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1 Introduction

Our “common sense” for music instruments says:

“shorter strings produce a higher pitch than longer strings”,
“thinner strings produce a higher pitch than thicker strings”.

Let us try to “hear the sound of pseudo-Riemannian locally symmetric spaces”.
Contrary to our “common sense” in the Riemannian world, we find a phenomenon
that compact three-dimensional anti-de Sitter manifolds have “intrinsic sound”
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which is stable under any small deformation. This is formulated in the frame-
work of spectral analysis of anti-de Sitter manifolds, or more generally, of pseudo-
Riemannian locally symmetric spacss. In this article, we give a flavor of this new
topic by comparing it with the flat case and the Riemannian case.

To explain briefly the subject, le¢ be a pseudo-Riemannian manifold, and
discrete isometry group acting properly discontinuously and freelt.orhen the
quotient spacer := IN'\X carries a pseudo-Riemannian manifold structure such
that the covering maX — Xr is isometric. We are particularly interested in the
case wherér is a pseudo-Riemannian locally symmetric space, see S&#on

Problems we have in mind are symbolized in the following diagram:

existence problem deformationv.s.rigidity
GeometryDoes cocompadt existqHigher Teichnilller theoryv.s.rigidity theorem
(Sectiori]) (Sectiord)
Analysis| DoesL?-spectrum existP Whetherl?-eigenvalues vary or not
(Problem A) (Problem B)

2 A program

In [B @ 7 we initiated the study of “spectral analysis on pseudo-Riemannian lo-
cally symmetric spaces” with focus on the following two problems:

Problem A Construct eigenfunctions of the Laplacidg on X-. Does there exist
a nonzero B-eigenfunction?

Problem B Understand the behaviour ofleigenvalues of the Laplaciaftx- on
Xr under small deformation df inside G.

Even whenX; is compact, the existence of countably marfyeigenvalues is
already nontrivial because the Laplaciag- is not elliptic in our setting. We shall
discuss in SectidB.dfor further difficulties concerning Probled@andBlwhenXr
is non-Riemannian.

We may extend these problems by considejirigt eigenfunctions for “invariant
differential operators” oiX- rather than the single operaty, . Here by “invariant
differential operators odX" we mean differential operators that are induced from
G-invariant ones orX = G/H. In Sectiorl] we discuss Probleni andBlin this
general formulation based on the recent joint w@K7 with F. Kassel.
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2.1 Known results

Spectral analysis on a pseudo-Riemannian locally symmetric sfacel \X =
'\G/H is already deep and difficult in the following special cases:

1) (noncommutative harmonic analysis @iH) I' = {e}.
In this case, the groufs acts unitarily on the Hilbert spade?(Xr) = L%(X)
by translationf(-) — f(g~%), and the irreducible decomposition &f(X)
(Plancherel-type formulais essentially equivalent to the spectral analysis of
G-invariant differential operators wheX is a semisimple symmetric space.
Noncommutative harmonic analysis on semisimple symmetric spéckas
been developed extensively by the work of Helgason, Flensted-Jensen, Matsuki—
Oshima-Sekiguchi, Delorme, van den Ban—Schlichtkrull among others as a gen-
eralization of Harish-Chandra’s earlier work on the regular representati@)
for group manifolds.

2) (automorphic formsH is compact and" is arithmetic.
If H is a maximal compact subgroup @f thenXr = '\G/H is a Riemannian
locally symmetric space and the Laplaci&g is an elliptic differential operator.
Then there exist infinitely manly?-eigenvalues of\x, if Xr is compact by the
general theory for compact Riemannian manifolds (see[@adtfurthermorel”
is irreducible, then Weil’s local rigidity theorefid states that nontrivial defor-
mations exist only wheK is the hyperbolic plan8L(2,R)/SQ(2), in which case
compact quotientXr have a classically-known deformation space modulo con-
jugation,i.e., their Teichniiller space. Viewed as a function on the TeicHler
spacel.?-eigenvalues vary analyticallfl[20, see Fadill
Spectral analysis oK is closely related to the theory of automorphic forms in
the Archimedian place if is an arithmetic subgroup.

