the normal bundle of δI ∼= Pd(n−|I|)−1 in Pd(n−1)−1 is
isomorphic to

d(|I|−1)⊕
i=1

OPd(n−|I|)−1(−1)

Consider the sequence of blowups P[1]→ Pd(n−1)−1 along all varieties in H1 (with the order (≺)
given above) and let us also denote the strict transform of δI in P[1] by δ̃I . Clearly OPd(n−1)−1(−1)
pulls back to OP[1](−1) on P[1], so OPd(n−|I|)−1(−1) pulls back to O

δ̃I
(−1) on δ̃I . Therefore, by a

repeated application of Lemma 6.11(b) we see that the normal bundle of the iterated strict transform
of δI in P[1] is isomorphic tod(|I|−1)⊕

i=1

O
δ̃I
(−1)

⊗O
δ̃I
(1)⊗·· ·⊗O

δ̃I
(1)︸ ︷︷ ︸

p times

=

d(|I|−1)⊕
i=1

O
δ̃I
(p−1)

Now, as we saw in the proof of Lemma 4.25, each stepwise strict transform of δI in the sequence
of blowups P[3]→ P[1] meets each of the centers (corresponding to H2∪H3) transversally. There-
fore, by applying Lemma 6.1(1)(a) we complete the proof.

(2) The proof of (2) is identical to the proof of (1) and is therefore omitted. �
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