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Abstract. We investigate torsion exceptional sheaves on a weak del
Pezzo surface of degree greater than two whose anticanonical model has
at most An-singularities. We show that every torsion exceptional sheaf
can be obtained from a line bundle on a (−1)-curve by acting spherical
twist functors successively.

1. Introduction

LetX be a smooth projective variety andD(X)(= Db(CohX)) the bounded
derived category of coherent sheaves on X. The category D(X) carries a lot
of geometric information on X and has drawn many interests in the study
of algebraic varieties. An object α ∈ D(X) is called exceptional if

Hom(α, α[i]) ∼=

{
C i = 0;

0 i 6= 0.

Exceptional objects are related to semi-orthogonal decompositions of derived
categories and appear in many context (see, for example, [4]). Hence it is
natural to consider the classification of exceptional objects.

Exceptional objects on del Pezzo surfaces (i.e., smooth projective surfaces
with ample anticanonical bundles) were investigated by Kuleshov and Orlov
in [8] where they proved that any exceptional object on a del Pezzo surface
is isomorphic to a shift of an exceptional vector bundle or a line bundle on
a (−1)-curve.

As exceptional objects on del Pezzo surfaces are well-understood, it is
natural to consider weak del Pezzo surfaces (i.e., smooth projective surfaces
with nef and big anticanonical bundles). In this case something interesting
happens since twist functors (see Definition 2.3) are involved due to the
existence of (−2)-curves on weak del Pezzo surfaces. We could not expect
that exceptional objects are as such simple as those on del Pezzo surfaces (see
Section 6), but still we expect that they are so after acting autoequivalences
of the derived category.

Conjecture 1.1 (cf. [9, Conjecture 1.3]). Let X be a weak del Pezzo sur-
face. For any exceptional object E ∈ D(X), there exists an autoequivalence
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Φ ∈ Auteq(D(X)) such that Φ(E) is an exceptional vector bundle, or a line
bundle on a (−1)-curve on X.

Recently, Okawa and Uehara [9] considered Hirzebruch surface F2, the
simplest weak del Pezzo surface. They classified exceptional sheaves on F2

and confirmed Conjecture 1.1 for those sheaves. Note that on F2, there is
no torsion exceptional sheaf due to the absence of (−1)-curves. Motivated
by Okawa–Uehara’s work and this observation, we are interested in torsion
exceptional sheaves (and objects) on weak del Pezzo surfaces. In [1], the
first author treated torsion exceptional sheaves and objects on a weak del
Pezzo surface of degree greater than one whose anticanonical model has at
most A1-singularities.

On the other hand, one may compare Conjecture 1.1 to [5, Proposition
1.6], where Ishii and Uehara showed that a spherical object on the minimal
resolution of an An-singularity on a surface can be obtained from a line
bundle on a (−2)-curve by autoequivalence. But the situation for torsion
exceptional objects seems to be more complicated since its scheme theoretic
support might be non-reduced (see Example 6.2) while the support of such
a spherical object is always reduced (see [5, Corollary 4.10]).

In this article, we give an affirmative answer to Conjecture 1.1 in the
case of torsion exceptional sheaves on weak del Pezzo surfaces of degree
greater than two of Type A (i.e., those whose anticanonical model has at
most An-singularities). Namely, we prove the following theorem.

Theorem 1.2. Let X be a weak del Pezzo surface of degree d > 2 of Type A,
and E a torsion exceptional sheaf on X. Then there exist a (−1)-curve D,
an integer d, and a sequence of spherical twist functors Φ1, . . . ,Φn associated
to line bundles on chains of (−2)-curves such that

E ∼= Φ1 ◦ · · · ◦ Φn(OD(d)).

In fact, we can prove the following slightly general theorem on torsion
exceptional sheaves.

Theorem 1.3. Let X be a smooth projective surface and E a torsion excep-
tional sheaf on X. Assume the following conditions hold:

(1) supp(E) only contains one (−1)-curve D and (−2)-curves;
(2) The restriction of E in D is a line bundle (see Definition-Proposition

2.8);
(3) (−2)-curves in supp(E) forms disjoint union of An-configurations

with n ≤ 6;
(4) The intersection of D with any chain of (−2)-curves in supp(E) is

at most one.

Then there exist an integer d, and a sequence of spherical twist functors
Φ1, . . . ,Φn associated to line bundles on chains of (−2)-curves such that

E ∼= Φ1 ◦ · · · ◦ Φn(OD(d)).

The idea of the proof is based on one observation that, under some good
conditions, we can “factor” a spherical sheaf out of a torsion exceptional
sheaf to get another one (see Lemmas 2.7 and 5.1), and this step actually
corresponds to acting a spherical twist functor. After this factorization, we
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get an exceptional sheaf with “smaller” support. Keeping factoring spherical
sheaves out, eventually we get an exceptional sheaf supported on a (−1)-
curve. To check the conditions that allow us to factor out spherical sheaves,
we need a detailed investigation on the classification of certain torsion rigid
sheaves supported in (−2)-curves (See Section 4). We expect that this idea
also works for torsion exceptional sheaves on arbitrary weak del Pezzo sur-
faces.
Notation and Conventions. We work over the complex number field C.
Let X be a smooth projective surface. For a coherent sheaf E on X, we
denote by supp(E) the support of E with reduced induced scheme structure.
For E ,F ∈ D(X), we denote

hi(E ,F) := dim Exti(E ,F) = dim Hom(E ,F [i]),

and the Euler characteristic

χ(E ,F) :=
∑
i

(−1)ihi(E ,F).

A (−1)-curve (resp. (−2)-curve) is a smooth rational curve on X with self-
intersection number −1 (resp. −2). We say Z = C1 ∪ · · · ∪ Cn is a chain of
(−2)-curves on X if Ci is a (−2)-curve and

Ci · Cj =

{
1 |i− j| = 1;

0 |i− j| > 1.

We regard Z as a closed subscheme of X with respect to the reduced induced
structure. Sometimes we also regard Z as its fundamental cycle C1 + · · ·+
Cn. For a coherent sheaf R on Z, we denote by degCl

R the degree of the

restriction R|Cl
on Cl ∼= P1. We denote by

R0 = OC1∪···∪Cn(a1, . . . , an)

the line bundle on Z such that degCl
R0 = al for all l. Sometimes we also

consider

R1 = Or1C1∪···∪rnCn(a1, . . . , an)

for rl ∈ {1, 2} for all l. Here R1 is the line bundle on r1C1 ∪ · · · ∪ rnCn
such that degCl

R1 = al for all l. In other words, R1|rlCl
∼= OrlCl

(al), where
O2C(a) is the unique non-trivial extension of OC(a) by OC(a + 2) for a
(−2)-curve C on X.

2. Preliminaries

2.1. Exceptional and spherical objects. We recall the definition of ex-
ceptional and spherical objects.

Definition 2.1. Let X be a smooth projective variety. We say that an
object α ∈ D(X) is exceptional if

Hom(α, α[i]) ∼=

{
C i = 0;

0 i 6= 0.
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Example 2.2. (1) Let X be a smooth projective variety with

H i(X,OX) = 0

for i > 0 (e.g. Fano manifolds). Then every vector bundle on X is
an exceptional object.