3) (abelian casef = RPT9 with H = {0} andl" = ZP*4.
We equipX = G/H with the standard flat pseudo-Riemannian structure of sig-
nature(p,q) (see Examplf). In this caseG is abelian, buX = G/H is non-
Riemannian. This is seemingly easy, however, spectral analysis dpthq)-
torusRP*4/7ZP*4 is much involved, as we shall observe a connection with Op-
penheim’s conjecture (see Sectiaf).

2.2 Difficulties in the new settings

If we try to attack a problem of spectral analysis BRG/H in the more general
case wherél is noncompact anfi is infinite, then new difficulties may arise from
several points of view:

(1) Geometry. TheG-invariant pseudo-Riemannian structure ¥n= G/H is not
Riemannian anymore, and discrete groups of isometrie§ @d not always act
properly discontinuously on such
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(2) Analysis. The Laplaciadlx on Xy is not an elliptic differential operator. Fur-
thermore, it is not clear il has a self-adjoint extension dlﬁ(Xr).

(3) Representation theory. I acts properly discontinuously od = G/H with
H noncompact, then the volume 6f\G is infinite, and the regular represen-
tation L2(I"\G) may have infinite multiplicities. In turn, the group may not
have a good control of functions dn\G. MoreoverL?(Xr) is not a subspace
of L2("'\G) becauseH is noncompact. All these observations suggest that an
application of the representation theonddf "\ G) to spectral analysis o4~ is
rather limited wherH is noncompact.

Point (1) creates some underlying difficulty to ProbBinwe need to consider
locally symmetric spaces- for which proper discontinuity of the action 6fon X
is preserved under small deformationsfofn G. This is nontrivial. This question
was first studied by the authd8[[IJ]. See @] for further study. An interesting
aspect of the case of noncompkiis that there are more examples where nontrivial
deformations of compact quotients exist than for compldtf. Weil’s local rigidity
theorem[[q)). Perspectives from Point (1) will be discussed in Sedfion

Paint (2) makes Problell nontrivial. It is not clear if the following well-known
properties in theRiemanniancase holds in our setting in thEseudo-Riemannian
case.

Fact 1 Suppose M is a compact Riemannian manifold.

(1) The Laplaciamdy extends to a self-adjoint operator oR(IM).
(2) There exist infinitely many?eigenvalues afly;.

(3) An eigenfunction af\y is infinitely differentiable.

(4) Each eigenspace dfy is finite-dimensional.

(5) The set of B-eigenvalues is discrete iR.

Remark 1We shall see that the third to fifth properties of Fdlahay fail in the
pseudo-Riemannian caseg, Exampldgfor (3) and (4), andM = R%1/Z3 (Theo-
rem[?) for (5).

In spite of these difficulties, we wish to reveal a mystery of spectral analysis of
pseudo-Riemannian locally homogeneous spages: '\G/H. We shall discuss
self-adjoint extension of the Laplacian in the pseudo-Riemannian setting in Theo-
rem[I3 and the existence of countable marfyeigenvalues in TheorerfIZand

13

3 Pseudo-Riemannian manifold

3.1 Laplacian on pseudo-Riemannian manifolds

A pseudo-Riemannian manifold i a smooth manifold endowed with a smooth,
nondegenerate, symmetric bilinear tengaf signature(p, q) for somep, g € N.
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(M, g) is a Riemannian manifold i = 0, and is a Lorentzian manifoldéf= 1. The
metric tensog induces a Radon measutg on X, and the divergence div. Then the
Laplacian

Ay :=divgrad

is a differential operator of second order which is a symmetric operator on the
Hilbert space._?(X,du).

Example 1Let (M, g) be the standard flat pseudo-Riemannian manifold:
RP9:= (RPH9 dx +- "+d><;23—dx%+1—"'—dx%+q)~

Then the Laplacian takes the form

92 92 92 92
Agpa=——++ 25— =5 —— —
ox2 x5 x5,y 0%, 4

In general Ay is an elliptic differential operator ifM,g) is Riemannian, and is a
hyperbolic operator ifM, g) is Lorentzian.

