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1. Introduction

Gromov-Witten theory started as an attempt to provide a rigorous mathematical
foundation for the so-called A-model topological string theory of Calabi-Yau varieties.
Even though it can be defined for all the Kähler/symplectic manifolds, the theory on
Calabi-Yau varieties remains the most difficult one. In fact, a great deal of techniques
were developed for non-Calabi-Yau varieties during the last twenty years. These tech-
niques have only limited bearing on the Calabi-Yau cases. In a certain sense, Calabi-Yau
cases are very special too. There are two outstanding problems for the Gromov-Witten
theory of Calabi-Yau varieties and they are the focus of our investigation.

More than twenty years ago, physicists Bershadsky-Cecotti-Ooguri-Vafa [7] studied
the higher genus B-model theory. One of the consequences of their investigation is the
following mathematical conjecture.

Modularity Conjecture: Suppose that X is a Calabi-Yau manifold/orbifold and
FGWg is the genus g generating function of its Gromov-Witten theory. Then FGWg is
a quasi-modular form in an appropriate sense (see Definition 2.1, Definition 5.8 and
Remark 2.2 ).

One of main intellectual advances of the field during the last several years was the
realization that the modularity conjecture should be extended to orbifold quotients
[X/G] of a Calabi-Yau manifold/orbifold X.

When X is a Calabi-Yau hypersurface of weighted projective space, there is another
famous duality from physics as follows. Suppose XW = {W = 0} ⊂ P(c1, · · · , cn)
is a degree d hypersurface. XW is a Calabi-Yau orbifold iff d =

∑
i ci. Let GW be

the group of diagonal matrices preserving W . GW contains a special matrix J =
exp(2πic1/d, · · · , 2πicn/d) and is always nontrivial. J acts trivially on XW . In addition

to W , we can choose a so-called admissible group 〈J〉 ⊂ G ⊂ GW . Then, G̃ = G/〈J〉 acts
faithfully on XW . There are two curve counting theories built out of data (W,G): the

Gromov-Witten theory of an orbifold [XW /G̃] and the FJRW theory of (W,G) [28, 29].
Let FGW

g ,FFJRW
g be the generating functions of each theory. Define partition functions

DGW =
∑
g

~g−1FGW
g , DFJRW =

∑
g

~g−1FFJRW
g .

The second outstanding problem for Calabi-Yau varieties is the following conjecture
[74, 59].

Landau-Ginzburg/Calabi-Yau correspondence Conjecture: There is a dif-
ferential operator Û built out of genus zero data (the quantization of symplectic trans-
formation in the sense of Givental) such that up to an analytic continuation

DGW = U(DFJRW).
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The above two conjectures are central for our understanding the GW-theory of
Calabi-Yau varieties. For example, they are at the heart of a recent spectacular ad-
vance in physics [40] to compute higher genus Gromov-Witten invariants of the quintic
3-fold up to genus 51!

It is clear that both conjectures are difficult. In [15], it was proposed to put both
conjectures into a single framework using global mirror symmetry. Here, the word global
refers to the global property of the B-model. The traditional version of mirror symmetry
is local in the sense that we study a neighborhood of so-called a large complex structure
limit. Global mirror symmetry emphasizes the idea of moving away from a large complex
structure limit. In fact, we want to move around the entire B-model moduli space and
study all the interesting limits including (not exclusively) the large complex limit. One
of the special ones is the Gepner limit, corresponding to FJRW theory. Therefore, the
knowledge of the Gepner limit (FJRW theory) will yield a wealth of information at the
large complex structure limit (GW theory). This provides an effective way to compute
higher-genus Gromov-Witten invariants of Calabi-Yau hypersurfaces, which is a central
and yet difficult problem in geometry and physics. Furthermore, one can study global
properties of the entire family. The global properties of B-model naturally lead to the
modularity of Gromov-Witten theory, a remarkable bonus of global mirror symmetry.
This was exactly the way that BCOV discovered the modularity more than twenty
years ago. Since then, there has been steady progress in physics on the modularity
conjecture by Klemm and others [3, 35, 40, 41]. In a sense, the mathematicians are
finally catching up! However, the recent mathematical development did not follow the
physical blueprint. Recall that the physical discussion for last 15 years focused on the
Calabi-Yau B-model (see a mathematical formulation in [23]). An unexpected twist of
recent events in mathematics is the development of the above framework in the set-up
of the Landau-Ginzburg model over [X/G], a related but much larger model.

The main result of this article is to prove both conjectures for (W,GW ) (Theorem
7.9) in the case that W is a Fermat polynomial.

Theorem 1.1. Suppose that W is a Fermat polynomial with d =
∑

i ci (hence XW

defines a Calabi-Yau hypersurface). Then,

(1) LG/CY correspondence conjecture holds for the pair (W,GW ).

(2) The modularity conjecture holds for [XW /G̃W ].

We would like to mention that there are two other parts of LG/CY correspondences,
cohomological corespondence and genus zero correspondence. The cohomological cor-
respondence was solved for an arbitrary admissible pair (W,G) by Chiodo-Ruan [17].
The genus zero correspondence for Fermat polynomial W was solved by Chiodo-Iritani-
Ruan [16, 18] for the pair (W, 〈J〉) (see wall-crossing proof in [60]) and by Lee-Priddis-
Shoemaker [58, 57] for the pair (W,SLW ). The all-genus correspondence for simple
elliptic singularities was solved by Krawitz-Shen [46] and Milanov-Ruan [52]. There are
also very interesting versions for complete intersections by Clader [19] and non-Calabi-
Yau cases by Acosta [1]. Our focus is the higher genus correspondence as we stated in
the theorem. However, an intermediate step is a proof of the genus zero correspondence
for the pair (W,GW ). The modularity conjecture was solved in dimension one[52, 53, 68]
(see [20] for a related work on compact toric orbifolds).
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Let’s spell out our general strategy. The original version of the LG/CY correspon-
dence is a conjectural statement connecting the GW theory of XW and the FJRW
theory of (W, 〈J〉). The computation of higher-genus Gromov-Witten invariants is a
very difficult problem, which we hope to solve using the LG/CY correspondence. How-

ever, we can improve the situation by taking a certain maximal quotient [XW /G̃W ]. By

the Berglund-Hübsch-Krawitz LG-to-LG mirror symmetry [6, 45], [XW /G̃W ] should be
mirror to the large complex structure limit of the B-model family of the dual polyno-
mial W T (a Fermat polynomial is self-dual). Its Gepner limit corresponds to the FJRW
theory of (W,GW ). The B-model family of W T corresponds to miniversal deforma-
tion of W T . Its genus zero theory is known as Saito’s Frobenius manifold theory [63].
Saito’s Frobenius manifold is generically semi-simple and Givental has defined a higher-
genus potential function on the semi-simple locus [31]. Namely, we have a rigorous
mathematical definition of the B-model theory in this case for all genera. Using Tele-
man’s solution of the Givental conjecture [72], the higher genus theory of a semi-simple
GW-theory is determined by the genus zero theory. Therefore, the all-genus LG/CY
correspondence is reduced to the genus zero correspondence. On the other hand, there
is no such reduction for CY cases such as XW . We should mention that the extension
of the Givental-Teleman higher genus function to non-semisimple locus is a well-known
difficult problem and has been solved recently by Milanov [50].

We shall implement our strategy in two steps: (i) a construction of the global LG
B-model of W T , and (ii) two mirror symmetry theorems connecting the B-model at the
large complex structure limit to GW-theory and the B-model at the Gepner limit to
FJRW-theory. We have applied the above strategy successfully for quotients of elliptic
curves by Z3,Z4,Z6 [46, 52]. But the B-model construction in [52] does not generalize
to higher dimensions. In this article, we develop the higher dimensional theory using a
different approach.

The main results of this article have been reported in various conferences during last
five years. We apologize for the long delay.

The article is organized as follows. In the section 2, we will review the global CY-
B-model to motivate our global LG-B-model construction and the appearance of quasi-
modular forms in Gromov-Witten theory. Sections 3-5 form the technical core of the
paper where we construct the global LG-B-model. We should mention that many in-
gredients were already in the literature [38]. The two mirror symmetric theorems as
well as the proof of the main theorem will be presented in sections 6 and 7. The proof
of the main theorem (Theorem 7.9) will be presented in the section 7.

We thank Rachel Webb for careful reading of our manuscript and for helpful com-
ments. Y. R. would like to thank Albrecht Klemm from whom he learned a great deal
about the modularity conjecture. Y. S. would like to thank Si Li and Zhengyu Zong for
helpful discussions.

The work of H. I. is partially supported by JSPS Grant-In-Aid 16K05127, 25400069,
26610008, 23224002. The work of T. M. is partially supported by JSPS Grant-In-Aid
26800003 and by the World Premier International Research Center Initiative (WPI
Initiative), MEXT, Japan. The work of Y. R. is partially supported by NSF grants
DMS 1159265 and DMS 1405245. The work of Y. S. is partially supported by NSF
grant DMS-1159156.
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2. Global CY-B-model and quasi-modular form

We are primarily working in the LG-setting. In this section, we review the some basic
properties expected for the Calabi-Yau B-model to motivate our construction. In the
process, quasi-modular forms appear naturally in GW-theory.

Let X be a n-dimensional Calabi-Yau manifold. The B-model of X corresponds to
the moduli space of complex structures (possibly with a marking) on X. Traditionally,
it is studied by its Hodge structure. Let’s start from the algebraic set-up. An abstract
Hodge structure of weight k (AHS) on a real vector space V is a decomposition into
direct sum of complex subspaces

VC =
⊕
p+q=k

V p,q

such that V p,q = V q,p. A polarization of AHS on V is a non-degenerate bilinear form
Q on V which is symmetric if k is even, and skew-symmetric otherwise. It satisfies the
conditions

(i) Q(x, y) = 0 for x ∈ V p,q, y ∈ V p′,q′ , (p, q) 6= (q′, p′);

(ii) ip−q(−1)k(k−1)/2Q(x, x̄) > 0.

We can associate the Hodge filtration

0 ⊂ F k ⊂ F k−1 ⊂ · · · ⊂ F 0 = VC,

given by F p =
∑

p′≥pH
p′,q. The above Hodge filtration defines a flag of VC. Using the

polarization, we can reconstruct the Hodge decomposition from the flag by

Hp,q = {x ∈ F p : Q(x, ȳ) = 0, y ∈ F p+1}.

Let mp = dimF p,m = (m1, · · · ,mk). Let Fl(m, VC) be the variety of flags of linear
subspaces F p of dimension mp, p = 0, . . . , k. It is a closed algebraic subvariety of the
product of Grassmann varieties G(mp, VC). It carries a sequence of tautological bundles
of rank mp pulled back from that of G(mp, VC). A polarized AHS of weight k defines a
point (F p) in Fl(m, VC). It satisfies the following conditions

(i) VC = F p
⊕
F k−p+1;

(ii) Q(F p, F k−p+1) = 0;

(iii) (−1)k(k−1)/2Q(Cx, x̄) > 0, where C acts on Hp,q as multiplication by ip−q.

The subset of flags in Fl(m, VC) satisfying the previous conditions is denoted by Dm(V,Q)
and is called the period space of (V,Q) of type m. Fix a basis of V with respect to Q
to identify V with the space Rr, where r = m0. F p can be identified with a complex
matrix Πp of size r×mp, which is called a period matrix. Another important structure
is the integral structure. An integral structure of an AHS is an abelian subgroup Λ ⊂ V
of rank equal to dimV (a lattice) such that Q(Λ× Λ) ⊂ Z.

Suppose that X is a Kähler manifold of dimension k. The Hodge decomposition and
cup product Q on the middle dimensional cohomology V = Hk(X,R) define an AHS
of weight k. The integral structure is given by Λ = Hk(X,Z). Now, suppose we have
a family of compact connected complex manifolds. It is a holomorphic smooth map
f : X → T of complex manifolds with connected base T . For any t ∈ T , let Xt = f−1(t)
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be the fiber and Vt = Hk(Xt,R) equipped with a Hodge structure. The cup product
defines a polarization Qt of the Hodge structure on Vt. Fix an isomorphism

ϕt : (V,Q0)→ (Hk(Xt,R),∪)

called a marking of Xt; we assume that the dependence of the marking ϕt on t is locally
constant (flat with respect to the Gauss-Manin connection). Then, the pre-image of the
Hodge flag (F pt ) is a Q0-polarized AHS of weight k on (V,Q0). Let Dm be the period
space (V,Q0) of type m = (mp) for mp = dimF p. We have a multi-valued holomorphic
period map

φ : T → Dm, t 7→ (ϕ−1
t (F pt )).

To define the single valued period map, we need to consider the universal cover T̃ of
T . Let X̃ → T̃ be the pull-back family. Then, we can fix a basis of (Hk(X̃t,Z), Q̃t)
for each t which depends holomorphically on t and hence a single valued period map
φ̃ : T̃ → Dm. Furthermore, the monodromy defines a homomorphism

α : π1(T, t0)→ GΛ = Aut(Λ, Q|Λ)

called the monodromy representation. Let Γ be the image of α. We obtain a single
valued period map

φ̄ : T → Dm/Γ→ Dm/Aut(Λ, Q|Λ).

The global Torelli theorem is a statement that Dm/Aut(Λ, Q|Λ) describes the moduli
space of complex structures, which is basically true in dimension one and two. It is
unknown if the global Torelli theorem holds in higher dimension. Another important
property is whether or not Dm/Aut(Λ, Q|Λ) is a hermitian symmetry space, which
makes the connection to number theory. Again, this is the case in dimension one and
two and false in higher dimension.

When X is Calabi-Yau, F k = Hk,0 is one-dimensional. An element of Hk,0 is called
a holomorphic (k, 0) form or a Calabi-Yau form. F k induces a holomorphic line bundle

L → Dm.

In physical literature, L is called a vacuum line bundle. It is invariant under GΛ action
and hence descends to Dm/GΛ. We use the same L to denote its pull back to T . Using
L, we can define the modular form.

Definition 2.1. We call an analytic (holomorphic) section Ψ of Lk a (holomorphic)
modular form of weight k of T . Alternatively, Ψ can be viewed as an analytic function
on the total space of L such that ψ(zv) = z−kψ(v). We call a holomorphic function ψ on
Dm a quasi-modular form if it is the holomorphic part of a “non-holomorphic” modular
form. In other words, there is a (non-holomorphic) modular form Ψ and functions
h1, . . . , hk (anti-holomorphic generators) such that Ψ is a polynomial of h1, · · · , hk with
holomorphic functions as coefficients and ψ as the constant term.

Remark 2.2. The above definition is unsatisfactory since it also includes other objects
such as mock modular forms. We use it as the working definition of this paper because
of the lack of a better definition. The main point of BCOV’s paper is that B-model
GW-theory generating function should be a almost holomorphic section of Lk and hence
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almost holomorphic modular form. Here, the almost holomorphic means that its anti-
holomorphic generators satisfy the so-called holomorphic anomaly equation. The A-
model GW-theory generating function corresponds to the holomorphic part of B-model
generating function. An important future problem is to study these anti-holomorphic
generators, which will lead to a definition closer to that in number theory.

Example 2.3. An abstract Hodge structure of weight 1 on a real vector space V is a
decomposition into direct sum of complex linear subspaces

VC = V 1,0 + V 0,1

such that

(i) V 1,0 = V 0,1.

A polarization of AHS of weight 1 is a non-degenerate skew-symmetric form Q on V (a
symplectic form) such that

(ii) Q|V 1,0 = 0, Q|V 0,1 = 0;
(iii) iQ(x, x̄) > 0,∨x ∈ V 1,0 − {0}.

Then, we extend Q to a skew-symmetric form on VC by linearity.
H(x, y) = −iQ(x, ȳ) (or Q(x, y) = iH(x, ȳ) ) defines a hermitian form on VC of

signature (g, g). Let G(g, VC) be the Grassmann variety of g-dimensional subspaces of
VC. Set

G(g, VC)H = {W ∈ G(g, VC) : Q|W = 0, H|W > 0}.
There is a natural bijection between Hodge structures on V of weight 1 with polarization
form Q and points in G(g, VC), where H is the associated hermitian form of Q. By
choosing a standard symplectic basis in V , G(g, VC) can be described as a set of complex
2g × g-matrices satisfying certain condition. Furthermore, we can find a unique basis
of W such that the last g rows of the matrix form the identity matrix. Therefore, we
identify W with a unique g × g-matrix Z. The matrix Z satisfies the conditions

ZT = Z, Im(Z) =
1

2i
(Z − Z̄) > 0.

The period space D(2g,g) parametrizing polarized AHS of weight 1 is isomorphic to the
complex manifold

Zg = {Z ∈ Matg(C) : ZT = Z, Im(Z) > 0}
called the Siegel upper half plane of degree g. Its dimension is equal to g(g+ 1)/2. The
monodromy group Γ is a subgroup of Sp(2g,Z), which acts on D(2g,g) by

M(Z) = (AZ +B)/(CZ +D)

where M is written as a block-matrix

(
A B
C D

)
.

Suppose that X → T is a one-dimensional family of elliptic curves. It induces a
weight 1 AHS of g = 1. Therefore, the period space is Z1-the upper half plane H.
The monodromy group Γ is a subgroup of SL(2,Z). Suppose that X is not a constant

family. Then, the universal cover T̃ = H and T = H/Γ. We would like to consider its
modular form. Note that we can consider D2,1 as a sub-domain of P (VC). Then, L is
the pull-back of the tautological line bundle of P (VC).
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Suppose that ω is a holomorphic (1, 0)-form. Choose a symplectic basis or marking
A,B. The periods

α =

∫
A
ω, β =

∫
B
ω

define a homogeneous coordinate system on D(2,1). The inhomogeneous coordinate is
τ = β/α ∈ H. Moreover, the total space of L (minus the zero-section) can be identified
as (VC − {0})/Γ, where Γ acts

(α, β)→ (aβ + bα, cβ + dα),

where

(
a b
c d

)
∈ Γ. By the definition, a modular form of weight k is a holomorphic

function

f : VC − {0} → C
such that

(i): f is invariant under Γ-action;
(ii): f(zv0, zv1) = zkf(v0, v1).

Choose A such that ω(A) = 1. Then,

τ → (1, τ)

defines a section of L. Let F (τ) = f(1, τ). Under a fractional linear transformation
τ → aτ+b

cτ+d , F (τ) changes as

F

(
aτ + b

cτ + d

)
= f

(
1,
aτ + b

cτ + d

)
= (cτ + d)−kf(aτ + b, cτ + d) = (cτ + d)−kf(1, τ)

= (cτ + d)−kF (τ)

which agrees with the usual definition of modular form.
The above example can be generalized to higher rank cases. V 1,0 defines a rank

g bundle V over the Siegel upper half space Zg. Let L = det(V). A Seigel modular

form f of weight k is a section of Lk. Similarly, we can work out its inhomogeneous
presentation. It corresponds to a function F : Zg → C such that

F

(
Aτ +B

Cτ +D

)
= det

(
A B
C D

)k
F (τ)

for τ ∈ Zg and

(
A B
C D

)
∈ Sp(g,Z).

Example 2.4. Next, we consider the B-model moduli space of a K3-surface. Let X
be an algebraic K3-surface. H2(X,Z) is a free abelian group of rank 22 and carries
a unimodular even bilinear form of signature (3, 19). Let ω be an ample class. We
consider the Hodge structure on cohomology V = H2

prim(X,Z) which is the orthogonal

complement of ω. The Hodge structure on VC is an AHS of weight 2 of type (1, 19, 1),
where we take the polarization defined by the restriction of intersection form Q. The
Hodge flag is

0 ⊂ F 2 = H20(X) ⊂ F 1 = H20(X) +H11
prim(X) ⊂ F 0 = H2

prim(X,C).
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The flag (F p) is completely determined by F 2 since F 1 = (F 2)⊥. This implies that the
period space Dm(V,Q) is isomorphic, as a complex manifold, to

Dh(V ) = {Cv ∈ P (VC);Q(v, v) = 0, Q(v, v̄) > 0}.

The integral structure Λ is again given by H2
prim(X,Z). The monodromy group Γ is a

subgroup of Aut(Λ, Q|Λ).
One can generalize this to a so-called lattice K3-surface. Let M be an even lattice of

signature (1, r−1). A M -polarized K3-surface is a pair (X, j) consisting of an algebraic
K3-surface X and a primitive embedding of lattices j : M → Pic(X) such that the
image of j contains an ample class. If M is rank one, it reduces to the previous case. A
family of M-polarized K3-surfaces is π : Y → T , a family of K3-surfaces such that there
is an embedding jt : M → H2(Xt,Z).

Let N = M⊥ be the orthogonal complement of M in LK3. The period domain is

DM = {Cv ∈ P (NC);Q(v, v) = 0, Q(v, v̄) > 0}.

DM is a hermitian symmetry space and of great interest to number theorist. The
modular form in this context is referred as automorphic form in literature.

There is an inhomogeneous description of DM similar to that of the upper half plane.
Suppose that e and f span a hyperbolic lattice; i.e., Q(e, e) = Q(f, f) = 0, Q(e, f) = 1.
Consider the decomposition

V = V0 ⊕ Rf ⊕ Re.
We can identify

DM = {z ∈ V0(C) : ImQ(z, z) > 0}
via the map

z → w(z) = z + f +Q(z, z)e.

Using the above map, we can figure out the automorphic factor—the generalization of
(cτ + d)−k.

Example 2.5. Suppose that X is a Calabi-Yau 3-fold. We obtain a weight 3 AHS

0 ⊂ F 3 = H30 ⊂ F 2 = H30 +H21 ⊂ F 1 = H30 +H21 +H12 ⊂ F 0 = VC.

on V = H3(X,R). The polarization Q is symplectic in this case. The moduli space of
complex structures MX on X is smooth of dimension h = H21. The period domain Dm

for m= (2h + 2, 2h + 1, h + 1, 1) is not a hermitian symmetry space in general. The
relation to number theory is not clear. However, we can define a modular form formally
as a section of  Lk. What is lacking is a inhomogeneous description similar to the upper
half plane. However, we can again use the periods to define a convenient coordinate
system. The monodromy group Γ can be viewed as a subgroup of Sp(h+ 1,Z).

One can conveniently forget about F 3, F 2. Then, we obtain a weight 1 AHS

0 ⊂ F 2 ⊂ F 0.

This defines an embedding of the moduli space of complex structures into the Siegel
upper half plane

i : MX → Zh+1/Γ.
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3. Global Landau-Ginzburg B-model at genus zero

In this section we construct the genus-zero data (Saito structure) of the global B-
model over a deformation space of quasi-homogeneous polynomials. This is given as a
vector bundle formed by the twisted de Rham cohomology, equipped with the Gauss-
Manin connection and the higher residue pairing. In many ways, the material in this
section is already standard to the experts (see, e.g. [63, 66, 61, 38]); the (only) novel point
in our construction is that we restrict ourselves to relevant and marginal deformations
so that the resulting structure is global and algebraic.

3.1. A family of polynomials. Let x1, . . . , xn be variables of degrees c1, . . . , cn with
0 < ci < 1, ci ∈ Q. LetMmar denote the space of all weighted homogeneous polynomials
of degree one.

Mmar = {f ∈ C[x1, . . . , xn] : deg f = 1}.
Here the subscript “mar” means marginal deformations following the terminology in
physics. We recall the following standard fact:

Proposition 3.1 ([25]). For a weighted homogeneous polynomial f ∈ Mmar, the fol-
lowing conditions are equivalent:

(1) f(x) = 0 has an isolated singularity at the origin;
(2) ∂x1f(x), . . . , ∂xnf(x) form a regular sequence in C[x1, . . . , xn].

For such f , the dimension of the Jacobi ring

Jac(f) := C[x1, . . . , xn]/(∂x1f, . . . ∂xnf)

is independent of f and is given by

N :=
(1− c1)(1− c2) · · · (1− cn)

c1c2 · · · cn
.

Moreover polynomials f satisfying the conditions (1) and (2) form a (possibly empty)
Zariski open subset of Mmar.

Definition 3.2. We say that a weighted homogeneous polynomial f ∈Mmar is regular
if one of the equivalent conditions in Proposition 3.1 holds. Let M◦mar ⊂Mmar denote
the Zariski open subset consisting of regular homogeneous polynomials. We denote by
M the space of polynomials of degree ≤ 1 with regular leading terms:

M :=

f ∈ C[x1, . . . , xn] : f =
∑

0<d≤1

fd, deg(fd) = d, f1 ∈M◦mar

 .

We will henceforth assume that M◦mar is nonempty. For a point t ∈ M, we write
f(x; t) ∈ C[x1, . . . , xn] for the polynomial represented by t ∈M. Setting X := Cn×M,
we have the following diagram:

(1)

X
f(x;t)−−−−→ C

π

y
M
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where π : X = Cn ×M →M is the projection to the second factor. The space O(M)
of regular functions on M is graded as follows. A finite cover of C× acts on M by
λ · f := λ−1f(λc1x1, . . . , λ

cnxn); this action induces the action on functions ϕ ∈ O(M)
by (λ ·ϕ)(f) = ϕ(λ−1 ·f). We say that ϕ ∈ O(M) is of degree d ∈ Q if λ ·ϕ = λdϕ. The
grading on O(M) and deg xi = ci together define a grading on O(X) = O(M× Cn).
The universal polynomial f(x; t) ∈ O(X) is of degree one with respect to this grading.
What is important for us is the fact that O(M) and O(X) are non-negatively graded.

We introduce the critical scheme C ⊂ X as follows:

OC = OX/(∂x1f(x; t), . . . , ∂xnf(x; t)).

Proposition 3.1 implies that (π∗OC)|M◦mar
is a locally free cohrerent sheaf of rank N ;

we will see that π∗OC is also locally free in Corollary 3.6 below.

Remark 3.3. A group of coordinate changes on Cn acts on the parameter space M
and our global B-model is equivariant with respect to the group. Let G be the group
of ring automorphisms of C[x] = C[x1, . . . , xn] preserving the degree filtration C[x]≤d =
{f ∈ C[x] : deg f ≤ d}. Then G acts on M and the diagram (1). The quotient stack
[M/G] should be viewed as a genuine moduli space.