(2) Let X be a smooth projective surface and C a (−1)-curve on X.
Then any line bundle on C is an exceptional object.

Definition 2.3 ([10]). Let X be a smooth projective variety.

(1) We say that an object α ∈ D(X) is spherical if α⊗ ωX ∼= α and

Hom(α, α[i]) ∼=

{
C i = 0, dimX;

0 i 6= 0, dimX.

(2) Let α ∈ D(X) be a spherical object. We consider the mapping cone

C = Cone(π∗1α
∨ ⊗ π∗2α→ O∆)

of the natural evaluation π∗1α
∨ ⊗ π∗2α → O∆, where ∆ ⊂ X ×X is

the diagonal and πi is the projection from X ×X to the i-th factor.
Then the integral functor Tα := ΦCX→X defines an autoequivalence
of D(X), called the twist functor associated to the spherical object
α. By definition, for β ∈ D(X), we have an exact triangle

RHom(α, β)⊗ α evaluation−−−−−−→ β → Tαβ.

Example 2.4 (cf. [5, Example 4.7]). Let X be a smooth projective surface
and Z a chain of (−2)-curves. Then any line bundle on Z is a spherical
object in D(X).

2.2. Rigid sheaves. In this subsection, we assume that X is a smooth
projective surface. All sheaves are considered to be coherent on X.

A coherent sheaf R is said to be rigid if h1(R,R) = 0.
Kuleshov [7] systematically investigated rigid sheaves on surfaces with

anticanonical class without base components. We collect some interesting
properties for rigid sheaves in this subsection for application. We will use
the following easy lemma without mention.

Lemma 2.5. Consider an extension of coherent sheaves

0→ G2 → R→ G1 → 0

such that R is rigid. Then h1(G1,G2) > 0 if and only if this extension is
non-trivial.

Proof. The ‘if’ part is trivial. For the ‘only if’ part, assume that h1(G1,G2) >
0 and this extension is trivial, then

R ∼= G1 ⊕ G2,

which implies that

h1(R,R) ≥ h1(G1,G2) > 0,

a contradiction �

We have the following Mukai’s lemma for rigid sheaves.
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Lemma 2.6 (Mukai’s lemma, [8, 2.2 Lemma]). For each exact sequence

0→ G2 → R→ G1 → 0

of coherent sheaves such that

h1(R,R) = h0(G2,G1) = h2(G1,G2) = 0,

the following hold:

(1) h1(G1,G1) = h1(G2,G2) = 0;
(2) h0(R,R) = h0(G1,G1) + h0(G2,G2) + χ(G1,G2);
(3) h2(R,R) = h2(G1,G1) + h2(G2,G2) + χ(G2,G1);
(4) h1(G1,G2) ≤ h0(G1,G1) + h0(G2,G2)− 1.

Proof. (1)-(3) are from [8, 2.2 Lemma]. We prove (4) here. In the proof of
[8, 2.2 Lemma], we know that the natural map

Hom(G1,G1)⊕Hom(G2,G2)
d1→ Ext1(G1,G2)

is surjective. Note that the image of (idG1 , idG2) is zero. Hence we get the
inequality by comparing the dimensions. �

Lemma 2.7. Consider an exact sequence of coherent sheaves

0→ E ′ → E → S → 0,

where E is rigid, S is spherical, h0(E ′,S) = 0, and χ(S, E ′) = −1. Then
hi(E ′, E ′) = hi(E , E) for i = 0, 1, 2. In particular, E is exceptional if and
only if so is E ′, and in this case, E ∼= TS(E ′).

Proof. Since S is spherical, h2(S, E ′) = 0 and χ(E ′,S) = −1 by Serre duality.
By Lemma 2.6, hi(E ′, E ′) = hi(E , E) for i = 0, 1, 2. In particular, E is
exceptional if and only if so is E ′.

Suppose that E and E ′ are exceptional, then by Lemma 2.6(4),

h1(S, E ′) ≤ h0(S,S) + h0(E ′, E ′)− 1 = 1.

Since χ(S, E ′) = −1, we have h1(S, E ′) = 1 and h0(S, E ′) = h2(S, E ′) = 0.
By definition of twist functor, we have a distinguished triangle

S[−1]→ E ′ → TS(E ′),
which corresponds to the exact sequence

0→ E ′ → E → S → 0.

Hence E ∼= TS(E ′). �

We can say more about torsion rigid sheaves.

Definition-Proposition 2.8 (Restriction in curves). Let R be a torsion
rigid sheaf, then R is pure one-dimensional by [7, Corollary 2.2.3]. Suppose
that supp(R) = Z∪Z ′ where Z and Z ′ are unions of curves with no common
components. Then there exists an exact sequence

0→ RZ′ → R→ RZ → 0

where RZ′ = H0
Z′(R) is the subsheaf with supports (see [3, II, Ex. 1.20])

in Z ′ and RZ is the quotient sheaf. Then supp(RZ′) = Z ′, supp(RZ) = Z,
and

h0(RZ′ ,RZ) = h2(RZ ,RZ′) = 0
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by the support condition. By Lemma 2.6,RZ′ andRZ are torsion rigid (pure
one-dimensional) sheaves. Moreover, if we write Z = ∪iCi and Z ′ = ∪jC ′j ,
then we can write the first Chern class of R uniquely as

c1(R) =
∑
i

riCi +
∑
j

sjC
′
j

in the sense that c1(RZ) =
∑

i riCi and c1(RZ′) =
∑

j sjC
′
j for some positive

integers ri and sj . We say that RZ is the restriction of R in Z.

Here we remark that for a chain of (−2) curves Z = C1 ∪ · · · ∪ Cn and a
torsion rigid sheaf R, supp(R) ⊂ Z if and only if c1(R) can be written as∑

i riCi for non-negative integers ri. In this case, ri is uniquely determined
for all i.

Lemma 2.9. Let R be a torsion rigid sheaf on X, then any irreducible
component of supp(R) is a curve with negative self-intersection.

Proof. Let C be an irreducible component of supp(R), then take the restric-
tion in C, we have an exact sequence

0→ R′ → R→ RC → 0.

By Definition-Proposition 2.8, RC is rigid and in particular, χ(RC ,RC) > 0.
On the other hand, by Riemann–Roch formula (see Subsection 2.4), we have
χ(RC ,RC) = −c1(RC)2. Hence c1(RC)2 < 0, which implies C2 < 0. �

2.3. Weak del Pezzo surfaces. A smooth projective surface X is a weak
del Pezzo surface if −KX is nef and big. The degree d of X is the self-
intersection number (−KX)2. We say a weak del Pezzo surface is of Type
A if its anticanonical model has at most An-singularities. We collect some
basic facts on weak del Pezzo surfaces.

Lemma 2.10 (cf. [2, Theorem 8.3.2]). Let X be a weak del Pezzo surface.
Then | −KX | has no base components.