3.2 Homogeneous pseudo-Riemannian manifolds

A typical example of pseudo-Riemannian manifaidith “large” isometry groups
is semisimple symmetric spaces, for which the infinitesimal classification was ac-
complished by M. Berger in 1950s. In this caXds given as a homogeneous space
G/H whereG is a semisimple Lie group arid is an open subgroup of the fixed
point groupG? = {g € G: ag = g} for some involutive automorphism of G. In
particular,G O H are a pair of reductive Lie groups.

More generally, we sa/H is areductive homogeneous spaté D H are a
pair of real reductive algebraic groups. Then we have the following:

Proposition 1. Any reductive homogeneous space=XG/H carries a pseudo-
Riemannian structure such that G acts on X by isometries.

Proof. By a theorem of Mostow, we can take a Cartan involuttbaf G such that
OH = H. ThenK := G is a maximal compact subgroup 6f andH NK is that
of H. Let g = £+ p be the corresponding Cartan decomposition of the Lie algebra
g of G. Take an AdG)-invariant nondegenerate symmetric bilinear fofm on g
such that(, )|ex¢ is negative definite(, )|, iS positive definite, and andp are
orthogonal to each other. @ is semisimple, then we may take) to be the Killing
form of g.)

SinceBH = H, the Lie algebrd of H is decomposed into a direct sum= (h N
t) + (hNyp), and therefore the bilinear forf ) is non-degenerate when restricted
to h. Then(, ) induces an A¢(H )-invariant nondegenerate symmetric bilinear form
(,)g/p ON the quotient spagg'h, with which we identify the tangent spatg(G/H)
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at the origino = eH € G/H. Since the bilinear forng, )/, is Ad(H)-invariant, the

left translation of this form is well-defined and gives a pseudo-Riemannian structure
gonG/H of signature(dimp/h Np,dime/HN¢). By the construction, the group

acts on the pseudo-Riemannian manif@BfH,g) by isometries. O

3.3 Pseudo-Riemannian manifolds with constant curvature,
Anti-de Sitter manifolds

LetQpq(X) :=X§+---+X5—x5,1 —---— X5, be a quadratic form oRP" of sig-
nature(p,q), and we denote b@(p,q) the indefinite orthogonal group preserving
the formQ, . We define two hypersurfacés?? in RP4 by

MP9:= {x € RPT9: Qpq(x) = £1}.
By switchingp andg, we have an obvious diffeomorphism
M9~ MEP.

The flat pseudo-Riemannian structii®d (Exampldl) induces a pseudo-Riemannian
structure on the hypersurfat&&z"@’q of signaturg(p— 1, ) with constant curvature 1,
and that orM P9 of signature(p,q— 1) with constant curvature 1.

The natural action of the group(p,q) on RP9 induces an isometric and transi-
tive action on the hypersurfacM;'Qq, and thus they are expressed as homogeneous
spaces:

MP9~0O(p,q)/O(p—1,0), MP9~0(p,q)/O(p,q—1),

giving examples of pseudo-Riemannian homogeneous spaces as in Profibsition
The anti-de Sitter spacédS" = M"12 is a model space fon-dimensional
Lorentzian manifolds of constant negative sectional curvaturantifde Sitter n-
manifolds This is a Lorentzian analogue of the real hyperbolic sgdeFor the
convenience of the reader, we list model spaces of Riemannian and Lorentzian man-
ifolds with constant positive, zero, and negative curvatures.
Riemannian manifolds with constant curvature:

= M0 ~0(n+1)/0(n) : standard sphere
R" : Euclidean space
H'= M™ ~ 0O(1,n)/0(n) : hyperbolic space

Lorentzian manifolds with constant curvature:
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ds'= M~ O(n,1)/O(n—1,1) :de Sitter space
R-11 : Minkowski space
AdS' = M"12~0(2,n—1)/0(1,n— 1) : anti-de Sitter space

4 Discontinuous groups for pseudo-Riemannian manifolds

4.1 Existence problem of compact Clifford—Klein forms

Let H be a closed subgroup of a Lie gro@ andX = G/H, andIl" a discrete
subgroup ofG. If H is compact, then the double coset spacg/H becomes a
C”-manifold for any torsion-free discrete subgrdupf G. However, we have to be
careful for noncompadtl, because not all discrete subgroups acts properly discon-
tinuously onG/H, andl"\G/H may not be Hausdorff in the quotient topology. We
illustrate this feature by two general results:

