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ABSTRACT

We perform a Kaluza-Klein reduction of IIB supergravity including purely gravitational α′3-

corrections on a Calabi-Yau threefold, and perform the orientifold projection accounting for

the presence of O3/O7-planes. We consider infinitesimal Kähler deformations of the Calabi-

Yau background and derive the complete set of four-derivative couplings quadratic in these

fluctuations coupled to gravity. In particular, we find four-derivative couplings of the Kähler

moduli fields in the four-dimensional effective supergravity theory, which are referred to as

friction couplings in the context of inflation.
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1 Introduction

The dimensional reduction of ten-dimensional IIB supergravity on Calabi-Yau orientifolds yields

four-dimensional N = 1 supergravity theories [1], which are of particular phenomenological

interest. The resulting couplings are given by topological quantities of the internal space which

are computable for explicit backgrounds, and thus provide a fruitful environment for string

model building [2, 3, 4, 5, 6, 7]. The compactification on a Calabi-Yau threefold preserves a

quarter of the supersymmetry of ten dimensions and thus results in a N = 2 theory in four

dimensions, which is then broken to N = 1 by the presence of orientifold planes. Incorporating

gauge fields by adding D-branes in the Calabi-Yau background one is led to introduce extended

objects with negative tension to cancel gravitational and electro/magnetic tadpoles, given by
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the orientifold planes, which however carry no physical degrees of freedom by themselves [8].

String theory provides an infinite series in α′ of higher-derivative corrections to the leading order

two-derivative IIB supergravity action. However, even the next to leading order α′3-correction

to the four-dimensional action arising in Calabi-Yau (orientifold) compactifications are only

marginally understood, but have proven to be of high relevance to string phenomenology [9, 10].

In this work, we discuss a set of four-derivative couplings that arise in four-dimensional

N = 2 and N = 1 supergravity theories resulting from purely gravitational eight-derivative

α′3-corrections to ten-dimensional IIB supergravity [11, 12, 13], upon compactification on a

Calabi-Yau threefold and orientifold, respectively. Such corrections are of conceptual as well

as of phenomenological importance. Four-dimensional N = 1 and N = 2 supergravity theories

with four-derivative interaction terms are only marginally understood [14, 15, 16, 17], and

the knowledge of the relevant couplings is desirable. A recent progress is the classification

of 4d, N = 1 four-derivative superspace operators for ungauged chiral multiplets [18]. On the

other hand higher-derivative couplings have a prominent role in phenomenological models such

as inflation [19, 20, 21, 22] and have been used in the context of moduli stabilization recently

[23].

Dimensionally reducing ten-dimensional IIB supergravity on a supersymmetric background

must yield an effective four-dimensional N = 1, N = 2 supergravity theory depending on how

much supersymmetry is preserved by the background. However, the supersymmetric completion

at order α′3 of IIB supergravity is not known, thus a exhaustive study of the four-derivative

effective action at order α′3 in four dimensions is out of reach. Hence our strategy will be to

focus on a complete subset of the ten-dimensional IIB supergravity theory at order α′3 and

argue that the resulting couplings in the four-dimensional theory cannot be altered by any

other sector of the higher-dimensional theory. More concretely, the terms we analyze in ten

dimensions carry four Riemann tensors, thus are schematically of the form R4 and are shown

to be complete [24, 25, 26]. In other words all other possible R4-terms are related to this

sector via a higher-derivative field-redefinition of the metric. We hence restrict our analysis

to a subset of four-dimensional couplings, which can only origin from the R4 -sector and thus

must also be complete in the above sense. In particular we focus on Kähler deformations of

the internal space, which give rise to a set of real scalar fields in the external space. We do

not allow for background fluxes or localized sources for D-branes in this work, furthermore we

neglect higher-derivative corrections arising due to D-branes and O-planes.

It is well known that the classical Einstein-Hilbert term gives rise to the kinetic terms for the

Kähler moduli. The R4-sector generically corrects the couplings of the kinetic terms at order

α′3 by some expression carrying six internal space derivatives [27], which was also discussed in

the context of M-theory/F-theory in [28, 29, 30, 31, 32]. However, these α′-corrections will not

be addressed in this work. Furthermore, note that the two-derivative kinetic terms generically

receive backreaction effects at order α′3 from the modified supersymmetric background at this

order in the string length. However, the four-derivative external terms arising from R4 do not
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receive corrections from the modified background since these would be even higher order in α′.

The interaction terms of the Kählermoduli fields with the four-dimensional metric moreover

can only arise form purely gravitational terms in ten dimensions given at order α′3 solely by

the R4-sector. We restrict ourselves to study four-derivative couplings at most quadratic in

the infinitesimal Kählermoduli deformations. However, a complete analysis would need to also

take into account cubic and quartic infinitesimal Kählermoduli deformations, which will be

discussed in a forthcoming work [33].

