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ABSTRACT. We give a complete classification of conformally covariant differential
operators between the spaces of i-forms on the sphere S™ and j-forms on the to-
tally geodesic hypersphere S™~!. Moreover, we find explicit formulz for these new
matrix-valued operators in the flat coordinates in terms of basic operators in dif-
ferential geometry and classical orthogonal polynomials. We also establish matrix-
valued factorization identities among all possible combinations of conformally co-
variant differential operators. The main machinery of the proof is the “F-method”
based on the “algebraic Fourier transform of Verma modules” (Kobayashi-Pevzner
[Selecta Math. 2016]) and its extension to matrix-valued case developed here. A
short summary of the main results was announced in [C. R. Acad. Sci. Paris, 2016].
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1. INTRODUCTION

Let (X, g) be a pseudo-Riemannian manifold. Suppose that a Lie group G acts
conformally on X. This means that there exists a positive-valued function 2 €
C>®(G x X) (conformal factor) such that

Lighe = Q(h,7)%g, forallh € G,z € X,

where we write L,: X — X,z — h - x for the action of G on X. When X is
orientable, we define a locally constant function or: G x X — {£1} by or(h)(z) =1
if (Lp)ss: ToX — Ty, . X is orientation-preserving, and = —1 if it is orientation-
reversing.

Since (2 satisfies a cocycle condition, we can form a family of representations wq%

of G with parameters u € C and § € Z/27Z on the space £(X) of i-forms on X
(0 <i < dim X) defined by

(1.1) o (h)a = or(h)’Q(h7, ) L, (b€ G).

The representation wfj)(s of the conformal group G on £(X) will be simply denoted
by EY(X)us, and referred to as conformal representations on i-forms.

Suppose that Y is an orientable submanifold such that ¢ is nondegenerate on the
tangent space T,Y for all y € Y (this holds automatically if g is positive definite).
Then Y is endowed with a pseudo-Riemannian structure g|y, and we can define in
a similar way a family of representations @) on £1(Y) (v € C,e € Z/2Z,0 < j <
dimY") of the group

G :={heG:h-Y=Y}
which acts conformally on (Y, g|y).

The object of our study is differential operators D'™7: £/(X) — &I(Y) that
intertwine the two representations w%\g and @) of G’. Here wx)dlg/ stands for the

restriction of the G-representation wfj% to the subgroup G’. We say that such D"/
is a differential symmetry breaking operator and denote by Diff ¢/ (E4(X )u.5,E7(Y)e)
the space of differential symmetry breaking operators.

We address the following problems:
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Problem A. Find a necessary and sufficient condition on 6-tuple (i, j,u,v,d,&) such
that there exist nontrivial differential symmetry breaking operators. More precisely,
determine the dimension of Diff g/ (E/(X)us,E (Y )pz).

Problem B. Construct explicitly a basis of Diff g/ (E/(X )u.s,E (Y )v.z)-

In the case where X =Y, G = (', and i = j = 0, a classical prototype of such
operators is a second order differential operator called the Yamabe operator

n—2

A+ m/ﬁ € Diffg(gg(X)%_l,g, 50(X)%+175),
where n is the dimension of the manifold X, A is the Laplace—Beltrami operator, and
K is the scalar curvature, see [18], for instance. Conformally equivariant differential
operators of higher order are also known: the Paneitz operator (fourth order) [24],
which appears in four dimensional supergravity [9], or more generally, the so-called
GJMS operators ([I0]) are such operators. Analogous differential operators on forms
(1 = j case) were studied by Branson [4]. The exterior derivative d and the codif-
ferential d* also give examples of conformally covariant operators on forms, namely,
j =i+1and i—1, respectively, with appropriate choice of (u, v, d,¢). Maxwell’s equa-
tions in four dimension can be expressed in terms of conformally covariant operators
on forms.

Let us consider the more general case where Y # X and G’ # G. An obvious
example of symmetry breaking operators is the restriction operator Resty which
belongs to Diffgr (E9(X)us, EX(Y)pe) if u = v and § = & = 0 mod 2. Another
elementary example is Resty o 1y, (x) € Diff g/ (E/(X)u5, E7HY )pe) with v = u+ 1
and 0 = ¢ = 1 mod 2 where ¢y, (x) denotes the interior multiplication by the normal
vector field to Y in X when Y is of codimension one in X (see Proposition [8.12)).

In the model space (X,Y) = (8", S"1), the pair (G,G’) of conformal groups
amounts to (O(n+1,1),0(n, 1)) modulo center (see Lemma[11.1]), and Problems
and [B| have been recently solved for ¢ = j = 0 by Juhl [II]. See also [15] and [19]
for different approaches, i.e., by the residue calculus and the F-method, respectively.
The classification of nonlocal symmetry breaking operators for ¢ = j = 0 has been
also accomplished recently in [22]. On the other hand, the case n = 2 with (i, j) =
(1,0) was studied in [16] with emphasis on the relation to the Rankin—Cohen brackets
5, [7, 25].

This work gives a complete solution to Problems [A] and [B] for all ¢ and j in the
model space (X,Y) = (S, 5" !): we classify all differential symmetry breaking
operators from i-forms on S™ to j-forms on S"~! for all i and j. We also find closed
formulee for these new operators in all the cases.

The key machinery of the proof is the F-method which has been recently introduced
in [14] by the first author. See also [I5 [19, 20] for detailed account and some
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applications. The idea of the F-method is based on the “algebraic Fourier transform
of Verma modules”. We shall develop an extension of the method to the matrix-
valued case in Chapter [3|

Let us state our main results. Here is a complete solution to Problem [A] for the

model space (X,Y) = (5™, 8" 1) (n > 3).

Theorem 1.1. Letn > 3. Suppose 0 <i<n,0<j<n-—1,u,veC, deecZ/2Z.
Then the following three conditions on 6-tuple (i, j,u,v,d,€) are equivalent:

(i) Diffo(n,1)(E'(S™)us, E(S" ue) # {0},

(11) dlm(c Diffonl (5 (S )u(;,é’ﬂ(S" 1)1}5) = 1

(iii) One of the followmg twelve conditions holds.
Case (I). j =i—-2,2<i<n-1, (uy,v) = (n — 2i,n — 2i + 3),
0 =¢=1mod 2.
Case (I'). (i,j) =(n,n—2),ue —n—N,v=3—-n,d=c=u+n+
1 mod 2.
Case (II). j=i—1,1<i<n,v—u€eN,, d=e=v—umod 2.
Case (IIT). j=4,0<i<n—-1,v—u€eN, j=e=v—umod 2.
Case (IV). j=i+1,1<i<n-—2, (u,v) =(0,0), d = =0 mod 2.
Case (IV'). (i,j) = (0,1), ue =N, v =0, d = ¢ = umod 2.
Case (xI). j=n—i+1,2<i<n—-1,u=n—-2i,v=0,0=1,

e =0 mod 2.

Case (xI'). (i,7) = (n,1),u € —n—N, v =0, =e+1 = u+n+1 mod 2.
Case (#II). j=n—i, 1 <i<nv—u+n—-21€N, d=c+1=
v—u+n-+1mod 2.

Case (xIII). j=n—i1—1,0<i<n—-1,v—u+n—-—2i—1¢€N,

d=e+1=v—u+n+1mod 2.
Case (xIV). j=n—i—-2,1<i<n-2, (u,v) =(0,2i —n+3), 6§ =0,
= 1 mod 2.
Case (xIV'). (i,j) =(0,n—2),ue —N,v=3-—n,d =c+1 =umod 2.
We shall give a proof of Theorem [I.1] in Section [T1.3]

There are dualities in the twelve cases in Theorem To be precise, we set

ii=n—i, ji=n—j—1, 4:=u+2i—n, 0:=0v+2j—n+1, 6 =6+1, £=e+1 mod 2.