Fact 2(1) (Moore’s ergodicity theorenfl§]) Let G be a simple Lie group, and
a lattice. Then™ acts ergodically on @H for any noncompact closed subgroup
H. In particular, " \G/H is non-Hausdorff.
(2) (Calabi—-Markus phenomenoX[g])) Let G be a reductive Lie group, and
an infinite discrete subgroup. Thén\G/H is non-Hausdorff for any reductive
subgroup H withrankzy G = rankz H.

In fact, determining which groups act properly discontinuously on reductive ho-
mogeneous spac&s/H is a delicate problem, which was first considered in full
generality by the author; we refer @ Section 3.2] for a survey.

Suppose now a discrete subgrdugacts properly discontinuously and freely on
X = G/H. Then the quotient space

Xr = \X ~\G/H

carries &€”-manifold structure such that the quotient n@pX — X is a covering,
through whichXr inherits anyG-invariant local geometric structure oh We say
I" is adiscontinuous group for XandXr is aClifford—Klein formof X = G/H.

Example 21) If X = G/H is a reductive homogeneous space, then any Clifford—
Klein form X carries a pseudo-Riemannian structure by Propogition

(2) If X=G/H is a semisimple symmetric space, then any Clifford—Klein f&fm=
'\G/H is a pseudo-Riemannian locally symmetric space, namely, the (local)
geodesic symmetry at evepyc Xr with respect to the Levi-Civita connection is
locally isometric.

By space formswe mean pseudo-Riemannian manifolds of constant sectional
curvature. They are examples of pseudo-Riemannian locally symmetric spaces. For
simplicity, we shall assume that they are geodesically complete.
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Example 3Clifford—Klein forms of MP™9 = O(p + 1,q)/0(p,q) (respectively,
MParL — O(p,g+1)/0(p,q)) are pseudo-Riemannian space forms of signature
(p,q) with positive (respectively, negative) curvature. Conversely, any (geodesically
complete) pseudo-Riemannian space form of signgtpre) is of this form as far

asp # 1 for positive curvature og # 1 for negative curvature.

A general question for reductive homogeneous spégeétis:
Question 1Does compact Clifford—Klein forms d&/H exist?
or equivalently,

Question 2Does there exist a discrete subgrdupf G acting cocompactly and
properly discontinuously o®/H?

This question has an affirmative answeHifis compact by a theorem of Borel.
In the general setting whetd is noncompact, the question relates with a “global
theory” of pseudo-Riemannian geomethow local pseudo-Riemannian homoge-
neous structure affects the global nature of manifoldgfassic example ispace
form problemwhich asks the global properties.§.compactness, volume, funda-
mental groupsetc) of a pseudo-Riemannian manifold of constant curvature (local
property). The study of discontinuous groups o™ -9 andMP%"* shows the fol-
lowing results in pseudo-Riemannian space forms of signai®:

Fact 3 Space forms of positive curvature are

(1) always closed if g= 0, i.e., sphere geometry in the Riemannian case;
(2) never closed if p> g > O, in particular, if q= 1 (de Sitter geometry in the
Lorentzian case]).

The phenomenon in the second statement is calle@#tehi—Markus phenomenon
(see FadBl(2) in the general setting).

Fact 4 Compact space forms of negative curvature exist

(1) for all dimensions if g= 0, i.e., hyperbolic geometry in the Riemannian case;
(2) for odd dimensions if & 1, i.e., anti-de Sitter geometry in the Lorentzian case;
(3) for (p,q) = (4m,3) (me N) or (8,7).

Seel[[3 Section 4] for the survey of the space form problem in pseudo-Riemannian
geometry and also of Questifitfor more generaG/H.

A large and important class of Clifford—Klein form of a reductive homoge-
neous spac¥ = G/H is constructed as follows (sdg]].

Definition 1. A quotientXr = I"'\X of X by a discrete subgroup of G is called
standardif I is contained in some reductive subgrdupf G acting properly orX.