Remark 3.4. In practice, it is convenient to work with a family of polynomials of the
following form: for a weighted homogeneous polynomial f0(x) of degree one and a set of
homogeneous polynomials φe(x), we can consider a family f(x; t) = f0(x) +

∑
e teφe(x).

For such a family, we say that the deformation parameter te is relevant (resp. marginal,
irrelevant) if deg φe < 1 (resp. deg φe = 1, deg φe > 1). We can assign the degree
of parameters as deg te := 1 − deg φe(x). The above space M includes only relevant
and marginal deformations. When we construct a miniversal deformation (see §5.2),
we choose homogeneous polynomials {φe}Ne=1 such that [φ1], . . . , [φN ] form a basis of
the Jacobi ring Jac(f0); in this case the deformation family may also contain irrelevant
directions.

3.2. The twisted de Rham cohomology. We are interested in the hypercohomology
of the twisted de Rham complex:

F = Rnπ∗
(

Ω•X/M[z], zdX/M + df(x; t)∧
)

where f(x; t) : X → C is the universal polynomial in the diagram (1). Since π is affine,
this is:

F ∼= Ωn
X/M[z]/(zdX/M + df(x; t)∧)Ωn−1

X/M[z].

The fiber of F at a single polynomial f is called the Brieskorn lattice [9] of f . A
presentation of the Brieskorn lattice as a twisted de Rham cohomology group was given
in [64]; this is also called the filtered de Rham cohomology (see [66]). We introduce the
grading on F given by the grading on O(X) together with deg(dxi) = ci, deg z = 1.
This is well-defined since the differential zdX/M+df(x; t)∧ is of degree one. The module
of global sections of F is again non-negatively graded.

Proposition 3.5. The sheaf F is a locally free OM[z]-module of rank N .

Proof. Let us fix an affine open subset U ⊂ M◦mar such that (π∗OC)|U is a free OU -
module. Choose quasi-homogeneous polynomials ψi ∈ O(U)[x1, . . . , xn], 1 ≤ i ≤ N
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which induce a basis of (π∗OC)|U . We claim that ψidx, 1 ≤ i ≤ N form a basis of F
over Mrel × U , i.e. the map

φ : (OMrel×U [z])⊕N → F|Mrel×U

sending (vi)
N
i=1 to the class of

∑N
i=1 viψidx is an isomorphism, where we set dx =

dx1 ∧ · · · ∧ dxn.
First we prove the surjectivity. Suppose by induction that the submodule F(Mrel ×

U)≤k of degree less than or equal to k is contained in the image of φ. Every homogeneous
element ω ∈ Ωn

X/M[z] of degree ≤ (k+1) can be written as ω =
∑n

i=1 viψidx+df ∧α for

some α ∈ Ωn−1
X/M[z]. By taking the homogeneous component if necessary, we may assume

that α is homogeneous of degree ≤ k. Then [ω] = [ω − (zd+ df∧)α] =
∑N

i=1 vi[ψidx]−
z[dα]. By induction hypothesis, [dα] is in the image of φ and thus ω is also in the image.

Let us prove the injectivity of φ. Suppose that φ(v) = 0 for some v = (v1, . . . , vN ).

By definition there exists α ∈ Ωn−1
X/M[z] such that

∑N
i=1 viψidx = (zd+ df∧)α. Expand

vi and α in powers of z:

vi =
∑
k≥0

vi,kz
k, α =

∑
k≥0

αkz
k

where the sum is finite. Comparing with the coefficient of z0, we have
∑N

i=1 vi,0ψi =
df ∧ α0. Since ψi, 1 ≤ i ≤ N form a basis of the Jacobi ring, we have vi,0 = 0 for all i.
Therefore df ∧α0 = 0. Because ∂x1f(x; t), . . . , ∂xnf(x; t) form a regular sequence, there
exists β0 ∈ Ωn−2

X/M such that α0 = df ∧ β0. Setting α′ = α− (zd+ df∧)β0 =
∑

k≥1 α
′
kz
k,

we have
N∑
i=1

∑
k≥1

zkvi,kψi = (zd+ dF∧)α′.

Comparing with the coefficient of z1, we obtain vi,1 = 0 for all i. We can repeat this
argument inductively to show that vi,0 = vi,1 = · · · = 0. �

Since we can identify the restriction F|z=0 with (π∗OC)dx, we obtain:

Corollary 3.6. The sheaf π∗OC is a locally free OM-module of rank N .

3.3. The Gauss-Manin connection and the higher residue pairing. Here we
introduce two important structures on the twisted de Rham cohomology F : the Gauss-
Manin connection ∇ and the higher residue pairing K. The Gauss-Manin connection
∇ is a map

∇ : F → z−1Ω1
M ⊗OM F ⊕ z

−2OM[z]dz

defined by the formula:

∇~v[φ(x, t, z)dx] =

[
~vφ(x, t, z) +

~v(f(x; t))

z
φ(x, t, z)dx

]
∇∂z [φ(x, t, z)dx] =

[(
∂φ(x, t, z)

∂z
− f(x; t)

z2
φ(x, t, z)− n

2

φ(x, t, z)

z

)
dx

]
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where φ(x, t, z) ∈ OX [z], dx = dx1 ∧ · · · ∧ dxn and ~v is a vector field on M. One can
easily check that this is well-defined; moreover it satisfies the Leibnitz rule:

∇(g(t, z)ω) = dg(t, z)ω + g(t, z)∇ω, g(t, z) ∈ OM[z], ω ∈ F

and the flatness condition ∇2 = 0. The higher residue pairing of K. Saito [64] is a map

K : F ⊗OM F → OM[z]

which we expand in the form

K(ω1, ω2) =
∞∑
p=0

zpK(p)(ω1, ω2).

The higher residue pairing is uniquely characterized by the following properties:

(1) zK(ω1, ω2) = K(zω1, ω2) = −K(ω1, zω2);

(2) K(0)(ω1, ω2) is the residue pairing on the Jacobi algebra of f :

K(0)(ω1, ω2) = ResX/M

[
φ1(x, t, 0)φ2(x, t, 0)dx

∂x1f(x; t), . . . , ∂xnf(x; t)

]
where ωi = φi(x, t, z)dx;

(3) K(ω1, ω2)(z) = K(ω2, ω1)(−z); i.e., K(p) is skew symmetric for p odd and sym-
metric for p even;

(4) K is flat with respect to the Gauss-Manin connection:

ξK(ω1, ω2) = K(∇ξω1, ω2)−K(ω1,∇ξω2),

where ξ = z~v (with ~v a vector field on M) or z2∂/∂z.

Remark 3.7. The Gauss-Manin connection is defined in such a way that oscillatory
integrals

(2) F 3 [φdx] 7−→ (−2πz)−n/2
∫

Γ
φ(x)ef(x;t)/zdx

define solutions (i.e. intertwine the Gauss-Manin connection with the standard differ-
ential), where Γ is a cycle in Hn(Cn, {x ∈ Cn : Re(f(x)/z) � 0};Z). The prefactor

(−2πz)−n/2 here should be viewed as a shift of weights by n/2; this is introduced in
order to make the Gauss-Manin connection compatible with the Dubrovin connection
on the A-side under mirror symmetry. This in turn results in the shift of the higher
residue pairing Kf by the factor of zn.

Definition 3.8. We call the triple (F ,∇,K) consisting of the twisted de Rham coho-
mology, the Gauss-Manin connection and the higher residue pairing the Saito structure
of the family (1) of polynomials.

Remark 3.9. The Saito structure gives a TEP structure in the sense of Hertling [39].
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4. Opposite subspaces

In this section, we introduce opposite subspaces for the Saito structure (F ,∇,K). For
a marginal polynomial f , we obtain a one-to-one correspondence between homogeneous
opposite subspaces and splittings (opposite filtration) of the Hodge filtration on the
vanishing cohomology. We also observe that the complex-conjugate opposite subspace
yields a positive-definite Hermitian bundle with connection, called the Cecotti-Vafa
structure. The notion of opposite filtrations were originally used in the work of M. Saito
[66] to construct a flat structure (Frobenius structure) [63, 26] on the base of miniversal
deformations (see also §5.2). Most of the materials in this section are again not new;
similar (and in fact more general) results have been obtained by Saito [66] and Hertling
[39]. Since we restrict ourselves to weighted homogeneous polynomials, our presentation
has the advantage of being more explicit and elementary.

4.1. Symplectic vector space and semi-infinite VHS. Let us recall that we some-
times identify the points t ∈M with the corresponding polynomials f = f(x; t), so the
points in M are functions. Recall the sheaf F of twisted de Rham cohomology groups
from §3.2. Proposition 3.5 implies that F is the sheaf of sections of a vector bundle
H+ on M, whose fiber over a deformation f ∈ M is given by the infinite-dimensional
vector space

H+(f) := HtwdR(f) := Ωn
Cn [z]/(zd+ df∧)Ωn−1

Cn [z] ∼= Jac(f)[z].

We introduce the free C[z, z−1]-module

H(f) := HtwdR(f)⊗C[z] C[z, z−1]

and its completion

Ĥ(f) := HtwdR(f)⊗C[z] C((z)).

The spaces H(f), Ĥ(f) are equipped with the symplectic form

Ω(ω1, ω2) = Resz=0Kf (ω1, ω2)dz

where Kf is the restriction of the higher residue pairing to the fiber of the sheaf F at
f . Note that H+(f) is a Lagrangian (i.e. maximally isotropic) with respect to Ω.

The spaces H(f), Ĥ(f) are the B-model analogues of Givental’s symplectic space [33].
The Gauss-Manin connection induces a flat connection ∇ on the bundle H =

⋃
f H(f)

and the symplectic form Ω is flat with respect to ∇. Over a contractible subset U of the
marginal locusM◦mar, we can identify all fibers H(f) via parallel transport1 with a single
symplectic space H; then we can regard f 7→ H+(f) as a family of Lagrangian subspaces
in H parametrized by f ∈ U . This is an example of the semi-infinite variation of Hodge
structure (semi-infinite VHS) in the sense of Barannikov [5] (see also [21]). The main
property of the semi-infinite VHS is the Griffiths transversality:

∇~vH+(f) ⊂ z−1H+(f) for ~v ∈ TM

1The parallel transport is well-defined only over the marginal locus; the parallel transport along
relevant deformations involves infinitely many negative powers of z, and only makes sense after tensoring
H with the ring of holomorphic functions on {z ∈ C×} over C[z, z−1].
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for the semi-infinite flag · · · ⊂ zH+(f) ⊂ H+(f) ⊂ z−1H+(f) ⊂ · · · . In the z-direction,
we also have ∇z∂zH+(f) ⊂ z−1H+(f).

4.2. Definition and first properties.

Definition 4.1 ([5, 21]). We say that a Lagrangian subspace P ⊂ H(f) is opposite if
H(f) = H+(f)⊕ P and z−1P ⊂ P .

The vector space H(f) can be identified with the space of sections of a vector bundle
over {z ∈ C×} and the subspace H+(f) corresponds to the extension of the vector
bundle across 0. In this viewpoint, the data of an opposite subspace P corresponds to
an extension of the bundle across ∞ such that the resulting bundle over P1 is trivial.

Proposition 4.2. If P is an opposite subspace, then the following properties hold:

(1) The vector space H+(f) ∩ zP has dimension N .
(2) If {ωi}Ni=1 is a basis of H+(f) ∩ zP , then K(ωi, ωj) ∈ C.
(3) Let {ωi} and {ωi} be dual bases of H+(f)∩zP with respect to the residue pairing

K
(0)
f . Then

{ωizk}k=0,1,...
i=1,...,N and {ωi(−z)−k−1}k=0,1,...

i=1,...,N

are bases of respectively H+(f) and P dual with respect to the symplectic pairing.

The proof of the above proposition is straightforward, so it will be omitted. Motivated
by Proposition 4.2, for a given opposite subspace P we will refer to a basis of H+(f)∩zP
as a good basis. Note that a C[z]-basis {ωi} of H+(f) is good if and only if K(ωi, ωj) ∈ C.
Similarly, one can define the notion of an opposite subspace and a good basis for the

completion Ĥ(f) and its Lagrangian subspace Ĥ+(f) := H+(f)⊗C[z] C[[z]]. Proposition
4.2 still holds, except for property (3), which takes the following form. Put H :=

Ĥ+(f) ∩ zP , then

(3) Ĥ+(f) = H[[z]], P = H[z−1]z−1.

An opposite subspace P ⊂ H(f) at f ∈ M can be extended to a family of opposite
subspaces in a neighbourhood U of f ∈ M by parallel transport (see the discussion
in §5.2 and [21, §2.2]). We regard this family of opposite subspaces as a subbundle of
H =

⋃
f H(f) and denote it again by P . The Gauss-Manin connection induces a flat

connection on the finite-dimensional bundle zP/P and the identification

H+ ∩ zP ∼= zP/P

induces a trivialization H+
∼= (zP/P )[z] over U by a flat bundle zP/P . With respect

to this trivialization, the Gauss-Manin connection is of the form:

∇ = d+
1

z
C

with C ∈ End(zP/P ) ⊗ Ω1
M independent of z. This fact is crucial in the construction

of a Frobenius (flat) structure. See §5.2 for more details.
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4.3. Homogeneous opposite subspaces over the marginal moduli. In this sub-
section we assume that f lies in the marginal moduli M◦mar, i.e. f is a weighted homo-
geneous polynomial of degree 1. The operator

(4) z∂z + Lieξ, ξ :=

n∑
i=1

cixi∂xi ,

where Lie denotes the Lie derivative, defines a grading on Ωn
Cn [z, z−1]. Since the twisted

de Rham differential zd+ df(x; t)∧ is homogeneous (of degree 1), the twisted de Rham
cohomology H(f) inherits the grading. We say that an opposite subspace P ⊂ H(f)
is homogeneous if (z∂z + Lieξ)P ⊂ P . We would like to establish one-to-one corre-
spondence between homogeneous opposite subspaces and splittings of the Steenbrink’s
Hodge filtration of the vanishing cohomology h := Hn−1(f−1(1);C).

Remark 4.3. An opposite subspace P is homogeneous if and only if P is preserved
by the Gauss-Manin connection in the z-direction, i.e. ∇z∂zP ⊂ P . This implies that
the Gauss-Manin connection has a logarithmic singularity at z =∞ with respect to the
extension of the bundle H+(f) across ∞ defined by P ; this corresponds to the notion
of TLEP structure [38].

4.3.1. Steenbrink’s Hodge structure for weighted-homogeneous singularities. Given a
holomorphic form ω ∈ ΩCn(Cn) we recall the so-called geometric section (see [4])

s(ω, λ) :=

∫
ω

df
∈ Hn−1(f−1(λ);C),

where ω/df denotes a holomorphic (n− 1)-form η defined in a tubular neighborhood of
f−1(λ) such that ω = df ∧η; the restriction of η to f−1(λ) is well-defined. By definition,
Steenbrink’s Hodge filtration [70, 71] on h is given by

F ph := {A ∈ h | A = s(ω, 1) for some ω such that deg(ω) ≤ n− p},

where deg(ω) denotes the maximal degree of a homogeneous component of ω. This is an
exhaustive filtration; in particular every cohomology class of f−1(1) can be represented
by a geometric section.

The vector space h = Hn−1(f−1(1);C) is equipped with a linear transformation
M ∈ End(h), called the classical monodromy, which corresponds to the monodromy
of the Gauss–Manin connection around λ = 0. Using the fact that f is weighted-
homogeneous, it is easy to see that if A = s(ω, 1) for some homogeneous form ω, then

M(A) = e−2π
√
−1 deg(ω)A. Let us decompose h = h1 ⊕ h 6=1, where h1 is the invariant

subspace of M and h 6=1 is the remaining part of the spectral decomposition of h with
respect to M . Following Hertling (see [38, Ch. 10]) we introduce the non-degenerate
bilinear form

S(A,B) = (−1)(n−1)(n−2)/2〈A,Var ◦ν(B)〉, A,B ∈ h,

where ν is a linear operator such that ν = (M − 1)−1 on h6=1 and ν = −1 on h1, and
the variation operator

Var: Hn(f−1(1);C)→ Hn(f−1(1);C)
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is an isomorphism constructed via the composition of the Lefschetz duality

Hn(f−1(1);C) ∼= Hn(f−1(1), ∂f−1(1);C)

and the isomorphism Hn(f−1(1), ∂f−1(1)) ∼= Hn(f−1(1)) mapping a relative cycle γ to

an absolute cycle M̃(γ)− γ, where M̃ : f−1(1) → f−1(1) is the geometric monodromy
fixing the boundary (see [4, Ch. 1.1, 2.3]).

Combining the results of Hertling (see [38, Ch. 10]) and Steenbrink (see [71]) we
get the following: the filtration {F ph}n−1

p=0 , the form S, and the real subspace hR :=

Hn−1(f−1(1),R) give rise to a (pure) Polarized Hodge Structures on h6=1 and h1 of
weights respectively n− 1 and n. More precisely, put hs = Ker(M − s Id); then F ph =⊕

s∈S1 F phs with F phs = F ph ∩ hs and

(a) hs = F phs ⊕ Fm+1−phs̄, ∀p ∈ Z,
(b) S(u, v) = (−1)mS(v, u),

(c) S(F ph, Fm+1−ph) = 0,

(d)
√
−1

2p−m
S(u, u) > 0 for u ∈ F phs ∩ Fm−phs̄ \ 0,

where m = n − 1 for s 6= 1 and m = n for s = 1. Note that S(hs, ht) = 0 unless t = s̄
and that hs = hs̄.

4.3.2. The polarizing form and the higher-residue pairing. We will identify the vector
space h = Hn−1(f−1(1);C) with a fiber of the local system underlying the Gauss-Manin
connection (H+(f) = F|f ,∇z∂z). Then we describe the higher residue pairing in terms
of the polarizing form S on h.

Recall that oscillatory integrals (2) give solutions of the Gauss-Manin connection,
and therefore the local system underlying the Gauss-Manin connection is dual to the
space

(5) Vf,z := lim←−
M

Hn(Cn, {x ∈ Cn : Re(f(x)/z) ≤ −M})

of Lefschetz thimbles (twisted by (−2πz)−n/2). By the relative homology exact se-
quence, we can easily see that this is isomorphic to Hn−1(f−1(1)); hence fibers of the
Gauss-Manin local system should be identified with h. To make this identification ex-
plicit, we use the Laplace transformation. When z < 0 and the integration cycle Γ in
(2) is a Lefschetz thimble of f lying over the straight ray [0,∞), we may rewrite the
oscillatory integral (2) as the Laplace transform of a period

(−2πz)−n/2
∫ ∞

0
eλ/z

∫
Γλ

s(ω, λ)

where Γλ is a vanishing cycle in f−1(λ) such that Γ =
⋃
λ∈[0,∞) Γλ. This can be viewed

as the pairing of the vanishing cycle Γ1 ⊂ f−1(1) and the cohomology class ŝ(ω, z) of
f−1(1) given by:

ŝ(ω, z) := (−2πz)−n/2
∫ ∞

0
eλ/zs(ω, λ)dλ

where we identified Hn−1(f−1(λ);C) ∼= h via the parallel transport along the integration
path (with respect to the Gauss-Manin connection), so that s(ω, λ) takes values in h.
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Thus the map [ω] 7→ ŝ(ω, z) defines a flat identification between H+(f)|z and h. For a
homogeneous form ω ∈ Ωn

Cn(Cn), the geometric section s(ω, λ) satisfies the homogeneity

s(ω, λ) = λdeg(ω)−1s(ω, 1), and therefore we find

(6) ŝ(ω, z) = (−2πz)−n/2(−z)deg(ω)Γ(degω)s(ω, 1).

Thus ŝ(ω, z) makes sense as a Laurent polynomial of z (with fractional exponents)
taking values in h. We verify the following lemma directly.

Lemma 4.4. The map

H+(f) = F|f −→ h[z±1/d], [ω] 7−→ ŝ(ω, z)

is well-defined and intertwines the Gauss-Manin connection ∇z∂z with the standard
differential z∂z, where d is a common denominator of c1, . . . , cn and n/2. This induces
an isomorphism H+(f)|z ∼= h between fibers for every z ∈ C×.

Proof. Let us first check that the map passes to the quotient H+(f) = Ωn
Cn(Cn)[z]/(zd+

df∧)Ωn−1
Cn (Cn)[z]. If ω is a homogeneous (n − 1)-form of degree m, then the image of

zdω + df ∧ ω is

(7) Γ(m)s(dω, 1)− Γ(m+ 1)s(df ∧ ω, 1).

multiplied by (−2πz)−n/2(−z)mz. On the other hand

s(dω, λ) =

∫
dω

df
= ∂λ

∫
ω = ∂λs(df ∧ ω, λ).

Using homogeneity, s(df ∧ω, λ) = λms(df ∧ω, 1). Hence s(dω, 1) = ms(df ∧ω, 1), so the
expression (7) vanishes. This proves that the map in the Lemma passes to the quotient.

Next we show that the map intertwines the Gauss-Manin connection with z∂z. For
a homogeneous form ω of degree m, the image of ∇z∂z [ω] = [−(f/z + n/2)ω] is

(−2πz)−n/2(−z)m
(

Γ(m+ 1)s(fω, 1)− n

2
Γ(m)s(ω, 1)

)
which equals z∂z ŝ(ω, z) = (m− n/2)ŝ(ω, z) since s(fω, 1) = s(ω, 1).

The last statement follows by comparing the ranks: the map is surjective since every
class on f−1(1) is represented by a geometric section, and Proposition 3.5 shows that
the rank of H+(f) equals the Milnor number N = dim h. �

Let us denote by ŝ(ω, z)∗ := ŝ(ω, e−π
√
−1z) the analytic continuation along the semi-

circle θ 7→ e−
√
−1θz, 0 ≤ θ ≤ π. The relation between the polarizing form S and the

higher residue pairing K has been determined by Hertling (see [38, Ch. 10], [39, §7.2(f);
§8, Step 2]). We follow the presentation in [51].

Theorem 4.5 ([38, 39], [51, Lemma 3.3]). The polarizing form S and the higher residue
pairing Kf are related by the formula:

Kf (ω2, ω1) = −S(ŝ(ω1, z)
∗, ν−1ŝ(ω2, z))(8)

where in the right-hand side we use the determination of ŝ(ωi, z) given canonically for
z ∈ R<0 via formula (6).
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Remark 4.6. We give a brief explanation for the above formula (8). Pham [56, 2ème,
§4] identified the higher residue pairing with the dual of the intersection pairing between
the relative homologies Vf,z and Vf,−z from (5) (see also [39, §8], [21, Definition 2.18]).
This intersection pairing can then be identified with the Seifert form 〈A,Var(B)〉 on h
by a topological argument in [4, Ch. 2.3], [56, 2ème, §3.2]. Note that the right-hand
side of (8) is induced by the Seifert form.

4.3.3. Splitting of the Hodge structure. Following M. Saito [66], we use opposite fil-
trations on h to construct homogeneous opposite subspaces for H+(f) (see also [38,
Theorem 7.16]).

Definition 4.7. An opposite filtration on h = Hn−1(f−1(1);C) is an increasing M -
invariant filtration {Uph}p∈Z such that

(a) Uph = 0 for p� 0 and Uph = h for p� 0,

(b) h =
⊕
p∈Z

F ph ∩ Uph,

(c) S(Uph, Um−1−ph) = 0, ∀p ∈ Z,
where m = n− 1 for s 6= 1 and m = n for s = 1.

Let ψ : h→ H(f)[z±1/d] denote the map inverse to the map [ω] 7→ ŝ(ω, z) in Lemma
4.4. This is given by

(9) ψ(A) =
(2π)n/2

Γ(degω)
(−z)− degω+n/2[ω]

when A = s(ω, 1) ∈ h for some homogeneous form ω ∈ Ωn
Cn(Cn). The image ψ(A) is

homogeneous of degree n/2 and is flat with respect to the Gauss-Manin connection.

Take s = e2π
√
−1α with 0 ≤ α < 1. Note that ψ(A) ∈ zα−n/2H(f) for A ∈ hs. The

Hodge filtration F phs can be described in terms of the Lagrangian subspace H+(f) as

F phs = {A ∈ hs : ψ(A) ∈ zp+α−n/2H+(f)}
since, for A = s(ω, 1) ∈ hs, every homogeneous component ωj of ω satisfies 〈−degωj〉 =
α and we have

−degωj +
n

2
≥ p+ α− n

2
⇐⇒ ddegωje ≤ n− p.

Conversely, H+(f) can be reconstructed from F ph as

H+(f) =
∑

0≤α<1

∑
p∈Z

z−p−α+n/2ψ(F phs)[z] with s = e2π
√
−1α.

The correspondence between homogeneous opposite subspaces P ⊂ H(f) and opposite
filtrations Uph is given similarly. We require that P and Uph are related by

Uphs = {A ∈ hs : ψ(A) ∈ zp+α−n/2zP}

P =
∑

0≤α<1

∑
p∈Z

z−p−α+n/2z−1ψ(Uphs)[z
−1] with s = e2π

√
−1α.(10)

Proposition 4.8 ([66], [38, Ch 7.4]). The formulas (10) establish one-to-one correspon-
dence between homogeneous opposite subspaces P and opposite filtrations {Uph}p∈Z.
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Proof. Given an opposite filtration {Uph}, we prove that the subspace P defined by the
second formula of (10) is an opposite subspace. It is obvious that P is homogeneous.
Using the decomposition hs =

⊕
p∈Z(F phs ∩ Uphs), we can rewrite

H+(f) =
⊕

0≤α<1

⊕
p∈Z

z−p−α+n/2ψ(F phs ∩ Uphs)[z]

P =
⊕

0≤α<1

⊕
p∈Z

z−p−α+n/2z−1ψ(F phs ∩ Uphs)[z−1]
(11)

where the summand indexed by α is generated by elements ω ∈ H(f) with α = 〈−degω〉.
This decomposition clearly shows H(f) = H+(f) ⊕ P . The Lagrangian property of P
follows from the property (c) of the opposite filtration: using the fact that ψ is inverse
to [ω] 7→ ŝ(ω, z) and equation 8, we have

K(z−p−α+n
2 z−1ψ(Uphs), z

−q−β+n
2 z−1ψ(Uqht))

= z−p−q−α−β+n−2S(Uqht, ν
−1Uphs) = z−p−q−α−β+n−2S(Uqht, Uphs)

when s = e2π
√
−1α and t = e2π

√
−1β with α, β ∈ [0, 1), and this is nonzero only if

−p− q−α−β+n ≤ 0 by the property (c). This means K(P, P ) ⊂ z−2C[z−1] and thus
P is Lagrangian.