Then it follows from the Hodge duality for symmetry breaking operators (Theorem
| see also Sectlon 1) that (i, j,u,v,6,¢) — (1,7, 1,0,0,€) gives rise to the duality
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of parameters
1) = 1v), (1) <= 1V), (1) <= (1),
and (4,7, u,v,0,¢) — (4,7, u,0,8,&) gives rise to another duality of parameters
(P) «= (+P)  for P =1 T, 1L, IIL IV, IV".

Differential symmetry breaking operators for the latter half, i.e., Cases (xI)—(xIV’),
are given as the composition of the Hodge star operator #g»-1 and the corresponding
symmetry breaking operators for the first half, i.e., Cases (I)—(IV’).

The equivalence (i) <> (ii) in Theorem [I.1] asserts that differential symmetry break-
ing operators, if exist, are unique up to scalar multiplication for all the parameters
(,7,u,v,9,¢) if n > 3. This should be in contrast to the n = 2 case, where the
multiplicity jumps at countably many places to two (cf. 21, Sect. 9]).

The standard sphere S™ is a conformal compactification of the flat Riemannian
manifold R". Using the stereographic projection p : S — R"U{oo}, we give closed
formuleae of differential symmetry breaking operators in flat coordinates in Cases (I),
(I'), (II), (III), (IV), and (IV’), see Theorems [1.8] [1.5] and [1.7 respectively.
Change of coordinates in symmetry breaking operators from R™ to the conformal
compactification S™ is given by the “twisted pull-back” of the stereographic pro-
jection in Section [I1.5] In order to explain the explicit formulee of the symmetry
breaking operators, in the flat coordinates, we fix some notations for basic operators.

Suppose that a manifold X is endowed with a pseudo-Riemannian structure g of
signature (p, ¢) and an orientation. Then, the metric tensor g induces a volume form
voly, and a pseudo-Riemannian structure on the cotangent bundle TV X, or more
generally on the exterior power bundles A*(TVX). The codifferential d*: £'(X) —
E7Y(X) is the formal adjoint of the differential (exterior derivative) d in the sense
that

/X a0, dB)volx (z) = /X gu(d" o, B)volx (1)

for all @ € £(X) and 8 € £71(X). Interior multiplication ¢z of an i-form w by a
vector field 7 is defined by

(sz) (Zl, e ;Zi—l) = (U(Z, Zl, cee >Zi—1)-

For ¢ € N and p € C, we denote by 6’5 (t) the Gegenbauer polynomial which is
renormalized in a way that C)' # 0 for any p € C (see (14.3)) in Appendix). Then

(1,61)(a,y) = 23 CY (%)

is a polynomial of two variables x and y. We replace formally x by —Agn-1 =

— Z;:ll %22 and y by %, and define a family of scalar-valued differential operators
J
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on R™ of order ¢
~ 0
(1.2) Dy = (I,C}) (—ARn_l, 8%) i

For instance, Dj = 1,D} = 252 =, Dy = Agn- —|—2(,u—|—1)8 T, Dy = 2Agn-15- +
%(u + 2)88733, etc. We regard Dz = 0 for negative integer /.

For € C and a € N, we set
P(p+1+10¢]) [1 if aisodd,
T (p+ [<H]) e+ 5 if aiseven.

For 1 < i < n, we introduce a family of linear maps D, ;" ': £/(R") — E(R*!)
with parameters u € C and a € N by
(1.4)

L 1
D 7! :=Resty,— o (—ng%dﬂgnd%nbaa — y(p, @)D d + 2(u +2i — n)D#L o )

Oxn

(1.3) V(1 a) ==

Oxn

1
(1.5) = Rest,,—g o (—Dg‘gdﬁ‘gnbaadw 2(u +2i—n+a)DiL_o >

1
= 3(1 = 5 0)dines © Resty, g 0 D,

where f1 := u+i—3(n—1) and ¢_o_ stands for the interior multiplication by the vector

Dxn

field 5 8 . Then, DHl lis a matrix-valued homogeneous differential operator of order
a. See Deﬁmtlon E 2| for the precise meaning of “differential operators between two
manifolds”. The proof of the second equality . ) will be given in Proposition -

Example 1.2. Here are some few examples of the operators DHZ Yfori=1,n or
a=0,1, and 2:

1-0 n—3 u—n=5 1 =3
Du,a = ReStxnzo o _’}/(U - ,CL)tDail 2 an + _(U + 2 — n)Da 200 ,

2 2 Pon
n—n—1 1 n+1
Dy, =5 ~(u+n+a)Resty,_goDa ? 1o,
Dy = 5 —(u+ 2i — n)Rest,, — 0 Lo,

o 0

i—i—1 g% -
D, 1 = Rest,, oo ( dpn + (u+2i —n) 8anafn) :
tD/?l,LTQ)’Lfl pry Restxnzo @) D’

where D = (-dwd;{n + L(u+2i —n) (ARM Y (n42i+ 5)%)) b o — 25 di.
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For 0 < i < n — 1, we introduce another family of linear maps D} ': £'(R") —
EYR™!) with parameters u € C and a € N by

(1.6)
- 1 1
D,,.." :=Resty,—o 0 (ijledwdin —y(p — 3 a)Dg_lanLai + §(u + a)DZL>
(1.7)
— — dfy1dgn—1 0 Resty,—g 0 D' + Rest,, g 0 ( (, )D“+1L 5 an + 2D“>
where © = u + ¢ — 5= as before. Then DZ_” is a matrlx—valued homogeneous differ-

ential operator of order a. The second equahty and an alternative definition of
DZT” by means of the Hodge star operators

(1.8) D= (—1)" ka1 0 DT 0 ()

u—n—+21,a

will be proved in Proposition [10.3

Example 1.3. Here are some few examples of the operators DZ_” fori=0n—1 or
a=0,1, and 2.

n—1

DSZIO = 4 ;— aRestzn_o o D 2
ngl—m—l — —dﬁ%nﬂdﬂgnﬂ Restmnzo o) ng-zl —+ gReStxn:O o Dg'
Dy = gRestxnzo.
D = Resty,—0 0 ( —dpet_o + (u+1) 0 :

“ " on ox,

i—i « n .on 02
DU,Q = ReStl‘n:() o dR"an + <§ + 1> ARn + (U + 1 — § + ].) (n + 2)6_2 + 2

These differential operators are generically nonzero, however, they may vanish in
specific cases. To be precise, we prove in Section

Proposition 1.4. Suppose u € C and a € N.
(1) Let 1 <4 < n. Then D, ;"' vanishes if and only if (u,a) = (n — 2i,0) or
(u,i) = (—n —a,n).
(2) Let 0 < i < n—1. Then D" vanishes if and only if (u,a) = (0,0) or
(u,3) = (—a,0).
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In order to obtain nonzero operators for all the parameters (i, a, u), we renormalize
Di;7~! and D. 7, respectively, by

u,a
Rest,, —g o Lo if a =0,
(1.9) 53,7371 ‘= 4§ Rest,, o DZMTH oL 8 if i =n,
Dt ™ otherwise.
Rest,, —o if a =0,
(1.10) 752_;2 = Rest,, —oo0 DZJLT?1 if i=0,
e otherwise.

(Clearly, these operators are well-defined because the formulee on the right-hand sides
coincide in the overlapping cases such as a = 0 and ¢ = n.

We are now ready to give a solution to Problem [Bl when j =i — 1 and i.

Theorem 1.5 (j =i —1). Let 1 < i < n. Suppose (u,v) € C? and (0,¢) € (Z/27)°
satisfyv—u € Ny and d = =v —umod 2. We set

a = v—u—1€N.

(1) The differential operator 52;;1_1 extends to the conformal compactification
S™ of R™, and induces a nontrivial O(n,1)-homomorphism E'(S™),s —
E-H (S, ., to be denoted by the same letter ﬁffa“l

(2) Any O(n, 1)-equivariant differential operator from E'(S™)ys to E1(S™ 1),

is proportional to D77t

Theorem 1.6 (j =i). Let 0 < i <n — 1. Suppose (u,v) € C* and (5,¢) € (Z/2Z)*
satisfyv —u € N and 6 =e¢ =v —umod 2. We set

a:=v—u¢€N.