This paper is organized as follows. In section 2 we review the relevant R4-terms in ten

dimensions, comment on the supersymmetric background, and discuss the four-derivative cou-

plings quadratic in the Kählermoduli deformations, arising upon dimensional reduction on a

Calabi-Yau threefold. In section 3 we then perform the orientifold projection to yield the N = 1

couplings at fourth order in derivatives.

2 The 4d four-derivative Lagrangian

This section discusses the dimensional reduction of IIB supergravity including purely gravita-

tional eight-derivative corrections on a Calabi-Yau threefold to four dimensions. We fluctuate

the background metric by Kähler deformations and focus on couplings which carry four ex-

ternal space derivatives and are at most quadratic in the infinitesimal Kähler deformations.

We first review the relevant α′3 R4-corrections to ten-dimensional IIB supergravity and the

supersymmetric background.

2.1 IIB higher-derivative action

The IIB higher-derivative action at order α′3 has various contributions [34, 35, 36, 37, 38, 39, 40].

For the discussion at hand only the R4-sector containing four ten-dimensional Riemann tensors

will be relevant. This subsector of the IIB supergravity action at order α′3 in the Einstein-frame

is given by

Sgrav = SEH + α SR̂4 , with α =
ζ(3)α′3

3 ⋅ 210
, (2.1)

and

SEH =
1

2κ2
10
∫ R̂∗̂1 , (2.2)

where 2κ2
10 = (2π)7α′4. The higher-derivative contribution can be schematically written as

SR̂4 =
1

2κ2
10
∫ e−

3
2
φ̂(t8t8 +

1
8ε10ε10)R̂

4∗̂1 , (2.3)
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where the explicit tensor contractions are given by

ε10ε10R̂
4 = εR1R2M1...M8εR1R2N1...N8R̂

N1N2
M1M2R̂

N3N4
M3M4R̂

N5N6
M5M6R̂

N7N8
M7M8 ,

t8t8R̂
4 = tM1...M8

8 t8N1...N8R̂
N1N2

M1M2R̂
N3N4

M3M4R̂
N5N6

M5M6R̂
N7N8

M7M8 . (2.4)

Where ε10 is the ten-dimensional Levi-Civita tensor and the explicit definition of the tensor t8
can be found in [41]. Let us note that we do not discuss higher-derivative terms of the dilaton,

since we lack completeness of the ten-dimensional action. However, the complete axio-dilaton

dependence of the R4-terms is known to be

S(2)

R̂4
=

1

2κ2
10
∫ E(τ, τ̄)3/2(t8t8 +

1
8ε10ε10)R̂

4∗̂1 , (2.5)

where E(τ, τ̄)3/2 is the SL(2,Z)-invariant Eisenstein Series given by

E(τ, τ̄)3/2 = ∑
(m,n)≠(0,0)

τ
3/2
2

∣m + nτ ∣3
, (2.6)

with τ = Ĉ0 + ie−φ̂ ∶= τ1 + iτ2 the axio-dilaton. In the large τ2 limit, which corresponds to the

small string coupling limit (2.6) results in

E(τ, τ̄)3/2 = 2ζ(3) τ
3/2
2 + 2π2

3 τ
−1/2
2 +O(e−2πτ2) . (2.7)

We will use this approximation in (2.5) in the following discussion, and only look at the leading

order contribution in gs, the string coupling, given by (2.3).

2.2 Supersymmetric background

The supersymmetric background of ten-dimensional IIB supergravity at the two-derivative

level, thus at leading order in α′ is given by a Calabi-Yau threefold Y3. For simplicity we do

not consider localized sources and background fluxes, and thus the line element is given by

ds2 = ηµνdx
µdxν + 2g(0)

mn̄dy
mdyn̄ , (2.8)

with ηµν the Minkowski metric, where µ = 0,1,2,3 is a 4d external space world index and

m = 1, . . . ,3 is the index of the complex three-dimensional internal Calabi-Yau manifold with

metric g(0)

mn̄, where m,m̄ are holomorphic and anti-holomorphic indices, respectively. Taking

into account the higher-curvature corrections (2.3) in ten dimensions, (2.8) is no longer a

supersymmetric background but needs to be modified such that the internal manifold is no

longer Ricci flat. It was shown that the internal space metric is modified as

g(0)

mn̄ Ð→ g(0)

mn̄ + α
′3g(1)

mn̄ , (2.9)
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where g(1)

mn̄ is a solution to the modified Einstein equation Rmn̄ = α′3∂m∂n̄Q, with Q the six-

dimensional Euler-density (A.12), [42]. However, we can restrict our analysis to the case of

the leading order metric (2.8), since at order α′3 the four-derivative couplings only receive

corrections from the R4-terms evaluated on the zeroth order Calabi-Yau background. We do

not incorporate for internal flux in this work, since the considered sector decouples, and also

do not allow for localized D-brane sources, which would give rise to a warpfactor in (2.8).