In the opposite direction, we start from a homogeneous opposite subspace P ⊂ H(f).
The filtration Uphs defined by the first formula of (10) is an increasing filtration since
P ⊂ zP . The homogeneity of P implies that the finite-dimensional space H+(f) ∩ zP
is spanned by homogeneous elements. The map A 7→ (−z)−p−α+n/2ψ(A) identifies
Uphs ∩ F phs with the homogeneous component of zP ∩ H+(f) of degree n − p − α

(when s = e2π
√
−1α, α ∈ [0, 1)). Setting z = −1 and using the isomorphy of the

map h ∼= H+(f) ∩ zP ∼= H(f)|z=−1, A 7→ ψ(A)|z=−1 in Lemma 4.4, we conclude the
decomposition hs =

⊕
p∈Z F

phs ∩ Uphs, i.e. property (b) for opposite filtrations holds.

The property (a) follows from (b), and the property (c) follows from the Lagrangian
property of P by reversing the above argument. �

An opposite filtration {Uph}p∈Z induces a homogeneous opposite subspace P (10)

and an isomorphism σ = σU• : h
∼=−→ H+(f) ∩ zP by the formula (cf. (11))

(12) σ(A) = (−z)−p−α+n
2 ψ(A) for A ∈ F phs ∩ Uphs

where s = e2π
√
−1α, α ∈ [0, 1) and ψ is given in (9). The map σU• gives a splitting of

the projection H+(f)→ H+(f)|z=−1
∼= h.

The higher residue pairing takes values in C on the image of σ. We compute the
precise values for later purposes.

Lemma 4.9. Let σ be the splitting (12) associated to an opposite filtration U•. If

A ∈ F phs ∩ Uphs with s = e2π
√
−1α, α ∈ [0, 1) and B ∈ h is arbitrary, then

Kf (σ(A), σ(B)) = C(s)
√
−1

2p−m
S(A,B)

where we set m = n− 1 if s 6= 1 and m = n if s = 1, and

C(s) =

{
2 sin(πα) if α 6= 0;

1 otherwise.
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Proof. We may assume thatB ∈ F qht∩Uqht with t = e2π
√
−1β and β ∈ [0, 1). Combining

the fact that ψ is inverse to [ω] 7→ ŝ(ω, z) and Theorem 4.5, we find

Kf (σ(A), σ(B)) = −S(e−π
√
−1(−q−β+n

2
)(−z)−q−β+n

2B, ν−1(−z)−p−α+n
2A).

This pairing vanishes unless α + β ≡ 0 mod Z and p + q + α + β = n. If α 6= 0, this
equals

−eπ
√
−1(m−p+1−α)(

√
−1)−m−1(e2π

√
−1α − 1)(−1)mS(A,B)

by ν−1A = (e2π
√
−1α − 1)A, β = 1− α and p+ q = n− 1 = m; if α = 0, this equals

−eπ
√
−1(m−p)(

√
−1)−m(−1)(−1)mS(A,B)

by ν−1A = −A, α = β = 0, p+ q = n = m. The conclusion follows easily. �

Remark 4.10. When we regard H+(f) as a vector bundle over C and zP as the exten-
sion data across ∞, the filtration Uph (10) on the space h of flat sections is determined
by pole orders at z =∞.

4.4. The complex conjugate opposite subspace. Over the marginal locus, the
vector bundle H → M◦mar has a natural real structure coming from the space of real
semi-infinite cycles

Vf,z = lim←−
M∈R+

Hn(Cn, {x : Re(f(x)/z) < −M};R) ∼= RN ,

where the homology groups form an inverse system with respect to the natural order
on R+ and the limit is the projective (or inverse) limit of vector spaces. The vector
spaces Vf,z form a real vector bundle onM◦mar×C× equipped with a flat Gauss–Manin
connection. For each f ∈ Mmar, let us denote by H(f ;R) ⊂ H(f) the real vector
subspace consisting of ω such that

(13) (−2πz)−n/2
∫
α
ef/zω ∈ R ∀α ∈ Vf,z, ∀z ∈ S1

or equivalently,
ŝ(ω, z) ∈ hR ∀z ∈ S1

where S1 = {|z| = 1} is the unit circle. Let κ : H(f)→ H(f) be the complex conjugation
corresponding to the real subspace H(f ;R). The main properties of the complex con-
jugation κ can be summarized as follows (see [42] for generalities on the real structure
in a semi-infinite VHS). Let us denote by

γ : C[z, z−1]→ C[z, z−1], γ(g)(z) := g(z−1)

the complex conjugation corresponding to the real subspace consisting of Laurent poly-
nomials that take real values on |z| = 1. By definition, we have

κ(gω) = γ(g)κ(ω).

Remark 4.11. The definition (13) for [ω] to be real extends to non-marginal poly-
nomials f ∈ M \M◦mar; however our algebraic model H(f) is not necessarily closed
under the real involution κ. In general, κ is defined on the analytification H(f)an =
H(f)⊗C[z,z−1]Oan(C×) and H(f ;R) can be only defined as a subspace of H(f)an, where

Oan(C×) denotes the ring of holomorphic functions on C×.
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Complex conjugation in the vanishing cohomology h gives a natural splitting of the
Steenbrink’s Hodge filtration:

(14) Uphs := Fm−phs̄ for p ∈ Z, |s| = 1,

where m = n− 1 for s 6= 1 and m = n for s = 1.

Proposition 4.12. Let f ∈M◦mar be a marginal deformation. The subspace z−1κ(H+(f))
is opposite and corresponds to the complex conjugate opposite filtration (14) under (10).

Proof. Let σ : h → H(f) be the splitting (12) defined by the complex conjugate filtra-
tion (14). It suffices to show that σ(h) is κ-invariant; indeed this implies σ(h)[z−1] =
κ(σ(h)[z]) = κ(H+(f)). We will prove that

(15) κ(σ(A)) = σ(A) ∀A ∈ h.

Recall from the definition of ŝ(ω, z) in §4.3.2 that we have

(−2πz)−n/2
∫

Γ
ef/zω =

∫
Γ1

ŝ(ω, z)

and thus the map [ω] 7→ ŝ(ω, z) intertwines the complex conjugation κ on H(f)|S1 with
the standard complex conjugation on h. This implies ψ(A) = κ(ψ(A)) since ψ is inverse

to the map [ω] 7→ ŝ(ω, z). For A ∈ F phs ∩ Uphs with s = e2π
√
−1α, 0 ≤ α < 1, we have

κ(σ(A)) = κ(z−p−α+n
2 ψ(A)) = zp+α−

n
2 ψ(A).

Here A ∈ F qhs̄ ∩ Uqhs̄ for q with p + α − n
2 = −q − 〈−α〉 + n

2 . Therefore, the above

quantity equals z−q−〈−α〉+
n
2 ψ(A) = σ(A). The proposition is proved. �

4.5. Opposite subspaces for Fermat polynomials. In this subsection we will as-
sume that

f(x) = xN1+1
1 + · · ·+ xNn+1

n

is a Fermat polynomial. The higher residue pairing Kf factorizes into a tensor product

of the higher residue pairings of the summands xNi+1
i . Using a simple degree count it

is easy to see that the forms

(16) xi11 · · ·x
in
n dx1 · · · dxn, 0 ≤ is ≤ Ns − 1

form a good basis, i.e., if we denote by H ⊂ H+(f) the subspace spanned by the above
forms, then P = z−1H[z−1] is an opposite subspace.

Proposition 4.13. The complex conjugate subspace κ(H+(f)) equals the subspace zP
spanned by the forms (16) over C[z−1].

Proof. Since P is an opposite subspace, we have H+(f) = H[z]. Therefore, it is enough
to prove that κ(H) ⊂ H. On the other hand, note that if f = f1⊕ f2 is a direct sum of
the quasi-homogeneous functions fi : Cni → C, then the direct product of cycles defines
an isomorphism

Hn1(Cn1 , {Re(f1/z)� 0})⊗Hn2(Cn2 , {Re(f2/z)� 0}) ∼= Hn(Cn, {Re(f/z)� 0}).
Moreover, if ωi ∈ H+(fi), i = 1, 2, then ω1 ∧ ω2 ∈ H+(f) and

κ(ω1 ∧ ω2) = κf1(ω1) ∧ κf2(ω2),
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where on the RHS we use the index fi (i = 1, 2) to indicate that the conjugation is
in the corresponding twisted de Rham cohomology. This observation reduces the proof
of our Proposition to the case n = 1, i.e., we may assume that f(x) = xN+1. The
oscillatory integrals are very easy to compute explicitly and we can verify directly that

κ

 xidx

Γ
(
i+1
N+1

)
 =

xN−1−idx

Γ
(
N−i
N+1

) .
Alternatively, we could argue that the opposite subspace P corresponds to a splitting
of the Steenbrink’s Hodge filtration of f . However, in this case h1 = 0 and F ph = 0
for p > 0 and F ph = h for p ≤ 0. Note that there is a unique monodromy invariant
filtration U• which gives a splitting: Uph = h for p ≥ 0 and Uph = 0 for p < 0. Using
Proposition 4.12, we get that P = κ(H+(f))z−1. �

Remark 4.14. The results of this section can be generalised to any invertible polyno-
mial.

4.6. The Cecotti-Vafa structure. Cecotti and Vafa introduced tt∗-geometry for N =
2 supersymmetric quantum field theories [10, 11]. This structure has been studied in
mathematics by Dubrovin [27], Hertling [39] and many others. The Cecotti-Vafa struc-
ture for isolated hypersurface singularities has been introduced in [39]. We describe the
structure for weighted homogeneous polynomials using the complex conjugate opposite
subspaces.

Proposition 4.15. If f ∈ M◦mar, then the subspace z−1κ(H+(f)) is an opposite sub-
space and

h(ω1, ω2) = K(0)(κ(ω1), ω2)

is a positive-definite Hermitian pairing on

K(f) := H+(f) ∩ κ(H+(f)).

Proof. According to Proposition 4.12, z−1κ(H+(f)) is an opposite subspace. Thus we
have the corresponding splitting (see (12))

σ : h→ H+(f) ∩ κ(H+(f)).

Moreover, using formula (15), we have

h(ω, ω) = K(0)(σ(A), σ(A)),

where ω = σ(A). Let us assume that A ∈ F phs ∩ Uphs. Then using Lemma 4.9, we get
that the above pairing is

C(s)
√
−1

2p−m
S(A,A).

Recalling that F ph is a Polarized Hodge Structure (see property (d) in Section 4.3.1),
we get that the above number is a positive real number. �

By Remark 4.11, we can extend the real structure κ over the whole space M by ex-
tending scalars. Following the notation there, we write H+(f)an = H+(f)⊗C[z]Oan(C).
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Because the oppositeness is an open condition, the subspace z−1κ(H+(f)an) is oppo-
site to H+(f)an for f in a neighborhood of M◦mar. Moreover, the Hermitian form
h(ω1, ω2) = K(κ(ω1), ω2) on the vector space

K(f) := H+(f)an ∩ zκ(H+(f)an)

is positive definite for f in a neighborhood of M◦mar. On the other hand, Sabbah
[62, §4] proved that the Brieskorn lattice of any cohomologically tame function on
a smooth affine manifold with only isolated critical points satisfies these properties,
i.e. the oppositeness and the positive-definiteness of h. Therefore we have a globally
defined Hermitian C∞ vector bundle K → M whose fiber at f ∈ M is K(f). The
Gauss–Manin connection ∇ on H induces a family of flat connections of K depending
on a parameter z ∈ C×, which will be called the Cecotti–Vafa connection. Namely, let
us pick a C∞-frame {ωi}Ni=1 for K. The deformation space M, being a Zariski open
subset of a standard complex vector space, has a natural holomorphic coordinate system
σ = (σ1, . . . , σN ′) and the vector fields

∂/∂σ1, . . . , ∂/∂σN ′ , ∂/∂σ1, . . . , ∂/∂σN ′

give a frame for the complexified tangent bundle TCM := TM⊗R C. The properties
∇XH+(f) ⊂ z−1H+(f), ∇z∂zH+(f) ⊂ z−1H+(f) imply that

∇X(κH+(f)) = κ(∇XH+(f)) ⊂ zκ(H+(f))

∇z∂zκ(H+(f)) = κ(∇−z∂zH+(f)) = zκ(H+(f))

for a complexified vector field X ∈ TCM, where we used ∇Xκ = κ∇X and κ(z−1ω) =
zκ(ω). From these properties we get that in the frame {ωi} the Gauss–Manin connection
takes the form

∇iωa =

N∑
b=1

(
Γbia(σ) + z−1Cbia(σ)

)
ωb

∇ı̄ωa =
N∑
b=1

(
Γbı̄a(σ) + zC̃bı̄a(σ)

)
ωb

∇z∂zωa =
N∑
b=1

(
− U ba(σ)z−1 +Qba(σ) + Ũ ba(σ)z

)
ωb

where ∇i := ∇∂/∂σi , ∇ı̄ := ∇∂/∂σi , and the connection matrices are C∞ functions in σ.
It is easy to prove that

D = d+

N ′∑
i=1

(
Γidσi + Γı̄dσi

)
is compatible with the Hermitian metric h and its (0, 1) part defines the holomorphic
structure on K ∼= H+/zH+ and its (1, 0) part defines the anti-holomorphic structure
on K ∼= κ(H+)/z−1κ(H+). Here Γi,Γı̄ ∈ End(K) are defined by Γiωa =

∑
b Γbiaωb and

Γı̄ωa =
∑

b Γbı̄aωb. Using the compatibility of the Gauss–Manin connection with the
complex conjugation

∇X = κ∇Xκ, ∇z∂z = −κ∇z∂zκ
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we get the following relations between the connection matrices

C̃ı̄ = κCiκ, Ũ = κUκ, Q̃ = −κQκ.

Remark 4.16. When we choose {ωi} to be a frame that is holomorphic under the
identification K ∼= H+/zH+

∼=
⋃
f Jac(f) · dx, then we have Γı̄ = 0. Moreover the

operators Ci and U above correspond to the multiplication on Jac(f) · dx by ∂σif(x;σ)
and f , respectively. In particular, U = 0 along the marginal locus M◦mar.

5. Quantization and Fock bundle

Using Givental’s quantization formalism [32], we define a vector bundle of Fock spaces
on the moduli spaceM◦mar. The main motivation for our definition is to provide a con-
venient language to state mirror symmetry as well as to investigate the transformation
properties under analytic continuation of Givental’s total ancestor potential.

5.1. Givental’s quantization formalism. Let H be a complex vector space of dimen-
sion N equipped with a non-degenerate bi-linear pairing ( , ). Givental’s quantization is
based on the vector space H = H((z)) equipped with the following symplectic structure:

Ω(f1(z), f2(z)) = Resz=0(f1(−z), f2(z))dz.

The Lie algebra of infinitesimal symplectic transformations A ofH is naturally identified
with the Poisson Lie algebra of quadratic Hamiltonians via

A 7→ hA(f) :=
1

2
Ω(Af , f).

Note that f 7→ Af can be interpreted as a vector field on H. This vector field is
Hamiltonian with Hamiltonian hA if and only if A is an infinitesimal symplectic trans-
formation.

The symplectic vector space has a natural polarization H = H+ ⊕H−, where H+ :=
H[[z]] andH− := H[z−1]z−1 are Lagrangian subspaces. The polarization allows us to use
the so-called canonical quantization to represent quadratic Hamiltonians by differential
operators. In coordinates, the representation can be constructed as follows. Let {φi}Ni=1

and {φi}Ni=1 be bases of H dual with respect to the pairing ( , ). Then the linear
functions on H defined by

pk,i(f) = Ω(f , φiz
k), qk,i(f) = Ω(φi(−z)−k−1, f), 1 ≤ i ≤ N, k ≥ 0,

form a Darboux coordinate system. We define Â := ĥA, where a function in pk,i and
qk,i is quantized by the rules

pk,i 7→ ~1/2 ∂

∂qk,i
, qk,i 7→ ~−1/2qk,i

and normal ordering, i.e., all differentiation operations should preceed the multiplication
ones.

If R is a symplectic transformation of H of the form 1 + R1z + R2z
2 + · · · , where

Rk ∈ End(H), then we can formally define A = logR and R̂ = eÂ. Let us introduce the
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quadratic differential operator

VR :=

∞∑
k,`=0

N∑
i,j=1

(Vk`φ
j , φi)

∂2

∂qk,i∂q`,j
,

where Vk` ∈ End(H) are defined by

∞∑
k,`=0

Vk`z
kw` =

1−R(z)Rt(w)

z + w
.

.

Proposition 5.1. Let F = F(~; q) be a formal power series in q = (qk,i) with coeffi-

cients in C~ = C((~)) such that R̂−1F is well defined. Then

R̂−1F =
(
e

~
2
VRF

)∣∣∣
q 7→R(z)q

,

where R(z)q is defined by identifying q with a vector
∑∞

k=0

∑N
i=1 qk,iφiz

k ∈ H[[z]].

5.2. From an opposite subspace to a Frobenius structure. Let us denote by
L →M◦mar the line bundle whose fiber over a point f ∈M◦mar is the space of elements
in H+(f) of minimal degree; i.e., Lf = C dx1 · · · dxn. We refer to L as the vacuum line
bundle.

Assume now that f ∈ Mmar is a given point, ω ∈ Lf is a non-zero form, and P is a
homogeneous opposite subspace of H+(f). Let us choose a good basis of homogeneous
forms {ω}Ni=1 ⊂ H+(f) ∩ Pz and define φi ∈ Jac(f) such that2

ωi ≡ φi ω mod zH+(f), 1 ≤ i ≤ N.

We construct a miniversal unfolding of f by

F (x, t) = f(x) +
N∑
i=1

tiφi(x), t = (t1, . . . , tN ) ∈ Bf ,

where Bf ⊂ CN is a sufficiently small ball representing the holomorphic germ at 0 of

CN and φi(x) is a homogeneous polynomial representing φi ∈ Jac(f). Let us assign
a degree to ti such that F (x, t) is weighted homogeneous of degree 1, and let us split
the deformation parameters t into 3 groups: relevant trel = (t1, . . . , tNrel

), marginal
tmar = (tNrel+1, . . . , tNrel+Nmar), and irrelevant tirr = (tNrel+Nmar+1, . . . , tN ), depennding
on whether their degrees are respecively > 0, = 0, or < 0. There is a natural way to
construct a Frobenius structure on Bf . Let us outline the construction referring for
more details to [38, 63, 65]. To begin with, we choose an appropriately small Stein
domain Xf ⊂ Cn ×Bf around 0 (see [4]). Let us denote by F : Xf → C the miniversal

unfolding of f and put F̂ := Rnϕ∗(Ω̂twdR, d̂twdR) for the hypercohomology of the twisted
de Rham complex

(Ω̂•twdR, d̂twdR) := (Ω•Xf/Bf [[z]], zdXf/Bf + dF∧),

2The differential form φiω depends on the choice of a representative of φi ∈ Jac(f), but the class of
φiω in H+(f)/zH+(f) does not.
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where ϕ : Xf ⊂ Cn × Bf → Bf is the natural projection. Following the argument in

Section 3 it is easy to prove that after decreasing Bf if necessary, F̂ is a trivial vector
bundle on Bf , whose fiber over a point s ∈ Bf

Ĥ+(F ) := Ωn
Xf

[[z]]/(zd+ dF∧)Ωn−1
Xf

[[z]], F = F (x, s),

is a free C[[z]]-module of rank the Milnor number N . Put

Ĥ(F ) := Ĥ+(F )⊗C[[z]] C((z)).

This way we obtain vector bundles Ĥ+ ⊂ Ĥ on Bf . For a given holomorphic function
g(x, z) ∈ OXf (Xf )⊗ C((z)) let us denote by

[g(x, z)dx]F =:

∫
eF (x)/zg(x, z)dx

the equivalence class of the form g(x, z)dx1 · · · dxn in the de Rham cohomology group

Ĥ(F ).

5.2.1. Extension in the relevant and marginal directions. There is a unique way to ex-

tend ωi = [gi(x, z)dx]f to sections ω̃i of Ĥ+|{tirr=0} so that they give a good basis in each

fiber Ĥ+(F ) for F ∈ {tirr = 0} ⊂ Bf . The extension can be constructed by Birkhof’s

factorization as follows. Let us denote by Gi the section of Ĥ+ obtained by flat exten-
sion of ωi with respect to the Gauss–Manin connection. The Gauss–Manin connection
∇ gives rise to a system of differential equations

z∇∂/∂ti [gj(x, z)dx]F =
N∑
k=1

Γkij(t, z)[gk(x, z)dx]F , 1 ≤ i ≤ Nrel +Nmar.

Since f is weighted-homogeneous, the functions gi(x, z) are polynomials in z. In particu-
lar, the connection matrix Γ is holomorphic at (t, z) = (0, 0). Let us pick a fundamental
solution Φ(t, z); i.e., a N ×N non-degenerate matrix solving the differential equations

(17) z∂tiΦ(t, z) = Γi(t, z)Φ(t, z), 1 ≤ i ≤ Nrel +Nmar,

where Γi(t, z) is the matrix whose (j, k)-entry is Γkij(t, z) and satisfying Φ(0, z) = 1. We
have

[gi(x, z)dx]F =
N∑
j=1

Φij(t, z)Gj .

Note that Φ(t, z) is a holomorphic matrix for z ∈ C∗ := P1 \ {0,∞} that has a Birkhof
factorization at t = 0, so Φ(t, z) must have a Birkhof factorization for all t ∈ Bf provided
we choose Bf sufficiently small. Put Φ(t, z) = Φ+(t, z)−1Φ−(t, z), where Φ−(t, z) is
holomorphic for z ∈ P1 \ {0} (with Φ−(t,∞) = 1) and Φ+(t, z) is holomorphic for
z ∈ P1 \ {∞}. One can check that the forms

ω̃i =

N∑
j=1

(Φ+(t, z))ij [gj(x, z)dx]F , 1 ≤ i ≤ N,
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give rise to a good basis. Moreover, the good basis ω̃i = [g̃i(x, t
rel, tmar; z)dx]F de-

pends polynomially on x, trel and z (because these variables have positive degrees) and
analytically in tmar.

5.2.2. Extension in the irrelevant directions. If we want to extend in the irrelevant
directions, then the above argument becomes much more involved, because the system
(17) might fail to be convergent and holomorphic in z. To offset this difficulty one can
take the formal Laplace transform, solve the resulting system, and then obtain ω̃i via
the inverse Laplace transform. The details are quite delicate, so we refer to [38, 66].
An alternative way to proceed is the perturbative approach of [47]. The main idea is
to look for a good basis that depends formally on the irrelevant parameters, i.e., we are
looking for a good basis of the form

ω̃i = [g̃i(x, t, z)dx]F , g̃i ∈ C{tmar}[x, trel][[tirr, z]],

where C{a} is the ring of convergent power series in a. According to [47], first we have
to find the extension ω̃ = g̃(x, t, z)dx of the volume form ω ∈ Lf − {0} by solving the

following equation in Ĥ+(f) :

J(t, z) := e(F (x,t)−f(x,trel,tmar))/z g̃(x, t, z)dx ∈ ω +H[[z−1]]z−1,

where H = H+(f) ∩ zP is the vector space spanned by the good basis {ωi}Ni=1. The
extension of the remaining forms is obtained from the period map

(18) TBf [[z]]→ Ĥ+, ∂ti 7→ z∇∂ti [ω̃]

as the image of the flat vector fields. The latter are the vector fields corresponding to
the coordinate system on Bf given by the coefficients in front of z−1 of J(t, z). We
define a Frobenius structure on Bf for which a basis of flat vector fields corresponds

via the period map (18) to the good basis {ω̃i}Ni=1 and the flat pairing corresponds to

K
(0)
F . Let us point out that the extension ω̃ of the volume form ω is a primitive form in

the sense of K. Saito. Slightly abusing the terminology we will sometimes refer to the
sections of L as primitive forms, keeping in mind that they do become primitive only
after an appropriate extension.

5.3. The total ancestor potential. Given f ∈ Mmar, ω ∈ Lf \ {0}, an opposite

subspace P ⊂ H(f), and a good basis {ωi}Ni=1 ⊂ H+(f)∩Pz, let us construct a miniversal
unfolding space Bf equipped with a Frobenius structure as explained above. Using the
flat structure we trivialize the tangent and the co-tangent bundle

T ∗Bf ∼= TBf ∼= Bf × T0Bf ∼= Bf × Jac(f),

where the first isomorphism uses the non-degenerate pairing, the 2nd one uses the
flat Levi-Civita connection, and the last one is induced from the period isomorphism
T0Bf ∼= H+(f)/zH+(f) and the isomorphism

(19) Jac(f) ∼= H+(f)/zH+(f), φ(x) 7−→ φ(x)ω mod zH+(f).

Note that φi ∈ Jac(f) are the elements corresponding to the good basis ωi via the
isomorphism (19). Let us introduce the Fock space

C~[[q0, q1 + 1, q2, . . . ]] = C((~))[[q0, q1 + 1, q2, . . . ]]



GW THEORY OF QUOTIENT OF FERMAT CALABI-YAU VARIETIES 29

of formal power series in q = (qk,i)
k=0,1,...
i=1,...,N . We denote qk =

∑N
i=1 qk,iφi. The shift q1 +1

means that the element 1 ∈ Jac(f) should be written as 1 =
∑

i aiφi and in the formal
power series the variables q1,i are shifted to q1,i + ai.

On the other hand, if F is a generic deformation of f , then the critical values of F
give rise to the so-called canonical coordinate system u = (u1, . . . , uN ), defined locally
near F , in which the Frobenius multiplication and the pairing are diagonal

(∂ui , ∂uj ) = δi,j/∆i, ∂ui • ∂uj = δi,j∂uj .

Let us denote by

ΨF : CN → TFB ∼= Jac(f), ΨF (ei) =
√

∆i∂ui

the trivialization of the tangent bundle at a generic F . The total ancestor potential is
an element of the Fock space defined by

AF (~; q) := Ψ̂F R̂F

N∏
i=1

Dpt(~∆i;
iq
√

∆i),

where RF is a symplectic transformation of CN ((z)) of the type 1+R1z+ · · · , which will
be defined below. We have a different set of formal variables iq = (iq0,

iq1, . . . ) which
is related to the previous one by

N∑
i=1

iqkΨF (ei) = qk, k ≥ 0.