(1) The differential operator 75};1” extends to S™, and induces a nontrivial O(n, 1)-
homomorphism E(S™),s — E(S"1),., to be denoted by the same letter
Di—i

(2) A??jy O(n, 1)-equivariant differential operator from E/(S™)ys to E(S™ 1), . is

1—1

proportional to 75%(1 .

In contrast to the above cases where j = ¢ — 1 or ¢, we prove that differential
symmetry breaking operators of higher order are rare for j ¢ {i—1,i}. Let us describe
all of them. For j = 7+ 1, a family of differential operators 15571”1: E(R™) —
EFHR™ 1) are defined by

n—1

(1.11) D7l = Rest,,—g 0 DY, * o dgn
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but only when a = 1 — u with additional constraints u = 0 (1 <i < n — 2) in Case
(IV) in Theoremu u € —N (i = 0) in Case (IV'). We note Dj ;""" = Rest,, —o o dgn
and DY=! = d o DI=0 (Theorem [13.18| (6)).

l1—a,a l—a,a—1 - ‘ '
For j = i—2, a family of differential operators D;;7'~*: £'(R") — £ *(R"') are
defined by

Ni—si—2 ut 2 x
(1.12) D, "= Resty,—00 D, 5 90t 0 0dpa,
Tn

but only when a = 1+ n — 2i — u with additional constraints u =n —2i (2 <i <
n—1) in Case (I), v € {-n,—n —1,—n —2,---} (: = n) in Case (I'). We note
D75 = Resty,—g ot 20 djn and DY 2, = —d* o DI ! ) (see Theorem [13.18
(8))-

Then the solution to Problem [B|in the remaining cases, i.e., j € {i + 1,7 — 2} is
stated as follows:

Theorem 1.7 (j =i+ 1). Let 0 < i <n — 2. Suppose (i,i+ 1,u,v,0,¢) belongs to
Case (IV) or (IV') in Theorem[I.1l In particular, 6 = e mod 2, u € —N and v = 0.
We set

a:=v—u+1l=1—-—ueN;.

(1) The differential operator 57@3’“ extends to the conformal compactification S™,
and induces a nontrivial O(n, 1)-homomorphism E'(S™),s — ET(S" 1o,
to be denoted by the same letter 75};7“

(2) Case (IV): Suppose 1 <i<n—2. Then any O(n, 1)-equivariant differential
operator E'(S™)o0 —> ETH(S" )0 is proportional to 56?“ = Restgn-1 0
dgn.

(3) Case (IV'): Suppose i = 0. Then any O(n, 1)-equivariant differential operator

EVS™)us — EM(S" V)os (u € —N,§ = umod 2) is proportional to DO7*

u,l—u-*
Theorem 1.8 (j =i—2). Let 2 <i <n. Suppose (i,i—2,u,v,0,&) belongs to Case
(1) or () in Theorem[1.4. In particular, § =& mod 2, u € —n—N and v = n—2i+3.
We set
a:=v—u—2=n—-21+1—ueN,.
(1) The differential operator 5;71’*2 extends to S™, and induces a nontrivial
O(n, 1)-homomorphism E'(S™)us — E72(S" )p_airss, to be denoted by
the same letter 75};:’_2
(2) Case (I): Suppose’2 < i < n—1. Then any O(n,1)-equivariant differen-
tial operator E(S™)p—0i1 —> E72(S™ ) _0irs1 is proportional to 25::’2:% =
ReStSn—l (¢] LNSn—l(Sn) o dgn
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(3) Case (I'): Suppose i = n. Then any O(n,1)-equivariant differential opera-
tor EM(S™)us — EMAH(S" N3 s (€ —n —N,0 = u+n+ 1 mod 2) is
proportional to D72, .

Thus Problems [A] and [B| have been settled for the pair (X,Y) = (S, S"71).
Finally, we discuss matrix-valued functional identities (factorization theorems)
arising from compositions of conformally equivariant operators. They are formu-

lated as follows. Suppose that Tx: £ (X) — EY(X) or Ty: E(Y) — &'(Y) is a

conformally equivariant operator for forms. Then the composition Ty o D or Do Ty

of a symmetry breaking operator D = Dx_,y: E(X) — &/(Y) with Tx or Ty is
again a symmetry breaking operator:

ENX )y 2% EI(Y ),
> ~ - 7
- BN

ENX)ws E'(Y )y er

In the setting where X = S™ (or Y = 8" ! respectively), conformally covariant
differential operators Tx : £ (X) — (X)) (or Ty : EI(Y) — E7(Y), respectively) are
classified in Theorem [12.1] This case (i.e. X = X or Y =Y) is much easier than the
case Y & X treated in Theorem for symmetry breaking operators. For the proof,
we again use the F-method in a self-contained manner, although classical results of
algebraic representation theory (e.g. [2]) could be used to simplify the proof. Thus
we see that Ty (or Ty, respectively) is proportional to d, d*, Branson’s operators ’7'2(2)
(or T’ gg), respectively) of order 2/ (see ), or the composition of these operators

with the Hodge star operator. On the other hand, the general multiplicity-freeness
theorem (see Theorem |1.1]) guarantees that such compositions must be proportional

to the operators that we classified in Theorems and [L.8]

In Chapter (13, we give a complete list of factorization identities with explicit
proportionality constants for all possible cases. We illustrate the new factorization
identities by taking T'x or Ty to be Branson’s operators 7—2(52) or 7'2/5(J ) as follows. For
¢ € Ny and a € N, we define a positive number K;, by

(1.13) Koo = f[ ([g} n k) .
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Theorem 1.9 (See Theorem [13.1)). Suppose 0 <i <mn,a € N and ¢ € Ny. Then

(1) Dy ol =— <§ T g) KioDy g 1870,
() Difao T = = (5 =i+ 0) KiaDlpsar ii 70

Theorem 1.10 (See Theorem [13.2). Suppose 0 < i <n,a € N and ¢ € N.. We set
. n—1 :
="~ —i—{—a. Then

- i 1 o

(1) 7-/5@ D DIl = (n Tl + 6) Koo Dyt i # 0.
i i -1 L o

(2) T/gé) oD, =— (n 5 T €> KaDyy ooy i # .

The scalar case (i = 0) in Theorem (2) and (2) was studied in [11], 19],
and was extended to all the symmetry breaking operators (including nonlocal ones)
in [22]. The other matrix-valued factorization identities are given in Theorems
and [I3.4], see also Theorems [13.15] [13.16], and [13.18] for the factorization identities of
renormalized symmetry breaking operators. We also analyze when the proportion-
ality constant vanishes.

Finally, let us mention analogous results for the connected groups, other real
forms in pseudo-Riemannian geometry, and branching problems for Verma mod-
ules. Throughout the paper, we study Problems [A] and [B]in full detail for the whole
group of conformal diffeomorphisms of S™ that preserves S"~!, which is a discon-
nected group. Then results for the connected group SOqy(n, 1), or equivalently, for
conformal vector fields on S™ along the submanifold S"~!, can be extracted from our
main results for the disconnected group O(n, 1), see Theorem [2.10}

Branching problems for (generalized) Verma modules for (g, ¢') = (o(n+2,C), o(n+
1,C)) are the algebraic counterpart of Problems [Al and [B|for (X,Y) = (5™, S"!) by
a general duality theorem [19, 20] that gives a one-to-one correspondence between
differential symmetry breaking operators and g’-homomorphisms for the restriction
of Verma modules of g. Branching laws for Verma modules are discussed in Section
2.6l

Our results can be also extended to the non-Riemannian setting SP¢ D SP~1¢ for
the pair (G,G") = (O(p + 1,q),0(p, q)) of conformal groups, for which the (i,7) =
(0,0) case was studied in [19].

The main results were announced in [17].