In the following we freeze the complex structure moduli, and allow solely for the Kähler de-

formations given by the harmonic (1,1)-forms {ωi}, with i = 1, ..., h1,1, where h(1,1) = dimH(1,1)

the dimension of the (1,1)-cohomology group. The harmonicity is w.r.t. the zeroth order Calabi-

Yau metric. These give rise to the massless Kähler moduli fields by varying the background

metric by

g(0)

mn̄ → g(0)

mn̄ − i δv
i ωimn̄ , (2.10)

where δvi are the real scalar infinitesimal Kähler deformations.2 Let us emphasize that also

(2.10) receives α′3-corrections [30], however, these do not affect the four-derivative couplings

at the relevant order in α′. A preliminary study for allowing both the complex structure

deformations and Kähler deformations simultaneously at the higher-derivative level arising from

the R4-sector in the context of M-theory can be found in [43]. In this work we consider four-

derivative couplings which are up to quadratic order in the infinitesimal Kähler deformations

δvi.

2.3 Reduction results

Compactifying the action (2.1) on the Calabi-Yau background (2.8) we expand the result at

four external derivative level up to quadratic order in the infinitesimal Kähler deformations

(2.10). The reduction result may be expressed entirely in terms of the second Chern-form c2,

see (A.10), the Kähler form (A.6) and a higher-derivative object Zmm̄nn̄ [14] given by

Zmm̄nn̄ =
1

(2π)2 εmm̄m1m̄1m2m̄2εnn̄n1n̄1n2n̄2R
m̄1m1n̄1n1Rm̄2m2n̄2n2 . (2.11)

Its analog for a Calabi-Yau four-fold has been encountered in the context of M-theory/F-theory

in [30]. Zmm̄nn̄ in (2.11) obeys the following relations

Zmm̄nn̄ = −Zmn̄nm̄ = Znm̄mn̄ Zmm̄ = Zmm̄n
n = −2i(∗c2)mm̄ Zmm̄ω

m̄m
i = 2i ∗ (c2 ∧ ωi)

Zmm̄g
m̄m = Zm

m
n
n = 2 ∗ (c2 ∧ J) Zmm̄nn̄R

mm̄nn̄ = −3! 2π ∗ c3 . (2.12)

Note that Zmm̄nn̄ has the symmetry properties of the Riemann tensor build from a Kähler

metric. It is itself not topological but is related to second and third Chern form of a Calabi-

2Note that we choose the fluctuation to be −i δvi ωimn̄. The choice of sign is such that combined with the

convention Jmn̄ = igmn̄, to give a positive sign in δJ = δviωi.
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Yau manifold of dimension n ≥ 3. In the following we dress objects constructed from the

background Calabi-Yau metric with the symbol - (0) - as e.g. Z(0)

mm̄nn̄.

We have now set the stage to discuss the reduction results. By fluctuating the Calabi-Yau

metric with the Kähler deformations, the higher-derivative α′3-terms (2.3) at two-derivative

level give rise to a α′3-modified four-dimensional Einstein-Hilbert term [44] and α′3-corrections

to the kinetic terms for the Kähler moduli fields [27]. The explicit form of these corrections

has been also worked out in the context of M-theory on Calabi-Yau fourfolds in [28, 29, 30, 32].

The four-dimensional dilaton φ arises as φ̂ → φ. Its internal component is constant at leading

order but is given by φ ∝ α′3Q at the order of consideration. However, for the discussion at

hand only the leading order constant part is relevant. The focus of this work is to derive the

four-derivative corrections to the leading order two-derivative 4d Lagrangian, as discussed next.

The reduction of the classical Einstein-Hilbert term gives

1

2κ2
10
∫ R̂∗̂1Ð→

1

2κ10
∫
M4

[ΩR+∇µδv
i∇µδvj ∫

Y3
(1

2ωimn̄ωj
n̄m−ωim

mωjn
n)]∗4 1 +O(α), (2.13)

with

Ω = ∫
Y3

[1 − iδvi ωim
m + 1

2δv
iδvj(ωimn̄ωj

n̄m − ωim
mωjn

n)] ∗6 1 , (2.14)

where the O(α) corrections in (2.13) arise due to the mentioned α′3-modification of the back-

ground. However, these terms do not interfere with our analysis. It is necessary to consider

the Weyl rescaling factor (2.14) up to order (δv)2. The four-derivative corrections arising from

the ten-dimensional R4-terms result in

1
2κ210
∫ e−

3
2
φ̂(t8t8 +

1
8ε10ε10)R̂

4∗̂1 Ð→ (2.15)