By definition the quantization Ψ̂F acts by the above substitution. Finally, Dpt is the
Witten–Kontsevich tau function:

Dpt(~; q) = exp
( ∞∑
g,n=0

~g−1

n!

∫
Mg,n

n∏
i=1

(q(ψi) + ψi)
)
,

where q = (qk)k≥0 is a sequence of formal variables and q(ψi) =
∑∞

k=0 qkψ
k
i (with ψi the

1st Chern class of the line bundle of i-th marked point cotangent lines) is a cohomology
class on Mg,n. Note that the dilaton shift is incorporated here, so the function is an
element of C~[[q0, q1 + 1, q2, . . . ]].

The operator RF is in general defined as a formal solution of the Gauss–Manin
connection near the irregular singular point z = 0. In the case of singularity theory,
however, we have an alternative description in terms of a stationary phase asymptotic.
Namely, let βi ⊂ Cn be the cycle swept by the vanishing cycle vanishing at the critical
point of F corresponding to the critical value ui, then the stationary phase asymptotic

(20) (−2πz)−1/2

∫
βi

eF (x)/zω̃a ∼ (ΨFRF (z)ei, φa)e
ui/z, z → 0,

where φa ∈ Jac(f) corresponds to the flat vector field determined by ω̃a.
According to Milanov [50], the total ancestor potential AF extends analytically for

all F ∈ Bf . In particular, we have a well defined limit

Aω1,...,ωN
f,ω (~; q) := lim

F→f
AF (~; q).
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Let us describe the dependence of the total ancestor potential on the choices of ω and
ω1, . . . , ωN . Assume that ω′ ∈ Lf − {0}, P ′ ⊂ H(f) is an opposite subspace, and

{ω′i}Ni=1 ⊂ H+(f)∩P ′z is a good basis. It is convenient to split the general formula into
two cases. The first case is the following: if P ′ = P , then

(21) ω′j =
N∑
i=1

ωiBij , ω′ = cω

for some invertible matrix B = (Bij)
N
i,j=1 and some non-zero constant c. The second

case is the following: if ω′ = ω and

ω′i ≡ ωi ≡ φiω mod zH+(f), 1 ≤ i ≤ N,

where {φi}Ni=1 ⊂ Jac(f). Let us denote by R(f, z) the linear operator in Jac(f)((z))
whose matrix (Rij(f, z))

N
i,j=1 with respect to the basis {φi}Ni=1 is defined by

(22) ω′j(f) =

N∑
i=1

ωi(f)Rij(f, z), 1 ≤ j ≤ N.

Let us recall Givental’s quantization formalism for

H = Jac(f), (ψ1, ψ2) := K(0)(ψ1ω, ψ2ω), ψ1, ψ2 ∈ Jac(f).

Note that R(f, z) is a symplectic transformation of H = H((z−1)) of the type 1 +
R1(f)z +R2(f)z2 + · · · .

Proposition 5.2. a) The transformation of the total ancestor potential under the
change (21) is given by

Aω
′
1,...,ω

′
N

f,ω′ (~; q) = Aω1,...,ωN
f,ω (~c−2; c−1Bq),

where (c−1Bq)k,i =
∑N

j=1 c
−1Bijqk,j.

b) The transformation of the total ancestor potential under the change (22) is given
by

Aω
′
1,...,ω

′
N

f,ω (~; q) = (R(f, z)t)∧Aω1,...,ωN
f,ω (~; q),

where R(f, z)t is the transpose of R(f, z) with respect to the residue pairing.

Proof. Let us denote by

A′F (~; q) = Ψ̂′F R̂
′
F

N∏
i=1

Dpt(~∆′i;
iq
√

∆′i)

the total ancestor potential corresponding to the Frobenius structure determined by
the primitive form ω′ and the good basis ω′1, . . . , ω

′
N . Let τ = (τ1, . . . , τN ) and τ ′ =

(τ ′1, . . . , τ
′
N ) be the flat coordinates on Bf corresponding respectively to the good bases

{ωi}Ni=1 and {ω′i}Ni=1. By definition

z∇∂/∂τiω = ωi, z∇∂/∂τ ′iω
′ = ω′i, 1 ≤ i ≤ N.
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a) Recalling the change (21) we get the following relations

τi =
N∑
j=1

c−1Bijτ
′
j ,

∂

∂τ ′j
=

N∑
i=1

c−1Bij
∂

∂τi
.

The matrix of Ψ′F : CN → Jac(f) with respect to the bases {ei}Ni=1 ⊂ CN and {φ′i}Ni=1 ⊂
Jac(f), φ′i = ∂/∂τ ′i has entries (Ψ′F )ki defined by

Ψ′F ei =
N∑
k=1

φ′k (Ψ′F )ki, (Ψ′F )ki =
√

∆i ∂τ
′
k/∂ui.

Similarly, ΨF is represented by a matrix with entries (ΨF )ki =
√

∆i ∂τk/∂ui. Note that√
∆′i = c−1

√
∆i, R

′
F = RF , and Ψ′F = B−1 ΨF . Using also that the quantized action

R̂F commutes with the rescaling

~ 7→ ~c−2, iqk 7→ iqkc
−1,

we get

A′F (~; q) = AF (~c−2, c−1Bq).

Taking the limit F → f completes the proof of part a).

b) The entries of the matrix of the linear operator Ψ′FR
′
F with respect to the bases

{ei}Ni=1 ⊂ CN and {φa}Na=1 are by definition the stationary phase asymptotics

(−2πz)−n/2
∫
βi

e(F−ui)/zω̃′b η
ab ∼ (Ψ′FR

′
F )ai, z → 0,

where {ω̃′a} is the extension of the good basis {ω′a}Na=1 to a good basis on Bf and

(ηab)Na,b=1 is the inverse matrix of the matrix of the residue pairing (ηab)
N
a,b=1, ηab =

(φa, φb). Similarly,

(−2πz)−n/2
∫
βi

e(F−ui)/zω̃b η
ab ∼ (ΨFRF )ai, z → 0.

Let us denote by R̃(F, z) the symplectic transformation of Jac(f)((z)) whose entries

R̃ab(F, z) with respect to the basis {φa}Na=1 are given by

ω̃′b =

N∑
a=1

ω̃a R̃ab(F, z).

By definition limF→f R̃ab(F, z) = Rab(f, z). Comparing the above asymptotic expan-
sions, we get

(Ψ′FR
′
F )ai =

N∑
µ,ν=1

ηaµR̃νµ(F, z)ηνb (ΨFRF )bi.
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Note that the matrix of the transpose R̃(F, z)t with respect to the residue pairing has
entries

(R̃(F, z)t)ab =
N∑

µ,ν=1

ηaµR̃νµ(F, z)ηνb.

We get that Ψ′FR
′
F = R̃(F, z)tΨFRF , so

A′F (~; q) = (R̃(F, z)t)∧AF (~; q).

Taking the limit F → f completes the proof. �

5.4. The abstract Fock bundle. Recall that a series of the form∑
g∈Z

∑
κ=(k1,i1),...,(kr,ir)

c(g)
κ ~g−1tk1,i1 · · · tkr,ir , tk,i = qk,i + δk,1ai,

is called tame if c
(g)
κ 6= 0 only for κ satisfying the (3g − 3 + r)-jet constraint

k1 + · · ·+ kr ≤ 3g − 3 + r.

It is known that Givental’s total ancestor potential Aω1,...,ωN
f,ω (~; q) is tame (see [34]).

Motivated by Proposition 5.2 we define a vector bundle V̂tame onM◦mar whose fibers are
the Fock spaces C~[[q0, q1 +1, q2, . . . ]]tame of tame series3 and the transition functions are
given by the transformation laws of Proposition 5.2 (with c = 1). Following Costello-
Li’s interpretation [23] of Givental’s quantization formalism, we will identify each fiber

of V̂tame with a highest weight module of a certain Weyl algebra, which in particular

yields an intrinsic definition of V̂tame.

5.4.1. The Weyl algebra and the Fock space. Let us fix f ∈ M◦mar. The Weyl algebra
of H(f) is defined by

W(f) =
∞⊕
n=0

(
H(f)⊗n ⊗ C~

)
/I,

where C~ = C((~)) and I is the two sided ideal generated by the elements

a⊗ b− b⊗ a− ~Ω(a, b), a, b ∈ H(f).

The Lagrangian subspace H+(f) determines the following Fock space

V(f) :=W(f)/W(f)H+(f).

Lemma 5.3. If P is an opposite subspace, then the natural map

φP :

∞⊕
n=0

(
Symn(P )⊗ C~

)
→ V(f), a1 · · · an 7→ a1 ⊗ · · · ⊗ an,

induces an isomorphism.

3Note that elements of C[[~]] are tame, but ~−1 is not tame; hence C~[[q0, q1 + 1, q2, . . . ]]tame is not a
C~-algebra (only a C[[~]]-algebra).
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Proof. The map is well defined and injective because P is Lagrangian. The surjectivity
follows from the Wick’s formula (see [43]). Namely, given a1, . . . , an ∈ H(f) we have
the following identity in V(f):

a1 ⊗ · · · ⊗ an =
∑( n′∏

s=1

Ω(a+
i′s
, a−i′′s

)
)
a−j1 ⊗ · · · ⊗ a

−
jn′′
,

where the sum is over all possible ways to select pairs (i′1, i
′′
1), . . . , (i′n′ , i

′′
n′) ⊂ {1, 2, . . . , n}

such that i′s < i′′s and i′1 < · · · < i′n′ and {j1, . . . , jn′′} = {1, 2, . . . , n}\{i′1, . . . , i′n′ , i′′1, . . . , i′′n′},
and where a− ∈ P (resp. a+ ∈ H+(f)) denotes the projection of a on P (resp. H+(f))
along H+(f) (resp. P ). �

5.4.2. The tame Weyl algebra and the tame Fock space. If P ⊂ H(f) is an opposite
subspace, then using the vector spaces isomorphism

W(f) =

∞⊕
r,s=0

P⊗r ⊗H+(f)⊗s ⊗ C~

we can write an element of W(f) as a finite sum of terms of the form

(23) c
(g)
I,J~

g−1ωi1(−z)−k1−1 · · ·ωir(−z)−kr−1 ⊗ ωj1z`1 · · ·ωjsz`s ,

where {ωi} and {ωj} are dual bases of H+(f) ∩ zP , and the coefficient c
(g)
I,J is a

constant depending on g and the multi-indexes I = {(i1, j1), . . . , (ir, kr)} and J =
{(j1, `1), . . . , (js, `s)}. The tame Weyl algebra Wtame(f) is defined as the vector sub-
space of W(f) spanned by monomials of the type (23) such that

(24) k1 + · · ·+ kr − r ≤ 3(g − 1 + s/2).

Finally, we need to introduce the completion of Wtame(f)

Ŵtame(f) := lim←−
m

Wtame(f)/Wm
tame(f),

where the decresing filtration {Wm
tame(f)}∞k=0 is defined as the span of all terms of the

type (23) such that

k1 + · · ·+ kr + `1 + · · ·+ `s + r + s ≥ m.
Equivalently, the elements of Ŵtame(f) are arbitrary infinite sums of terms of the type
(23) satisfying the tameness condition (24). We can prove the following proposition by
an argument similar to the proof of the fact that tame functions are preserved by the
upper-triangular Givental group action [34].

Proposition 5.4. The tame Weyl algebra Wtame(f) and its completion Ŵtame(f) are
independent of the choices of an opposite subspace and a good basis. Moreover, the

multiplication induced from W(f) is well defined, so both Wtame(f) and Ŵtame(f) are
associative algebras.

Let {φi}Ni=1 ⊂ Jac(f) be a fixed basis, let P ⊂ H(f) be an opposite subspace, and
let ω ∈ Lf − {0}. Given these data, we can uniquely construct a good basis {ωi}Ni=1 ⊂
H+(f) ∩ Pz such that

ωi ≡ φiω mod zH+(f)
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and so that there is an isomorphism

Φω1,...,ωN : C~[q0, q1, . . . ]→ V(f)

defined by

Φω1,...,ωN (qk1,i1 · · · qk1,i1) := (ωi1z−k1−1)⊗ · · · ⊗ (ωinz−kn−1),

where {ωi}Ni=1 is a basis of H+(f) ∩ zP dual to {ωi}Ni=1 with respect to the residue

pairing K
(0)
f . Let us define

σφ1,...,φN
ω,P := e−ωz/~Φω1,...,ωN : C~[q0, q1, . . . ]→ V(f),

where we use that V(f) is a W(f)-module on which ωz acts locally nilpotently. Note
that

[−ωz, ωi(−z)−k−1] = ~Resz=0Kf (−ωz, ωi(−z)−k−1)dz = −~δk,1ai,

where ai are the coordinates of 1, i.e., 1 =
∑N

i=1 aiφi. Therefore the operator e−ωz/~

acts as the shift q1 7→ q1 − 1, and we have

σφ1,...,φN
ω,P (g(q0, q1, q2, . . . )) = Φω1,...,ωN (g(q0, q1 − 1, q2, . . . ))

for any g ∈ C~[q0, q1, . . . ]. It follows that σφ1,...,φN
ω,P induces an isomorphism between the

completed tame Fock spaces

(25) σφ1,...,φN
ω,P : C~[[q0, q1 + 1, q2 . . . ]]tame → V̂tame(f),

where V̂tame(f) := Ŵtame/ŴtameH+(f).

5.4.3. The total ancestor potential and the abstract Fock space. It turns out that the
dependence of the isomorphism Φω1,...,ωN on the choice of an opposite subspace and
a good basis is controlled by Givental’s symplectic loop group quantization. Let us
assume that we have two opposite filtrations P ′ and P and {ω′i}Ni=1 ⊂ H+(f)∩P ′z and
{ωi}Ni=1 ⊂ H+(f) ∩ Pz are corresponding good bases.

Lemma 5.5. If P ′ = P and the transition between the good bases is given by (21), then

Φ−1
ω′1,...,ω

′
N
◦ Φω1,...,ωNF(~; q) = F(~;Bq).

It remains only to investigate the case when P ′ and P ′′ are different. Let us choose
ω ∈ Lf − {0}. Using Lemma 5.5 we may reduce the general case to the case when
ωi ≡ ω′i ≡ φiω mod zH+(f). In order to compare with Givental’s formalism put

H := Jac(f), and denote by ( , ) the pairing on H induced by the residue pairing K
(0)
f .

Let R(f, z) be the symplectic transformation of H((z)) defined by (22).

Lemma 5.6. The following formula holds

Φ−1
ω′1,...,ω

′
N
◦ Φω1,...,ωN (F) = (R(f, z)t)∧F ,

where R(f, z)t is the transopse of R(f, z) with respect to the residue pairing.
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Proof. It enough to prove that if the Lemma is true for some F , then it is true for qk,iF
for all k ≥ 0, 1 ≤ i ≤ N . Recalling Proposition 5.1 and that R(f, z)t = R(f,−z)−1, we
get

(R(f, z)t)∧F(q) =
(
e

~
2
V (∂q,∂q)F

)∣∣∣
q 7→R(f,−z)q

,

where the 2nd order differential operator

V (∂q, ∂q) =
∞∑

k,`=0

(Vk`φ
j , φi)

∂2

∂qk,i∂q`,j

is given by

Vk` =
∑̀
a=0

(−1)a+k+`+1Rk+1+aR
t
`−a.

By definition,

Φω1,...,ωN (qk,iF) = ωi(−z)−k−1Φω1,...,ωN (F)

and ωi(−z)−k−1 is given by

N∑
j=1

( k∑
a=0

Rij;a(f)(−1)aω′j(−z)−(k−a)−1 +
∞∑

a=k+1

Rij;a(f)(−1)aω′j(−z)a−k−1
)
.

By definiton, if k − a ≥ 0, then

Φ−1
ω′1,...,ω

′
N
◦ ω′j(−z)−(k−a)−1 = qk−a,j ◦ Φ−1

ω′1,...,ω
′
N

and if a ≥ k + 1, then

Φ−1
ω′1,...,ω

′
N
◦ ω′j(−z)a−k−1 = (−1)a+k+1~

N∑
j′=1

(φj , φj
′
)

∂

∂qa−k−1,j′
◦ Φ−1

ω′1,...,ω
′
N
.

Therefore Φ−1
ω′1,...,ω

′
N

Φω1,...,ωN (qk,iF) can be written as the sum of

N∑
j=1

k∑
a=0

Rij;a(f)(−1)aqk−a,j

(
e

~
2
V (∂q,∂q)F

)∣∣∣
q 7→R(f,−z)q

and
N∑
j=1

∞∑
a=k+1

Rij;a(f)(−1)k+1~
N∑
j′=1

(φj , φj
′
)

∂

∂qa−k−1,j′

(
e

~
2
V (∂q,∂q)F

)∣∣∣
q 7→R(f,−z)q

.

Note that
N∑
j=1

k∑
a=0

Rij;a(f)(−1)aqk−a,j = (R(f,−z)q)k,i.

A straightforward computation shows that

N∑
j=1

∞∑
a=k+1

Rij;a(f)(−1)k+1~
N∑
j′=1

(φj , φj
′
)

∂

∂qa−k−1,j′

(
G(q)

∣∣∣
q 7→R(f,−z)q

)
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equals (~
2

[V (∂q, ∂q), qk,i]G
)∣∣∣∣

q 7→R(f,−z)q
.

Finally, for Φ−1
ω′1,...,ω

′
N

Φω1,...,ωN (qk,iF) we get((
qk,i +

~
2

[V (∂q, ∂q), qk,i]
)
e

~
2
V (∂q,∂q)F

)∣∣∣∣
q 7→R(f,−z)q

=
(
e

~
2
V (∂q,∂q) (qk,iF)

)∣∣∣
q 7→R(f,−z)q

.

The above expression is precisely (R(f, z)t)∧(qk,iF). �

Comparing the transformation laws for the total ancestor potential (see Proposition
5.2) and the transformation laws in Lemma 5.5 and Lemma 5.6, we get that

A(~, f, ω) := σφ1,...,φN
ω,P (Aω1,...,ωN

f,ω (~; q))

is a vector in V̂tame(f) independent of the choice of the basis {φi}Ni=1 and the choice of
the opposite subspace P . We refer to A(~, f, ω) as the global ancestor potential of f .

Let us denote by V̂tame the vector bundle on M◦mar whose fiber over a point f ∈Mmar

is the completed tame Fock space V̂mar(f). We call it the completed tame Fock bundle
or simply the abstract Fock bundle. The global ancestor potential may be viewed as a
holomorphic function

A : L \ {0} → V̂tame, (f, ω) 7→ A(~, f, ω).

Note that the above map is not a map of vector bundles. Nevertheless, we have the
following symmetry, which in some sense allows us to think of ~ as a coordinate along
the fiber of L.

Corollary 5.7. The global ancestor potential has the following scaling property:

A(~, f, c ω) = A(~c−2, f, ω), ∀c ∈ C \ {0}.

Proof. The statement is a Corollary of Proposition 5.2, a) and Lemma 5.5. �

5.5. Abstract modular forms. Motivated by Corollary 5.7 and the generalized defi-
nition of a quasi-modular form in the theory of the period maps (see Definition 2.1), we
would like to introduce the notion of a quasi-modular form for the moduli spaceM◦mar.

Definition 5.8. We say that a function

A : L − {0} → V̂tame,

is an abstract modular form if A(~, f, c ω) = A(~c−2, f, ω).

Remark 5.9. According to Corollary 5.7, the global ancestor potential is an abstract
modular form.

In order to compare Definitions 5.8 and 2.1, let us trivialize the abstract Fock bundle
over an open subset U ⊂ M◦mar. Let us denote by Jac the vector bundle over M◦mar

whose fiber over f is the Jacobi algebra of f . Assume that {φi}Ni=1 is a frame for Jac |U ,
ω is a frame for L|U , and P ⊂ H|U is a sub-bundle such that P (f) ⊂ H(f) is an opposite
subspace for all f ∈ U . The isomorphism (25) is a trivialization of the abstract Fock
bundle.
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Let A(~, f, ω) be an abstract modular form. Put

A(~; f, ω,q) := (σφ1,...,φN
ω,P (f) )−1(A(~, f, ω)).

Suppose that we have the following genus expansion

A(~; f, ω,q) = exp

 ∞∑
g=0

~gFg(f, ω,q)

 .

The scaling property of A is equivalent to

Fg(f, c ω, cq) = c2−2gFg(f, ω,q),

so the coefficients of Fg(f, ω,q) in front of the q-monomials can be interpreted as

sections of L2g−2+deg|U , where deg is the degree of the corresponding q-monomial.
The notion of quasi-modularity is contained in Definition 5.8 as follows. Given an

abstract modular form A and a chart U such that Jac |U is trivial, we can choose
the complex conjugate opposite sub-bundle κ(H+)z−1 to obtain coordinate expressions

F̃g(f, ω,q). The latter depends non-holomorphically on f , but its coefficients transform
as modular forms in the sense of Definition 2.1. Choosing a different opposite sub-
bundle P ⊂ H with a holomorphic trivialization of H+ ∩ Pz, we can obtain another
coordinate expression Fg(f, ω,q) for A. The change of the opposite subspace is given
by a matrix B(f) and a symplectic transformation R(f, z) = 1+R1(f)z+R2(f)z2 + · · ·
(see Section 5.4.3). Recalling Lemma 5.5 and Lemma 5.6, we get that the coefficients

of F̃g(f, ω,q) are polynomial expressions of the coefficients of Fl(f, ω,q), l ≤ g, with
coefficients in C[B,R1, R2, . . . ], where C[B,R1, R2, . . . ] is the polynomial ring on the
entries of the matrices B(f), R1(f), R2(f), . . . . The entries of these matrices depend
non-holomorphically on f , so following the terminology in Definition 2.1, we call them
anti-holomorphic generators. Let us point out that finding explicit formulas for the anti-
holomorphic generators is in general a difficult problem (see the example in Section 5.7).

Remark 5.10. We explain a relationship of the Fock bundle in the present paper to
the Fock sheaf in [20]. Given an opposite subspace P , a section of the Fock sheaf in
[20] can be locally identified with a function on the Givental Lagrangian cone of the
form Z = exp(

∑∞
g=0 ~g−1Fg) (this is similar to the trivialization (25)). The total space

of L − {0} over M◦mar can be identified with a finite-dimensional slice of the Givental

cone, and a coordinate expression A(~; f, ω,q) = (σφ1,...,φN
ω,P )−1A(~, f, ω) of the abstract

ancestor potential corresponds to the jet of the potential Z at the point (f,−zω). This
is related to the jetness in [20].

5.6. The holomorphic anomaly equations. Let us pick local holomorphic frames
{φi}Ni=1 and ω for respectively Jac and L. Let us choose a local holomorphic coor-
dinate system σ = (σ1, . . . , σN ′) on M◦mar, so that each φi = φi(x, σ) is a weighted-
homogeneous polynomial depending holomorphically on σ. We define the hybrid an-
cestor potential Af (~,q) to be the coordinate expression Aω1,...,ωN

f,ω (~,q) of the global

ancestor potential with respect to the opposite subspace κ(H+)z−1 (see Section 5.4.3).
The hybrid ancestor potential depends non-holomorphically on f . We would like to
derive differential equations for Af (~, ω), which following the physics literature will be
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called holomorphic anomaly equations, that govern the non-holomorphic dependence on
f .

Let us begin with several remarks about the Cecotti-Vafa connection from Section
4.6. For given f ∈M◦mar, we have a vector spaces isomorphism

Jac(f) ∼= K(f), φa 7→ ωa,

which allows us to interpret all connection matrices and the complex conjugation κ as
endomorphisms and a complex conjugation of Jac(f). Note that Ci is the operator
of multiplication by ∂f/∂σi and U is the operator of multiplication by f . In partic-

ular, Ũ = U = 0 because f is weighted-homogeneous, so it vanishes in Jac(f). The
next observation is that {ωa}Na=1 is a holomorphic frame for K, because the transition
functions in this frame are the same as the transition functions of Jac⊗L in the frame
{φa ⊗ ω} and the latter is by definition holomorphic. This observation implies that the
connection matrices satisfy Γῑ = 0 and Γi = h−1∂h, where ∂ is the holomorphic de
Rham differential on M◦mar and h = (hab) is the matrix of the Hermitian pairing

hab = K(0)(κ(ωa), ωb).

Finally, let us point out that the operators zC̃ῑ, 1 ≤ i ≤ N ′ are infinitesimal symplectic
transformations of Jac(f)((z−1)). This can be proved by using the compatibility of the
Gauss–Manin connection with the higher residue pairings and the fact that up to a
holomorphic factor, the quantity

K(ωi, ωj) = K(0)(ωi, ωj)

is the Grothendick residue of φi(x, σ)φj(x, σ), so it must be holomorphic in σ ∈M◦mar.

Proposition 5.11. The hybrid ancestor potential satisfies the following differential
equations

∂σiAf (~,q) = (zC̃tῑ )
∧Af (~,q), 1 ≤ i ≤ N ′,

where t is conjugation with respect to the residue pairing.

Proof. Let us fix f ∈ M◦mar and denote by P (F ) (F ∈ Bf ) the holomorphic extension
of the opposite subspace κ(H+(f)) to a family of opposite subspaces on the parameter
space Bf of a miniversal unfolding of f . Let us fix arbitrary holomorphic frames {φa}Na=1

and ω of Jac and L on M◦mar ∩ Bf . For every f ′ ∈ M◦mar ∩ Bf we have two opposite
subspaces in H(f ′): the complex conjugate subspace κ(H+(f ′))z−1 and the holomorphic
opposite subspace P (f ′). Let us denote by {ωa}Na=1 ⊂ K(f ′) and {ω̃a}Na=1 ⊂ H+(f ′) ∩
P (f ′)z the good bases such that

ωa ≡ ω̃a ≡ φaω mod zH+(f ′).