If a subgroupl acts properly oiG/H, then any discrete subgroup/lofacts prop-
erly discontinuously oiG/H. A handy criterion for the tripl€G,H, L) of reductive
groups such that acts properly orG/H is proved in[B], as we shall recall below.
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Let G = Kexpa;K be a Cartan decomposition, wherés a maximal abelian sub-
space ofp anday is the dominant Weyl chamber with respect to a fixed positive
system>* (g, a). This defines a map : G — a; (Cartan projection by

p(ki€ky) = X forky, ko € K andX € a.

Itis continuous, proper and surjectiveHfis a reductive subgroup, then there exists
g € G such thatu(gHg™?) is given by the intersection af; with a subspace of
dimension rank H. By an abuse of notation, we use the satmstead ogHg .
With this convention, we have:

Properness Criterion 5 (B]) L acts properly on @GH if and only ifpu(L)Nnp(H) =
{0}.
By taking a latticel" of suchL, we found a family of pseudo-Riemannian lo-
cally symmetric spacexr in [[8 [I3. The list of symmetric spaces admitting stan-
dard Clifford—Klein forms of finite volume (or compact forms) inclup a4 —
O(p,q+1)/0(p,q) with (p,q) satisfying the conditions in Fal@ Further, by ap-
plying Properness Criteridd, Okuda [[§ gave examples of pseudo-Riemannian
locally symmetric spaceS\G/H of infinite volume wherd™ is isomorphic to the
fundamental groupn (Z4) of a compact Riemann surfagg with g > 2.

For the construction of stable spectrumXmn(see Theorefidand Theorerfid
(2) below), we introduced irfig, Section 1.6] the following concept:

Definition 2. A discrete subgroup of G actsstrongly properly discontinuous(pr
sharply) on X = G/H if there existC, C' > 0 such thatforaly e I',

d(u(y),u(H)) >Cllu(y)| -C'".

Hered(-,-) is a distance im given by a Euclidean nor- || which is invariant under
the Weyl group of the restricted root systerty, a). We say the positive numbé&r
is the first sharpness constafatr I .

If a reductive subgroup acts properly on a reductive homogeneous sy,
then the action of a discrete subgrdUpf L is strongly properly discontinuoudgd[
Example 4.10]).

4.2 Deformation of Clifford—Klein forms

Let G be a Lie group and a finitely generated group. We denote by H6mG)
the set of all homomorphisms 6f to G topologized by pointwise convergence. By
taking a finite sefy1,--- , %} of generators of , we can identify Hon",G) as a
subset of the direct produ@ x - - - x G by the inclusion:

Hom(l’,G)f—)GxxG, ¢’_>(¢(y1)”¢(w<)) (l)
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If " is finitely presentable, then Hqif, G) is realized as a real analytic variety via

SupposeG acts continuously on a manifold. We shall takeX = G/H with
noncompact closed subgrotiplater. Then not all discrete subgroups act properly
discontinuously orX in this general setting. The main difference of the following
definition of the authod] in the general case from that of WdI{] is a requirement
of proper discontinuity.

R(I,G;X) :={¢ € Hom(I",G) : ¢ is injective, (2
and¢ (I") acts properly discontinuously and freely GriH }.

Suppose nowX = G/H for a closed subgroupl. Then the double coset space

¢ (I)\G/H forms a family of manifolds that are locally modelled @y/H with
parameterp € R(I",G; X). To be more precise on “parameter”, we note that the
conjugation by an element @ induces an automorphism of H¢m, G) which
leavesR(I", G; X) invariant. Taking these unessential deformations into account, we
define thedeformation spacégeneralized Teichiiller spacé as the quotient set

T(I,G;X):=R(I,G;X)/G.

Example 41) Let I" be the surface groum(2gy) of genusg > 2, G = PSL(2,R),
X = H? (two-dimensional hyperbolic space). Thei(I™,G; X) is the classical
Teichmilller space, which is of dimensiory6- 6.

2 G=R" X=R", I =Z". ThenZ (I',G; X) ~ GL(n,R) (seed) below).

(3) G =S02,2), X = AdS®, andI" = 18(%,). Then 7 (I",G;X) is of dimension
129 - 12 (seel@ Section 9.2] and references therein).