Lemma 2.11. Let X be a weak del Pezzo surface of degree d > 1. Then the
intersection of a (−1)-curve with a chain of (−2)-curves is at most one.

Proof. Take a chain of (−2)-curves C1∪· · ·∪Cn and a (−1)-curve D. Assume
that

∑n
i=1Ci ·D ≥ 2, then( n∑

i=1

Ci +D
)2

=
( n∑
i=1

Ci

)2
+ 2

n∑
i=1

Ci ·D +D2 ≥ 1.

By Hodge index theorem,

(−KX)2 ·
( n∑
i=1

Ci +D
)2
≤
(

(−KX) ·
( n∑
i=1

Ci +D
))2

= 1.

This implies that (−KX)2 = 1, which is a contradiction. �

We remark that on weak del Pezzo surfaces of degree one, it is possible
that one (−1)-curve intersects with a chain of (−2)-curves at two points (cf.
[6, Lemma 2.8]).
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2.4. Riemann–Roch formula. We recall Riemann–Roch formula on sur-
faces.

Theorem 2.12 (Riemann–Roch formula). For two coherent sheaves E and
F on a smooth projective surface X, the Euler characteristic can be calcu-
lated by

χ(E ,F) = r(E)r(F)
(
χ(OX) +

1

2
(µ(F)− µ(E)) + q(F) + q(E)

− 1

r(E)r(F)
(c1(E) · c1(F))

)
,

where r(E) is the rank of E and

µ(E) =
1

r(E)
(−KX · c1(E)), q(E) =

c2
1(E)− 2c2(E)

2r(E)
.

In this paper, we are only interested in the case of torsion sheaves, that
is, r(E) = r(F) = 0. In this case, the formula is quite simple.

Corollary 2.13. For two torsion sheaves E and F on a smooth projective
surface X, the Euler characteristic can be calculated by

χ(E ,F) = −c1(E) · c1(F).

2.5. A polynomial inequality. In this subsection, we treat a special poly-
nomial which naturally appears in self-intersection numbers of a union of
negative curves.

For positive integers r1, r2, . . . , rn, and 1 ≤ k ≤ n, define the polynomial

f(r1, r2, . . . , rn; k) =
n∑
i=1

r2 −
n−1∑
i=1

riri+1 − rk.

Proposition 2.14. For positive integers r1, r2, . . . , rn, and k,

f(r1, r2, . . . , rn; k) ≥ 0

always holds. Moreover, f(r1, r2, . . . , rn; k) = 0 if and only if the following
conditions hold:

(1) r1 = rn = 1,
(2) 0 ≤ ri+1 − ri ≤ 1 if i < k,
(3) 0 ≤ ri − ri+1 ≤ 1 if i ≥ k.

Proof. We use induction on n. The case n = 1 is trivial. For convenience,
set r0 = rn+1 = 0.

Suppose n > 1 and f(r1, r2, . . . , rn; k) ≤ 0. Reversing the order of {ri}
if necessary, we may assume that rn ≥ r1. Take l ≥ 2 to be the maximal
integer such that rl = max{ri}. We have

f(r1, r2, . . . , rn; l) = f(r1, r2, . . . , rn; k) + rk − rl ≤ 0.

On the other hand, by definition of l, rl−1 ≤ rl > rl+1. Hence

f(r1, r2, . . . , rn; l)− f(r1, r2, . . . , rl−1, rl+1, . . . , rn; l − 1)

= (r2
l − rl−1rl − rlrl+1 − rl) + (rl−1rl+1 + rl−1)

= (rl − rl−1)(rl − rl+1 − 1) ≥ 0.
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Hence
f(r1, r2, . . . , rl−1, rl+1, . . . , rn; l − 1) ≤ 0.

By induction,

f(r1, r2, . . . , rl−1, rl+1, . . . , rn; l − 1) = 0 (2.1)

and all the inequalities above become equalities. That is,

f(r1, r2, . . . , rn; k) = 0; (2.2)

rk = rl = max{ri}; (2.3)

rl = rl−1 or rl = rl+1 + 1. (2.4)

By induction, (2.1) is equivalent with

r1 = rn = 1;

0 ≤ ri+1 − ri ≤ 1 if i < l − 1;

0 ≤ rl−1 − rl+1 ≤ 1;

0 ≤ ri − ri+1 ≤ 1 if i ≥ l + 1.

Combining with (2.3) and (2.4), we conclude that

(1) r1 = rn = 1,
(2) 0 ≤ ri+1 − ri ≤ 1 if i < k,
(3) 0 ≤ ri − ri+1 ≤ 1 if i ≥ k.

This proves that f(r1, r2, . . . , rn; k) ≥ 0 and f(r1, r2, . . . , rn; k) = 0 only if
conditions (1)-(3) hold. The ‘if’ part can be also checked by induction on k
easily. We omit the proof. �

3. Factorizations of rigid sheaves

In this section, we assume that X is a smooth projective surface. All
sheaves are considered to be coherent on X. We will define factorizations of
rigid sheaves and give basic properties.

Definition 3.1. A coherent sheaf R has a factorization

{G1,G2, . . . ,Gn}
if there exists a filtration of coherent sheaves

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = R,
such that Fi/Fi−1

∼= Gi for 1 ≤ i ≤ n and we write this factorization as

R ≡ {G1, . . . ,Gn}.
This factorization is said to be perfect if h0(Gi,Gj) = 0 for all i < j.

Example 3.2 ([9, Lemma 2.4]). Let C be a (−2)-curve on a smooth projec-
tive surface X. Let F be a pure one-dimensional sheaf on the scheme mC.
Then the subquotients of the Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F
of F are of the form

{F1/F0,F2/F1, . . . ,Fn/Fn−1} = {OC(a1)⊕r1 ,OC(a2)⊕r2 , . . . ,OC(an)⊕rn}
with a1 > a2 > · · · > an and ri > 0, which gives a perfect factorization of
F .
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The following lemma is a direct consequence of Lemma 2.6.

Lemma 3.3. Let R be a rigid sheaf with a perfect factorization

{G1, . . . ,Gn}

and F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn the corresponding filtration. Then Fj/Fi is
rigid for all i < j.

In application, we usually need to get new factorizations from old ones.
Here we give some lemmas about operations on factorizations.

Lemma 3.4. Let R be a coherent sheaf with a factorization

{G1, . . . ,Gn}

and F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn the corresponding filtration. If Fi+1/Fi−1 has
another factorization {G′i,G′i+1} for some i, then R has another factorization

{G1, . . . ,Gi−1,G′i,G′i+1,Gi+2, . . . ,Gn}.

In particular, if h1(Gi+1,Gi) = 0, we are free to change the order of Gi+1

and Gi in a factorization.

Lemma 3.5. Let R be a coherent sheaf with a perfect factorization

{G1, . . . ,Gn}

and F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn the corresponding filtration. Then

{Fn−1,Gn}

is a perfect factorization of R.

Lemma 3.6. Let G and S be two coherent sheaves and r a positive integer.
Assume that S is simple.