According to Proposition 5.2, b), the ancestor potentials

Af ′(~,q) := Aω1,...,ωN
f ′,ω (~; q) and Ãf ′(~,q) := Aω̃1,...,ω̃N

f ′,ω (~; q)

are related by

Af ′(~; q) = (R(f ′, z)t)∧ Ãf ′(~; q),
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where the symplectic transformation R(f ′, z) of Jac(f ′)((z−1)) is represented in the basis
{φa}Na=1 of Jac(f ′) by the matrix (Rab(f

′, z))Na,b=1 that describes the change

(26) ωb(f
′) =

N∑
a=1

ω̃a(f
′)Rab(f

′, σ), 1 ≤ b ≤ N.

Since Ãf ′ depends holomorphically on f ′, we just need to find the derivatives of R(f ′, z)
with respect to σ′i, where σ′ = (σ′1, . . . , σ

′
N ′) denotes the coordinates of f ′. Differentiat-

ing (26) with respect to σ′i we get

N∑
k=1

ωk(f
′)(Γkῑb + C̃kῑbz) =

N∑
a,k=1

ω̃a(f
′)Rak(f

′, σ)(Γkῑb + C̃kῑbz)

for the LHS and

N∑
a=1

ω̃a(f
′)∂σiRab(f

′, z)

for the RHS. Comparing the coefficients in front of ω̃a we get

∂σiRab(f
′, z) =

N∑
k=1

Rak(f
′, σ)(Γkῑb + C̃kῑbz).

In matrix form the above equation becomes ∂σiR(f ′, z) = R(f ′, z)(Γῑ + zC̃ῑ). Although
quantization of symplectic transformations is only a projective representation, when
restricted to the subgroup of symplectic transformations of the type R0 +R1z+ · · · the
quantization becomes a representation. Therefore

∂σi(R(f ′, z)t)∧ = (Γtῑ + zC̃tῑ )
∧(R(f ′, z)t)∧.

It remains only to use that the frame {ωa}Na=1 is holomorphic, so Γῑ = 0. �

Remark 5.12. Note that by definition, the quantization of the infinitesimal symplectic

transformation zC̃tῑ is the following differential operator

N∑
a,b=1

(~
2
C̃abῑ

∂2

∂q0,a∂q0,b
−
∞∑
k=0

C̃bῑaqk,a
∂

∂qk+1,b

)
,

where

C̃abῑ := (C̃ῑφ
a, φb) = (Ciκ(φa), κ(φb))

is symmetric in a and b. Here {φa}Na=1 is a basis of Jac(f) ∼= K(f) dual to {φa}Na=1 with
respect to the residue pairing. From this explicit formula we see that our differential
equations have the same form as the BCOV holomorphic anomaly equations (see [7],
formula (3.17)).

Remark 5.13. The holomorphic anomaly equation was also studied in [20, §9.3].
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5.7. Fermat simple elliptic singularity of type E
(1,1)
6 . We would like to give an

example in which our construction gives an elegant way to investigate the modular
properties of the total ancestor potential. Put

f(x,Q) = x3
1 + x3

2 + x3
3 −

1

Q
x1x2x3, Q(1− 33Q3) 6= 0.

This family of polynomials represents a transversal slice to the orbits of the group of
coordinate changes, so it could be viewed as an open chart in the marginal moduli space
(see Remark 3.3). Let us introduce the functions

f0(Q) = 1 +
∞∑
k=1

(3k)!

(k!)3
Q3k,

f1(Q) = logQ+
∞∑
k=1

(3k)!

(k!)3
Q3k(logQ+ h3k − hk),

g(Q,Q) = −(Df1)f0 + (Df0)f1

f1f0 + f0f1

,

where D = Q∂QQ = (Q+Q2∂Q) and h` = 1 + 1
2 + · · ·+ 1

` are the harmonic numbers.
Note that f0 and f1 are solutions to a 2nd order Fuchsian equation defined by the
differential operator

(27) (Q∂Q)2 − 33Q3(Q∂Q + 1)(Q∂Q + 2).

We are going to choose two sets of good bases {ωKS
e } and {ωGW

e }, where the index set
for e is splitted into the following 4 groups:

{(0, 0, 0), (1, 1, 1)} t {(1, 0, 0), (2, 0, 0)} t {(0, 1, 0), (0, 2, 0)} t {(0, 0, 1), (0, 0, 2)}.
The following set of forms is a good basis for the complex conjugate opposite subspace:

ωKS
0,0,0 = dx/Q,

ωKS
1,1,1 = (x1x2x3 + g(Q,Q)z)dx/Q

ωKS
mei = xmi dx/Q, 1 ≤ m ≤ 2, 1 ≤ i ≤ 3,

where ei is the ith coordinate vector in Z3. Another good basis is computed from mirror
symmetry at the large radius limit point Q = 0

ωGW
0,0,0 =

√
−1

dx

Qf0(Q)
,

ωGW
1,1,1 =

√
−1
(
x1x2x3 − z

Df0

f0

)
f0(Q) det(I0)−1 dx

Q
,

ωGW
mei =

√
−1 (1− 33Q3)m/3 xmi

dx

Q
, m = 1, 2,

where

I0 =

[
f0(Q) Df0(Q)
f1(Q) Df1(Q)

]
is the Wronskian matrix of the differential equation (27). The details of both computa-
tions will be presented in a future investigation.
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Let us pick ω = ωGW
0,0,0 to be a frame for the vacuum line bundle and denote by

AKS
f (~; q) and AGW

f (~; q) the total ancestor potentials corresponding respectively to

the good bases {ωKS
i } and {ωGW

i }. Let us define

t := 2π
√
−1τ/3 := f1(Q)/f0(Q).

Using the positive definite Hermitian pairing on H+(f) ∩ κ(H+(f)), it is easy to check
that t+ t < 0, i.e., Im(τ) > 0. Note that

(ωKS
0,0,0, . . . , ω

KS
0,0,2) = (ωGW

0,0,0, . . . , ω
GW
0,0,2)R(Q,Q, z)B(Q),

where the matrices R and B are block-diagonal

R = Diag(R(1), R(2), R(3), R(4)),

B = Diag(B(1), B(2), B(3), B(4)),

where the blocks R(i) and B(i) are given by the following formulas:

R(1) =

[
1 z/(t+ t)
0 1

]
, R(2) = R(3) = R(4) =

[
1 0
0 1

]
and

B(1) =−
√
−1

[
f0 0
0 det(I0)/f0

]
,

B(2) = B(3) = B(4) =−
√
−1

[
(1− 33Q3)−1/3 0

0 (1− 33Q3)−2/3

]
.

Recalling Proposition 5.2, we get that

(28) Ãτ (~; q) := (R(Q,Q, z)t)∧AGW
f (~; q) = AKS

f (~;B−1q).

Let Σ = P1 − {Q(1− 33Q3) = 0} be the domain of the deformation parameter Q. The
function τ gives an identification between the unniversal covering of Σ and the upper-
half plane H. It is easy to check that the monodromy transformations of τ are given
by

τ 7→ g(τ) =
aτ + b

cτ + d
, g =

[
a b
c d

]
∈ Γ(3).

Under the analytic continuation the primitive form ω and B−1 are transformed respec-
tively to

ω 7→ ω(cτ + d)−1 and B−1 7→ B−1J(g, τ)(cτ + d)−1,

where

J(g, τ) = Diag(1, (cτ + d)2, cτ + d, . . . , cτ + d︸ ︷︷ ︸
6 times

).

The analytic continuation of the identity (28) yields

Ãg(τ)(~; q) = Ãτ (~(cτ + d)2; J(g, τ)q).

Comparing the coefficients in front of the monomials in q we get that the coefficients

of the total ancestor potential Ãτ (~; q) transform as modular forms on Γ(3).
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Remark 5.14. The potential Ãτ (~; q) coincides with the anti-holomorphic completion
constructed in an ad hoc way in [52]. Recalling also the mirror symmetry established
in Theorem 6.15, we recover the main result of [52]: the Gromov–Witten invariants of
the elliptic orbifold P1

3,3,3 are quasi-modular forms.

Remark 5.15. Slightly generalizing the above argument, we would like to investigate
the total ancestor potential AGW

f (~; q) as a formal series in qk,i, k > 0, whose coefficients

are analytic functions of τi := q0,i, 1 ≤ i ≤ N . Recalling the results of Looijenga (see
[49]), we may identify each relevant deformation parameter τi with an appropriate θ-
function. We expect that under this identification, the GW invariants will turn into
quasi-Jacobi forms. We will address this problem in a future investigation.

6. Mirror symmetry for orbifold Fermat hypersurfaces

In the last three sections, we have constructed a global B-model generating function
which is modular in an appropriate generalized sense, but non-holomorphic. In the
remaining part of this paper we will prove two mirror theorems for Fermat type poly-
nomials satisfying a CY condition. Namely, we will prove that the generating functions
of certain GW-theory/FJRW-theory invariants are holomorphic limits of the global B-
model generating function. In this section, we will establish the mirror theorem for
GW-theory.

Let d1, . . . , dn ∈ Z be positive integers satisfying

1

d1
+ · · ·+ 1

dn
= 1.

Let G be the group

G = {t ∈ (C∗)n | td1
1 = · · · = tdnn }.

We define two orbifolds

P := [(Cn \ {0})/G]

and a suborbifold Calabi–Yau (CY) hypersurface

Y = [Z/G], Z = {zd1
1 + · · ·+ zdnn = 0} ⊂ Cn \ {0}.

The above quotients are taken in the category of orbifold groupoids or equivalently in
the category of smooth Deligne–Mumford stacks.

6.1. Orbifold Gromov–Witten theory. Let Y be an orbifold groupoid whose coarse
moduli space |Y | is a projective variety. Let us denote by H := HCR(Y,C) the Chen–
Ruan cohomology of Y . Our main interest is in the orbifold Gromov–Witten (GW)
invariants of Y

(29) 〈φi1ψk1 , . . . , φinψ
kn〉g,n,d,

where {φi}Ni=1 is a basis ofH and d ∈ Eff(Y ) ⊂ H2(|Y |;Z) is an effective curve class. The

invariants are defined through the intersection theory on the moduli space Mg,n(Y, d).
The latter is the moduli space of degree-d stable orbifold maps f : (C, (z1, g1), . . . , (zn, gn))→
Y , where C is a genus-g nodal Riemann surface equipped with an orbifold structure, n
marked points zi, and a choice of a generator gi ∈ AutC(zi). The evaluation at the i-th
marked point (f(zi), f(gi)) determines an evaluation map evi : Mg,n(Y, d)→ IY , where
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IY is the inertia orbifold of Y . Let us denote by ψi = c1(Li), 1 ≤ i ≤ n, the descendant
classes, where Li is the line bundle on Mg,n(Y, d) formed by the cotangent lines of the
coarse space of C at the i-th marked point (see [73]). By definition the GW invariant
(29) is obtained by pairing the cohomology class

ev∗1(φi1)ψk1
1 ∪ · · · ∪ ev∗1(φin)ψknn

with the virtual fundamental cycle [Mg,n(Y, d)]virt. The invariant takes its value in the

Novikov ring C[[Q]]. Let us fix an ample Z-basis {L(i)}ri=1 of Pic(|Y |). We embed

C[[Q]] ⊂ C[[Q1, . . . , Qr]], Qd 7→ Q
〈c1(L(1)),d〉
1 · · ·Q〈c1(L(r)),d〉

r

For further details on orbifold GW theory we refer to [2] for the algebraic approach and
to [13] for the analytic approach.

6.1.1. Givental’s cone. Let us introduce a set of formal variables t = {tk,i}, 1 ≤ i ≤ N ,
k ≥ 0. The generating function

F (g)
Y (t) =

∞∑
n=0

∑
d∈Eff(Y )

Qd

n!
〈t(ψ), . . . , t(ψ)〉g,n,d

is called the genus-g total descendant potential. Here we write t(ψ) =
∑∞

k=0

∑N
i=1 tk,iφiψ

k

and expand the correlator multiniearly as a formal power series in t whose coefficients
are the GW invariants (29).

Following Givental [32] we introduce the symplectic vector space

HY = HCR(Y ;C[[Q]])((z−1)), Ω(f, g) = Resz=0(f(−z), g(z))dz,

where ( , ) is the orbifold Poincare pairing. The subspaces H+
Y := HCR(Y ;C[[Q]])[z]

and H−Y := HCR(Y ;C[[Q]])[[z−1]]z−1 are Lagrangian subspaces and define a polarization

HY = H+
Y ⊕ H

−
Y , which allows us to identify HY ∼= T ∗H+

Y . By definition, Givental’s

cone LY is the graph of the differential dF (0)
Y . Explicitly,

LY =

{
−z + t +

∞∑
k=0

N∑
i=1

∂F (0)
Y

∂tk,i
(t)φi(−z)−k−1

∣∣∣ t(z) ∈ H+
Y

}
,

where {φi} ⊂ H is a basis dual to {φi} with respect to the Poincare pairing. The above
definition should be understood in the formal sense, i.e., LY is the formal germ at t = 0
of a cone in HY .

6.1.2. The J-function and the calibration. Let us fix τ ∈ H. It is convenient to introduce
the notation〈〈

α1, . . . , αk

〉〉
g,n

(τ) =

∞∑
`=0

∑
d∈Eff(Y )

Qd

`!
〈α1, . . . , αk, τ, . . . , τ〉g,n+`,d,

where αs = φisψ
ks , 1 ≤ s ≤ n, are arbitrary insertions. By definition, Givental’s

J-function of Y is

J̃Y (τ,Q, z) = z + τ +
∞∑
k=0

N∑
i=1

∑
d∈Eff(Y )

Qd
〈〈
φiψ

k
〉〉

0,1,d
(τ)φiz−k−1.
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Note that

J̃Y (τ,Q,−z) = −z + τ + d−z+τF (0)
Y ∈ LY .

Recall also the calibration series S(τ,Q, z) = 1 + S1(τ,Q)z−1 + · · · defined by

(S(τ,Q, z)φi, φj) = (φi, φj) +
∞∑
k=0

∑
d∈Eff(Y )

Qd
〈〈
φiψ

k, φj

〉〉
0,2,d

(τ) z−1−k.

Let us denote by L̃τ the tangent space to LY at J̃(τ,Q,−z), then we have

J̃(τ,Q,−z) = −z S(τ,Q, z)−1 1, L̃τ = S(τ,Q, z)−1H+
Y .

6.1.3. Quantum cohomology. The quantum cup product •τ is defined by

(φa •τ φb, φc) =
〈〈
φa, φb, φc

〉〉
0,3

(τ).

Let us fix ε � 1, assume that the Novikov variables |Qi| ≤ ε (1 ≤ i ≤ r), and denote
by B ⊂ H the open subset of τ ∈ H for which the quantum cup product is convergent.
In the absence of convergence, we think of B as a formal analytic germ at Q = 0 and
τ = 0. Let us introduce also the Euler vector field

E =
N∑
i=1

(1− degCR(φi))ti∂ti + c1(Y ),

where degCR denotes the Chen–Ruan degree. Finally, let

θ : H → H, θ(φi) =
(dimC(Y )

2
− degCR(φi)

)
φi

be the so-called Hodge grading operator.
By definition the quantum (or Dubrovin’s) connection is the connection ∇ on the

trivial H-bundle with base B × C∗ defined by

∇ = d+
(
− z−1θ + z−2E •

)
dz −

N∑
i=1

z−1(φi•)dti.

It is known that the gauge transformation defined by the calibration S(τ,Q, z) acts on
∇ as follows:

S(τ,Q, z)−1∇S(τ,Q, z) = d+
(
− z−1θ + z−2ρ

)
dz,

where ρ := c1(Y )∪ is the operator of classical cup product multiplication by c1(Y ). In
particular ∇ is a flat connection.

6.1.4. The total ancestor potential. Let τ ∈ H be an arbitrary parameter. The ancestor
GW invariants〈〈

φi1ψ
k1
, . . . , φinψ

kn
〉〉
g,n,d

(τ) :=

∞∑
`=0

1

`!
〈φi1ψ

k1
, . . . , φinψ

kn
, τ, . . . , τ〉g,n+`,d

are defined in the same way as the descendant ones except that instead of the descendant
classes ψi (1 ≤ i ≤ n) we use ψi := ft∗ψi, where ft : Mg,n+`(Y, β) → Mg,n is the map
that forgets the map to Y , the orbifold structure on the domain curve, the last ` marked
points, and it contracts all unstable components. IfMg,n = ∅, i.e., 2g− 2 +n ≤ 0, then
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the ancestor invariant is by definition 0. Let us point out that in general the dependence
on τ is only formal, i.e., the ancestor invariant is a formal power series in τ .

The generating function

F (g)
τ,Q(t) =

∞∑
n=0

∑
d∈Eff(Y )

Qd

n!

〈〈
t(ψ), . . . , t(ψ)

〉〉
g,n,d

(τ)

is called the genus-g total ancestor potential and

AYτ,Q(~; t) := exp
( ∞∑
g=0

F (g)
τ,Q(t) ~g−1

)
is called the total ancestor potential of Y . The relation between ancestors and de-
scendants is completely determined by the calibration S(τ, z) and the genus-1 primary
potential of Y (see [32] for more details). Thanks to the divisor equation we have the
following symmetry

AYτ,Q = AYτ−∑r
i=1 Pi logQi,1

,

where Pi = c1(L(i)) and Q = 1 means Qi = 1 for all i. Therefore, without loss of
generality we may set Qi = 1 for all i and work with AYτ := AYτ,1
6.2. I-function. Let us return to the case when Y is the orbifold Fermat CY hyper-
surface.

6.2.1. Combinatorics of the inertia orbifold. Let

bi = (0, . . . , di, . . . , 0) ∈ Zn−1 (1 ≤ i ≤ n− 1)

bn = (−dn, . . . ,−dn) ∈ Zn−1.

Let Σ be the fan consisting of all subcones of τ1, . . . , τn, where τi is the cone in Rn−1

spanned by the (n− 1) rays

b1, . . . , b̂i, . . . , bn.

Note that P is the toric orbifold corresponding to the fan Σ, so according to the general
theory (see [8]) the connected components of P are parametrized by the set

Box(Σ) = {c ∈ Qn | 0 ≤ ci < 1, supp(c) ⊂ σ,
n∑
i=1

cibi ∈ Zn−1 for some σ ∈ Σ}

where supp(c) is the set of all bi such that ci 6= 0. We have

IP = tc∈Box(Σ)Pc,

where

Pc = [{z1c1 = · · · = zncn = 0}/G].

The dimension of Pc is 1 less than the number of i such that ci = 0. The orbifold Pc is
non-reduced and it has a generic stabilizer

Gc :=
∏
i:ci 6=0

µdi .

In particular, the order |Gc| =
∏
i:ci 6=0 di.
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The inertia orbifold IY is a suborbifold of IP, we have

dim(Yc) = dim(Pc)− 1,

so the twisted sectors are parametrized by c ∈ Box(Σ) such that dim(Pc) > 0; i.e., c
has at least 2 entries that are 0. We denote the set of all such c by BoxY (Σ).

6.2.2. Cohomology and Poincaré pairing. The coarse moduli spaces of Y and P are
respectively Pn−2 and Pn−1. Indeed, the map

(30) π : (Cn \ {0})×G→ (Cn \ {0})× C∗, (z, t) 7→ (z, td1
1 )

induces a map of orbifolds that maps the pair (|Y |, |P|) homeomorphically onto (Pn−2,Pn−1).
Let us define L = π∗OPn−2(1) and p = c1(L) ∈ H2(Y,Z). A basis in HCR(Y ;C) can be
fixed as follows:

pk1c, 0 ≤ k ≤ dim(Yc), c ∈ BoxY (Σ),

where 1c is the unit in H(Yc;C). Given a cohomology class pk1c ∈ H2k(Yc;C), the

orbifold Poincaré pairing (pk1c, p
k′1c′) is non-zero if and only if

k + k′ = dim(Yc), ci + c′i = 0(mod di), 1 ≤ i ≤ n.
If (k, c) and (k′, c′) satisfy the above conditions, then we have

(pk1c, p
k′1c′) =

1

|Gc|
.

Finally,

H2(|Y |;Z) ∼= Z, β 7→ d := 〈c1(O(1)), β〉.

6.2.3. The J-function of Y . Given d ∈ Z≥0 and ν ∈ (Z≥0)n we define

Id,ν(z) =
Γ(1 + d+ pz−1)

Γ(1 + pz−1)

n∏
i=1

Γ(1− ci + (p/di)z
−1)

Γ(1− ci + ki + (p/di)z−1)
1cz

d−|ν|−|k|,

where ki ∈ Z and 0 ≤ ci < 1 are defined uniquely by the identity

νi − d
di

= −ki + ci

and we put |ν| = ν1 + · · ·+ νn and |k| = k1 + · · ·+ kn. Put

IY (t, Q, z) = ep logQ/z
∞∑
d=0

∑
ν∈Zn≥0

Id,ν(z)Qd
tν

ν!
,

where

tν = tν1
1 · · · t

νn
n , ν! = ν1! · · · νn!.

Note that

IY (t, Q, z) = f0(Q)1 + z−1f1(t, Q) + z−2f2(t, Q) + · · · ,
where fk(t, Q) ∈ HCR(Y ;C) (k ≥ 1) and

f0(Q) = 1 +

∞∑
d=1

(d`)!

(dw1)! · · · (dwn)!
Qd,
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where ` = lcm(d1, . . . , dn) and wi = `/di.
It will be convenient for our purposes to modify slightly Givental’s J-function and to

work with

JY (τ,Q, z) = ep logQ/zJ̃Y (τ,Q, z) = J̃Y (τ + P logQ, 1, z),

where the 2nd equality is a consequence of the divisor equation. The suborbifold Y ⊂ P
is cut out by the section zd1

1 + · · · + zdnn of the convex line bundle π∗O(1), where
π : P→ Pn−1 is the map induced from (30). We may recall Theorem 25 in [22] and get
the following formula for the J-function of Y .

Proposition 6.1. If τ = f1(t, Q)/f0(Q), then JY (τ, 1, z)f0(Q) = zIY (t, Q, z).

The I-function is known to be a solution to a Picard–Fuchs differential equation in
Q, so it has a non-zero radius of convergence as a power series at Q = 0. Let ∆ be the

disc of convergence, ∆∗ := ∆−{0}, and π : ∆̃∗ → ∆∗ be the universal cover of ∆∗. The
function τ in Proposition 6.1 defines a map

(31) τ : Cn × ∆̃∗ → H, (t, Q) 7→ τ(t, Q) := f1(t, Q)/f0(Q)

which will be called the mirror map.

6.3. Mirror symmetry for D-modules. Let us introduce the following family of
polynomials:

f(x, t,Q) =

n∑
i=1

(xdii + tixi)−
1

Q
x1 · · ·xn,

where

(t, Q) ∈ Cn × (P1 \ {0, a1, . . . , ar,∞}),

where ai are the values of Q for which the polynomial has a non-isolated singularity.

Remark 6.2. The radius of the disc ∆ is precisely max1≤i≤r |ai|.

6.3.1. The twisted de Rham cohomology and the quantum D-module. The main goal of
this section is to construct an isomorphism between the sheaf F of the twisted de Rham
cohomology and quantum D-module. Let D be the sheaf of differential operators

OCn×∆∗ [z]
〈
z
∂

∂t1
, . . . , z

∂

∂tn
, zQ

∂

∂Q

〉
.

We would like to construct a D-module isomorphism

π∗(F|Cn×∆∗) ∼= τ∗(OB ⊗H[z]),

where π : Cn×∆̃∗ → Cn×∆∗ is the universal covering, τ is the mirror map, and B ⊂ H
is the domain of convergence for the quantum cohomology. The D-module structures
on the LHS and the RHS of the above isomorphism are induced respectively from the
Gauss–Manin connection and the Dubrovin’s connection, i.e.,

z∂ta 7→ z∂ta −
N∑
i=1

∂τi
∂ta

(t, Q)φi•, zQ∂Q 7→ zQ∂Q −
N∑
i=1

Q
∂τi
∂Q

(t, Q)φi•,
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where τ(t, Q) =: τ1(t, Q)φ1 + · · ·+ τN (t, Q)φN . Put

IeY (t, Q, z) := (z∂t)
eIY (t, Q, z), e ∈ Zn≥0,

where

(z∂t)
e = (z∂t1)e1 · · · (z∂tn)en .

The Taylor’s series of IeY (t, Q, z) at Q = t = 0 takes the form

IeY (t, Q, z) = ep logQ/z
∞∑
d=0

∑
ν∈Zn≥0

Qd
tν

ν!
Id,ν+e(z)z

|e|.

We will need the following lemma.

Lemma 6.3. Let d ≥ 0 and ν ∈ Zn≥0.

a) If m = (1, . . . , 1) ∈ Zn, then

Id+1,ν+e+m(z) z|e|+n = (1 + d+ pz−1)Id,ν+e(z) z
|e|+1.

b) If ei ∈ Zn is the vector with a non-zero entry equal to 1 only at the i-th place, then

Id,ν+e+diei(z) = d−1
i (d− νi − ei + pz−1)Id,ν+e(z)z

−di+1,

where ei is the i-th entry of e.

The proof follows immediately from the definitions and it is omitted. We also need
the following Lemma, which is a corollary of Proposition 3.5.

Lemma 6.4. The sheaf F|Cn×∆∗ is a free OCn×∆∗ [z]-module of rank

N := (d1 − 1) · · · (dn − 1).

The main result of this subsection can be stated as follows.

Proposition 6.5. The assignment

xedx/Q 7→ S(τ, 1,−z) IeY (t, Q, z),

where τ = τ(t, Q) is the mirror map, induces an isomorphism of D-modules

Mir: π∗(F|Cn×∆∗)→ τ∗(OB ⊗H[z]).

Proof. According to Proposition 6.1, S(τ, 1,−z) IeY (t, z) ∈ H[z]. To prove that we have
an induced map Mir we have to prove that Mir maps

(zd+ df∧)xedx1 · · · d̂xi · · · dxn
to 0 for all i = 1, 2, . . . , n and e ∈ Zn≥0. If e = (e1, . . . , en), then the above form takes
the form

(zeixe−ei + dix
e+(di−1)ei + tix

e −Q−1xe+m−ei)dx,

where m, ei ∈ Zn are the same as in Lemma 6.3. Shifting e 7→ e+ ei we get

(z(ei + 1)xe + dix
e+diei + tix

e+ei −Q−1xe+m)dx.
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It is enough to prove that Mir maps the above form to 0. Recalling the definition of
Mir we get that the above form is mapped to∑
d,ν

(
z(ei + 1)Id,ν+ez

|e| + diId,ν+e+dieiz
|e|+di + tiId,ν+e+eiz

|e|+1 −Q−1Id,ν+e+mz
|e|+n

)
Qd

tν

ν!
.