Notation: N:={0,1,2,...}, N, :={1,2,...}.
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The relation between chapters is illustrated by the following figures. Here, “="
means a strong relation (e.g. logical dependency), and “—” means a weak relation
(e.g. setup or definition).

e (Classification of differential symmetry breaking operators

(main results in conformal geometry)
i
(representation theory)
i
= [ = (F-method for matrix valued operators)
Y
= ’ Appendix ‘
differential geometry solving F-system special functions
X Y Y
= 0
proof of main theorems relations among
in Chapter scalar-valued operators

proof of main theorems

in Chapter

e A baby case (G = G’) in Chapter [12|could be read independently:

== ’ Appendix‘

Y Z

classification (G = G’ case)

e Factorization identities

classification G # G’ classification G = G’

N
B| = T3 < (@]

factorization identities
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2. SYMMETRY BREAKING OPERATORS AND PRINCIPAL SERIES REPRESENTATIONS
OF G=0(n+1,1)

The conformal compactification S™ of R™ may be thought of as the real flag variety
of the indefinite orthogonal group G = O(n + 1,1), and the twisted action wq% of
G on £1(S™) is a special case of the principal series representations of G. In this
chapter, we reformulate the solutions to Problems [A| and [B| for (X,Y) = (5™, S"1)
given in Theorem and Theorems [1.5H1.8| respectively, in Introduction in terms
of symmetry breaking operators for principal series representations when (G,G’) =
(O(n+1,1),0(n,1)) in Theorems and respectively.

Some important properties (duality theorem of symmetry breaking operators, re-
ducible places) of the principal series representations of G = O(n + 1,1) are also
discussed in this chapter.

2.1. Principal series representations of G = O(n + 1,1). We set up notations
for the group O(n + 1,1) and its parabolically induced representations. Let @411
be the standard quadratic form of signature (n + 1,1) on R"*? defined by

Qni11(x) = x% +22 o+ xi — a:,QH_l forz = (zg, 21, , Tny1) € R"T2

and we realize the Lorentz group O(n + 1,1) as
G:=0n+1,1)={g€GLn+2,R): Qni1.1(97) = Qni1.1(z)forallz € R"2}.

Let E,, (0 <p,q < n+1) be the matrix unit in M(n+2,R). We define the following
elements of the Lie algebra g = o(n + 1,1):

(2.1) Xpg = —Ept Eyp (I<p<g<nm),
Hy = FEyn1+ B,
CSf = Ei—FEn1—Eoy—Eny1e (1<L<n),
C, = Eow+Emnn—FEy+E,e (1<0<n),
1
(2.2) NS o= 50; and N, :=C, (1<t<n).

Then {N,/}i_,, {N, }7y, and { X, }1<pegen U {Ho} form bases of the Lie algebras
n; (R) := Ker(ad(Hp) — id), n_(R) := Ker(ad(Hy) + id), and m(R) + a(R) = o(n) +
0(1,1) = Ker(ad(Hy)), respectively. We note that the normalization of N, and N,
in (2.2) is not symmetric. A simple computation shows

(2.3) INF,N;] = Xye — SeHo.

We define the isotropic cone (light cone) by

E:= {1’ e R"*? \ {0} : Qn+1,1($) = O}v
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which is clearly invariant under the dilation of the multiplicative group R* = R\ {0}.
Then the projection

1

¢
p— (Toy .-y Ty)

=— 95", T

induces a bijection Z/R* = S™. The group G acts linearly on the isotropic cone
=, and conformally on Z/R* ~ S™, endowed with the standard Riemannian metric.
We set

¢ = {#£1,0,---,0,1) € E.

Let P be the isotropy subgroup of [§7] € Z/R*. Then P is a parabolic subgroup
with Levi decomposition P = M AN, of the disconnected group G = O(n + 1, 1),
where A := exp(RHy), Ny :=exp(n,(R)) and

b
M = B :Be€O(n),be O(1) p ~0O(n) x O(1).
b
For x = (x1,...,2,) € R", we set
Qn(z) = Quo(x) := Zx?

=1
Let N_ := exp(n_(R)). We define a diffeomorphism n_: R" = N_ by
_%Qn(x) —'r _%Qn(x)
T

n_(x):=exp (Z :cg]\Q) =12+ x 0
=1

3Qn() T 5Qu(x)
which gives the coordinates on the open Bruhat cell N_ -0 C G/P ~ Z/R* ~ S™

Y

1
2.4 R — 8" =Yz, 1) = —————(1 — Qu(2), 271, ...,22,),
1 —Qn(x)
because n_(z)¢ = [0 ] + 2z . We note that the immersion ¢ is nothing
1 Qn(2)

but the inverse of the stereographic projection:

(2.5) p: S"\{[¢7]} — R", w="wo,...,wn) wiy .o wn),

1+ Wo
where we recall [£7] = (—1,0,...,0) € Z/R* ~ 5" For A € C, we define a one-
dimensional representation C, of A normalized by

(2.6) A — C*, a =My gt =M,



16 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

Given an irreducible finite-dimensional representation (o,V’) of M ~ O(n) x O(1)
and A € C, we extend the outer tensor product representation o, := ¢ X C, of
the direct product group M A to the parabolic subgroup P = M AN, by letting
N, act trivially. Then we form an (unnormalized) principal series representation

Ind%(oy) = Ind% (0 X Cy) of G on the space (C=(G) ® V)P ~ C®(G, V)P given by
{feC®G,V): f(gman) = o(m) " af(g) foralme M,ac A, g G}.

Its flat picture (N-picture) is defined on C*°(R™) ® V' via the restriction to the open
Bruhat cell:
(2.7)
C™(G/P,V) ~ (C*(G)@ V) - C*R" @V, f (z— F(z):= f(n_(v))).
We denote by A*(C") the representation of O(n) on the i-th exterior power of
the standard representation. Then, A(C") (0 < i < n) are pairwise inequivalent,
irreducible representations of O(n), and /" (C") is isomorphic to the one-dimensional
representation det: O(n) — C*, B — det B.

For a € Z/27 and X € C, we denote by UE\ZL the outer tensor product representa-
tion A\*(C") K (—1)* X C, of the Levi subgroup L = M A ~ O(n) x O(1) x R given
by

(B,b,a) — b*a*\'B € GL¢ (AY(C")) for B € O(n), be {£1} ~0O(1), a € A.

We extend Uf@x to P by letting N, act trivially. We denote by (i, A), the principal

series representation Ind% (a&%)

write (i, \)y for k € Z instead of (i, ) mod 2-
As the composition of (2.7)) with the natural identification

n: C°(R") @ A\'(C") = E(R™) for 0 <i < n,
the flat picture of the principal series representation (i, \),, is realized in £'(R"):
(2.8) SV I N) e — ERY),  f— F,
where F(xz) = n (f(n(z))).

Remark 2.1. The central element —1,, 5 of G acts on I(i, \), as scalar multiplication
by (—1)"**. We shall see in Remark [2.4] that (i, \), appears as a representation of
the conformal group Conf(S™) only when i + o = 0 mod 2.

of G. By a little abuse of notation, we shall also

We note that G = O(n + 1, 1) has four connected components. Let Gy denote the
identity component of G. Then we have G/Gy ~ Z/27 x 7Z/27Z. Accordingly, there
are four one-dimensional representations of G,

(2.9) Xav: G —> {£1}
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for a,b € {£} = {+£1} such that

Xab (dlag(_la ]-7 Tty 1)) = a, Xab (dlag(la Ty 17 _1)) =b.

We note that x__ = det. Then the restriction of x__ to M ~ O(n) x O(1) is given
by the outer tensor product:

(2.10) X——|m =~ det 1.

In view of the isomorphism of O(n)-modules:
(2.11) A(C") @ det ~ A"/ (C™),
we get a P-isomorphism (with trivial N, -action):

oo ® x| = o).