(1) Assume h1(S,G) = 1. Denote by G′ the unique non-trivial extension
of S by G. Then h0(S,G) = h0(S,G′), and any non-trivial extension

of S⊕r by G is isomorphic to S⊕(r−1) ⊕ G′.
(2) Assume h1(G,S) = 1. Denote by G′′ the unique non-trivial extension

of G by S. Then h0(G,S) = h0(G′′,S), and any non-trivial extension

of G by S⊕r is isomorphic to S⊕(r−1) ⊕ G′′.

Proof. (1) Consider the exact sequence

0→ Hom(S,G)→ Hom(S,G′)→ Hom(S,S)
δ→ Ext1(S,G)

induced by the extension

0→ G → G′ → S → 0.

Since the extension is non-trivial and S is simple, the map δ is injective.
And hence h0(S,G) = h0(S,G′).

Consider a non-trivial extension R corresponding to

η = (η1, . . . , ηr) ∈ Ext1(S⊕r,G) ∼= Cr.

Since S is simple, Aut(S⊕r) = GL(r,C). Since Aut(S⊕r) acts on

Ext1(S⊕r,G) ∼= Cr
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through the natural action of GL(r,C), after taking an automorphism of
S⊕r, we may assume that ηi = 0 except for one index i0. Hence R ∼=
S⊕(r−1) ⊕ G′.

(2) can be proved similarly. �

Lemma 3.7. Let R be a rigid sheaf with a perfect factorization

{G1, . . . ,Gn,S⊕r,H1, . . . ,Hm}.
Assume that S is spherical.

(1) Suppose h0(S,Gn) = 0 and χ(S,Gn) = −1, then there is a new
perfect factorization

{G1, . . . ,Gn−1,S⊕(r−1),G′n,H1, . . . ,Hm}.
Here G′n is the (unique) non-trivial extension of S by Gn.

(2) Suppose h0(H1,S) = 0 and χ(H1,S) = −1, then there is a new
perfect factorization

{G1, . . . ,Gn,H′1,S⊕(r−1),H2, . . . ,Hm}.
Here H′1 is the (unique) non-trivial extension of H1 by S.

Proof. (1) Since the factorization is perfect, h0(Gn,S) = 0. Since S is spher-
ical, h2(S,Gn) = 0 by Serre duality. Hence χ(S,Gn) = −1 implies that
h1(S,Gn) = 1. The unique non-trivial extension G′n of S by Gn is well-
defined. Note that the perfect factorization

{G1, . . . ,Gn,S⊕r,H1, . . . ,Hm}.
induces another perfect factorization

{G1, . . . ,Gn−1,F ′,H1, . . . ,Hm}.
where F ′ is an extension of S⊕r by Gn. By Lemma 3.3, F ′ is rigid, hence
the extension is non-trivial. By Lemma 3.6(1), F ′ ∼= S⊕(r−1) ⊕ G′n. Hence
there exists a factorization

{G1, . . . ,Gn−1,S⊕r,G′n,H1, . . . ,Hm}.
It is easy to check that this factorization is perfect, since h0(S,G′n) =
h0(S,Gn) = 0 by Lemma 3.6(1).

(2) can be proved similarly. �

4. Torsion rigid sheaves supported in (−2)-curves

In this section, we assume that X is a smooth projective surface. All
sheaves are considered to be coherent on X. We will classify certain torsion
rigid sheaves supported in (−2)-curves.

Proposition 4.1. Let C1 ∪ C2 be a chain of (−2)-curves and R a torsion
rigid sheaf with c1(R) = C1 + 2C2. Then R has one of the following perfect
factorizations:

(1) {OC2(a2),OC1∪C2(a1, a2)};
(2) {OC1∪C2(a1, a2),OC2(a2 − 1)};
(3) {OC1∪C2(a1, a2),OC2(a2 − 2)}.

Here a1, a2 are integers.
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Proof. Taking the restriction in C2, we have an exact sequence

0→ R1 → R→ R2 → 0.

By Definition-Proposition 2.8, R1 and R2 are rigid. Note that c1(R1) = C1

and c1(R2) = 2C2. Hence R1 = OC1(a1 − 1) is a line bundle on C1 for
some integer a1, and R2 has a perfect factorization induced by Harder–
Narasimhan filtration, which is

Case 1. {OC2(a2)⊕2} for some integer a2, or
Case 2. {OC2(a2),OC2(b2)}, for integers a2 > b2.
In Case 1, R has a perfect factorization

{OC1(a1 − 1),OC2(a2)⊕2},

for which we can apply Lemma 3.7 to get a new perfect factorization

{OC2(a2),OC1∪C2(a1, a2)}.

This gives (1).
In Case 2, since R2 is rigid, by Lemma 2.6(4), we have

h1(OC2(b2),OC2(a2)) ≤ 1,

which implies that a2 ≤ b2 + 2, that is, b2 = a2 − 1 or a2 − 2. In this case,
R has a perfect factorization

{OC1(a1 − 1),OC2(a2),OC2(b2)},

for which we can apply Lemma 3.7 to get a new perfect factorization

{OC1∪C2(a1, a2),OC2(b2)}.

This gives (2) and (3). �

Proposition 4.2. Let C1 ∪ C2 ∪ C3 be a chain of (−2)-curves and R a
torsion rigid sheaf with c1(R) = C1 + 2C2 + 3C3. Then R has one of the
following perfect factorizations:

(1-1) {OC3(a3),OC2∪C3(a2, a3),OC1∪C2∪C3(a1, a2, a3)};
(1-2) {OC3(a3),OC1∪C2∪C3(a1, a2, a3),OC2∪C3(a2 − 1, a3)};
(1-3) {OC3(a3),OC1∪C2∪C3(a1, a2, a3),OC2∪C3(a2 − 2, a3)};
(2-1) {OC2∪C3(a2, a3),OC1∪C2∪C3(a1, a2, a3),OC3(b3)};
(2-2) {OC1∪C2∪C3(a1, a2, a3),OC2∪C3(a2 − 1, a3),OC3(b3)};
(2-3) {OC1∪C2∪C3(a1, a2, a3),OC2∪C3(a2 − 2, a3),OC3(b3)};
(3-1) {OC1∪C2∪C3(a1, a2, a3),OC3(b3),OC2∪C3(a2, b3)};
(3-2) {OC2∪C3(a2, a3),OC3(b3),OC1∪C2∪C3(a1, a2 + 1, b3)};
(3-3) {OC1∪C2∪C3(a1, a2, a3),OC3(b3),OC2∪C3(a2 − 1, b3)};
(3-4) {OC1∪2C2∪C3(a1, a2, a3)⊕OC3(a3 − 1)⊕2};
(4-1) {OC1∪C2∪C3(a1, a2, a3),OC2∪C3(a2, b3),OC3(c3)};
(4-2) {OC2∪C3(a2, a3),OC1∪C2∪C3(a1, a2 + 1, b3),OC3(c3)};
(4-3) {OC1∪C2∪C3(a1, a2, b3 + 1),OC2∪C3(a2 − 1, b3),OC3(c3)};
(4-4) {OC1∪2C2∪C3(a1, a2, b3 + 1)⊕OC3(b3),OC3(c3)}.