192(2π)2
2κ210

∫
M4

e−
3
2
φ[ [4RµνR

µν −R2](∫
Y3
c(0)2 ∧ J (0) + δvi∫

Y3
c(0)2 ∧ ωi + δv

iδvj ∫
Y3
δj(c

(0)

2 ∧ ωi))

+[( − 2Rµν +
1
2Rgµν)∇

µδvi∇νδvj +∇µ∇
µδvi ∇ν∇

νδvj ] ∫
Y3
Z(0)

mm̄nn̄ωi
m̄mωj

n̄n ∗ 1

− 2∇µ∇νδv
i ∇µ∇νδvj ∫

Y3
Z(0)

mm̄nn̄ωi
m̄mωj

n̄n ∗ 1 ] ∗4 1 ,

where δi denotes the variation resulting from the metric shift (2.10). Note that

∫
Y3
δj(c

(0)

2 ∧ ωi) = 0 , (2.16)

since c2 ∧ ωi is a topological quantity and hence its variation results in a total derivative.

Furthermore, let us note that the four-dimensional Euler-density is given by

e(∇) = R2 − 4RµνR
µν +RµνρσR

µνρσ , with ∫
M4

e(∇) ∗4 1 = χ(M4) , (2.17)

where χ(M4) is the Euler-characteristic of the external space M4. Comparing (2.17) to (2.15)

one infers that one may express the reduction result at zeroth order in δvi in terms ofRµνρσRµνρσ,
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plus the topological term dependent on χ(M4). However, we will not perform this substitution

since there is a more intuitive way of expressing the result as we will discuss in the next sec-

tion. Let us stress that (2.15) is not the complete reduction result at the four-derivative level

arising from the R4-sector, but we have neglected terms cubic and quartic in the fluctuations

δvi. Their derivation is crucial for a complete understanding, and we refer the reader to future

work.

2.3.1 Weyl rescaling

In this section we perform the Weyl rescaling of the four-dimensional action composed of (2.13)

and (2.15) to the canonical Einstein-frame. Furthermore, we discuss the extension of the

infinitesimal Kähler deformations to finite fields. The Weyl rescaling of the classical Einstein-

Hilbert term gives

1
2κ210
∫
M4

ΩR ∗ 1
Weyl
→ 1

(2π)4α′ ∫M4

R ∗ 1 − 3
2∇µδv

i∇µδvj 1
V(0)2K

(0)

i K
(0)

j ∗ 1 . (2.18)

Where we have used identities (A.15) for the intersection numbers K(0)

i , K
(0)

ij , K
(0)

ijk, whose

definitions are given in (A.14). Moreover, note that from the definition (A.14) it is manifest that

the volume V (0) and the intersection numbers K(0)

i ,K
(0)

ij ,K
(0)

ijk are dimensionless and are expressed

in terms of the length scale α′. In this conventions also the fields δvi are dimensionless.

Due to the appearance of the four-derivative term the Weyl rescaling of the action is more

involved. One may show that by using (A.16) and (A.17) up to total derivative contributions

at order α′3 one finds

∫
M4

e−
3
2
φ[ [4RµνRµν −R2]( ∫Y3 c

(0)

2 ∧ J (0) + δvi ∫Y3 c
(0)

2 ∧ ωi) ] ∗ 1 (2.19)

Weyl
→

∫
M4

e−
3
2
φ[ + [4RµνRµν −R2] ( ∫Y3 c

(0)

2 ∧ J (0) + δvi ∫Y3 c
(0)

2 ∧ ωi)

− [4Rµν −Rgµν]∇µ∇νδvi 2
V(0)K

(0)

i ( ∫Y3 c
(0)

2 ∧ J (0) + δvi ∫Y3 c
(0)

2 ∧ ωi)

− [4Rµν −Rgµν]∇µδvi∇νδvj 1
V(0)2K

(0)

j K
(0)

i ∫Y3 c
(0)

2 ∧ J (0)

+ [4∇µ∇νδvi ∇ν∇µδvj −∇µ∇
µδvi ∇ν∇

νδvj] 1
V(0)2K

(0)

i K
(0)

j ∫Y3 c
(0)

2 ∧ J (0) ] ∗4 1 + . . .