Remark 2There is a natural isometry betwekp ) andX; 4-4-1). Hence, the set
Speg (X (r)) of L2-eigenvalues is independent of the conjugatiop efR(I" , G; X)
by an element o6. By an abuse of notation we shall write Sp&yr)) for ¢ €
7 (I, G;X) when we deal with Problef] of Sectiorid

5 Spectrum onRP9/ZP+% and Oppenheim conjecture

This section gives an elementary but inspiring observation of spectrum on flat
pseudo-Riemannian manifolds.

5.1 Spectrum ofRP4/¢(ZP+9)

Let G=R" andl" = Z". Then the group homomorphisgn: ' — G is uniquely
determined by the imagg(e;j) (1 < j < n) whereey, ---, &, € Z" are the standard
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basis, and thus we have a bijection
Hom(I",G) < M(n,R), ¢g+g (3)

by ¢g(m) := gm for m € Z", or equivalently, byg = (¢g(€1), -, Pg(en)).

Let o € Aut(G) be defined byo(x) := —x. ThenH := G = {0} andX :=
G/H ~ R" is a symmetric space. The discrete grdumcts properly discontinu-
ously onX via ¢q4 if and only if g € GL(n,R). Moreover, sinceG is abelian,G
acts trivially on Honfl",G) by conjugation, and therefore the deformation space
7 (I, G; X) identifies withR(I", G; X). Hence we have a natural bijection between
the two subsets off}j:

T (I,G;X) < GL(n,R). 4)

Fix p, g € N such thatp+ q = n, and we endowX ~ R" with the standard
flat indefinite metricRPY9 (see Exampl€l). Let us determine Spg(:xd,g(r)) ~
Speg (RP9/¢q4(Z")) for g € GL(n,R) ~ .7 (I",G; X).

For this, we define a function ok = R" by

fm(X) ;= exp2m/—1'mg 1x)  (xeR")

for eachm € Z" wherex andm are regarded as column vectors. Cleafly, is
¢q(I" )-periodic and defines a real analytic functionXg)r. Furthermore fr, is
an eigenfunction of the Laplaciakkp.a:

Agpafm = —4712ngl|pvqtg—1(m) fm,

where, for a symmetric matri8 € M(n,R), Qs denotes the quadratic form @'
given by

Qs(y) =y  foryeR".
Since{fyn : m € Z"} spans a dense subspace_é(fx¢g(r)), we have shown:

Proposition 2. For any ge GL(n,R) ~ .7 (I",G; X),

Speg(x¢g(r)) = {—47'[2Qg—1|p‘qtg—1(m) :meZ"}.

Here are some observation in the- 1,2 cases.

Example 5Letn= 1 and(p,q) = (1,0). Then Speg(Xy,(r)) = {—4Pn?/g? :me

Z} for g € R* ~ GL(1,R) by Propositiofl Thus the smaller the peridd| is, the
larger the absolute value of the eigenvalue4r®n?/g?| becomes for each fixed
me Z\ {0}. This is thought of as a mathematical model of a music instrument for
which shorter strings produce a higher pitch than longer strings (see Introduction).

Example 6Let n =2 and(p,q) = (1,1). Takeg = I, so thatggy(I") = Z? is the
standard lattice. Then tHe?-eigenspace of the Laplaciak1 ;2 for zero eigen-
value containgV := {¢(x—vy) : ¢ € L2(R/Z)}. SinceW is infinite-dimensional
andW ¢ C*(R?/Z?), the third and fourth statements of FEHail in this pseudo-
Riemannian setting.
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By the explicit description of Spg¢Xy ) for all ¢ € 7 (I, G; X) in Proposi-
tion[2 we can also tell the behaviour of SpéX, ) under deformation of” by
¢. Obviously, any constant function ofyr) is an eigenfunction of the Laplacian
Dy = Agrpa /¢ (ZPH9) with eigenvalue zero. We see that this is the unique stable

L2-eigenvalue in the flat compact manifold:
Corollary 1 (non-existence of stable eigenvalued)et n= p+q with p,q € N. For
any open subsetV of (I, G; X),

() Speg(Xy(r)) = {0}
peVv

5.2 Oppenheim’s conjecture and stability of spectrum

In 1929, Oppenhein{I[] raised a question about the distribution of an indefinite
quadratic forms at integral points. The following theorem, referred to as Oppen-
heim’s conjecture, was proved by Margulis (484 [and references therein).