Here ai, bi, ci are integers and a3 > b3 > c3.

Proof. Taking the restriction in C3, we have an exact sequence

0→ R12 → R→ R3 → 0.
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By Definition-Proposition 2.8, R12 and R3 are rigid. Note that c1(R12) =
C1 + 2C2 and c1(R3) = 3C3. R3 has a perfect factorization induced by
Harder–Narasimhan filtration, we have 4 cases:

Case 1. {OC3(a3)⊕3} for some integer a3;
Case 2. {OC3(a3)⊕2,OC3(b3)}, for integers a3 > b3;
Case 3. {OC3(a3),OC3(b3)⊕2}, for integers a3 > b3;
Case 4. {OC3(a3),OC3(b3),OC3(c3)}, for integers a3 > b3 > c3.
Each case can be divided in to 3 subcases according to the perfect factor-

ization R12 ≡ {G1,G2} in Proposition 4.1.
In Case 1, applying Lemma 3.7 twice with S = OC3(a3) to the perfect

factorization
R ≡ {G1,G2,OC3(a3)⊕3},

we get a new perfect factorization, which gives (1-1), (1-2), or (1-3) by
changing a2 properly.

In Case 2, applying Lemma 3.7 twice with S = OC3(a3) to the perfect
factorization

R ≡ {G1,G2,OC3(a3)⊕2,OC3(b3)},
we get a new perfect factorization, which gives (2-1), (2-2), or (2-3) by
changing a2 properly.

In Case 3, we have 3 subcases:
Subcase 3.1. R12 ≡ {OC2(a2),OC1∪C2(a1, a2)};
Subcase 3.2. R12 ≡ {OC1∪C2(a1, a2),OC2(a2 − 1)};
Subcase 3.3. R12 ≡ {OC1∪C2(a1, a2),OC2(a2 − 2)}.
In Subcase 3.1, R has a perfect factorization

{OC2(a2),OC1∪C2(a1, a2),OC3(a3),OC3(b3)⊕2}.
Applying Lemma 3.7, we get a new perfect factorization

{OC2(a2),OC1∪C2∪C3(a1, a2 + 1, a3),OC3(b3)⊕2}.
Note that Hom’s and χ between the first two factors are trivial, we get

h1(OC1∪C2∪C3(a1, a2 + 1, a3),OC2(a2)) = 0,

and we can exchange the first two factors to get a new perfect factorization

{OC1∪C2∪C3(a1, a2 + 1, a3),OC2(a2),OC3(b3)⊕2}.
Applying Lemma 3.7(1), we get a new perfect factorization

{OC1∪C2∪C3(a1, a2 + 1, a3),OC3(b3),OC2∪C3(a2 + 1, b3)}.
This gives (3-1) by changing a2 properly.

In Subcase 3.2, R has a perfect factorization

{OC1∪C2(a1, a2),OC2(a2 − 1),OC3(a3),OC3(b3)⊕2}.
Applying Lemma 3.7, we get a new perfect factorization

{OC1∪C2(a1, a2),OC2∪C3(a2, a3),OC3(b3)⊕2}.
Note that Hom’s and χ between the first two factors are trivial, we get

h1(OC2∪C3(a2, a3),OC1∪C2(a1, a2)) = 0,

and we can exchange the first two factors to get a new perfect factorization

{OC2∪C3(a2, a3),OC1∪C2(a1, a2),OC3(b3)⊕2}.
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Applying Lemma 3.7(1), we get a new perfect factorization

{OC2∪C3(a2, a3),OC3(b3),OC1∪C2∪C3(a1, a2 + 1, b3)}.
This gives (3-2).

In Subcase 3.3, R has a perfect factorization

{OC1∪C2(a1, a2),OC2(a2 − 2),OC3(a3),OC3(b3)⊕2}.
Applying Lemma 3.7, we get a new perfect factorization

{OC1∪C2(a1, a2),OC2∪C3(a2 − 1, a3),OC3(b3)⊕2}.
Note that

h1(OC2∪C3(a2 − 1, a3),OC1∪C2(a1, a2)) = 1

since

χ(OC2∪C3(a2 − 1, a3),OC1∪C2(a1, a2)) = 0,

h0(OC2∪C3(a2 − 1, a3),OC1∪C2(a1, a2)) = 1,

h0(OC1∪C2(a1, a2),OC2∪C3(a2 − 1, a3)) = 0,

and the unique non-trivial extension is OC1∪2C2∪C3(a1 + 1, a2 − 1, a3), we
get a new perfect factorization

{OC1∪2C2∪C3(a1 + 1, a2 − 1, a3),OC3(b3)⊕2}.
Note that OC1∪2C2∪C3(a1 + 1, a2−1, a3) can be also viewed as the extension
of OC2(a2 − 1) by OC1∪C2∪C3(a1, a2 + 1, a3 − 1).

Now if a3 > b3 + 1, then R has a new factorization

{OC1∪C2∪C3(a1, a2 + 1, a3 − 1),OC2(a2 − 1),OC3(b3)⊕2},
which is perfect by checking Hom’s. Applying Lemma 3.7, we get a new
perfect factorization

{OC1∪C2∪C3(a1, a2 + 1, a3 − 1),OC3(b3),OC2∪C3(a2, b3)}.
This gives (3-3) by changing a2, a3 properly.

If a3 = b3 + 1, then

h1(OC3(b3),OC1∪2C2∪C3(a1 + 1, a2 − 1, a3)) = 0

since

χ(OC3(b3),OC1∪2C2∪C3(a1 + 1, a2 − 1, a3)) = 0,

h0(OC3(b3),OC1∪2C2∪C3(a1 + 1, a2 − 1, a3)) = 0,

h0(OC1∪2C2∪C3(a1 + 1, a2 − 1, a3),OC3(b3)) = 0.

Hence
R ∼= OC1∪2C2∪C3(a1 + 1, a2 − 1, a3)⊕OC3(a3 − 1)⊕2,

which gives (3-4) by changing a1, a2 properly.
Finally we consider Case 4. Again we have 3 subcases:
Subcase 4.1. R12 ≡ {OC2(a2),OC1∪C2(a1, a2)};
Subcase 4.2. R12 ≡ {OC1∪C2(a1, a2),OC2(a2 − 1)};
Subcase 4.3. R12 ≡ {OC1∪C2(a1, a2),OC2(a2 − 2)}.
In Subcase 4.1, arguing as Subcase 3.1, we have

R ≡ {OC2(a2),OC1∪C2(a1, a2),OC3(a3),OC3(b3),OC3(c3)}
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≡ {OC2(a2),OC1∪C2∪C3(a1, a2 + 1, a3),OC3(b3),OC3(c3)}
≡ {OC1∪C2∪C3(a1, a2 + 1, a3),OC2(a2),OC3(b3),OC3(c3)}
≡ {OC1∪C2∪C3(a1, a2 + 1, a3),OC2∪C3(a2 + 1, b3),OC3(c3)}.