The elipses denote terms where more than two fields δvi carry derivatives and furthermore

terms, which have derivatives acting on the dilaton. An exhaustive derivation of the four-

derivative dilaton action would require the knowledge of the ten-dimensional higher-derivative

dilaton action [36, 38, 39, 40], which lacks completeness and is hence beyond the scope of our

study.
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Before collecting the contributions arising due to the Weyl rescaling (A.16), (A.17) and

combining it with the reduction results (2.13) and (2.15) let us first lift the infinitesimal Kähler

fluctuations around the background metric to full fields. We proceed by making the naive

replacement vi = v(0)i+δvi, where J (0) = v(0)iωi is the background Kähler form. This substitution

is straightforward when the couplings are given by topological quantities as in the case of them

being intersection numbers, where one simply infers e.g. K(0)

i → Ki. Analogously, one infers in

the case of the topological higher-derivative coupling that

∫
Y3
c(0)2 ∧ J (0) + δvi∫

Y3
c(0)2 ∧ ωi Ð→ ∫

Y3
c2 ∧ J , (2.20)

where J = viωi, and c2 is constructed from the metric gmn̄ = −iviωi. However, the uplift of the

coupling ∫Y3 Z
(0)

mm̄nn̄ωi
m̄mωj n̄n is less trivial since it does not represent a topological quantity of

the internal Calabi-Yau threefold. We will write the uplift of this coupling in the action by

naively replacing the background metric by gmn̄, thus one yields ∫Y3 Zmm̄nn̄ωi
m̄mωj n̄n. However,

a more refined analysis would be required to fully justify this choice.

Combining the uplift of the reduction result (2.13), (2.15) and the terms, which arose due

to Weyl rescaling (A.16) and (A.17), and by using the definition Gµν ∶= Rµν −
1
4gµνR, which is

defined in close analogy to the Einstein tensor3 one finds

Skin =
1

(2π)4α′ ∫
M4

[R +∇µv
i∇µvj 1

V (
1
2Kij −

1
VKiKj) +

ζ(3) α′
4 e−

3
2φ(GµνG

µνZ − Gµν ∇
ν∇µvi ( 2

VKiZ)

+ Gµν ∇
µvi∇νvj(Zij −

1
V2KiKjZ) − 1

2∇µ∇
µvi ∇ν∇

νvj(Zij +
1

2V2KiKjZ)

+∇µ∇νv
i ∇µ∇νvj (Zij +

1
V2 KiKjZ) ) ] ∗4 1 . (2.21)

Where we have used the dimensionless quantities

Z = 1
2πα′ ∫

Y3
c2 ∧ J , Zi =

1
2πα′ ∫

Y3
c2 ∧ ωi , Zij = −

1
4πα′ ∫

Y3
Zmm̄nn̄ωi

m̄mωj
n̄n ∗ 1 , (2.22)

obeying the relations

Zi = Zijv
j = Zjiv

j and Z = Ziv
i , (2.23)

which can be seen by using (2.12). Note that as expected δ
δvi
Z = Zi but δ

δvj
Zi = 0, thus Zij

cannot be obtained easily by taking derivatives w.r.t. δvi. Let us stress that we have neglected

α′-corrections to the two-derivative part of this action [27], since those will not interfere with

the four-derivative couplings. Furthermore, note that due to the uplift to finite fields vi, terms

in (2.21) may have a higher power in the fields vi, in contrast to the quadratic dependence of

the infinitesimal Kähler deformations. Let us close this section by remaking that the higher-

derivative effective action (2.21) can be rewritten using field redefinitions involving higher-

derivative pieces themselves. Thus the given presentation is a particular choice, which results

3 The Einstein tensor is given by Gµν = Rµν −
1
2
Rgµν .
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naturally after dimensional reduction. However, one may perform field redefinitions as e.g.

gµν → gµν + aRµν + bRgµν a, b ∈ R . (2.24)

One concludes that the higher-derivative couplings in (2.21) are presented in one particular

frame of the fields gµν and vi. A more sophisticated analysis of the supersymmetric completion

at the four-derivative level would be required to select a canonical frame.

3 The 4d, N = 1 action

In this section we perform the orientifold projection on the effective action (2.21), which

amounts to adding O3/O7 planes to the Calabi-Yau background [8, 45, 46, 47, 48]. For con-

sistency we are required to also consider D3/D7 branes in this setup. However, we will not

discuss any α′3-corrections arising from these sources, but let us emphasize that a complete

treatment would require such a refined analysis. Already at the classical level these would

source a warp-factor and background fluxes, which we chose not to account for.

In 3.1 we review the well known properties of the orientifold projection on Calabi-Yau

threefolds [1, 49], and apply it to the four-derivative effective action derived in the previous

section. We then proceed in 3.2 by expressing the truncated spectrum in terms of the real

scalar fields of the linear multiplet of 4d, N = 1 supergravity.