The terms in the brackets are transformed as follows: for the 2nd one we apply Lemma
6.3, b); for the 3rd term we shift the index ν 7→ ν − ei and use that

ti
tν−ei

(ν − ei)!
= νi

tν

ν!
;

for the 4th term we first shift the index d 7→ d+ 1 and then recall Lemma 6.3, a). We
get∑
d,ν

((ei + 1) + (d− νi − ei + pz−1) + νi − (1 + d+ pz−1))Id,ν+e(z) z
|e|+1Qd

tν

ν!
= 0.

To prove that Mir is a D-module morphism we need only to verify that

Mir(zQ∂Q[xedx/Q]) = zQ∂Q Mir([xedx/Q]).

Since

Mir(zQ∂Q[xedx/Q]) =
∑
d,ν

(Id+1,ν+e+mz
|e|+n − Id,ν+ez

|e|+1)Qd
tν

ν!

the above identity follows from Lemma 6.3, a).
Finally, since

(32) IY (t, Q, z) = f0(Q)S(τ, 1,−z)−1 1,

the map Mir is surjective. Since both sheaves are free OCn×∆̃∗
[z]-modules of rank N ,

the map must be an isomorphism. �

6.4. Pairing matches. Let us introduce the following pairing

(33) K̃(ω1, ω2) = −(Mir(π∗ω1),Mir(π∗ω2)∗), ω1, ω2 ∈ F|Cn×∆∗ ,

where ∗ is the involution in H[z] induced from z 7→ −z, and ( , ) is the Poincaré pairing.
It is convenient to expand in the powers of z

K̃(ω1, ω2) =:
∞∑
p∈Z

K̃(p)(ω1, ω2)zp.

The main goal in this section, which is one of the key ingredients in the proof of our
mirror symmetry theorem, is the following proposition.

Proposition 6.6. The pairing K̃ coincides with K. Saito’s higher resdiue pairing.

The main idea of the proof is to use Hertling’s formula (8) in order to obtain a formula
for Saito’s pairing similar to (33).
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6.4.1. The mirror map for vanishing cohomology. Recall the notation from Sections
4.3.1 and 4.3.2. Let us fix a polynomial f0 corresponding to a reference point in Cn×∆∗

and define for all f sufficiently close to f0 a linear isomorphism

(34) Ψ : h = Hn−1(f−1(1);C)→ H = HCR(Y ;C),

such that

(35) Ψ(ŝ(ωe, z)) = (−z)−θIeY (t, Q, z),

where ωe = xedx/Q is a fixed set of weighted-homogeneous forms that induces a triv-
ialization of F|Cn×∆∗ . Using that the isomorphism in Proposition 6.5 is a D-module
isomrphism we can check that Ψ is independent of t and Q. Note that the homogeneity
of the I-function can be written in the form

(z∂z +
n∑
i=1

(1− 1/di)ti∂ti + degCR) IeY (t, z) = (deg(ωe)− 1) IeY (t, z).

From this equation we get that Ψ is independent of z as well.

Remark 6.7. The map Ψ is multivalued in f . It can be viewed as a trivialization of

the pullback via π : Cn × ∆̃∗ → Cn ×∆∗ of the vanishing cohomology bundle.

6.4.2. The polarization form and the Poincare pairing. Let us introduce the following
bilinear form on H:

χ(a, b) := S(Ψ−1(a), ν−1Ψ−1(b)),

where S is the polarization form of Steenbrink’s Hodge structure (see Section 4.3.1).

Lemma 6.8. The claim in Proposition 6.6 is equivalent to the identity

χ(a, e−π
√
−1θb) = (a, b), a, b ∈ H.

Proof. Let us first establish that p∪ is an infinitesimal symmetry of χ. Let us denote by
Mmar the monodromy transformation of h of the Gauss–Manin connection around Q = 0
in counter clockwise direction. The analytic continuation around Q = 0 transforms the
RHS of (35) into

(−z)−θ e2π
√
−1p/z IeY (t, Q, z) = e−2π

√
−1p (−z)−θIeY (t, Q, z).

Therefore,

Ψ ◦M−1
mar = e−2π

√
−1p ◦Ψ.

In particular, Mmar is unipotent and there is uniquely defined nilpotent operatorNmar :=
− 1

2π
√
−1

logMmar. By definition

χ(a, b) = (−1)(n−1)(n−2)/2〈Ψ−1(a),Var ◦Ψ−1(b)〉.
Since the form 〈·,Var(·)〉 is Mmar-invariant and

Ψ(NmarA) = pΨ(A), A ∈ h,

we get that χ(p∪ a, b) + χ(a, p∪ b) = 0. Using this property we can complete the proof
as follows. By definition

ŝ(ωe, z) = Ψ−1((−z)−θIeY (t, Q, z)) = elogQNmar Ψ−1((−z)−θ ĨeY (t, Q, z)),
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where IeY (t, Q, z) =: ep logQ/z ĨeY (t, Q, z). Recalling formula (8) we get

(36) K(ωe′ , ωe′′) = −χ(eπ
√
−1θ(−z)−θ Ĩe′′Y (t, Q,−z), (−z)−θ Ĩe′Y (t, Q, z)),

In order to complete the proof, we just have to notice that (33) can be written as

K̃(ωe′ , ωe′′) = −((−z)−θ Ĩe′′Y (t, Q,−z), (−z)−θ Ĩe′Y (t, Q, z)),

where we used that S(τ, 1, z) is a symplectic transformation, so

S(τ, 1, z)tS(τ, 1,−z) = 1. �

We will compute χ by specializing (36) to t = Q = 0, i.e., we will express χ in terms
of the limit of the higher residue pairing at t = Q = 0. To begin with, let us compute
the Chen–Ruan product of Y . Put φi = 1(0,...,1/di,...,0), where the non-zero entry is on
the i-th place. Let

φe := φe11 · · ·φ
en
n ,

where e = (e1, . . . , en) is a sequence of non-negative integers and the monomial on the
RHS is defined via the Chen–Ruan cup product.

Lemma 6.9. The following formula holds

φe = (d−`11 · · · d−`nn ) p`1c, c = (c1, . . . , cn),

where the numbers ` := `1 + · · ·+ `n and ci are defined by
ei
di

= `i + ci, 0 ≤ ci < 1, `i ∈ Z.

Proof. Note that at Q = 0 the J-function of Y is

J̃Y (τ̃ , 0, z) = zeτ̃∪CR/z, τ̃ := t1φ1 + · · ·+ tnφn,

where ∪CR denotes the Chen–Ruan product. Note also that τ(t, Q) = p logQ+ τ̃+O(Q)
and that the calibration S(0, 0, z) = 1. Recalling Proposition 6.1 we get that the vector

ĨeY (0, 0, z) is polynomial in z and that its free term

ĨeY (0, 0, 0) = (d−`11 · · · d−`nn ) p`1c

must coincide with (z∂t)
eJ̃Y (t, 0, z)|t=0 = φe. �

Choosing e = (e1, . . . , en) appropriately we can arrange that the vectors φe give
a basis of the Chen–Ruan cohomology. Note that the Chen–Ruan degree of φe is
deg(e) :=

∑n
i=1 ei/di.

Lemma 6.10. We have

χ(φe′′ , e
−π
√
−1θφe′) = (φe′ , φe′′).

Proof. Recalling (36) we get

(37) K(ωe′ , ωe′′)|t=Q=0 = −z−n+deg(e′)+deg(e′′)+2χ(φe′′ , e
−π
√
−1θφe′).

We need to check that the higher residues −K(p)(ωe′ , ωe′′)|t=Q=0 vanish for p > 0 and
coincide with the Poinare pairing (φe′ , φe′′) for p = 0. Using that χ(p∪a, b)+χ(a, p∪b) =
0, we may reduce the proof to the case when φe′ is not divisible by p, i.e., 0 ≤ e′i ≤ di−1.
Finally, let us assume also that t = 0. The rest of the proof is splitted into four steps.
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Step 1. We claim that if K(ωe′ , ωe′′)|Q=0 6= 0, then e′i + e′′i ≡ 0 mod di. Put ηi :=

e2π
√
−1/di , then the rescaling

(x1, . . . , xi, . . . , xn) 7→ (x1, . . . , ηixi, . . . , xn), Q 7→ ηiQ,

defines an automorphism of H+(f). It is easy to see that the higher residue pairing K
is invariant under the rescaling. We have

K(ωe′ , ωe′′) = zr
∞∑
m=0

Ke′,e′′,mQ
m,

where r := deg(ωe′) + deg(ωe′′)− n. Rescaling the above identity we get that

η
e′i+e

′′
i

i K(ωe′ , ωe′′) = zp
∞∑
m=0

Ke′,e′′,mQ
mηmi .

It follows that e′i+e
′′
i ≡ m mod di, so if the pairing K(ωe′ , ωe′′)|Q=0 6= 0, then e′i+e

′′
i ≡ 0

mod di.

Step 2. We claim that if K(ωe′ , ωe′′)|Q=0 6= 0, then deg(φe′) + deg(φe′′) = n − 2. To

prove this, recall that φe′′ = (d
−`′′1
1 · · · d−`

′′
n

n ) p`
′′
1c′′ , where 0 ≤ `′′ ≤ dim(Yc′′), 0 ≤ c′′i < 1

are defined by

`′′ =
n∑
i=1

`′′i , e′′i /di = `′′i + c′′i , `i ∈ Z.

Using that e′i + e′′i ≡ 0 mod di we get that

e′i
di

+
e′′i
di

=

{
`′′i + 1, if c′′i 6= 0,

`′′i , otherwise.

Recall that dim(Yc′′) + 2 is the number of i such that c′′i = 0. Therefore,

deg(φe′) + deg(φe′′) = deg(e′) + deg(e′′) = n− 2 + `′′ − dim(Yc′′) ≤ n− 2.

This proves that K(r)(ωe′ , ωe′′)|Q=0 could be non-zero only if r = 0, `′′ = dim(Yc′′), and
deg(ωe′) + deg(ωe′′) = n. It remains only to check that

(38) K(0)(ωe′ , ωe′′) = −(φe′ , φe′′).

Step 3. We claim that it is enough to verify (38) in the case when e′i+e′′i = di for n−2
values of i and e′i = e′′i = 0 for the remaining two other values. Indeed, we may assume

again that 0 ≤ e′i ≤ di− 1 and write φe′′ = (d
−`′′1
1 · · · d−`

′′
n

n ) p`
′′
1c′′ as we did above. Since

the set I(c′′) := {i | c′′i = 0} contains dim(Yc′′) + 2 elements we can choose a subset
J ⊂ I(c′′) with `′′ elements. Note that e′j = 0 for all j ∈ J , because e′j + djc

′′
j = 0

mod dj . Let us define ẽ ′′i = dic
′′
i (1 ≤ i ≤ n) and

ẽ ′j =

{
dj , if j ∈ J
e′j , otherwise.
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Using the relation djx
dj
j = Q−1x1 · · ·xn in Jac(f) we get

K(0)(ωe′ , ωe′′) =
(∏
i/∈J

d
−`′′i
i

)
K(0)(ωẽ ′ , ωẽ ′′).

Similarly, using the relation diφ
di
i = p in the Chen–Ruan cohomology, we get

(φe′ , φe′′) =
(∏
i/∈J

d
−`′′i
i

)
(φẽ ′ , φẽ ′′),

which completes the proof of our claim.

Step 4. Due to permutation symmetry of our computation, it is enough to consider
only the case e′i + e′′i = di for 1 ≤ i ≤ n− 2. By definition

K(0)(ωe′ , ωe′′) = Res
Qn−2xd1

1 · · ·x
dn−2

n−2 dx1 · · · dxn
(Qd1x

d1−1
1 − x2 · · ·xn) · · · (Qdnxdn−1

n − x1 · · ·xn−1)
.

Since xdii = (x1 · · ·xn)/(diQ) in the Jacobi ring of f , the above residue turns into

1

d1 . . . dn−2
Res

(x1 · · ·xn)n−2dx1 · · · dxn
(Qd1x

d1−1
1 − x2 · · ·xn) · · · (Qdnxdn−1

n − x1 · · ·xn−1)
.

Since the Poincare pairing (φe′ , φe′′) equals 1/(d1 · · · dn−2), to complete the proof we
have to verify that the above residue is −1 when Q = 0.

In order to compute the residue, recall that

(39) Res
(dfx1

fx1

∧ · · · ∧ dfxn
fxn

)
= Res

(det(Hess(f))

fx1 · · · fxn
dx1 · · · dxn

)
= N.

On the other hand dfx1 ∧ · · · ∧ dfxn is given by

(d1x
d1−1
1 dx1 −Q−1d(x2 · · ·xn)) ∧ · · · ∧ (dnx

dn−1
n dx1 −Q−1d(x1 · · ·xn−1)).

This wedge product can be computed explicitly as follows:

n∑
m=0

∑
1≤i1<···<im≤n

(1 +m− n)Q−n+m

(
m∏
s=1

dis(dis − 1)x
dis+n−m−2
is

)
×(40)

×(xj1 · · ·xjn−m)n−m−2 dx1 ∧ · · · ∧ dxn,

where {j1, . . . , jn−m} = {1, 2, . . . , n} \ {i1, . . . , im}. In the derivation of the above for-
mula we used the following simple fact: if g(y1, . . . , yk) = y1 · · · yk, then

det(Hess(g)) = (−1)k(1− k) (y1 · · · yk)k−2.

This formula is applied for k = n−m and (y1 · · · yk) = (xj1 , . . . , xjn−m). Note that the
term with m = n− 1 in (40) vanishes, while the term with m = n reads

n∏
i=1

di(di − 1)xdi−2
i dx1 ∧ · · · ∧ dxn.
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The contribution of this term to the residue (39) is analytic at Q = 0 and it vanishes
at Q = 0 of order at least 2. Therefore, we may assume that the summation range for
m in (40) is up to n− 2. Using the relations in the Jacobi ring of f we get

di(di − 1)xdi+n−m−2
i = (di − 1)xn−m−2

i (x1 · · ·xn)Q−1.

The sum (40) is transformed into

n−2∑
m=0

∑
1≤i1<···<im≤n

(1 +m− n)

(
m∏
s=1

(dis − 1)

)
×

×Q−n (x1 · · ·xn)n−2 dx1 ∧ · · · ∧ dxn,

Note that the sum on the first line can be computed explicitly. We have the following
identity:

n∑
m=0

∑
1≤i1<···<im≤n

(di1 − 1) · · · (dim − 1)x1−n+m = x1−n(x(d1 − 1) + 1) · · · (x(dn − 1) + 1).

Differentiating with respect to x and setting x = 1 we get

n∑
m=0

∑
1≤i1<···<im≤n

(di1 − 1) · · · (dim − 1)(1− n+m) = 0;

therefore,

n−2∑
m=0

∑
1≤i1<···<im≤n

(di1 − 1) · · · (dim − 1)(1− n+m) = −(d1 − 1) · · · (dn − 1) = −N.

Restricting the identity (39) to Q = 0 gives

Res
Q−n (x1 · · ·xn)n−2

fx1 · · · fxn
dx1 ∧ · · · ∧ dxn

∣∣∣∣
Q=0

= −1. �

6.5. Mirror symmetry in genus 0. We enumerate the elements of the basis {pk1c}
of H∗(Y,C) in an arbitrary way and denote by φi the ith element. It is convenient to
enumerate in such a way that

φa = 1ea/da , 1 ≤ a ≤ n,

where ea is the a-th coordinate vector in Zn. Let τ = (τ1, . . . , τN ) be the linear coordi-
nates on H∗(Y,C) corresponding to the basis {φi} and put ∂i := ∂/∂τi (1 ≤ i ≤ N).

6.5.1. The big quantum cohomology of Y . Let us fix a constant Q ∈ ∆∗ and specify a
value of logQ, so that the mirror map Cn → H, t 7→ τ(t, Q) is analytic. In this way Cn is
identified with an analytic subvariety Σ of H∗(Y,C). The linear coordinates (τ1, . . . , τn)
form a coordinate system on Σ, because on Σ we have

τa = ta (mod Q), 1 ≤ a ≤ n.
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Lemma 6.11. There are differential operators

Pi(z, t,Q; z∂t1 , . . . , z∂tn) ∈ C{Q}[z, t]〈z∂t1 , . . . , z∂tn〉, 1 ≤ i ≤ N,
such that

Pi JY (τ, 1, z) ∈ z φi +H[[z−1]],

where τ = τ(t, Q). Moreover, for any choice of such differential operators, we have

Pi JY (τ, 1,−z) = −zS(τ, 1, z)−1φi.

Proof. Put

JeY (t, Q, z) := (z∂t)
eJY (τ(t, Q), 1, z) = zIeY (t, Q, z)/f0(Q).

Using the quantum differential equations, we get

JeY (t, Q, z) = z(z∂t)
eS(τ, 1,−z)−11 = zS(τ, 1,−z)−1

n∏
a=1

(z∂ta −Ma)
ea1,

where Ma = ∂ta•t is the operator of quantum multiplication by ∂ta . Let us choose a

set of indexes e = (e1, . . . , en) such that the cohomology classes φe := ĨeY (0, 0, 0) form a

basis of H∗(Y,C). For example, for a given basis vector pk1c if we define

e1 = (k + c1)d1, e
2 = c2d2, . . . e

n = cndn,

then φe = d−k1 pk1c. In order to prove the existance of the differential operators Pi, it is
enough to prove that the determinant of the matrix C whose columns are

∏n
a=1(z∂ta −

Ma)
ea1 is independent of z and t. Under this assumption, the inverse of the matrix

C has entries in C{Q}[z, t], so the columns of zS(τ,Q,−z)−1 can be written as linear
combinations of JeY (t, Q, z) with coefficients in C{Q}[z, t], which is what we have to
prove.

Note that

(z∂z + E + degCR)ĨeY (t, Q, z) = deg(e)ĨeY (t, Q, z),

where deg(e) :=
∑
ei/di. The determinant ∆I(t, z) of the matrix with columns ĨeY (t, Q, z)

satisfies the following differential equation

(z∂z + E)∆I(t, z) =
(∑

e

deg(e)− Tr(degCR)
)

∆I(t, z) = 0.

Similarly, the calibration S(τ,Q,−z) is known to satisfy the differential equation

(z∂z + E + degCR)S(τ,Q,−z) = S(τ,Q,−z) degCR .

Hence, the determinant also satisfies

(z∂z + E) det(S(τ,Q,−z)) = 0.

We get (z∂z +E) det(C) = 0. However, the matrix C depends holomorphically on t and
z at t = z = 0, so det(C) is a constant independent of t and z.

Let us assume that P̃i (1 ≤ i ≤ N) is another set of differential operators such

that P̃i JY (τ(t, Q), 1, z) ∈ zφi +H[[z−1]]. Using that the calibration solves the quantum
differential equations we get

P̃i JY (τ, 1, z)z−1 = S(τ, 1,−z)−1g(t, Q, z), g ∈ H[z].
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The projection of the LHS of the above identity on H[z] is by definition φi, so on the
RHS we must have g = φi. �

Note that in the proof of Lemma 6.11, we obtained an explicit algorithm to find
differential operators Pi from the I-function. Namely, let us choose a set of N indices e

such that the vectors ĨeY (0, 0, 0) give a basis of H. The matrix A(t, Q, z) whose columns

are the vectors Ĩe(t, Q, z)/f0(Q) has a Birkhof factorization A−(t, Q, z)A+(t, Q, z) with
A− = 1 +O(z−1). The entries of the i-th column of the matrix A+(t, Q, z)−1 determine
the coefficients of a differential operator Pi that has the required properties. In partic-
ular, the I-function determines explicitly S(τ, 1,−z) = A−(t, Q, z)−1 for all τ ∈ Σ and
the operators Ma(t, Q), (1 ≤ a ≤ n) of quantum multiplication by ∂ta .

Lemma 6.12. The big quantum cohomology of Y is uniquely determined by the poly-
nomials Pi, 1 ≤ i ≤ N and the flatness of the Dubrovin’s connection.

Proof. Let us denote by Ωi(τ,Q) the linear operator of quantum multiplication by
φi•τ,Q. Lemma 6.11 implies that

Ωi(τ,Q) = Pi(0, t, Q;−M1, . . . ,−Mn), τ = τ(t, Q) ∈ Σ.

so the restriction of the multiplication operators to Σ is also uniquely determined. Note
that Ωi(0, 0) generate the orbifold cohomology. In fact, using that the J-function at

Q = 0 is eτ/z we get that

Ω1(0, 0)ν1 · · ·Ωn(0, 0)νn =
( n∏
i=1

d−`ii

)
p`1c,

where the numbers c = (c1, . . . , cn), `1, . . . , `n, and ` := `1 + · · ·+`n are uniquely defined
by

νi/di = `i + ci, `i ∈ Z, 0 ≤ ci < 1.

The matrix A = A(t, Q; Ω1, . . . ,Ωn) with columns

Pi(0, t, Q;−Ω1, . . . ,−Ωn) 1, 1 ≤ i ≤ N

is non-degenerate, because at t = Q = 0 it reduces to the identity matrix. The quantum
multiplication is commutative; therefore, Ωi(τ,Q)A coincides with the matrix B =
B(t, Q; Ω1, . . . ,Ωn) whose columns are given by

Pi(0, t, Q;−Ω1, . . . ,−Ωn)φi, 1 ≤ i ≤ N.

Here A and B are viewed as functions in t, Q and the entries of the matrices Ω1, . . . ,Ωn.
It follows that Ωi(τ,Q) = BA−1 is a rational function Ri(τ,Q; Ω1, . . . ,Ωn) in the entries
of Ωa (1 ≤ a ≤ n). Using the flatness of Dubrovin’s connection we get

∂iΩa = ∂aΩi = ∂aRi(Ω1, . . . ,Ωn),

and we get that the restriction of all higher order derivatives in τ of Ωa(τ,Q), 1 ≤ a ≤ n
to Σ are uniquely determined. In particular, we can express the higher order derivatives
in τ of Ωa(τ,Q) at τ = 0 in terms of the polynomials Pi, which completes the proof. �
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6.5.2. The mirror isomorphism. Let us fix Q ∈ ∆∗ and define

f := f(x, 0, Q) =

n∑
i=1

xdii −
1

Q
x1 · · ·xn.

Let us embed CN ⊂ Bf via t 7→ f(x, t,Q). Put

ωi =
√
−1 Mir−1(φi) ∈ F|Cn×{Q},

where the scalar
√
−1 is chosen, so that the Poincare pairing matches the residue pairing

K(0) (see Proposition 6.6). According to Proposition 6.6, the forms ωi form a good basis,
i.e., K(ωi, ωj) ∈ C. Let us assume that φ1 = 1 and define ω := ω1 to be the primitive
form. The good basis {ωi}Ni=1 extends uniquely to a good basis over the space Bf of
miniversal deformations of f and it determines a flat coordinate system τ = (τ1, . . . , τN )
on Bf such that

N∑
i=1

τi(t)φi = τ(t, Q), ∀t ∈ Cn.

We can use the map Mir to obtain a reconstruction of the Frobenius structure on
Bf similar to the reconstruction of the big quantum cohomology given by Lemmas
6.11 and 6.12. Namely, using Proposition 6.5, it is easy to verify that the statements
of both lemmas remain the same if we replace JY (τ, 1, z) with the primitive form ω
and Dubrovin’s connection with the Gauss–Manin connection. Note that since Mir
is a D-module isomorphism, we can use the same set of differential operators Pi for
both reconstructions. Therefore, we can uniquely extend the mirror map Cn → H,
t 7→ τ(t, Q) to an isomorphism of Frobenius structures, i.e., we have the following
proposition.

Proposition 6.13. The map

(41) Bf → H := H∗CR(Y ;C), τ = (τ1, . . . , τN ) 7→
N∑
i=1

τiφi

induces an isomorphism of the germ of the Frobenius structure of Bf at τ = 0 and the
quantum cohomology of Y .

Remark 6.14. The map Mir is defined in terms of an extended I-function of Y depend-
ing on the relevant deformation parameters t1, . . . , tn. Using the results of [22] we can
extend the I-function even further to include all deformation parameters. This would
give us an appropriate extension of the map Mir, which will provide us directly with a
trivialization of TBf [[z]] ∼= B ×H[[z]] that intertwines the Gauss–Manin connection and
the Dubrovin connection. The advantage of using a reconstruction argument is that,
after analyzing the reconstruction scheme more carefully, we can prove the convergence
of the Frobenius multiplication on TBf in the irrelevant direction.

6.6. Mirror symmetry in higher genus. Proposition 6.13 implies that the quantum
cohomology of Y is semi-simple. Therefore, we can recall Givental’s higher genus re-
construction [31, 32] proved by Teleman [72]. Let τ = τ(0, Q) ∈ H be the value of the
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mirror map 31 at t = 0, put f := f(x, 0, Q), and recall the good basis

ωi =
√
−1 Mir−1(φi)|t=0 ∈ H+(f), 1 ≤ i ≤ N,

where {φi}Ni=1 ⊂ H is a fixed basis with φ1 = 1. The higher genus mirror symmetry for
Y can be stated as follows.

Theorem 6.15. The total ancestor potentials of Y and f are related by the following
formula:

AYτ (~; q) = Aω1,...,ωN
f,ω (~; q),

where

ω := ω1 =
√
−1

dx1 · · · dxn
Qf0(Q)

.

6.7. A-model opposite subspace. Let f = f(x, 0, Q), Q ∈ ∆∗. Recall also the
notation h and h∗ for respectively the middle cohomology and homology of f . The
opposite subspace P ⊂ H+(f) that corresponds to the good basis of GW theory can be
characterized as follows. The group µdi of dith roots of 1 acts naturally on Cn×∆∗ via

η.((x1, . . . , xn), Q) := ((x1, . . . , ηxi, . . . , xn), ηQ).