Fact 6 (Oppenheim’s conjecture) Suppose > 3 and Q is a real nondegenerate
indefinite quadratic form in n variables. Then either Q is proportional to a form
with integer coefficients (and thug @) is discrete inR), or Q(Z") is dense irR.

Combining this with Propositio, we get the following.

Theorem 7.Let p+q=n, p>2,q>1, G=R", X=RP%andlr = Z". We define
an open dense subset U 6f(I",G; X) ~ GL(n,R) by

U :={g e GL(n,R): g tlpq'g ! is not proportional to an element of i, Z). }

Then the seSpeg(Xy(r)) of L2-eigenvalues of the Laplacian is denseRirif and
onlyif¢ € U.

Thus the fifth statement of Fd@itfor compact Riemannian manifolds do fail in the
pseudo-Riemannian case.

6 Main results—sound of anti-de Sitter manifolds

6.1 Intrinsic sound of anti-de Sitter manifolds

In general, it is not clear whether the Laplacidgn admits infinitely manyl?-
eigenvalues for compact pseudo-Riemannian manifolds. For anti-de Sitter 3-manifolds,
we proved in[@ Theorem 1.1]:
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Theorem 8.For any compact anti-de Sitter 3-manifold M, there exist infinitely
many [2-eigenvalues of the Laplaciafy.

In the abelian case, it is easy to see that compactness f necessary for the
existence of 2-eigenvalues:

Proposition 3. Let G=RP*9, X =RP9, " =ZX, and$ € R(I",G; X). ThenSpeg (X)) #
0if and only if X, is compact, or equivalently,% p+q.

However, anti-de Sitter 3-manifoldd admit infinitely manylL?-eigenvalues even
whenM is of infinite-volume (sedd, Theorem 9.9]):

Theorem 9. For any finitely generated discrete subgroipf G = SQ(2,2) acting
properly discontinuously and freely onX AdS?,

Speg(Xr) D {I(1-2):1 eN,I >10C"3}
where C= C(I") is the first sharpness constant/of

The abovd 2-eigenvalues are stable in the following sense:

Theorem 10(stable L?-eigenvalues).Suppose thalt ¢ G = SQ(2,2) and M=

I\ AdS3 is a compact standard anti-de Sitter 3-manifold. Then there exists a neigh-
bourhood UC Hom(I", G) of the natural inclusion with the following two proper-
ties:

U C R(I,G;AdS®), (5)
#( ) Speg(Xr)) = o. (6)
(IS8}

The first geometric propertfg) asserts that a small deformation/ofkeeps proper
discontinuity, which was conjectured by Goldm&gj [n the AdS’® setting, and
proved affirmatively in[LJ]. TheoremId was proved in[@ Corollary 9.10] in a
stronger form €.g, without assuming “standard” condition).

Figuratively speaking, Theorefil says that compact anti-de Sitter manifolds
have “intrinsic sound” which is stable under any small deformation of the anti-de
Sitter structure. This is a new phenomenon which should be in sharp contrast to the
abelian case (Corollaf) and the Riemannian case below:

Fact 11 (seel2Q Theorem 5.14]) For a compact hyperbolic surface, no eigenvalue
of the Laplacian abov% is constant on the Teichitier space.

We end this section by raising the following question in connection with the flat
case (Theoreffd):

Question 3SupposeM is a compact anti-de Sitter 3-manifold. Find a geometric
condition onM such that SpegM ) is discrete.
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7 Perspectives and sketch of proof

The results in the previous section for anti-de Sitter 3-manifolds can be extended to
more general pseudo-Riemannian locally symmetric spaces of higher dimension:

Theorem 12([8 Theorem 1.5]).Let X- be a standard Clifford—Klein form of a
semisimple symmetric space=XG/H satisfying the rank condition

rankG/H = rankK /H NK. (7)

Then the following holds.