3.1 Orientifold projection

In the following we consider O3/O7 planes in the Calabi-Yau threefold background, known

as Calabi-Yau orientifold, denoted in the following as X. The presence of orientifold planes

truncates the effective theory from N = 2 to N = 1 supersymmetry. Orientifold planes manifest

themselves as an isometric, holomorphic involution σ ∶X →X, thus σ2 = id and σ∗g = g on the

internal Calabi-Yau space with metric g, such that

σ∗J = J . (3.1)

Moreover, the presence of O3/O7 planes results in σ∗Ω = −Ω, where Ω is the holomorphic

(3,0)-form. Furthermore, considering the action of Ωp(−1)FL on the space-time fields, where

Ωp is the world-sheet parity and FL the space-time fermion number of the left moving sector,

one finds that

Ωp(−1)FLφ = φ and Ωp(−1)FLg = g . (3.2)

The cohomology groups Hp,q naturally decompose in odd and even eigenspaces under the action

of σ∗ as Hp,q = Hp,q
+ ⊕Hp,q

− . Since the Kähler form is invariant under the orientifold projection
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(3.1), only the Kähler deformations related to the even eigenspace H1,1
+ remain in the spectrum,

such that J = vaωa, a = 1, . . . , h1,1
+ .

Subjected to the orientifold projection the reduction result (2.21) has to be modified ac-

cordingly and one straightforwardly arrives at

Skin =
1

(2π)4α′ ∫
M4

[R +∇µv
i∇µvb 1

V (
1
2Kab −

1
VKaKb) +

ζ(3)α′
4 e−

3
2φ(GµνG

µνZ − Gµν ∇
ν∇µva ( 2

VKaZ)

+ Gµν ∇
µva∇νvb(Zab −

1
V2KaKbZ) − 1

2∇µ∇
µva ∇ν∇

νvb(Zab +
1

2V2KaKbZ)

+∇µ∇νv
a ∇µ∇νvb (Zab +

1
V2KaKbZ) ) ] ∗4 1 . (3.3)

Where we have used the properties of the orientifold projection to conclude that

Z = 1
2πα′ ∫

Y3
c2 ∧ J = 1

2πα′ ∫
X
c2 ∧ J , Za =

1
2πα′ ∫

Y3
c2 ∧ ωa =

1
2πα′ ∫

X
c2 ∧ ωa (3.4)

Zab = −
1

4πα′ ∫
Y3
Zmm̄nn̄ωa

m̄mωb
n̄n ∗ 1 = − 1

4πα′ ∫
X
Zmm̄nn̄ωa

m̄mωb
n̄n ∗ 1 ,

obeying the analogous relations to (2.23) given by

Za = Zabv
b = Zbav

b and Z = Zav
a . (3.5)

3.2 4d, N = 1 linear multpilets

The canonical form of the 4d, N = 1 action for the real scalars La in the linear multiplets takes

the form

S = 1
(2π)4α′ ∫

M4

R ∗ 1 + 1
2Gab∇µL

a∇µLb ∗ 1 , (3.6)

with the couplings Gab, which can be inferred from a kinematic potential K̃ as Gab =
δ
δLa

δ
δLb K̃.

The identification of the Kähler moduli fields va with the real scalars in the linear multiplet of

the 4d, N = 1 supergravity theory at leading order in α′ is given by

La =
va

V
. (3.7)

Eventual α′-modifications of (3.7) due to the two-derivative analysis at this order in α′ [27]

do not alter the four-derivative couplings at the relevant order in α′, thus it suffices to express

the action in terms of (3.7). To determine all the relevant four-derivative couplings of Li one

requires knowledge of the couplings cubic and quartic in the infinitesimal fluctuations δvi arising

from the R4-sector. This is however, beyond the study of this work and we have thus omitted

such terms also arising due to the Weyl rescaling in (2.19). However, one may show that one

can express the couplings Tµν ∇ν∇µva and Tµν ∇µva∇νvb in terms of the fields La in the linear

multiplets without making use of information of the neglected sector. This does not apply to the

10



∇µ∇
µva ∇ν∇

νvb and ∇µ∇
νva ∇ν∇

µvb terms where the knowledge of the other four-derivative

couplings is crucial. Hence we will not consider the latter in the following. Expressing (3.3) in

terms of the linear multiplets one finds

Skin =
1

(2π)4α′ ∫
M4

[R + 1
2∇µL

a∇µLb V(Kab −
1
VKaKb) +

ζ(3)α′
4 e−

3
2
φ( GµνG

µνZ + Gµν ∇
ν∇µLaKaZ

+ Gµν ∇
µLa∇νLb(V2Zab +

5
2KaKbZ − 3VKabZ − VKaZb) ) ] ∗ 1 . (3.8)

Classically one then encounters the Kähler metric on the moduli space to be given by

Gab = V ∫
X
ωa ∧ ∗ωb = V(Kab −

1
VKaKb) , (3.9)

arising from the kinematic potential K̃ = −2 logV = logKijkLiLjLk. The resulting novel cou-

plings at order α′3, couple derivatives of the real scalars La to the tensor Gµν , which is composed

out of the Ricci tensor and the Ricci scalar. The higher-derivative coupling GµνGµνZ has been

analyzed in [17], and leads to a propagating massive spin 2 ghost mode. However, let us note

that the appearance of ghost modes in effective field theories is not an immediate issue since it

is related to the truncation of the ghost-free infinite series resulting from string theory.