Therefore, we have a natural isomorphism as G-modules:
10, N)a ® x—— =~ Ind§ (o), @ x_|p)
~ Ind$ (O’/(\na_ i))
~ I(n—i,\)q.
Thus we have proved:

Lemma 2.2. Let 0 < ¢ < n, A € C and o € Z/27Z. Then there is a natural
G-isomorphism:
](Zv >‘)a @ X-—- ~ I(?’L — 1, >‘)O¢~

2.2. Conformal view on principal series representations of O(n+1,1). Since
the group G = O(n + 1,1) is a double cover of the conformal group of S™ (n > 2),
and since S™ ~ G/P, we may compare the two families of representations of G =
O(n + 1,1): the family of conformal representations wﬁ)a and the principal series
representations [(i, A),. The correspondence is classically known for the connected
component Gy of G (see [18]) for instance). For disconnected groups G, we have the

following:

Proposition 2.3. Let G = O(n+ 1,1) withn > 2 and 0 < i < n, u € C. For
d € 7/27, we have the following isomorphism of G-modules:

G _ JI(,u41); it 0=0;
Fus T\ In—iu+i)n; if 6=1.

Equivalently, for A € C, we have the following G-isomorphisms:
(2.12) 16,0 = g = @y
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Remark 2.4. Proposition implies that principal series representations I(¢, \),

with o = £ mod 2 are sufficient for the description of conformal representations wuz)(s

on differential forms on S™.
Proof of Proposition 2.5 We shall show a G-isomorphism:
(2.13) (@, E1(S™) ~ Ind$ ((A'(C") @ det®) K (1) R C,) -

Since the cotangent bundle of X = G/P can be seen as a G-homogeneous bundle
G xpny(R), we have an isomorphism of G-modules

ENS™) ~ C™(X,G xp N'ng).

In our setting, ad(Hy) acts on n, as the scalar multiplication by one, and there-
fore, the P-action on the exterior power A'n, is given by the outer tensor product
N(C K (-1)'KC; of MA ~ O(n) x O(1) x R with trivial N,-action. Thus we
get the isomorphism in the case where u = 0 and 6 = 0. On the other hand,
the orientation bundle or(X) is associated to the one-dimensional representation of
P=LN, = MAN, given by

P— P/N, ~ MA — {£1}, (B,b,e"™™) s b"det B,

we also get in the u = 0 and § = 1 case. Finally, observe that the parameter
u in the definition of the conformal representation Wff,fs in is normalized in a
way that the action on volume densities corresponds to the case v = dim X (with
i = 0and 6 = 0). In our setting where X = G/P ~ S", this coincides with

n = Trace(ad(Hp): ny(R) — ny(R)) = 2p via the normalization that we have
adopted for the principal series representations. Hence, is verified for all u € C

by interpolation. By (2.11]), Proposition follows. O

2.3. Representation theoretic properties of (w%, EY(S™)). Via the isomorphism
in Proposition|2.3] we can apply the general theory of representations of real reductive
groups to our representations (wﬁ)a,gi(S’")) of the conformal group. Although the
large majority of the literature in the representation theory of real reductive groups G
is limited to reductive groups of the Harish-Chandra class, our group G = O(n+1, 1)
is disconnected and the adjoint group Ad(G) is not contained in the group Int(g) of
inner automorphisms of the complexified Lie algebra g = o(n + 2,C) if n is even.
This does not cause any serious difficulties in the argument below, but we shall be
careful in preparing notation for the disconnected group G.

Let Zs(g) be the ring of Ad(G)-invariant elements in the enveloping algebra U(g)
of the complexified Lie algebra g ~ o(n + 2, C). We note that Zg(g) is a subalgebra
of the center Z(g) of U(g); it coincides with Z(g) if n is odd, and is of index two in
Z(g) if n is even.
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By taking the standard basis of a Cartan subalgebra j of g = o(n + 2,C), we

n

identify j with Cl5]*1. The finite reflection group W = 6[ﬁ]+1 X (Z/2Z){%]+1 acts
2

naturally on j and j¥ ~ Cl31, We note that W coincides with the Weyl group of

the root system of type B[ﬂ]+1 if n is odd, and contains that of type D[Q]H as a
2 2

subgroup of index two if n is even. Then the Harish-Chandra isomorphism for the
disconnected group G = O(n+ 1, 1) asserts a C-algebra isomorphism between Z(g)

N w

and the ring S <(C[5]+1> of W-invariants of the symmetric algebra S(j). In turn,
we have a bijection (Harish-Chandra’s parametrization of infinitesimal characters)
(2.14) Hom-aigebra (Zc(g), C) ~ CL31+1 /1w

We normalize the Harish-Chandra isomorphism in a way that the Z;(g)-infinitesimal
character of the trivial one-dimensional representation 1 of G is given by

(2.15) pe = (g g LT g - [g]) e clslvyw

Proposition 25 The Zg(g)-infinitesimal character of the representation wﬁ)(; of G
on the space E'(S™) of i-forms is given by

nnn n mno.n nom n
‘__7_7__17"'7__‘ 1a__‘7__._17"'7__|:_:| if <<|:_:|7
(u+z 222 2 z+/2 1\2 { 5 2> H0<:< 5
i BE
nnon n n . n nom n+1
'__7_7__17"'7__ ' 1a__ .7__ _1a7__|:_] if <1
(“H 27272 g T Ty Ty 2 2))1 { 2 ]—7’

f e
in the Harish-Chandra parametrization.

In particular, wq(jzs has the same infinitesimal character pg with the trivial repre-
sentation if u = 0 for all 0 <i < n and § € Z/27Z.

By the Frobenius reciprocity, every principal series representation (7, ), contains
(216) 1 = W(5) = NCHR(-1)" and ¥ = p# (i) i= AFHCH)R(—1)+

as K-types. We are particularly interested in the A = i case, for which I(i,\), is
reducible (except for n = 2i) and has Zg(g)-infinitesimal character pg.

We denote by I(i)?, and I(i)# the (unique) irreducible subquotients of I(i,4),
containing the K-types p” and u#, respectively. Then we have G-isomorphisms

(2.17) I()# ~T(i+1),, for0<i<nandacZ/2Z.
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For n even, the unitary axis of 1 (g, )\)a is given by A = § ++/—1R, and [ (g, %)a is

irreducible for both & = 0 and 1 in Z/27Z. In particular, we have

(2.18) 7(%)1 :T(%)j for a € 7,/2Z.
For 0 <{<n+1andd € Z/2Z, we set
L, — {Zw)m , si<m),
’ IT(=1)] s, (1<L<n+1).
In view of and , 11,5 is well-defined and
(2.19) My 5o Mo,

when n is even.

Theorem 2.6. Let G =0O(n+1,1) (n > 1).

1) Irreducible representations of G with Zg(g)-infinitesimal character pe are

classified as
{Hg’g 0</i<n+1, 6EZ/2Z}

with the equivalence relation (2.19)) when n is even.

2) There are four one-dimensional representations of G, and they are given by

{Tos, pi15 1 0 € Z)2Z} (= {Xap : a,b € Z)27}).

3) Forn odd, Mg 5 (0 € Z/2Z) are discrete series representations of G. Forn

even, Iln 5 (: H%_FL(S) (0 € Z/2Z) are tempered representations of G.

4) Bvery ;5 (0 <{<n+1,d € Z/27Z) is unitarizable.

5) Irreducible and unitarizable (g, K)-modules with nonzero (g, K)-cohomologies
are exactly given as the set of the underlying (g, K)-modules of 115 (0 < £ <
n+1,8 € Z/27) up to the equivalence when n is even.

6) For 0 < i < n with n # 2i, we have a nonsplitting exact sequence of G-

modules
0— H@O — w(()% — Hi+1,0 — 0.
For n = 21, we have a G-isomorphism.:
i
w(()’z) ~ H%,().

Furthermore, the de Rham complex

(8™ L 18y Ly £2(5m) Ly . Ly gn(sm) -L {0}

yields a family of intertwining operators for (w(()%, EYS™)), and
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H’i,O (OSZSTL—l),

Ker(d: £'(S™) — EF1(S™) = {5i(5n) (i =n),

Image(d: £71(8") — €1(S")) = {EO} Ezi:sg)’s n),

qiving rise to

) H()’g (’L = O),
H(ZieRham(Sn;(C) = {0} (1 S i S n— 1)7
Hn,O (Z = ’I’L)

as G-modules.