(1) There exists an explicit infinite subset | of joirft&igenvalues for all the differ-
ential operators on X that are induced from G-invariant differential operators
on X.

(2) (stable spectrum) If is contained in a simple Lie group L of real rank one
acting properly on X= G/H, then there is a neighbourhood& Hom(I", G) of
the natural inclusion such that for ary € V, the actiong (I") on X is properly
discontinuous and the set of joint4eigenvalues on #r) contains the infinite
setI.

Remark 3We do not requirer to be of finite volume in Theoref2

Remark 41t is plausible that for a general locally symmetric sp&cgs/H with

G reductive, no nonzerb?-eigenvalue is stable under nontrivial small deformation
unless the rank conditiofif)( is satisfied. For instance, suppdse= 11 (Zg) with

g > 2 andR(I",G; X) # 0. (Such semisimple symmetric spaXe= G/H was re-
cently classified inIg].) Then we expect the rank conditid) (s equivalent to the
existence of an open sub&gtin R(I", G; X) such that

#([) Speq(Xp(r))) =

¢ecU

It should be noted that not dlP-eigenvalues of compact anti-de Sitter manifolds
are stable under small deformation of anti-de Sitter structure. In fact, we proved
in [ that there exist also countably manggative E-eigenvalues that are NOT
stable under deformation, whereas the countably many stZbéégenvalues that
we constructed in TheoreBlare all positive. More generally, we prove [ fthe
following theorem that include both stable and unstaBleigenvalues:

Theorem 13.Let G be a reductive homogeneous space and L a reductive sub-
group of G such that HhL is compact. Assume that the complexificatigniX
Lc-spherical. Then for any torsion-free discrete subgréupf L, we have:

(1) the LaplacianAy- extends to a self-adjoint operator oR(Xr);
(2) #Speg(Xr) = w0 if Xr is compact.
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By “Lc¢-spherical” we mean that a Borel subgroup has an open orbit iXc. In
this case, a reductive subgrouacts transitively orX by [I3 Lemma 5.1].

Here are some examples of the setting of Thed@ntaken from[[3 Corollary
3.3.7].

Table 1 [

G H L

0 [Sa2n,2)[Sa2n,1)| U(n 1)

(i) [SA2n,2)| U(n,1) SQ(2n,1)

(iii) [SU(2n,2)| U(2n,1) Spn,1)
)
)

(iv) |SU(2n,2)| Spn,1) U(2n,1)
(v) [SQO4n,4)|SQ(4n,3)| SH1) x SEN, 1)
(vi) | SO8,8) | SO8,7) Spin8,1)
(vii) | SO8,C) | SQ7,C) Spin7,1)
(viii) | SO(4,4) |Spin(4,3)|SA4,1) x SO(3)
(ix) | SO4,3) | G2(R) |SO4,1) x SQ12)

Examples for Theoreifid include Tabld]] (i) for all n € N, whereas we need
n € 2N in Theorenil2for the rank conditiond).

The idea of the proof for Theorefid is to take an average of a (nonperi-
odic) eigenfunction orX with rapid decay at infinity ovef -orbits as a general-
ization of Poincak series. Geometric ingredients of the convergence (respectively,
nonzeroness) of the generalized Poikcsries include “countinfj-orbits” stated
in Lemmalll below (respectively, the Kazhdan—Margulis theorem,[@ Proposi-
tion 8.14]). LetB(o,R) be a “pseudo-ball” of radiuR > 0 centered at the origin
o=eHe X =G/H, and we set

N(x,R):=#{yel :y-xeB(o,R)}.

Lemma 1 ([[@ Corollary 4.7]).

(1) If I acts properly discontinuously on X, thefi\R) < o for all x € X and R> 0.

(2) If I acts strongly properly discontinuously on X, then there exigts A such
that

R
N(x,R) < Axexp(a) forall R >0,
where C is the first sharpness constanf of

The key idea of Theoref3is to bring branching laws to spectral analyfig|[
[I2, namely, we consider the restriction of irreducible representatiotbat are
realized in the space of functions on the homogeneous $pac&/H and analyze
the G-representations when restricted to the subgtaupetails will be given in[f].
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