Let us next comment on the term Gµν ∇µLa∇νLb. Firstly, note that this higher-derivative

coupling does not correct the propagator of La, since it vanishes in the Minkowski background.

Thus it does not give rise to any ghost modes for La. The analogous case of the Einstein-tensor

coupled to a scalar field is well studied and relevant in the context of inflation. It was observed

that such a coupling of a scalar field to curvature terms favors slow roll inflation, in other words

rather steep potentials can exhibit the feature of slow roll. It is expected that this coupling

(3.8) could be used to implement these scenarios in the context of Kähler moduli inflation. It is

an old approach in the context of string theory to drive slow roll inflation by a Kähler modulus

[50, 51]. It would be interesting to analyze the consequences of the derived novel couplings

to such inflationary models and their relevance due to their α′3-suppression. Finally, let us

discuss the coupling Gµν ∇ν∇µLa. As in the above case it does not correct the propagator of

La. In contrast to the previous case these couplings are poorly studied in inflation literature

and hence their embedding in string inflation models is desirable. In both cases coefficients

dependent on topological quantities Z,Za, see (3.4), of the internal Calabi-Yau orientifold and

are trivially related to the analog quantities (2.22) of the Calabi-Yau threefold, and are thus

computable in the context of algebraic geometry. However, the semi-topological coupling Zab
requires the knowledge of the Calabi-Yau metric and although derivable in principle it is beyond

the capability of current available techniques.
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4 Conclusions

Considering purely gravitational R4-corrections at order α′3 to the leading order IIB super-

gravity action in ten dimensions, we performed a dimensional reduction to four dimensions on

a Calabi-Yau threefold. Analyzing the reduction result at four-derivative level and quadratic

in the infinitesimal Kähler deformations we derived novel couplings of the Kähler moduli fields

and gravity. We argued that these are complete in a sense that the couplings cannot be al-

tered by other sectors of the IIB action at order α′3, or by modifications of the background.

We then performed the orientifold projection to derive a minimal supergravity theory in four

dimensions. Let us stress that for a complete analysis one needs to derive the reduction result

up to quartic order in the infinitesimal Kähler deformations. Only then one is able to draw

definite conclusions for all of the resulting four-derivative couplings involving the Kähler moduli

fields and gravity. This is an interesting question to be answered and the obvious next step in

this research program. Let us conclude by emphasizing that a detailed analysis of the novel

couplings in the context of Kähler moduli inflation in IIB orientifold setups is desirable.
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Appendix

A Conventions, definitions, and identities

In this work we denote the ten-dimensional space indices by capital Latin letters M,N = 0, . . . ,9,

the external ones by µ, ν = 0,1,2,3, and the internal complex ones by m,n, p = 1,2,3 and

m̄, n̄, p̄ = 1,2,3. The metric signature of the ten-dimensional space is (−,+, . . . ,+). Furthermore,

the convention for the totally anti-symmetric tensor in Lorentzian space in an orthonormal
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frame is ε012...9 = ε012 = +1. The epsilon tensor in d dimensions then satisfies

εR1⋯RpN1...Nd−pεR1...RpM1...Md−p = (−1)s(d − p)!p!δN1 [M1
. . . δNd−p

Md−p] , (A.1)

where s = 0 if the metric has Riemannian signature and s = 1 for a Lorentzian metric. We

adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓRMN =
1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN) , RMN = RR

MRN ,

RM
NRS = ∂RΓMSN − ∂SΓMRN + ΓMRTΓT SN − ΓMSTΓTRN , R = RMNg

MN , (A.2)

with equivalent definitions on the internal and external spaces. Written in components, the

first and second Bianchi identity are

RO
PMN +RO

MNP +R
O
NPM = 0

(∇LR)OPMN + (∇MR)OPNL + (∇NR)OPLM = 0 . (A.3)

Let us specify in more detail our conventions regarding complex coordinates in the internal

space. For a complex Hermitian manifold M with complex dimension n the complex coordinates

z1, . . . , zn and the underlying real coordinates ξ1, . . . , ξ2n are related by

(z1, ..., zn) = (
1

√
2
(ξ1 + iξ2), . . . ,

1
√

2
(ξ2n−1 + iξ2n)) . (A.4)

Using these conventions one finds

√
gdξ1 ∧ ... ∧ dξ2n =

√
g(−1)

(n−1)n
2 indz1 ∧ ... ∧ dzn ∧ dz̄1 ∧ ... ∧ dz̄n =

1

n!
Jn , (A.5)

with g the determinant of the metric in real coordinates and
√

det gmn = det gmn̄. The Kähler

form is given by

J = igmn̄dz
m ∧ dz̄n̄ . (A.6)