2.4. Differential symmetry breaking operators for principal series.

This section gives a group theoretic reformulation of the main results stated in
Introduction (see Theorem and Theorems [1.511.8)) via the isomorphism in Propo-
sition 2.3

Let us realize G’ = O(n, 1) in G as the stabilizer of the point 10, ...,0,1,0) € R*2.
Then G’ leaves =N {z,, = 0} invariant, and acts conformally on the totally geodesic
hypersphere "' = {(yo,...,yn) € S™ : yp = 0} =~ (EN{z, = 0})/R*. The isotropy
subgroup of [£*] € S"! is a parabolic subgroup P’ = PNG’, which has a Langlands
decomposition P' = M'AN’, with M’ = M NG" ~ O(n—1) x O(1) and A being the
same split abelian subgroup as in P. The Lie algebra n’ (R) of V! is given by

n—1
W, (R) =) RN,
k=1

Given a representation (o,V) of M ~ O(n) x O(1) and A € C, we defined in
Section the principal series representation Ind%(oy) = Ind%(c X Cy) of G =
O(n + 1,1). Similarly, for a given representation (7,W) of M’ ~ O(n — 1) x O(1)
and v € C, we define the principal series representation Indg: (1,) = Indg:(T X C,)
of G = O(n, 1), and consider its N-picture on C*(R" ') @ W. Then differential
symmetry breaking operators from Ind%(c,) to Ind% (7,) are given as differential
operators C®°(R") @ V' — C*(R"!) @ W, namely, Homc(V, W)-valued differential
operators from R” to R™! in the N-picture.

As in the case of G = O(n + 1,1), T,E]ﬁ), 0<j<n-1veC peZ/2Z)
denotes the representation of P’ = M'AN' such that M'A ~ O(n—1) x O(1) x A
acts as the outer tensor product representation on A/(C" ') X (—1)’ K C, and N,
acts trivially. Then we define the principal series representation of G’ = O(n, 1) by
J(j,v)p = Indgi (7',%) First we prove a duality theorem for symmetry breaking

operators:
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Theorem 2.7 (duality theorem). Let 0 < i < n, 0 < j <n-—1, \,v € C and
o, € L/27. Then
(2.20) Diff o (1(i, N)a, J(7,v)5) =~ Diff/(I(n — i, N)a, J(n — 1 — j,v)g).
Proof. Applying Lemma to G and G’, we have natural G-and G’-isomorphisms:
I(i, )a @ x—— = I(n — i, A)aq,
JG )@ X |or = J(n—1— j,v)s.
Therefore we have the following natural bijections:
Home/ (1(i,N)a, J(J,v)5) =~ Homer (1(i, A\)o @ X——, J(J, V)5 @ X——|c)
~ Home/ (I(n —i,N)a, J(n — 1 —j,v)g).
The above isomorphisms preserve differential operators for the geometric realiza-

tions of principal series on the Fréchet spaces of smooth sections of equivariant vector
bundles over real flag varieties. Thus we have shown the isomorphism ([2.20)). U

In order to avoid possible confusion with the parameter for the conformal repre-
sentation (wg’)é,gi(S”)), it is convenient to introduce another notation for the dif-
ferential symmetry breaking operators between principal series representations in
the N-picture. The notation below follows from [22] which treats both local (i.e.,
differential) and nonlocal symmetry breaking operators.

For \,v € C with v — A € N, we define (scalar-valued) differential operators
Cy,: C®(R™) — C®(R"1) by

(221) (E)\’l, = ReStxnzo o (L,,)\éj::%l> (—ARn—l, 4 )

oz,

n—1
2

A_
= Rest,,—goD,,_,? ,

where (Igé;)(l’, y) = :cgégé (\%) is a polynomial of two variables associated with the

renormalized Gegenbauer polynomial (see ((14.3))) and the corresponding differential

operator D) is given by (1.2).
For example, we have

~ A—n=3
Cxrxtip—1 = Resty, 0o D,,_,2,,

~ Af’nfS
— 2
Cap1pr =Resty,—00D,_ 2,
~ )\_n—l
J— 2
Cirv-1 =Resty, 00D, 2.

Next, for \,v € C with v — X\ € N, we define (matrix-valued) differential operators
CY: E'R™) — EI(R™)
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as follows: they are essentially the same with the operators D}/ or 75};?, respec-
tively, introduced in Chapter [ To be precise, in all the cases below, the parameters
for Cy’, or Cy’, are taken as
(222 CY, =D, &Y, =Dy
with @ = v— X and u = A —4. The parameters of the operators Cf\]l, or ((Njf\jy indicate
that these operators induce symmetry breaking operators from (i, \), to I(i, A)g

when v — XA = 3 — a mod 2, whereas the parameters of D}, 7 or D}/ indicate that
a € N is the order of the differential operators and u € C is normalized in a way that
u = 0 gives the untwisted case.

For j =1 with 0 <7 < n — 1, we recall from and the formulee of Difai,
and set

0L, gy
Ay T A=t v—A
~ n ~ ~
(223) = (C)\Jrl’l,,landin - ’)/()\ - 5, vV — )\)C)\’l,,lanba% + (V — ’i)C)VW

A —i~
Cirv,
9 N

N | —

n —

N 1 ~
(2.24) = _dinflan—IC)\J,_Ly_l + ’}/()\ — SV — )\)(C)\_,_LVL%an +

in the flat coordinates. The equalities

223) = @24) = (—1)" " g1 oCY, 7" 0 (kpn)

will be proved in Proposition [10.3
For j =i—1with 1 <4 <n, we recall from (L.4) and (L.5) the formulee of D',
and set

cit =Y,

(2.25)

n—1
2

~ . 1 .
= _(C)\—Q—l,l/—ldR"d]T{nbai - 7()\ - V= A)C)\—i-l,ud]}kgn + 5()\ +i— n)(c/\,ubai
(2.26)

_ 1 s n . =
= —CA+17V_1d§nL%an + 5(1/ —n+ Z)C,\WL% —y(A— > v —N)dgn-1Cy 1.
Then Proposition [I.4] means that

(2.27) Cy', =0ifand only if \=v =iorv=i=0,
(2.28) Cf\’fy_l:0ifandonlyif)\zyzn—iorV:n—i:().
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We note that Cg’?j = %V@,\V. As in ([1.9) and ({1.10]), we renormalize these operators
by

(2.29)
Resty, —g if A=v, Rest,, oot o if A =v,
Ci =3 Cy, ifi=0, and Ci':={Cy,010  ifi=n,
Ci{fu otherwise, (Cf\zl, L otherwise.

Then (C” (0<i<n-—1)and (CZ 1 (1 <i < n) are nonzero differential operators
oforder V—)\forany)\ VE(CWlthV—)\GN N
The differential symmetry breaking operator (Cf\’“rl is defined by

- j_n=1 0
(230) = B, = Resty, oo (100 2)(—AW-1,87) i,

but only when (\,v) = (4,i+1)for 1 <i<n—-2or A€ —-N,v=1fori=0.
Explicitly, these operators take the following form:

@zzﬁ = Resty,—o 0 dgn for1<i<n-2
E} = Resty, o0 (1,057 (—ARM,%> dan
= dgn-1 0 Cy g for A € —N.
Similarly, we define
(2.31)
Cit?:=Di?2 | = Rest,,—9 ( nin ’*"“) (—ARM,g) 010 odan,

but only when (\,v) = (n—i,n—i+1) (2<i<n—-1)orAe -N,v=1(i=n).
Explicitly, these operators take the following form:

@Zi—_i,zn—iﬂ = Resty, =0 © Lo dgn for 2<i<n-1,
~)\_n=1 0
(Cnn 2 = ReSt =0 © (—[— C 2 > _A n—1, — L o d*n
zn=0 AV R 781:” Bo R
= —df 1 o Clr! for A € —N.