The function f is invariant under this action, so the vanishing homology and cohomology
bundles on ∆∗ become naturally µdi-equivariant bundles. Let us a define a linear map

Li : h→ h, 〈Li(A), α〉 = 〈A, η−1
i · αηiQ〉,

where ηi = e2π
√
−1/di , η−1

i · is the µdi-equivariant action, and αηiQ is the parallel

trasnport of the cycle α along the arc Qe
√
−1θ, 0 ≤ θ ≤ 2π/di. Note that Ldii =

M−1
mar, where Mmar is the monodromy transformation of h corresponding to a closed

loop around Q = 0 in counter clockwise direction. Recall that Mmar = e−2π
√
−1Nmar

(see Lemma 6.8), where Nmar is a nilpotent operator. In particular, we can define

M
1/di
mar := e−(2π

√
−1/di)Nmar . Note that the linear operators Li and Mmar pairwise com-

mute for 1 ≤ i ≤ n. Therefore, the map ηi 7→ Li ◦M1/di
mar gives a representation of µdi

on h for each i = 1, 2, . . . , n. Since the operators defininig the representations pairwise
commute we have a joint spectrum decomposition

(42) h =
⊕

e=(e1,...,en)

he, he = {v ∈ he : Liv = η−eii v, 1 ≤ i ≤ n}.

where the direct sum is over e = (e1, . . . , en) such that 0 ≤ ei ≤ di − 1 and he 6= {0}.
Let us recall the definition of a weight filtration (see [67], Lemma 6.4). Given a

triple (V,m,N) consisting of a vector space V , a positive integer m (called weight),
and a nilpotent operator N such that Nm = 0, there is a unique increasing filtration
0 = W−1 ⊂ W0 ⊂ · · · ⊂ W2m = V , called a weight filtration, such that N(W`) ⊂ W`−2

and N l : GrWm+` → GrWm−` is an isomorphism for all `.
Put

Ne = Nmar|he , me := n+ |{i : ei 6= 0}| − 2dι(e)e,
where |S| denotes the number of elements in a set S and ι(e) :=

∑n
i=1 ei/di. Let us

define W e
• to be the weight filtration corresponding to the tripple (he,me, Ne).
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Proposition 6.16. The opposite filtration {U•} of h, which corresponds to the GW
opposite subspace P via (10) is given by the formula

U` =
⊕
e

W e
2`,

where the direct sum over e is the same as in (42).

Proof. Our argument is based on mirror symmetry. Recall the isomorphism (35)

Ψ : h→ H.

We will find the images of the opposite filtration and the various weight filtrations under
Ψ and see that the desired relation is obvious.

By definition the one-to-one correspondence, (10) associates to every A ∈ F `hs∩U`hs
with s = e2π

√
−1α, 0 ≤ α < 1, a homogeneous form ω ∈ H+(f)∩Pz of degree deg(ω) =

n− `− α, such that

ŝ(ω, z) = (−z)−`−α+n
2 A,

where we used that for every fixed z the map ψ in (10) is the inverse to ŝ( , z). By
definition

Ψ(ŝ(ω, z)) = (−z)−θS(τ, 1,−z)−1 Mir(ω),

where τ = τ(0, Q) is the image of the mirror map. On the other hand, due to home-
geneity

(−z)−θS(τ, 1,−z)−1(−z)θ

is independent of z and

(−z)−θ Mir(ω) = (−z)deg(ω)−n
2 Mir(ω).

We get

Ψ(A) = S(τ, 1, 1)−1 Mir(ω).

Therefore, Ψ(F `hs ∩U`hs) is the span of all S(τ, 1, 1)−1φ ∈ H such that φ is a homoge-
neous class satisfying

ddegCR(φ)e = n− 1− `, degCR(φ) + α ∈ Z.
Recall the homogeneity condition for S(τ,Q, z):

(z∂z + E)S(τ,Q, z) = [θ, S(τ,Q, z)].

It follows that S(τ, 1, 1) = 1 +
∑∞

k=1 Sk(τ, 1), where each operator Sk(τ, 1) increases the
degree by k. Since

U` =
⊕
`′≥`

⊕
s

F `
′
hs ∩ U`′hs,

we get that Ψ(U`) is spanned by homogeneous classes φ in H such that

(43) ddegCR(φ)e ≥ n− 1− `.
Let us determine the images of the weight filtrations. We already proved that Ψ ◦

Nmar = p ∪ Ψ (see Lemma 6.8). Using the identity

Liŝ(ωe, z) = η−eii ŝ(ωe, z)|Q 7→ηiQ,
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where ωe = xedx/Q and the definition of Ψ (see (35)), it is easy to check that Ψ ◦
(LiM

1/di
mar ) = Ji ◦Ψ, where Ji : H → H is the linear operator defined by

Ji(p
k1c) = e−2π

√
−1ci pk1c.

Therefore, we have Ψ(he) = H(Ye;C), where Ye is the twisted sector corresponding to
c = (c1, . . . , cn), with ci = ei/di. The weight filtration of the triple (H(Ye;C),me, p∪) is
straightforward to find. We get that Ψ(W e

2`) is spanned by homogeneous classes φ ∈ H,
such that

deg(φ) ≥ 1

2

(
dim(Ye) +me

)
− `,

where if φ is a class of (usual) real degree 2i, then deg(φ) = i. Note that

(44) degCR(φ) = deg(φ) + ι(e).

Comparing the inequalities (43) and (44) we see that they are equivalent when me =
n+ |{i : ei 6= 0}| − 2dι(e)e. �

7. Mirror symmetry for Fermat CY singularities

Now we discuss the mirror symmetry on the LG side. In [37], He-Li-Shen-Webb
identified the FJRW ancestor potential (LG A-model) of invertible quasi-homogeneous
polynomial singularities to the Saito-Givental ancestor potential (LG B-model) of the
mirror polynomials, by using Givental-Teleman’s [31, 72] unique higher genus formula
for semisimple Frobenius manifolds and matching Frobenius manifolds on both sides
via WDVV equations and a perturbative formula in [47]. In this section, we establish
a mirror symmetry statement of D-module structures and opposite subspaces between
FJRW theory and Saito’s theory for Fermat CY singularities. For Fermat CY singulari-
ties, our result recovers He-Li-Shen-Webb’s result. More general cases remain unknown
due to the lack of a toric model.

7.1. FJRW theory of Fermat CY singularities. As before, we consider the Landau-
Ginzburg side of the Fermat polynomial of Calabi-Yau type

W = xd1
1 + · · ·+ xdnn ,

n∑
i=1

1

di
= 1.

Let GW be the group of diagonal symmetries of W , so

GW :=
{

(λ1, . . . , λn) ∈ (C∗)n
∣∣∣W (λ1x1, . . . , λnxn) = W (x1, . . . , xn)

}
∼=

n∏
i=1

µdi .

For each γ ∈ GW , there exist unique {Θ(i)
γ ∈ [0, 1) ∩Q}, such that

γ =
(

exp(2π
√
−1Θ(1)

γ ), · · · , exp(2π
√
−1Θ(n)

γ )
)
.

A mathematical construction of the LG model for a generic pair (W,GW ) is given
by Fan, Jarvis, and Ruan [28, 29], based on a proposal of Witten [75]. More generally,
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the group GW can be replaced by any subgroup that contains the exponential grading
element

(45) jW :=

(
exp(

2π
√
−1

d1
), · · · , exp(

2π
√
−1

dn
)

)
.

In this paper, we only focus on the pair(
W = xd1

1 + · · ·+ xdnn , GW

)
.

Its FJRW theory consists of a graded vector space HW (called FJRW state space), and
a Cohomological Field Theory {ΛWg,k}. We recall some basics in this section and refer

the readers as to [28] for more details.
Each γ ∈ GW acts on Cn by homothesis and we denote Fix(γ) ⊂ Cn the fix locus

of γ. Let Wγ be the restriction of W on Fix(γ). Each γ-twisted sector Hγ consists of
GW -invariant part of the middle-dimensional relative cohomology for Wγ .

Hγ :=
(
H∗(Fix(γ), (ReWγ)−1(−∞,−M);C)

)GW , M � 0.

Here Hγ is called narrow if Fix(γ) = 0 ∈ Cn and is called broad otherwise. Each narrow
sector is canonically isomorphic to C,

Hγ := H∗({0}, ∅;C) ∼= C.

We denote 1γ the canonical generator in 1 ∈ C ∼= Hγ .
In particular, since W is Fermat CY singularity, the FJRW state space is given by

HW =
⊕
γ∈N

Hγ
∼=
⊕
γ∈N

C · 1γ ,

where γ belongs to the set of narrow elements

(46) N :=
{
γ ∈ GW

∣∣∣1 ≤ djΘ(j)
γ ≤ dj − 1, ∀1 ≤ j ≤ n

}
.

The cardinality of N is N :=
∏n
j=1(dj − 1), hence HW is a vector space of rank N .

Moreover, (HW ,degW ) is a graded vector space, where

(47) degW 1γ :=
n∑
j=1

(
Θ(j)
γ −

1

dj

)
.

For each γ ∈ N , we define its involution γ′ ∈ N by

Θ
(j)
γ′ := 1−Θ(j)

γ .

Let δ
(−)
(−) be the Kronecker symbol. Then HW has a non-degenerate pairing ηW , given

by

(48) ηW (1α,1β) = δβ
′

α , ∀α, β ∈ N .

The triple (HW , degW , ηW ) has a Cohomological Field Theory {ΛWg,k}, which consists
of multilinear maps

ΛWg,k : H⊗kW → H∗(Mg,k,C).
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Here Mg,k is the moduli space of stable k-pointed curves of genus g. Letting γj ∈ N ,

and ψ̄j ∈ H∗(Mg,k,C) be the j-th ψ̄-class, we have the following FJRW invariant

(49) 〈1γ1ψ̄
`1
1 , · · · ,1γk ψ̄

`k
k 〉

W
g,k :=

∫
Mg,k

ΛWg,k(1γ1 , · · · ,1γk)
k∏
j=1

ψ̄
`j
j .

Similarly as in GW theory, for any τ ∈ HW , we can define a formal function〈〈
1γ1ψ̄

`1
1 , · · · ,1γk ψ̄

`k
k

〉〉W
g,k

(τ) :=
∑
m≥0

1

m!
〈1γ1ψ̄

`1
1 , · · · ,1γk ψ̄

`k
k , τ, · · · , τ〉

W
g,k+m.

The quantum multiplication •τ is given by

ηW (1α •τ 1β,1γ) =
〈〈

1α,1β,1γ

〉〉W
0,3

(τ).

The product •τ has an identity 1 := 1jW with jW defined in (45).
Again we introduce a set of formal variables t = {tk,i}, 1 ≤ i ≤ N , k ≥ 0. We

introduce a genus-g generating function

F (g)
τ,W (t) =

∑ 1

k!

〈〈
t(ψ̄), . . . , t(ψ̄)

〉〉W
g,k

(τ)

and the total ancestor potential

AWτ (~; t) := exp

 ∞∑
g=0

~g−1F (g)
τ,W (t)

 .

7.1.1. J-function. Let HW := HW ((z−1)) be the infinite vector space. Let us consider
the Darboux coordinate s

p(z) =
∑
k≥0

∑
α

pαk1αz
−k−1, q(z) =

∑
k≥0

∑
α

qαk 1αz
k.

We may write an element in HW as

f(z) =
∑
k≥0

qαk 1αz
k +

∑
k<0

pαk1αz
k.

The infinite dimensional vector space HW is equipped with a symplectic pairing

ΩW

(
f(z), g(z)

)
= Resz=0 ηW (f(−z), g(z))dz.

We haveHW = H+
W⊕H

−
W whereH+

W = HW [[z]] andH−W := z−1HW [z−1] are Lagrangian
subspaces. Since H ∼= TH+, after the dilation shift q(z) = −z + t(z), the graph of the

genus zero generating function F (0)
W defines a formal germ of Lagrangian submanifold

LW in HW ,

LW :=
{

(p,q) ∈ TH+
W : p = dqF

(0)
W

}
.

We define the FJRW J-function

(50) JFJRW(τ, z) := −z + t +
∞∑
m=0

∞∑
k=0

∑
γ

1

m!
〈1γψ̄k, τ, · · · , τ〉W0,m+1 1γ′ (−z)−k−1.

It is standard to check that
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Lemma 7.1. The J-function JFJRW(τ, z) belongs to LW .

Similar to GW theory, we define the calibration operator SW (τ, z) in FJRW theory
by

ηW (SW (τ, z)1α,1β) = ηW (1α,1β) +

∞∑
k=0

〈〈
1αψ̄

k,1β

〉〉W
0,2

(τ) z−1−k,

where the unstable terms vanishes. We can also rewrite the J-function as follows:

(51) JFJRW(τ, z) = −z SW (τ, z)−11.

7.2. I-function in FJRW theory. Now we introduce an FJRW I-function I0
LG(t, z)

in (60) via toric geometry. This I-function lies on the FJRW Langrangian cone, and
Birkhoff factorization of the I-function will induce a mirror map (64).

7.2.1. Toric setup and an FJRW I-function. Let {b0, b1, · · · , bn} be vectors in Zn such
that

b0 = (1, · · · , 1), b
(j)
i = δji di, ∀j = 1, · · · , n.

Let S is be a set of vectors in Zn,

S = R
∐

B, R = {b1, · · · , bn}

and B is a set of ghost variables

(52) B :=
{
b = (b(1), · · · , b(n)) ∈ Zn

∣∣0 ≤ b(j) ≤ dj − 2,∀j = 1, · · · , n
}
.

In LG side, we have an exact fan sequence

(53) 0→ L→ ZS ϕ−→ Zn.
For each b ∈ S, the map ϕ in (53) is defined by

ϕ(b) = b ∈ Zn.
Let ΨLG : σ ∩ Zn → QS , where ΨLG(e) = {Ψb

LG(e)} and the coefficient of b ∈ S is
given by

Ψb
LG(e) =

{
e(j)/dj , b = bj ∈ R;
0, b ∈ B.

Let ν(e) =
∑

b∈S νb(e) b ∈ QS be defined by

(54) ν(e) := −ΨLG(e + b0) +
∑
b∈B

νb(e) ξb,

where for each b ∈ B, νb(e) ∈ Z≥0 and

ξb := b−
∑
c∈R

Ψc
LG(b)c ∈ LQ := L⊗Z Q.

Thus for each j = 1, · · · , n, we have

(55) νj(e) = − 1

dj

(
e(j) + 1 +

∑
b∈B

νb(e) b(j)

)
∈ Q<0.

For each ν ∈ QS , we can assign an element γν ∈ GW
(56) γν =

(
exp(2π

√
−1〈−ν1〉), · · · , exp(2π

√
−1〈−νn〉)

)
∈ GW .



64 HIROSHI IRITANI, TODOR MILANOV, YONGBIN RUAN, YEFENG SHEN

Let t(−) : L→ C be a formal function given by

tΨLG(e+b0)+ν :=
∏
b∈B

tνbb .

Recalling the definition of ν in (54), we define the box element �ν to be

(57) �ν :=

∏n
j=1

∏b−νjc
k=1 (νj + k) z∏

b∈B
∏νb
k=1(kz)

.

If there exists j ∈ {1, · · · , n} such that −νj ∈ Z, then �ν = 0. Thus for �ν 6= 0, we
know γν ∈ N , and it makes sense to introduce

(58) IeLG(t, z) =
∑
ν∈QS

(∏
b∈B

tνbb

)
�ν 1γν ∈ HW [[t]]((z)).

Here HW [[t]] := HW ⊗CC[[tb; b ∈ B]]. In particular, when t = 0, i.e., νb = 0 for all b ∈ B,
then according to Equation (55),

ν =
n∑
j=1

(
−e(j) + 1

dj

)
bj .

A direct calculation shows:

(59) IeLG(t = 0, z) = 1γν .

Taking e = 0, we get the I-function in the LG side:

(60) I0
LG(t, z) =

∑
ν

(∏
b∈B

tνbb

)
�ν 1γν ∈ HW [[t]]((z)).

Now we assign the following degree:

degW tb = 1−
n∑
j=1

b(j)

dj
, degW z = 1.

When we apply (55) and (47), we see that each term in IeLG(t, z) has degree

degW

(∏
b∈B

tνbb �ν 1γν

)
=

∑
b∈B

νb

1−
n∑
j=1

b(j)

dj

+
n∑
j=1

b−νjc −
∑
b∈B

νb +
n∑
j=1

(
〈−νj〉 −

1

dj

)

=

n∑
j=1

e(j)

dj
.

This depends on e only, so we know I0
LG(t, z) is homogeneous of degree zero; i.e.,

(61) degW
(
I0

LG(t, z)
)

= 0.

Definition 7.2. Following [22], we say f(t,−z) is an HW [[t]]-point in the Lagrangian
cone LW if

f(t,−z) = −z1 + t(−z) +
∑
γ

〈〈 1γ
−z − ψ

〉〉W
0,1

(t) 1γ′

for some t(z) ∈ H+[[y]] such that t(z)|y=0 = 0.
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The following result is known to experts.

Proposition 7.3. The formal function I0
LG(t,−z) is an HW [[t]]-point in the Lagrangian

cone LW .

For the reader’s convenience, we give a proof in Appendix A following the method of
Ross and Ruan [60]. It uses a localization computation in GLSM theory [30].

7.2.2. Convergence. Let ei ∈ Zn be the i-th standard vector; i.e. e
(j)
i = δji , i = 1, · · · , n.

Let ti be the parameter of ei. Let σ be the parameter of b0 = (1, · · · , 1) ∈ Zn. We
restrict I0

LG(t, z) to the following subspace of CB × C 3 ({tb}b∈B, z):
Cn+1 × C 3 (t1, · · · , tn, σ, z).

We denote the restriction by I0
LG(t1, · · · , tn, σ, z). From to (61), we know

degW
(
I0

LG(t1, · · · , tn, σ, z)
)

= 0.

On the other hand, since

degW ti = 1− 1

di
> 0, degW (σ) = 0, degW z = 1, 0 ≤ degW 1γ ≤ n− 2,

we can rewrite the function I0
LG(t1, · · · , tn, σ, z) as

I0
LG(t1, · · · , tn, σ, z) =

∑
k=0

IWk (t1, · · · , tn, σ)z−k ∈ HW [[t1, · · · , tn, σ]][[z−1]].

Hence IW0 (t1, · · · , tn, σ) is homogeneous of degree zero. If d = l.c.m(d1, · · · , dn), then

(62) IW0 (t1, · · · , tn, σ) = fW0 (σ) 1 := 1 +
∑
m≥1

σmd

(md)!

n∏
j=1

md/dj∏
k=1

(
k − md+ 1

dj

)
.

The ratio test shows that fW0 (σ) is analytic near σ = 0. Further more, we have the
following convergence result.

Corollary 7.4. For each k ≥ 0, IWk (t1, · · · , tn, σ) ∈ HW [t1, · · · , tn]{σ}.

Proof. The polynomiality of t1, · · · , tn follows from degree counting and degW ti > 0 for
each i = 1, · · · , n. For any fixed homogeneous element in HW [t1, · · · , tn], we can use
the ratio test to obtain the analyticity of σ near σ = 0. �

More generally, recall that W = xd1
1 + · · ·+xdnn is an element inM in (1). We define

Brel = {b ∈ B| degW tb > 0}, Bmar = {b ∈ B| degW tb = 0}.
We may consider a neighborhood of W ∈M consisting of

W +
∑

b∈Brel∩Bmar

tbx
b, |tb| < δ if b ∈ Bmar.

We denote this neighborhood by MLG,δ,

MLG,δ
∼= CBrel ×∆Bmar

δ .

If δ is sufficiently small, then a discussion similar to that in Corollary (7.4) shows

I0
LG(t, z)|MLG,δ

∈ HW ⊗C OMLG,δ
[[z−1]].
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7.2.3. Mirror map. The Birkhoff factorization allows us to rewrite I0
LG(t, z) as

(63) I0
LG(t, z) = L−(t, z)ΥLG(t, z),

with

ΥLG(t, z) ∈ H+[[t]] and L− := 1 +
∑
k≥1

Lk(t) z
−k ∈ End(HW )[[z−1]].

A mirror map τ : CB → HW [[t]] is given by

(64) τ(t) := L1(t)(1) ∈ HW [[t]].

Combining Lemma 7.1 and Proposition 7.3, we have the equality

JFJRW(τ, z) = −zL−(t,−z)1.

Here we identify the calibration operator SW (τ(t), z)−1 with the operator L−(t, z) via
the mirror map (64).

The restriction of I0
LG(t, z) to MLG,δ will imply

ΥLG(t, z)|MLG,δ
∈ OMLG,δ

· 1,

and the mirror map restricts to

(65) τ :MLG,δ −→ HW .

In particular, if we restrict to the (t1, · · · , tn, σ)-plane, then

ΥLG(t1, · · · , tn, σ, z) = fW0 (σ) 1,

where fW0 (σ) is given in (62), and the mirror map restricts to

τ(t1, · · · , tn, σ) =
IW1 (t1, · · · , tn, σ)

fW0 (σ)
∈ H≤1

W [t1, · · · , tn]{σ}.

Here H≤1
W are the elements of HW with degW ≤ 1.

7.3. Mirror symmetry to FJRW theory.

7.3.1. An isomorphism between D-modules.

Lemma 7.5. The set {IeLG(t, z)|e ∈ Zn≥0} satisfies the following differential equations:

z
∂

∂tb
IeLG(t, z) = Ie+b

LG (t, z), ∀b ∈ B;(66)

z(e(i) + 1) IeLG(t, z) +
∑
b∈B

b(i)tb I
e+b
LG (t, z) +

n∑
j=1

b
(i)
j I

e+bj
LG (t, z) = 0.(67)

Proof. Recalling (55), we will simply denote ν = ν(e), ν ′ = ν(e + b) and ν ′′ = ν(e + bj).

For the first equation, we shall compare the coefficient of tνb−1
b

∏
c 6=b t

νc
c on both sides.

The corresponding vector {ν ′c}c∈B on the right hand side should satisfy

(68) ν ′c = νc − δbc, c ∈ B.

Both coefficients are 0 when νb = 0, and thus it is enough to match them when νb ≥ 1.
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When νb ≥ 1, on the right hand side, similar to (55), we have

ν ′j = − 1

dj

(
e(j) + b(j) + 1 +

∑
c∈B

ν ′cc
(j)

)
∈ Q<0.

Equation (68) implies ν ′j = νj and

�ν′ =

∏n
j=1

∏b−ν′jc
k=1 (ν ′jz + kz)∏

c∈G
∏ν′c
k=1(kz)

= (νbz)�ν .

Thus the coefficient of tνb−1
b

∏
c 6=b t

νc
c on the right hand side is

�ν′1ν′ = (νbz)�ν1γν .

Now let us prove the second identity. There are three terms and we will consider the
coefficient of

∏
c∈B t

νc
c for a fixed vector ν = {νc}c∈B. For each b ∈ B, the contribution

from Ie+b
LG (t, z) comes from the vector {ν ′c}c∈B such that

ν ′c = νc − δbc, ∀c ∈ S.

For each j = 1, · · · , n, the contribution from I
e+bj
LG (t, z) comes from the vector {ν ′′c }c∈B

such that
ν ′′c = νc − δjc , ∀c ∈ S.

Thus
�ν′1γν′ = (νbz)�ν1γν , �ν′′1γν′′ = (νjz)�ν1γν .

Put everything together, we know the coefficient of
∏
c∈B t

νc
c of the LHS in (67) is given

by z(e(i) + 1) +
∑
b∈B

b(i)νbz +

n∑
j=1

b
(i)
j νjz

�ν1γν .

Since b
(i)
j = djδ

i
j , Equation (55) implies that the formula above vanishes.

Finally, we check the constant term in equation (67). The constant in the second
term vanishes by definition. The remaining two terms givez(e(i) + 1) +

n∑
j=1

b
(i)
j νjz

�ν1γν = 0.

This again follows from Equation (55), where now νb = 0 for all b ∈ B. �

According to this lemma, there exist a D-module on MLG,δ. We identify this D-

module with the D-module (Ĥ+(W ),∇) in the B-model using the mirror map in (65).

Proposition 7.6. The following map

(69) LocW : Ĥ+(W )→ LW , [xedx] 7→ IeLG(t, z).

extends to a D-module isomorphism.

Proof. The surjectivity is obvious and the injectivity is a consequence of Equation (67).
The result follows since both D-modules has the same rank. �
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7.3.2. Matching pairings. We extend the pairing ηW in (48) C[[z]]-linearly, and still
denote the extension by ηW : HW [[z]]×HW [[z]]→ C[[z]]. Via the map LocW in (69), we
call pull back the pairing ηW to get

K̃W : Ĥ+(W )× Ĥ+(W )→ C[[z]],

where

K̃W (ω1, ω2) = ηW (LocW (ω1),Loc∗W (ω2)) .

For Fermat singularities W := xd1
1 + · · · + xdnn , we recall the set in (52). The set

{[xbdx] ∈ Ĥ+(W ) | b ∈ B} forms a good basis [37, Theorem 2.10], such that

KW ([xbdx], [xcdx]) = δcb .

We identify the set B with N , the set of indicies of narrow elements in FJRW theory,
by a shifting map

(70) S : B→ N , via b 7→ γ ∈ N , Θ(j)
γ =

b(j) + 1

dj
.

Proposition 7.7. For any b, c ∈ B, we have

KW ([xbdx], [xcdx]) = K̃W ([xbdx], [xcdx]).

Proof. Since L(t(τ), z)−1 preserves the pairing, in order to prove the mirror map (69)
preserves the pairing, we only need to verify

ηW

(
IbLG(t,−z) |t=0, I

c
LG(t, z) |t=0

)
= δcb .

This equality follows easily from (59). �

7.3.3. Matching opposite subspaces. The vector space of the good basis

HB := {[xbdx] ∈ Ĥ+(W ) | b ∈ B}

induces an opposite subspace PB in Ĥ(W ). Recalling (3) in Section 4.2, we have

PB = HB[z−1]z−1.

On the other hand, HW ((z)) has a natural opposite subspace HW [z−1]z−1. Then the
restriction of LocW on HB is induced by the shifting map (70)

LocW : HB → HW , [xbdx] 7→ 1S(b).

It is easy to see that

Proposition 7.8. The map LocW matches the opposite subspaces PB with HW [z−1]z−1.