This gives (4-1) by changing a2 properly.
In Subcase 4.2, arguing as Subcase 3.2, we have perfect factorizations

R ≡ {OC1∪C2(a1, a2),OC2(a2 − 1),OC3(a3),OC3(b3),OC3(c3)}
≡ {OC1∪C2(a1, a2),OC2∪C3(a2, a3),OC3(b3),OC3(c3)}
≡ {OC2∪C3(a2, a3),OC1∪C2(a1, a2),OC3(b3),OC3(c3)}
≡ {OC2∪C3(a2, a3),OC1∪C2∪C3(a1, a2 + 1, b3),OC3(c3)}.

This gives (4-2).
In Subcase 4.3, arguing as Subcase 3.3, we have perfect factorizations

R ≡ {OC1∪C2(a1, a2),OC2(a2 − 2),OC3(a3),OC3(b3),OC3(c3)}
≡ {OC1∪C2(a1, a2),OC2∪C3(a2 − 1, a3),OC3(b3),OC3(c3)}
≡ {OC1∪2C2∪C3(a1 + 1, a2 − 1, a3),OC3(b3),OC3(c3)}.

If a3 > b3 + 1, then a3 = b3 + 2 in this case since the extension of OC3(b3)
by OC3(a3) is rigid (see Case 2 of proof of Proposition 4.1). Arguing as
Subcase 3.3, we have perfect factorizations

R ≡ {OC1∪C2∪C3(a1, a2 + 1, a3 − 1),OC2(a2 − 1),OC3(b3),OC3(c3)}
≡ {OC1∪C2∪C3(a1, a2 + 1, b3 + 1),OC2∪C3(a2, b3),OC3(c3)}.

This gives (4-3) by changing a2 properly.
If a3 = b3 + 1, then as Subcase 3.3, we have a perfect factorization

R ≡ {OC1∪2C2∪C3(a1 + 1, a2 − 1, b3 + 1)⊕OC3(b3),OC3(c3)}
since

h1(OC3(b3),OC1∪2C2∪C3(a1 + 1, a2 − 1, b3 + 1)) = 0.

This gives (4-4) by changing a1, a2 properly. �

We get the following corollary directly.

Corollary 4.3. Let C1∪C2∪C3 be a chain of (−2)-curves and R a torsion
rigid sheaf with c1(R) = C1 + 2C2 + 3C3. Then one of the following holds

(1) R has a perfect factorization {G,L} where L is a line bundle sup-
ported on the chain Ci ∪ · · · ∪ C3 for some 1 ≤ i ≤ 3, or

(2) R ∼= OC1∪2C2∪C3(a1, a2, a3)⊕OC3(a3−1)⊕2 for some integers a1, a2, a3.

Corollary 4.4. Let C1∪· · ·∪C5 be a chain of (−2)-curves and R a torsion
rigid sheaf with c1(R) = C1 + 2C2 + 3C3 + 2C4 +C5. Then R has a perfect
factorization {G,L} where L is a line bundle supported on either the chain
Ci ∪ · · · ∪ C3 for some 1 ≤ i ≤ 5, or the chain C1 ∪ · · · ∪ C5.

Proof. Taking the restriction in C1 ∪ C2 ∪ C3 and C3 ∪ C4 ∪ C5, we have
exact sequences

0→ R45 → R→ R123 → 0,

0→ R12 → R→ R345 → 0.
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Note that c1(R123) = C1 + 2C2 + 3C3 and c1(R345) = 3C3 + 2C4 + C5. If
one of R123 and R345 satisfies Corollary 4.3(1), then we can get the desired
perfect factorization.

Suppose that R123 and R345 satisfy Corollary 4.3(2), note that their re-
striction on C3 are the same, for simplicity and without loss of generality,
we may write

R123
∼= OC1∪2C2∪C3 ⊕OC3(−1)⊕2,

R345
∼= OC3∪2C4∪C5 ⊕OC3(−1)⊕2.

In this case we have an exact sequence

0→ OC1∪2C2(0,−1)⊕O2C4∪C5(−1, 0)→ R→ OC3 ⊕OC3(−1)⊕2 → 0.

This gives perfect factorizations

R ≡ {OC1∪2C2(0,−1)⊕O2C4∪C5(−1, 0),OC3 ,OC3(−1)⊕2}
≡ {OC2 ⊕OC4 ,OC1∪C2(0,−1)⊕OC4∪C5(−1, 0),OC3 ,OC3(−1)⊕2}
≡ {OC2 ⊕OC4 ,OC1∪C2(0,−1),OC4∪C5(−1, 0),OC3 ,OC3(−1)⊕2}
≡ {OC2 ⊕OC4 ,OC1∪C2(0,−1),OC3∪C4∪C5 ,OC3(−1)⊕2}
≡ {OC2 ⊕OC4 ,OC1∪C2∪C3∪C4∪C5 ,OC3(−1)⊕2}.

Here we apply Lemma 3.7 in the last two steps. Note that

h1(OC3(−1),OC1∪C2∪C3∪C4∪C5) = 0

by computing Hom’s and χ. Hence we exchange the last two factors and get
a perfect factorization

R ≡ {OC2 ⊕OC4 ,OC3(−1)⊕2,OC1∪C2∪C3∪C4∪C5},
and the proof is completed. �

Corollary 4.5. Let C1∪· · ·∪C6 be a chain of (−2)-curves and R a torsion
rigid sheaf with c1(R) = C1 + 2C2 + 3C3 + 3C4 + 2C5 + C6. Then R has
a perfect factorization {G,L} where L is a line bundle supported on one of
the following chains:

(1) Ci ∪ · · · ∪ C3 for some 1 ≤ i ≤ 3;
(2) C2 ∪ · · · ∪ Cj for some 4 ≤ j ≤ 6;
(3) C3 ∪ C4.

Proof. Taking the restriction in C1 ∪ C2 ∪ C3, we have an exact sequence

0→ R456 → R→ R123 → 0.

Note that c1(R123) = C1 + 2C2 + 3C3. If R123 satisfies Corollary 4.3(1),
then we get the first case.

Now suppose that R123 satisfies Corollary 4.3(2). For simplicity and
without loss of generality, we may assume that

R123
∼= OC1∪2C2∪C3 ⊕OC3(−1)⊕2,

and we have a perfect factorization

R ≡ {R456,OC1∪C2(−1, 1),OC2∪C3 ,OC3(−1)⊕2}.
On the other hand, c1(R456) = 3C4 + 2C5 + C6.
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Suppose that R456 has a perfect factorization {G′,L′} where L′ is a line
bundle supported on the chain C4∪· · ·∪Cj for some 4 ≤ j ≤ 6. For simplicity
and without loss of generality, we may assume that L′ ∼= OC4∪···∪Cj . Hence
we have perfect factorizations

R ≡ {G′,OC4∪···∪Cj ,OC1∪C2(−1, 1),OC2∪C3 ,OC3(−1)⊕2}
≡ {G′,OC1∪C2(−1, 1),OC4∪···∪Cj ,OC2∪C3 ,OC3(−1)⊕2}
≡ {G′,OC1∪C2(−1, 1),OC2∪C3∪C4∪···∪Cj (0, 0, 1, . . .),OC3(−1)⊕2}
≡ {G′,OC1∪C2(−1, 1),OC3(−1)⊕2,OC2∪C3∪C4∪···∪Cj (0, 0, 1, . . .)}.