Let ωp,q be a (p, q)-form, then its Hodge dual is the (n − q, n − p) form

∗ωp,q =
(−1)

n(n−1)
2 in (−1)pn

p!q!(n − p)!(n − q)!
ωm1...mpn̄1...n̄qε

m1...mp

r̄1...r̄n−p

× ε
n̄1...n̄q

s1...sn−q
dzs1 ∧ ⋅ ⋅ ⋅ ∧ dzsn−q ∧ dz̄r̄1 ∧ ⋅ ⋅ ⋅ ∧ dz̄r̄

n−p
. (A.7)

Finally, let us record our conventions regarding Chern forms. To begin with, we define the

curvature two-form for Hermitian manifolds to be

Rmn = R
m
nrs̄dz

r ∧ dz̄s̄ , (A.8)
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and we set

TrR = Rm
mrs̄dz

r ∧ dz̄s̄ ,

TrR2 = Rm
nrs̄R

n
mr1s̄1dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ,

TrR3 = Rm
nrs̄R

n
n1r1s̄1R

n1
mr2s̄2dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 . (A.9)

The Chern forms can then be expressed in terms of the curvature two-form as

c0 = 1 ,

c1 =
1

2π
iTrR ,

c2 =
1

(2π)2

1

2
(TrR2 − (TrR)2) ,

c3 =
1

3
c1c2 +

1

(2π)2

1

3
c1 ∧TrR2 −

1

(2π)3

i

3
TrR3 (A.10)

The Chern forms of an n-dimensional Calabi-Yau manifold Yn reduce to

c2(Yn≥2) =
1

(2π)2

1

2
TrR2 and c3(Yn≥3) = −

1

(2π)3

i

3
TrR3 (A.11)

The six dimensional Euler-density is given by

Q = −1
3
(R(0)

m1

m2
n1

n2R(0)
m2

m1
n2

n3R(0)
n2

n1
n3

n2 +R(0)
m1

m2
n1

n2R(0)
m2

m3
n2

n3R(0)
m3

m1
n3

n1) . (A.12)

It satisfies

Q = (2π)3 ∗6 c3 , ∫
Y3
Q ∗6 1 = (2π)3χ , (A.13)

where χ is the Euler-Characteristic of the internal Calabi-Yau manifold. Let us next define the

intersection numbers

Kijk =
1

(2πα′)3 ∫
Y3
ωi ∧ ωj ∧ ωk , Kij =

1
(2πα′)3 ∫

Y3
ωi ∧ ωj ∧ J = Kijkv

k ,

Ki = 1
2(2πα′)3 ∫

Y3
ωi ∧ J ∧ J =

1

2
Kijkv

jvk , V = 1
3!(2πα′)3 ∫

Y3
J ∧ J ∧ J =

1

3!
Kijkv

ivjvk , (A.14)

where {ωi} are harmonic (1,1) -forms w.r.t. to the Calabi- Yau metric gmn̄. Let us state the

useful identities

ωim
m = i

Ki

V
, ωimn̄ωj

n̄m ∗6 1 = ωi ∧ ωj ∧ J −
1

V2
KiKj ∗6 1 . (A.15)

We present the formulae for a Weyl rescaling gµν → Ωgµν of the four-derivative terms,

RµνRµν , R2. These expressions can be derived straight forwardly, and are given by

R2 Weyl
→ 1

Ω2R2 − 6 R 1
Ω3 (∇µ∇

µΩ) + 3 1
Ω4R (∇µΩ)(∇µΩ) + 9 1

Ω5 (∇µ∇
µΩ)(∇ν∇

νΩ)

− 9 1
Ω5 (∇µΩ)(∇µΩ)(∇ν∇

νΩ) + 9 1
4Ω6 (∇µΩ)(∇µΩ)(∇νΩ)(∇νΩ) , (A.16)
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and

RµνR
µν Weyl
→ 1

Ω2RµνRµν − R 1
Ω3 (∇µ∇

µΩ) + 3 1
Ω4Rµν ∇

µΩ∇νΩ − 2 1
Ω4Rµν ∇

µ∇νΩ

+ 2 1
Ω5 (∇µ∇

µΩ)(∇ν∇
νΩ) + 1

Ω5 (∇
µ∇νΩ)(∇µ∇νΩ) − 3

2
1

Ω5 (∇µ∇
µΩ)(∇νΩ)(∇νΩ)

− 3 1
Ω5 (∇

µ∇νΩ)(∇νΩ)(∇µΩ) + 9 1
4Ω6 (∇µΩ)(∇µΩ)(∇νΩ)(∇νΩ) . (A.17)
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