To see the second equality, we use some elementary commutation relations which
will be given in Lemma [8.14] (2) and Lemma (2) among others.

We are ready to give a classification of symmetry breaking operators from the
principal series representation (i, A), of G = O(n + 1,1) to the principal series
representation J(j,v)s of the subgroup G’ = O(n, 1).
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Theorem 2.8. Let n > 3. Suppose 0 <1 < n, 0<j<n—-1, \,v e C, and
o, € LJ27. The following three conditions on 6-tuple (i, j, \, v, cv, B) are equivalent:
(1) DiﬁO(n,l) (1(27 )‘)ou J(]7 V)ﬁ) 7é {0}
(ii) dim Diff 1) (L(7, N)a, J (4, v)s) = 1.
(iii) The 6-tuple belongs to one of the following six cases:
Casel. j=i-2,2<i<n—1,(\v)=(n—i,n—i+1), f = a+1 mod2.
Case 1. (i,7)=(n,n—2), = AeN,v=1,f=a+ A+ 1mod2.
Case 2. j=i—1,1<i<n,v—AeN, f—a=v—Amod2.
Case 3. j=1,0<i<n—1,v—-—XAeN, f—a=v—Amod2.
Cased. j=i+1,1<i<n—-2,(\,v)=(i,i+1), =a+1mod2.
Case 4. (i,7) =(0,1), = eN,v=1,=a+ A+ 1mod2.
Theorem 2.9. Retain the setting and notations as in Theorem [2.8. Then the fol-
lowing differential operators from E/(R™) to EI(R"™Y) in the flat picture extend to a
nonzero O(n, 1)-homomorphism from I(i, X)s to J(j,v)a:
Cases 1 and 1. C*2 (2<i<n-1), (EK:?_?;

n—i,n—i+1
Case 2. (Ef\’;l (1<i<mn);
Case 3. @ZAZV (0<i<n-1);
i , 0,1
Cases 4 and 4'. (C”ﬁ (1<i<n-2), Cy;.
Conversely, any differential symmetry breaking operator from 1(i, X)s to J(j,v)p in
Theorem is proportional to one of these operators.

The proof of Theorem is reduced to solving the F-system, which we carry
out in Chapter [6] for Case 2, Chapter [7] (Theorem [7.1)) for Cases 4 and 4’. The
remaining cases (i.e. Cases 3, 1 and 1’) in Theorem [2.8| follows from Cases 2, 4, and
4’ respectively, by the duality theorem (Theorem . In summary, Cases 1 and 1/,
Case 2, Case 3, and Cases 4 and 4" in Theorem are stated and proved in Theorem

[7.2] [6.3] [6.4 and respectively. The proof of Theorem [2.9) will be completed in
Chapter [10]

In Chapter we shall see that Theorem is derived from Theorem via the
isomorphism in Proposition [2.3] Theorems [L.1], [I.5] [1.6] and are obtained from
Theorem [2.9] (see Section [11.4)).

2.5. Symmetry breaking operators for connected group SOy(n,1). So far we
have dealt with the disconnected group G’ = O(n, 1) in studying symmetry breaking
operators. Results for the connected group G = SOy(n,1) (or equivalently, for
conformal vector fields on S™ along the submanifold S"!) can be deduced from
those in the disconnected case.
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In this section we explain a trick for the reduction to the connected case. Let
Go = SOy(n+1,1) be the identity component of G = O(n+1, 1), and G, = SOy(n, 1)
be that of G’ = O(n, 1).

The connected group Gy acts transitively on G/ P, and we have a natural isomor-
phism

Go/PO ;> G/P (’i Sn),

where Py := PN Gy = MyAN, is a parabolic subgroup of Gy. Then both F, and
My ~ SO(n) are connected. For 0 < i < n and A € C, we write I(i, \) for the
(unnormalized) induced representation Ind}G,g’ (AY(C") R Cy) of Gy. (We note that
A'(C") is reducible as an My-module if and only if n = 2i, but we do not enter
this point here.) We recall from Section that 1(i,\)s (o € Z/2Z) is a principal
series representation of G, which we may realize in the space £'(S™) of i-forms on
S™. The restriction to Gy is independent of o € Z /27, and we have isomorphisms
as Gg-modules:

(2.32) 1(i, Nalgy = I(i, \) ~ I(n — i, \).

Analogous notation will be applied to the subgroup Gf, = SOy(n,1). In particular,
J(5,v) (0 <j<n-—1,v € C) denotes the (unnormalized) induced representation

Ind]GJé’ (A(C"1) K C,), and we have isomorphisms as Gj-modules:
(2.33) J(J,v)play = J(j,v) = J(n —1,v),

defined on £7(S™1).
In what follows, we set

i=n—1i, j::n—l—j.

We are ready to state the results on differential symmetry breaking operators for
the connected subgroup Gy = SOy(n, 1):

Theorem 2.10. Suppose 0 <1 <n,0<j<n-—1, and \,v € C.

(1) There are natural bijections:

DiﬂSOO(n,l) (I(Z7 >‘)7 J(]v V)) = DiﬁSOO(nvl) (1(57 )\)7 J(‘]7 V))
~ Diffsom1) (1(i,A), J(j, v))
~ DiﬁSOo(n,l) (I(gy )‘)7 J(§7 V)) :

(2) The above space is nonzero only when v — X\ € N. Assume now v — A € N.
We fiz a € /27 and set § := o+ v — XA mod 2. Then we have

Diff 500 (n,1) (1 (i, A), J (4, v)) = Diff o1y (1(3, N as J (4, v)5) ® Diff o1y (1(i, Nas J (4, v)5)
~ Diff o1y (1 (i, e, J (4, ) 5) ® Diff o1y (1(3, N oy J (5, 7)5)-
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The second statement shows that the classification and construction of differential
symmetry breaking operators for the connected group G, = SOg(n,1) are deduced
from the one for the disconnected case that we have given in Theorems [2.8 and 2.9

Proof. The first statement follows directly from (2.32) and (2.33]). To see the second
statement, we set

S:={0,1,...,n} x Cx Z/2Z, I(s) :=1(i,\)o for s=(i,\,a) € Z/2Z,
T:={0,1,....n—1} x Cx Z/2Z, J(t):=J(j,v)s fort=(j,v,0) € Z/2Z.
We recall from that the quotient groups are given by

GGy~ GGy ~7]27 x 7]2Z,

and the set of their one-dimensional representations is given by

(G'/Gy) =(G/Go) ={xa:a,be{£}}.
By abuse of notation, we shall use the same letters y+4+ to denote one-dimensional
representations of G, G', G/Gy, and G'/Gj,.
Let s € S and t € T. Since G’ normalizes Gj, the quotient group G'/Gj acts

naturally on

V(S7 t) = DIHG6 (I(S)a J(t))a
by D — J(t)(g) o Do I(s)(g™!), and we have an irreducible decomposition:

V(s,t) ~ @ Vi(s,t)y

XE(G'/Gh)
where V' (s,t), denotes the x-component of V(s,t). We note that
V(s,t)y ~ Home (I(s), J(t)) (= Homon,1)(1(i, Na, J (4, 7))

if x = x4+ (trivial representation).
We let the character group (G/Gy) act on S by the following formula:

Xov - (1, N @) = (i, \ a), Xi— (5, A\ a) = (G, A\ a+1),
Yeg - (N a) = (@, M a4+1), x—_-(i,\a) = (i,\a).
Then as in Lemma 2.2 we have a G-isomorphism
I(s)@x~1I(x-s) foranyx € (G/Gy) and s € S.
Therefore, we have natural isomorphisms as G'/G{-modules:
X' @ Diffe (I(s), J(t)) ~ Diff; (I(s) ® x, J(t)) ~ Diff g (I(x - 5), J(t)).
Taking the x.,,-component of the both sides, we get an isomorphism
V(s,t)y ~ Diffe:(I(x - s), J(t)).
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Thus we have proved a (G'/Gj)-isomorphism:

V(s,t)~ @B Diffe(I(x-s),J(t)).

x€(G' /Gy

There are four summands in the right-hand side, however, two of them vanish
by the parity condition. In fact, if we take [ as in the statement of the theorem,
then the two summands for y_; and y;_ vanish, as we shall see in Proposition [5.19)
(1). Since V (s,t) = Homgy (I(i, A), J(j, 7)), the first equality in (2) has been proved.
Likewise, we let the character group (G’/G}) act on the set T in a similar manner,
as we did for S. Then we get a G’-isomorphism:

Jt)®x ~J(x-t) forany y € (G'/G}) andt eT.