We apply Lemma 3.7 in the second step, and the last step is because

h1(OC3(−1),OC2∪C3∪C4∪···∪Cj (0, 0, 1, . . .)) = 0

by computing Hom’s and χ. This gives the second case of this corollary.
Now suppose that R456 satisfies Corollary 4.3. For simplicity and without

loss of generality, we may assume that

R456
∼= OC4∪2C5∪C6 ⊕OC4(−1)⊕2.

Then we have perfect factorizations

R ≡ {OC4∪2C5∪C6 ,OC4(−1)⊕2,OC1∪C2(−1, 1),OC2∪C3 ,OC3(−1)⊕2}
≡ {OC4∪2C5∪C6 ,OC1∪C2(−1, 1),OC4(−1)⊕2,OC2∪C3 ,OC3(−1)⊕2}
≡ {OC4∪2C5∪C6 ,OC1∪C2(−1, 1),OC2∪C3∪C4 ,OC4(−1),OC3(−1)⊕2}
≡ {OC4∪2C5∪C6 ,OC1∪C2(−1, 1),OC2∪C3∪C4 ,OC3(−1),OC3∪C4(−1, 0)}.

Here we apply Lemma 3.7 in the last two steps. This gives the third case of
this corollary. �

5. Classification of torsion exceptional sheaves

In this section, we prove Theorems 1.2 and 1.3.

Lemma 5.1. Let E be a torsion exceptional sheaf on a smooth projective
surface X satisfying conditions in Theorem 1.3. Assume that there exists at
least one (−2)-curve in supp(E). Then there exists a chain of (−2)-curves
Z in supp(E), and a line bundle L on Z, such that c1(E) · c1(L) = −1 and
there is an exact sequence

0→ E ′ → E → L → 0

with h0(E ′,L) = 0.

Proof. By assumption, we may write

supp(E) = D ∪
m⋃
j=1

nj⋃
i=1

Cji ,

where Cj1∪· · ·∪C
j
nj is a chain of (−2)-curves for each j and they are disjoint

from each other. Since E is exceptional, supp(E) is connected. Hence we
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assume that D intersects with the chain Cj1 ∪ · · · ∪ C
j
nj on the curve Cjkj at

one point. We may write

c1(E) = D +

m∑
j=1

nj∑
i=1

rjiC
j
i ,

in the sense of Definition-Proposition 2.8 since the first Chern class of the
restriction in every chain of (−2)-curves is uniquely determined. Since E is
exceptional, by Riemann–Roch formula,

c1(E)2 = −χ(E , E) = −1.

On the other hand,

c1(E)2 =
(
D +

m∑
j=1

nj∑
i=1

rjiC
j
i

)2

= D2 + 2D ·
m∑
j=1

nj∑
i=1

rjiC
j
i +

( m∑
j=1

nj∑
i=1

rjiC
j
i

)2

= D2 + 2D ·
m∑
j=1

nj∑
i=1

rjiC
j
i +

m∑
j=1

( nj∑
i=1

rjiC
j
i

)2

= −1 + 2
m∑
j=1

rjkj +
m∑
j=1

(
− 2

nj∑
i=1

(rji )
2 + 2

nj−1∑
i=1

rji r
j
i+1

)
.

This implies that
m∑
j=1

f(rj1, . . . , r
j
nj

; kj) = 0,

where f is the polynomial defined in Subsection 2.5. By Proposition 2.14,

f(rj1, . . . , r
j
nj ; kj) = 0 for each j and {rj1, . . . , r

j
nj , kj} satisfies the conditions

in Proposition 2.14.
For convenience, we write n1 = n, r1

i = ri, C
1
i = Ci, k1 = k. Note that

n ≤ 6 by assumption, and hence rk ≤ 3.
Reversing the order of {Ci} if necessary, by the conditions in Proposition

2.14, we only have the following 6 cases:

(1) k = n = 1, r1 = 1;
(2) k ≥ 2 and r1 = r2 = 1;
(3) k = 2 and r1 = 1, r2 = 2, r3 = 1;
(4) k ≥ 3 and r1 = 1, r2 = r3 = 2;
(5) k = 3, n = 5 and (r1, . . . , r5) = (1, 2, 3, 2, 1);
(6) k = 4, n = 6 and (r1, . . . , r6) = (1, 2, 3, 3, 2, 1).

In Case (1) and (2), taking the restriction in C1, we have an exact sequence

0→ E ′ → E → R1 → 0.

Then c1(R1) = C1 and henceR1 is a line bundle on C1. Moreover, h0(E ′,R1) =
0 by construction, and

c1(E) · c1(R1) =

{
(C1 +D) · C1 = −1 Case (1);

(C1 + C2) · C1 = −1 Case (2).
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Hence we may take L = R1.
In Case (3) and (4), taking the restriction in C1 ∪ C2, we have an exact

sequence

0→ E12 → E → R12 → 0.

Then c1(R12) = C1 + 2C2. By Proposition 4.1, there exists a line bundle L
supported on C2 or the chain C1 ∪ C2 with an exact sequence

0→ G → R12 → L → 0

such that h0(G,L) = 0. Consider the exact sequence

0→ E ′ → E → L → 0

given by the surjection E → R12 → L. Then h0(E ′,L) = 0 since E ′ is an
extension of G by E12 and supp(E12) does not contain C1 or C2. Note that
c1(L) = C2 or C1 + C2, we have

c1(E) · c1(L) =

{
(C1 + 2C2 + C3 +D) · c1(L) = −1 Case (3);

(C1 + 2C2 + 2C3) · c1(L) = −1 Case (4).

This L satisfies all conditions we require.
In Case (5), taking the restriction in C1 ∪ · · · ∪ C5, we have an exact

sequence

0→ E1 → E → R→ 0.

Then c1(R) = C1 +2C2 +3C3 +2C4 +C5. By Corollary 4.4, R has a perfect
factorization {G,L} where L is a line bundle supported on either the chain
Ci ∪ · · · ∪C3 for some 1 ≤ i ≤ 5, or the chain C1 ∪ · · · ∪C5. This induces an
exact sequence

0→ E ′ → E → L → 0

where E ′ is an extension of G by E1. In particular, we have h0(E ′,L) = 0.

By construction, c1(L) =
∑3

j=iCj for some 1 ≤ i ≤ 5 or
∑5

j=1Cj . Note
that D only intersects with C3, it is easy to compute that

c1(E) · c1(L) = (C1 + 2C2 + 3C3 + 2C4 + C5 +D) · c1(L) = −1.

This L satisfies all conditions we require.
In Case (6), taking the restriction in C1 ∪ · · · ∪ C6, we have an exact

sequence

0→ E1 → E → R→ 0.