7.4. Proof of main theorem. Recall our main theorem:

Theorem 7.9. Suppose that W is a Fermat polynomial with d =
∑

i ci (hence XW

defines a Calabi-Yau hypersurfac). Then,

(1) LG/CY correspondence conjecture holds for the pair (W,GW ).

(2) The modularity conjecture holds for [XW /G̃W ].
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Proof. The proof of modularity conjecture follows directly from the definition of B-
model generating function (Definition 5.8), which is modular but non-holomorphic; and
GW-mirror theorems (Theorem 6.15), which express B-model generating function as the
anti-holomorphic completion of GW-generating function. Although our main interest
is GW-theory, a similar statement holds for FJRW-theory as well.

To prove the LG-CY correspondence, we need to consider the analytic continuation
of holomorphic generating function of GW/FJRW-theory. This can be done as follows.
Using two mirror theorems (Theorem 6.15, Proposition 7.6, 7.7, and 7.8), we identify
GW/FJRW-generating function to the local generating functions near large complex
structure/Gepner limits on the B-model moduli space. Now we can use the complex
coordinates (not flat coordinates) on the B-model moduli space. The GW/FJRW-
generating functions were induced by the GW/FJRW-opposite subspaces. Now, we
use the Gauss-Manin connection to parallel transport the GW-opposite subspace at
the large complex structure to the Gepner limit along a path. Note that Gauss-Manin
connection preserves the Givental symplectic vector space and Givental cone, so the
parallel transport of an opposite subspace will remain Lagrangian and opposite. In
such a way, we obtain a holomorphic generating function in a neighborhood of a path
connecting large complex limit to Gepner limit. Namely, we construct an analytic
continuation of the GW-generating function. But the analytic continuation of the GW-
generating function to the Gepner limit is not the FJRW-generating function because the
parallel transport of GW-opposite subspace is different from FJRW-opposite subspace.
By Lemma 5.6, the two generating functions differ by the quantization of the symplectic
transformation mapping one opposite subspace to other. �

Appendix A. A proof of Proposition 7.3

A.1. Weighted invariants and concavity.

Definition A.1. For any ε ∈ Q>0, we say (C,L1, · · · ,Ln) is a (GW , ε)-stable structure
if the following conditions are satisfied:

• C is a connected proper one-dimensional DM stack of genus 0 with weight-1
marked points x1, · · · , xm, and weight ε points y1, · · · , y`. The total weight at
each point p ∈ C is bounded by 1. Stacky point can only occur at marked points
and nodal points.
• Let Gp be the local isotropy group at the stacky point p. There is a faithful

representation rp : Gp → GW .
• Each Lj is an invertible sheaf over C and there exists integers ξi,j ∈ [0, dj) such

that

(71) L⊗djj
∼= ωC,log

(
−
∑̀
i=1

ξi,j [yi]

)
.

At each marking xi, the local representation sends the generator 1 ∈ Gxi to some

γi :=
(

exp(2π
√
−1Θ(1)

γi ), · · · exp(2π
√
−1Θ(n)

γi )
)
∈ GW , Θ(j)

γi ∈ [0, 1) ∩Q.
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We fix the decorations γ = (γ1, · · · , γm) and ξ = (ξ1, · · · , ξ`) such that Θ
(j)
ξi

= ξi,j/dj .

We denote the moduli of (GW , ε)-stable structures by Wε
m|`(γ|ξ). Lj has a desingu-

larization, which is a line bundle Lj on the coarse curve C [14, Prop. 4.1.2]. When

Wε
m|`(γ|ξ) is nonempty,

(72) degLj =
1

dj

(
−2 +m−

∑̀
i=1

ξi,j

)
−

m∑
i=1

Θ(j)
γi ∈ Z.

According to [28], nonempty Wε
m|`(γ|ξ) is a smooth Deligne-Mumford stack properly

fibered over the Hasset moduli space of stable weighted rational curves, which we de-
noted by Mm|`. Furthermore,

(73) dimCW
ε
m|`(γ|ξ) = −3 +m+ `.

In [28], if the vector space consists of narrow sectors and compact sectors only, the
authors use cosection technique [19, 12] to construct a virtual fundamental cycle on the

moduli space. We denote such a cycle by [Wε
m|`(γ|ξ)]vir. Let 1γi be the insertion at

the marked point xi and 1ξi be the insertion at the marked point yi, then the following
weighted-ε invariant is defined

(74)

〈
1γ1ψ̄

k1
1 , · · · ,1γmψ̄

km
m

∣∣∣1ξ1 , · · · ,1ξ`〉ε
m|`

=

∫
[W

ε
m|`(γ|ξ)]

vir

m∏
i=1

ψ̄kii .

In particular, if ε > 1, then there is no weighted point and we get the FJRW invariant
up to a sign [12, Theorem 5.6].

A.1.1. Concavity. The following lemma is very useful.

Lemma A.2. Each geometric fiber (C,L1, · · · ,Ln) ∈ Wε
m|`(γ|ξ) is concave, i.e.,

(75) H0 (C,Lj) = 0, ∀ 1 ≤ j ≤ n.

Proof. If C is smooth, since djΘ
(j)
γi ≥ 1 and ξi,j ≥ 0, (72) implies degLj < 0 and (75)

follows.
If C is a nodal, then for each j = 1, · · · , n, the normalization induces a long exact

sequence:

0→ H0 (C,Lj)→
⊕
v

H0 (Cv,Lj)
%−→
⊕
p

H0 (p,Lj)→ H1 (C,Lj)→
⊕
v

H1 (Cv,Lj)→ 0.

Here Cv runs over all the components after normalization and p runs over all the nodes.
It is enough to prove Ker(%) = 0. If p is a narrow node, then H0 (p,Lj) = 0 and we
can split the exact sequence into two different sequences and then discuss individually.
Thus we may assume all the nodes are broad.

We call a broad node external if one of the component attached to this node has
exactly one node. Otherwise we call a broad node internal. We denote the number of
external broad nodes by E and the number of internal broad nodes by I. Since C is a
genus zero nodal curve, there are E + I + 1 components in the normalization, where E
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of them contain exactly one node. Also, we must have E ≥ 2. If we denote the number
of broad nodes on the component Cv by Bv, then∑

v

Bv = E + 2I.

Moreover, since djΘ
(j)
γi ≥ 1, ξi,j ≥ 0, and dj ≥ 2, the formula (72) implies

(76) degCv Lj ≤
Bv
2
− 1.

By definition of %, any nonzero section σ such that %(σ) = 0 must vanish on each
external node. Thus the total degree of σ is at least E. However, (76) implies the
number of zeros of σ is at most∑

v;Bv≥2

(
Bv
2
− 1) =

∑
v;Bv≥2

Bv
2
− (I + 1) <

E

2
+ I − (I + 1) =

E

2
− 1 < E.

This is a contradiction. Thus we must have Ker(%) = 0. �

Let C be the universal curve, π : C →Wε
m|`(γ|ξ) be the universal family, and Lj be

the j-th universal line bundle. Lemma A.2 implies

(77)
[
Wε

m|`(γ|ξ)
]vir

= ctop

R1π∗

n⊕
j=1

Lj

 ∩ [Wε
m|`(γ|ξ)

]
∈ H∗(W

ε
m|`(γ|ξ),Q).

A.2. Graph spaces and localization.

Definition A.3. We consider a graph space (f : C → P1,L1, · · · ,Ln) where

• The rational coarse curve C contains a component C1
∼= P1 with deg(f)|C1 = 1.

• (C/C1,L1, · · · ,Ln) is (GW , ε)-stable on each component of C/C1.

For fixed decorations (γ|ξ), we denote the moduli space of graph spaces by Gεm|`(γ|ξ).
For any xi, yj ∈ C1, there are evaluation morphisms

evi, ẽvj : Gεm|`(γ|ξ)→ P1

which send (f : C → P1,L1, · · · ,Ln) to f(xi) and f(yj) respectively. The moduli of
graph spaces has a GLSM model description [30, Example 4.2.22], so the cosection
technique [44, 12] allows [30] to construct a perfect obstruction theory on Gεm|`(γ|ξ). In

particular, since the genus g is 0, the moduli space is concave. We write the obstruction
sheaf as

(78) ObGε
m|`(γ|ξ) = R1π∗

n⊕
j=1

Lj .

Now we consider a C∗-action on P1:

(79) λ · [x0 : x1] = [λx0 : x1], λ ∈ C∗.

Let us denote [0] := cC
∗

1 (O(1)) ∈ H2
C∗(P1) if the weight of the C∗-action is 1 at 0 = [0 :

1] ∈ P1 and 0 at ∞ = [1 : 0] ∈ P1. We also denote [∞] := cC
∗

1 (O(1)) ∈ H2
C∗(P1) if the

weight of C∗-action is 0 at 0 ∈ P1 and −1 at ∞ ∈ P1.
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Let (f : C → P1,L1, · · · ,Ln) be a graph space such that f(xm+1) =∞, f(y`+1) = 0.
We fix the type of decorations by(

γ(α)|ξ(β)
)

:= (γ1, · · · , γm, α|ξ1, · · · , ξ`, β).

The (m+1)-th marked point xm+1 is decorated by 1α and the (`+1)-th weighted point
y`+1 is decorated by 1β. For simplicity, we denote the moduli space by

Gε := Gεm+1|`+1

(
γ(α)|ξ(β)

)
.

The C∗-action (79) induces a C∗-action on the moduli Gε and on its universal bundle.

The moduli stack Gε has a C∗-equivariant virtual cycle [Gε]vir
C∗ ∈ AC∗

∗ (Gε) and

(80) ẽv∗`+1([0]) = z, ev∗m+1([∞]) = −z.

We label the fixed locus by decorated dual graph Γ. Let m0, n0 be the number of
marked points and number of weighted points on f−1(0) = C0. Here neither the node,
nor the weighted point with decoration 1β is included. Similarly, we define m∞ and n∞
on f−1(∞) = C∞. Thus

m0 +m∞ = m, n0 + n∞ = `.

Let Γ0 and Γ∞ be the decorated dual graph of C0 and C∞ respectively. Let Wε
(Γ0)

and Wε
(Γ∞) be the corresponding moduli spaces of (GW , ε)-structures. Let FΓ be the

fixed locus labeled by Γ. Again it has an obstruction bundle ObFΓ
= ⊕R1π∗Lj and the

virtual fundamental cycle

[FΓ]vir = ctop

 n⊕
j=1

R1π∗Lj

 ∩ [FΓ].

We have morphisms

ιΓ : FΓ =Wε
(Γ0)×Wε

(Γ∞) −→ Gε.
Let NΓ be the normal bundle of FΓ in Gε. We use Atiyah-Bott localization to obtain

[Gε]vir
C∗ =

∑
Γ

(ιΓ)∗

(
[FΓ]vir

C∗

eC∗(N vir
Γ )

)
.

Then the C∗-integral〈
1γ1ψ̄

k1
1 , · · · ,1γmψ̄

km
m ,1α

∣∣∣1ξ1 , · · · ,1ξ` ,1β∣∣∣ev∗m+1([∞]) ∪ ẽv∗`+1([0])

〉ε,C∗
m+1|`+1

(81)

=

∫
[Gε]vir

C∗

(
m∏
i=1

ψ̄kii

)
ev∗m+1([∞]) ∩ ẽv∗`+1([0]) ∈ C[[z]]

allows us to define a formal power series with variables t and y.〈〈
1α

∣∣∣1β∣∣∣ev∗([∞]) ∪ ẽv∗([0])
〉〉ε,C∗

1+•|1+•
(t, y)(82)

=
∑
m,`

1

m!`!

〈
t, · · · , t,1α

∣∣∣y, · · · , y,1β∣∣∣ev∗m+1([∞]) ∪ ẽv∗`+1([0])

〉ε,C∗
m+1|`+1

.



GW THEORY OF QUOTIENT OF FERMAT CALABI-YAU VARIETIES 73

The fixed locus is called stable if both p0 := f−1(0) ∩ C1 and p∞ := f−1(∞) ∩ C1 are
nodes. Otherwise, it is called unstable.

A.2.1. Stable contribution. Let (f : C → P1,L1, · · · ,Ln) be a geometric point in the
stable fixed locus FΓ. Then

m0 + 1 + (n0 + 1)ε > 2 and m∞ + 2 + n∞ε > 2.

The normalization C̃ = C0
∐
C1
∐
C∞ → C induces the following long exact sequence:

0→
n⊕
j=1

H0 (C,Lj)→
n⊕
j=1

⊕
a∈{0,1,∞}

H0 (Ca,Lj)→
n⊕
j=1

⊕
a∈{0,∞}

H0 (pa,Lj)→

→
n⊕
j=1

H1 (C,Lj)→
n⊕
j=1

⊕
a∈{0,1,∞}

H1 (Ca,Lj)→ 0.(83)

Both C0 and C∞ contain at most one broad insertion. Thus we can proceed as in Lemma
A.2 to obtain

H0(C0,Lj) = H0(C∞,Lj) = 0.

On the other hand, for the component C1, the formula (72) implies

degC1
Lj =

{
0, two nodes are broad,
−1, two nodes are narrow.

In either case, we have

H1(C1,Lj) = H1(C1, Lj) = 0.

If both nodes are narrow, then the first line in (83) will vanish. Thus we get isomorphic
C∗-equivariant vector spaces

(84) H1(C,Lj) ∼= H1(C0,Lj)
⊕

H1(C∞,Lj).

Now if both nodes are broad, then there exists some j such that

H0 (C1,Lj) ∼= C, H0 (p0,Lj)
⊕

H0 (p∞,Lj) ∼= C2.

The first line in (83) contains a summand of C ↪→ C2, with C∗ acting trivially on C2.
Recall (78) and (84), we have

(85) cC
∗

top(ObFΓ
) =

{
cC
∗

top(ObWε
(Γ0))c

C∗
top(ObWε

(Γ∞)), if both 0 and ∞ are narrow.

0, if both 0 and ∞ are broad.

On the other hand, we have

cC
∗

1 (Tp0C0 ⊕ Tp0C1) = −z − ψp0 , cC
∗

1 (Tp∞C∞ ⊕ Tp∞C1) = z − ψp∞ .

Since the C∗-equivariant Euler class of deformation of the maps f : C1 → P1 is −z2, we
use (80) to obtain that the stable contribution of (82) is

(86)
〈〈

1α

∣∣∣1β∣∣∣ev∗([0]) ∪ ẽv∗([∞])
〉〉ε,C∗

stable
=
∑
γ

〈〈 1γ′

−z − ψ

∣∣∣1β〉〉ε
1|1

〈〈
1α,

1γ
z − ψ

〉〉ε
2|0
.

We remark that by definition of (74), the RHS only contains stable terms.
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A.2.2. Unstable contribution. There are three unstable situations:

(1) Both f−1(0) and f−1(∞) are unstable.
(2) f−1(0) is stable but f−1(∞) is unstable.
(3) f−1(0) is unstable but f−1(∞) is stable.

Before we start to compute the unstable terms, let us introduce a weighted I-function.
Recall that when e = 0, ν and �ν are given by (54) and (55). Recall that B is the set
of ghost variables defined in (52). For any ε ∈ Q>0, we consider

Lε :=

{
ν = {νb}b∈B

∣∣∣νb ≥ 0,
∑
b∈B

νb ≤
1

ε

}
.

In particular, limε→0 Lε = L in (53). We define an Iε-function

(87) I0,ε
LG(y, z) =

∑
ν∈Lε

∏
b∈B

tνbb �ν1γν

For the first case of unstable terms, C = C1, and

m0 = m∞ = n∞ = 0, (n0 + 1)ε ≤ 1.

Thus m = 0 and ` = n0. Each C∗-action on Lj induces an isomorphism C1
∼= P[dj , 1]

with p∞ the only orbifold point. All the weighted points y1, · · · , y`, y`+1 stack at p0.
For each yi, we have some ξi,j ∈ {0, 1, · · · , dj − 1} such that

L⊗djj
∼= ωC,log

(
−
∑̀
i=1

ξi,j [yi]− djΘ(j)
β [y`+1]

)
.

Here ξ`+1,j = djΘ
(j)
β since y`+1 is decorated with the narrow element 1β. Also we have

Lj ∼= OP[dj ,1]

(
(−1−

`+1∑
i=1

ξi,j)[∞]

)
.

According to (72), the node p∞ must be decorated by a narrow 1γ ∈ HW where

(88) Θ(j)
γ = 〈 1

dj

(
−1−

`+1∑
i=1

ξi,j

)
〉 ∈ (0, 1) ∩Q.

According to [48, Example 98], we may choose the C∗ action λ[x0;x1] = [λx0;x1]
such that

cC
∗

1 (Tp0C) = −z, cC
∗

1 (Tp∞C) =
z

d
, cC

∗
1 (Lj |p∞) = 0,

then

eC∗

 n⊕
j=1

R1π∗Lj

 =
n∏
j=1

b−νjc∏
k=1

(−νj − k)z.

We reindex 1ξi by b ∈ B such that b(j) = ξi,j − 1. Let νb be the number of b ∈ B
and we parametrize such an element by yb. By definition of (55) and (56), we get an
element 1γν such that 1γν = 1γ′ . Here γ satisfies (88) and γ′ is the involution of γ.
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Since the C∗-equivariant Euler class of deformation of the maps f : C → P1 is
(−z)`+1(−z2), we obtain that the first unstable part of (82) is given by

(89)
∑

∑
νb≤ 1

ε
−1

−z2

(−z)`+1(−z2)

∏
b∈B

yνbb
νb!

n∏
j=1

b−vjc∏
k=1

(−νj − k)z = ηW

(
∂

∂yβ
I0,ε

LG(y,−z),1α
)
.

Similarly, we get the rest of the unstable part of (82) as follows

(90)
〈〈 1α
−z − ψ

∣∣∣1β〉〉ε
1|1

+ ηW

(
∂

∂yβ
I0,ε

LG(y,−z),
∑
γ

〈〈 1γ
z − ψ

,1α

〉〉ε
2|0

1γ′

)
.

A.3. A proof of Proposition 7.3.

A.3.1. Regularity. We define a J ε-function:

(91) J ε(t, y, z) = I0,ε
LG(y, z) + z1 + t(z) +

∑
γ

〈〈 1γ
z − ψ

〉〉ε
1|0

1γ′ .

Proposition A.4. We have the following equality

(92) ηW

(
∂

∂yβ
J ε(t, y,−z), ∂

∂tα0
J ε(t, y, z)

)
=
〈〈

1α

∣∣∣1β∣∣∣ev∗([∞]) ∪ ẽv∗([0])
〉〉ε,C∗

1|1
∈ C[[z]].

Proof. Thus

∂

∂yβ
J ε(t, y,−z) =

∂

∂yβ
I0,ε

LG(y,−z) +
∑
γ

〈〈 1γ
−z − ψ

∣∣∣1β〉〉ε
1|1

1γ′

and each νj satisfies

(93) νj = −qj − νβΘ
(j)
β −

∑
b 6=β

νbb
(j) = −qj −Θ

(j)
β −

∑
b

ν̃bb
(j).

For the second term, we get

∂

∂tα0
J ε(t, y, z) = 1α +

∑
γ

〈〈 1γ
z − ψ

,1α

〉〉ε
2|0

1γ′ .

The identity follows from matching the formula above with (86), (89), and (90). As a
consequence of (81), we know the LHS is regular at z = 0. �

A.3.2. Reconstruction. Let
[
I0,ε

LG

]
≥0

and
[
I0,ε

LG

]
− be the truncation of I0,ε

LG along nonneg-

ative direction and along negative direction respectively, then[
I0,ε

LG

]
≥0

(y, z) ∈ H[[y]][z],
[
I0,ε

LG

]
≥0

(0, z) = 0.

We can rewrite the J ε-function as

(94) J ε(t, y, z) =
[
I0,ε

LG

]
≥0

(y, z) + z1 + t(z) +
[
I0,ε

LG

]
−

(y, z) +
∑
γ

〈〈 1γ
z − ψ

〉〉ε
0,1

1γ′ .

We introduce multi-indices m and n:

m = (· · · ,mγ
i , · · · ) ∈ (Z≥0)∞, n = (· · · , nγ0 , · · · ) ∈ (Z≥0)N , ∀i ≥ 0, γ ∈ N .
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Here all but finitely many mγ
i are nonzero. We adopt the notation

|m| =
∑
i≥0

∑
γ

mγ
i , |n| =

∑
γ

nγ0 ,

We define two vectors m(α) and n(β) such that

m(α)γi = mγ
i + δ0

i δ
γ
α, n(β)γ0 = nγ0 + δγβ .

We define coefficients An,j≥0,γ and Bm,j<0,γ by expanding[
I0,ε

LG

]
≥0

(y, z) :=
∑
n

∑
j≥0

∑
γ

Aεn,j,γ y
n zj 1γ(95)

∑
γ

〈〈 1γ
z − ψ

〉〉ε
0,1

∣∣∣
y=0

1γ′ :=
∑
m

∑
j≤−1

∑
γ

Bε
m,j,γ t

m zj 1γ(96)

Let us write

(97) J ε(t, y, z) :=
∑
n

∑
m

∑
j∈Z

∑
γ

Cεm,n,j,γ t
m yn zj 1γ .

Definition A.5. If Cεm,n,j,γ is determined by the coefficients in (95) and (96), then we
say

Cεm,n,j,γ ∈ Y.

Proposition A.6. The function J ε(t, y, z) is determined by the coefficients {Aεn,j≥0,γ}
in (95) and {Bε

m,j<0,γ} in (96).

Proof. Direct calculation shows

ηW

(
∂

∂yα
J ε(t, y,−z), ∂

∂tβ0
J ε(t, y, z)

)
=

∑
γ

∑
n,n′

∑
m,m′

∑
j,j′

(nβ0 + 1)(m′
α
0 + 1)Cεm,n(β),j,γC

ε
m′(α),n′,j′,γ′ t

m+m′yn+n′zj+j
′
.

For any fixed M,N, and a positive integer K, the regularity formula (92) implies

(98)
∑
γ

∑
n+n′=N

∑
m+m′=M

∑
j

(nβ0 + 1)(m′
α
0 + 1)Cεm,n(β),j,γC

ε
m′(α),n′,−K−j,γ′ = 0.

We do induction as follows. Starting with n = 0 := (0, · · · , 0), we know

Cεm,0,j,γ ∈ Y

since for any m and γ, we have

(99) Cεm,0,j,γ =


Bε

m,j,γ , if j < 0;

1, if j = 1,m = 0,1γ = 1;

1, if j ≥ 0,mξ
i = δji δ

ξ
γ ;

0, otherwise.

For any integer n0 ∈ Z≥0, assume that if |n| ≤ n0, then

(100) Cεm,n,j,γ ∈ Y, ∀j ∈ Z, γ ∈ N .
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Now we fix |N| = n0 and consider the coefficient

CεM,N(β),j,γ , ∀β ∈ N .

We notice that |N(β)| = n0 + 1. By the definitions in (95) and (97),we know that

(101) Cεm,N(β),j,γ =

{
0, if j ≥ 0,m 6= 0.
AN(β),j,γ , if j ≥ 0,m = 0.

We do induction on the positive integer K by assuming

(102) Cεm,N(β),j,γ ∈ Y, ∀ −K − j < 0.

This is true when K = 1 by (101). Thus it is enough to prove for all M and α′ ∈ N ,

CεM,N(β),−K,α′ ∈ Y.

In order to prove this, we rewrite equation (98) as

0 =
∑
γ

∑
j∈Z

(Nβ
0 + 1)CεM,N(β),j,γC

ε
0(α),0,−K−j,γ′

+
∑
γ

∑
m 6=M

∑
j∈Z

(Nβ
0 + 1)(m′

α
0 + 1)Cεm,N(β),j,γC

ε
m′(α),0,−K−j,γ′(103)

+
∑
γ

∑
n6=N

∑
m+m′=M

∑
j∈Z

(nβ0 + 1)(m′
α
0 + 1)Cεm,n(β),j,γC

ε
m′(α),n′,−K−j,γ′ .

Let us analyze the RHS of (103) line by line. From (99), we observe that

Cε0(α),0,−K−j,γ′ =


Bε

0(α),−K−j,γ′ ∈ Y, if −K − j < 0,

δαγ′ , if −K − j = 0,

0, if −K − j > 0.

When −K − j < 0, by induction (102), CεM,N(β),j,γ ∈ Y. The first line of the RHS of

(103) is a sum the target term (Nβ
0 + 1)CεM,N(β),−K,α′ and∑

γ

∑
−K−j<0

(Nβ
0 + 1)CεM,N(β),j,γC

ε
0(α),0,−K−j,γ′ ∈ Y.

The second line belongs to Y, since by (102),

Cεm,N(β),j,γ ∈ Y, ∀ −K − j < 0,

and for m′ 6= 0,

Cεm′(α),0,−K−j,γ′ =

{
0, if −K − j ≥ 0,
Bε

m′(α),−K−j,γ′ ∈ Y, if −K − j < 0.

Since n 6= N, the formula (100) implies that the third line of (103) is in Y.

Since Nβ
0 + 1 6= 0 and α ∈ N is arbitrary, we know CεM,N(β),−K,α′ ∈ Y. This finishes

the induction argument on (102). �

Now we conclude a proof of Proposition 7.3.
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Proof. Let

t̃ε(z) := t(z) +
[
I0,ε

LG

]
≥0

(y, z)

and then consider

J(t̃ε, z) = z1 + t̃ε(z) +
∑
γ

〈〈 1γ
z − ψ

〉〉∞
0,1

(t̃ε) 1γ .

Using the same method in Proposition A.4, we can check

ηW

(
∂

∂yβ
J(t̃ε,−z),

∂

∂tα0
J(t̃ε, z)

)
∈ C[[z]].

Thus the function J(t̃ε, z) satisfies the same reconstruction procedure as the function
J ε(t, y, z) in Proposition A.6. Moreover, the initial reconstruction data (see (95) and
(96)) are identical for both functions. This implies that

J ε(t, y, z) = J(t̃ε, z).

On the other hand, the function J(t̃ε,−z) is an H[[t, y]]-point on the Lagrangian cone L.
Thus when we let t(z) = 0 and ε→ 0, the last two terms in (91) vanish. In particular,
the second term vanishes due to the unstability condition 1 +nε ≤ 2. The result follows
by choosing an appropriate completion. �
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