Then c1(R) = C1 + 2C2 + 3C3 + 3C4 + 2C5 +C6. By Corollary 4.5, R has a
perfect factorization {G,L} where L is a line bundle supported on the chain
Ci∪· · ·∪C3 for some 1 ≤ i ≤ 3, or the chain C2∪· · ·∪Cj for some 4 ≤ j ≤ 6,
or the chain C3 ∪ C4. This induces an exact sequence

0→ E ′ → E → L → 0

where E ′ is an extension of G by E1. In particular, we have h0(E ′,L) = 0.

By construction, c1(L) =
∑3

l=iCl for some 1 ≤ i ≤ 3, or
∑j

l=2Cl for some
4 ≤ j ≤ 6, or C3 + C4. Note that D only intersects with C4, it is easy to
compute that

c1(E) · c1(L) = (C1 + 2C2 + 3C3 + 3C4 + 2C5 + C6 +D) · c1(L) = −1.

This L satisfies all conditions we require. �
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Proof of Theorem 1.3. As in the proof of Lemma 5.1, we may write

c1(E) = D +
m∑
j=1

nj∑
i=1

rjiC
j
i ,

where Cj1∪· · ·∪C
j
nj is a chain of (−2)-curves for each j and they are disjoint

from each other.
Assume that there exists at least one (−2)-curve in supp(E), then by

Lemma 5.1 there exists a chain of (−2)-curves Z in supp(E), and a line
bundle L on Z, such that c1(E) · c1(L) = −1 and there is an exact sequence

0→ E ′ → E → L → 0

with h0(E ′,L) = 0. Note that L is a spherical object, and

χ(L, E ′) = χ(L, E)− χ(L,L) = −c1(E) · c1(L)− 2 = −1.

By Lemma 2.7, E ′ is exceptional and E ∼= TLE ′. Moreover, by the proof of
Lemma 5.1,

c1(E ′) = c1(E)− c1(L) = D +
m∑
j=1

nj∑
i=1

(rji )
′Cji , ,

where (rji )
′ =

{
rji − 1 if Cji ⊂ supp(L);

rji otherwise.

By induction on the number
∑m

j=1

∑nj

i=1 r
j
i , after finitely many steps, we

may assume that c1(E) = D. This implies that E is a line bundle on D and
the proof is completed. �

Lemma 5.2. Let E be a torsion exceptional sheaf on a weak del Pezzo
surface X, then there exists exactly one (−1)-curve D in supp(E), and the
restriction of E in D is a line bundle.

Proof. Since |−KX | has no base component by Lemma 2.10, choose a general
element in E ∈ | −KX | which is not contained in supp(E). There is a short
exact sequence

0→ ωX → OX → OE → 0.

Tensoring with E , since E is pure one-dimensional and E 6⊂ supp(E), we get
an exact sequence

0→ E ⊗ ωX → E → E|E → 0.

Applying Hom(E ,−) to this sequence, we get an exact sequence

Hom(E , E ⊗ ωX)→ Hom(E , E)→ Hom(E , E|E)→ Ext1(E , E ⊗ ωX).

Since E is exceptional, h0(E , E) = 1 and h0(E , E ⊗ ωX) = h1(E , E ⊗ ωX) = 0
by Serre duality. Hence

Hom(E , E|E) ∼= C. (5.1)

By Lemma 2.9, supp(E) only contains (−1)-curves and (−2)-curves. Note
that each (−1)-curve intersects with E at one point and each (−2)-curve
does not intersect with E, we conclude that there is only one (−1)-curve D
in supp(E). Moreover, taking restriction in D, we get an exact sequence

0→ E ′ → E → ED → 0,
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where the support of E ′ only contains (−2)-curves. Combining with (5.1),
we have

Hom(ED, ED|E) ∼= C.
Since ED is pure one-dimensional, ED is a line bundle on D. �

Proof of Theorem 1.2. It suffices to check that any torsion exceptional sheaf
E on a weak del Pezzo surface X of d > 2 of Type A satisfies conditions
(1)-(4) in Theorem 1.3.

By Lemma 2.9, any irreducible component of supp(E) is a curve with
negative self-intersection, hence is a (−1)-curve or (−2)-curve. By Lemma
5.2, conditions (1)-(2) are satisfied. By the assumption d > 2, there are
at most 6 (−2)-curves on X, hence condition (3) is satisfied since X is of
Type A. Again by the assumption d > 2 and Lemma 2.11, condition (4) is
satisfied. �

6. Examples

In this section, we provide several interesting examples of torsion excep-
tional sheaves on weak del Pezzo surfaces.

Example 6.1. Let X be a weak del Pezzo surface of degree d > 1 whose
anticanonical model has at most A1-singularities. Then by our proof, ev-
ery torsion exceptional sheaf on X has the form OD∪C1∪···∪Cn(d, a1, . . . , an),
where Ci are disjoint (−2)-curves, D is a (−1) curve intersecting with each
Ci, and d, ai are integers. Note that n can be 0 which means there is no (−2)-
curve in the support. Similar result holds true for weak del Pezzo surfaces
of degree d > 1 whose anticanonical model has at most A2-singularities.

The following example suggests that the scheme theoretic support of a
torsion exceptional sheaf can be non-reduced.

Example 6.2. Let X be a smooth projective surface, C1 ∪C2 ∪C3 a chain
of (−2)-curves, and D a (−1)-curve. Assume that D · C2 = 1 and D · C1 =
D ·C3 = 0. Then the structure sheaf OD∪C1∪2C2∪C3 is a torsion exceptional
sheaf on X with non-reduced support. In fact, by applying Lemma 2.7 to
the following exact sequences

0→ OD∪C1∪C2∪C3(−1,−1, 2,−1)→ OD∪C1∪2C2∪C3 → OC2 → 0,

0→ OD(−2)→ OD∪C1∪C2∪C3(−1,−1, 2,−1)→ OC1∪C2∪C3(−1, 2,−1)→ 0,

we get

OD∪C1∪2C2∪C3 = TOC2
◦ TOC1∪C2∪C3

(−1,2,−1)(OD(−2)).

The following example suggests that the support of a torsion exceptional
sheaf on a weak del Pezzo surface of degree one can contain loops.

Example 6.3. Let X be a smooth projective surface, C1 ∪C2 ∪C3 a chain
of (−2)-curves, and D a (−1)-curve. Assume that D · C2 = 0 and D · C1 =
D·C3 = 1, that is, C1, C2, C3, D form a loop (this might happen, for example,
on the minimal resolution of a singular del Pezzo surface of degree one
with one A3-singularity, cf. [6, Lemma 2.8]). Then the unique non-trivial
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extension E of OC2∪C3 by OD∪C1∪C2 is a torsion exceptional sheaf on X
whose support is a loop. In fact,

h1(OC2∪C3 ,OD∪C1∪C2) = 1

since

h0(OC2∪C3 ,OD∪C1∪C2) = 0,

χ(OC2∪C3 ,OD∪C1∪C2) = −1,

h0(OD∪C1∪C2 ,OC2∪C3) = 0.

By applying Lemma 2.7 twice, we get

E = TOC2∪C3
◦ TOC1∪C2

(OD(−1)).
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