This leads us to the second equality. 0

2.6. Branching problems for Verma modules. In this section, we discuss briefly
branching problems for generalized Verma modules for the pair

(g,g') = (O(TL + 27@)7 0(71 + 17@))7

see [13] for the general problem. In [20, Thm. A] and [19], we established a dual-
ity theorem that gives a one-to-one correspondence between differential symmetry
breaking operators and g’-homomorphisms for the restriction of Verma modules of
g in the general setting, see Fact [3.3] Thus Theorem for differential symme-
try breaking operators leads us to the classification of g’-homomorphisms in certain
branching problems of generalized Verma modules of g, and Theorem constructs
the corresponding “singular vectors”.

For a p-module F' with trivial action of the nilpotent radical n,, we define a
g-module (generalized Verma module) by

indg(F) = U(g) QU (p) F.

If F'is a P-module, then the g-module indj(F) carries a P-module structure, and
we may regard indy(F) as a (g, P)-module.

We recall that Ug\{)a is a P-module whose restriction to M A ~ O(n) x O(1) x R is
given by A{(C") X (—=1)* XK Cy for 0 <i<n, A € C, a € Z/27. We set
M{(i, ) = indS (ay’}a) — ind? (A{(C™) R (—1)* K C,),
M (i, ) := indg (AN(CHKC,).
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Then M(i, A, is a (g, P)-module, and M (i, A) is a g-module. The underlying g-
module structure of M (i, \), does not depend on « € Z/2Z, and we have the fol-
lowing isomorphisms as g-modules:

M1, N)alg = M (i, A) ~ M(n — i, \).
Similarly, for 0 < j<n-—1,v €C, g € Z/2Z, we set
M'(j,v)s = ind (Tﬁfg) — ind? (NV(C)R(-1)°RC,),
M'(j,v) := indﬁi (N(CHKRC,).

Then M'(j,v)gisa (¢, P')-module and M’(j,v) is a g-module. We have the following
isomorphisms as g’-modules.

M'(j,v)ply =~ M'(j,v) ~ M'(n—1— j,v).

As a part of branching problems, we wish to understand how the g-module M (7, \)
behaves when restricted to the subalgebra g, or how the (g, P)-module M (i, P),
behaves as a (g, P')-module. As a dual to Theorem [2.10| (see Fact [3.3)), we obtain:
Theorem 2.11. Suppose 0 <1 <n,0<j<n-—1, and \,v € C.

(1) Homg (M'(j,—v), M(i,—\)|y) # {0} only if v — X € N.
(2) Assume v — X € N. We fix a € Z/2Z and set f:= o+ v — A mod 2. Then
we have

Homg (M'(j,—v), M(i,—\))
~ Homy p (M'(j, =), M(i, =)o) @D Homy pr (M'(j, —v)5, M(i, = N)a)
~ HOIIlgl7p/ (M/(j, _V)B? M(;, _)\)a) @ HOmg/,p/ (M/(j, —V)g, M(;, —A)a) .

The summands in the right-hand sides in (2) of Theorem are classified as
follows.

Proposition 2.12. Let n > 3. Suppose 0 <1 < n, 0 < j < n-—-1, \,;v € C,
and o, B € Z/27. Then the following three conditions on G-tuple (i,j, \, v, a, 3) are
equivalent:

() Homg,pr (MG, —1)3, M(3, ~\)a) # {0}.
(ii) dim Homy pr (M'(j, —v)s, M(i,—N)a) = 1.
(iii) The 6-tuple (i,j, A, v, a, B) belongs to one of the siz cases in Theorem[2.§ (ii).

The left-hand side of the isomorphisms in Theorem [2.11]is isomorphic to

Hom, (A" /(C"") ® C_,,indg (A" (C") ® C_,))
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and vectors in the image of p’~-homomorphisms are sometimes referred to as singular
vectors. Fact in the next chapter asserts that one could get one from another
among the following:

e (explicit construction of) singular vectors;

e (explicit construction of ) symmetry breaking operators (Theorem ;

e (explicit construction of) polynomial solutions to the F-system (Theorems

and.
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3. F-METHOD FOR MATRIX-VALUED DIFFERENTIAL OPERATORS

In this chapter we recall from [13, 14, 19, 20] a method based on the Fourier
transform (F-method) to find explicit formulee of differential symmetry breaking
operators. For our purpose we need to develop the F-method for matrix-valued
operators. A new ingredient is a canonical decomposition of the algebraic Fourier
transform of the vector-valued principal series representations into a “scalar part”
involving differential operators of higher order and into a “vector part” of first order.
This is formulated and proved in Section [3.4]

3.1. Algebraic Fourier transform. Let F be a vector space over C. The Weyl
algebra D(FE) is the ring of holomorphic differential operators on E with polynomial
coefficients.

Definition 3.1. We define the algebraic Fourier transform as an algebra isomor-
phism of two Weyl algebras on E and its dual space EV:

D(E) - D(EY), T—T,

induced by
) 0
3.1 —_— = — = —, 1</1<
( ) aZg Ch 7 aC£7 S Exn,
where n = dimc¢ F, (21, ..., 2,) are coordinates on E and ((i,...,(,) are the dual

coordinates on EV.

Any linear transformation A € GL(E) gives rise to bijections
Ay: Pol(E) — Pol(E), Fw— F(A™),
A,: D(E) — D(E), T AyoT oA,
We write A € GL(E") for the dual map. Then the following identity holds [20, Lem.
3.3]:
(3.2) AT=(AYT forall TeD(E).

3.2. Differential operators between two manifolds.

We need a generalized notion of differential operators, not only for functions on the
same manifolds but also for functions on two different manifolds with a morphism.

Let ¥V — X be a vector bundle over a smooth manifold X. We write C*°(X,V)
for the space of smooth sections, endowed with the Fréchet topology of uniform
convergence of sections and their derivatives of finite order on compact sets. Let
W — Y be another vector bundle. Suppose a smooth map p: ¥ — X is given.
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Definition 3.2. ([20, Def. 2.1]) We say a continuous operator T: C*(X,V) —
C>®(Y, W) is a differential operator if T' satisfies

p(SuppT'f) C Suppf for all f € C*(X,V).
We write Diff(Vx, Wy ) for the space of differential operators from C*(X,V) to
C>=(Y,W).

If i: Y — X is an immersion, then every T' € Diff(Vx, Wy) is locally of the form

Hlel+18] .
I'= Z Z gaﬁ(y)W (finite sum),
aeNk feN™
where (y1,..., Yk, 21,...,2m) are local coordinates on X such that Y is given by
21 == 2y = 0 and g,4(y) are Hom(V, W)-valued smooth functions on Y.

3.3. F-method for principal series representations.

Let G be a real reductive Lie group, and P = M AN, a Langlands decomposition
of a parabolic subgroup P of G. Their Lie algebras will be denoted by g(R), p(R) =
m(R) + a(R) + n, (R), and the complexified Lie algebras by g, p = m + a + n,,
respectively.

Given A € a* ~ Homg(a(R),C), we define one-dimensional representation C,
of A by a — a* = eMga By letting M N, act trivially, we also regard C, as
a representation of P. Given a representation (o,V) of M and A € a*, we write
oy = 0 X C, for the representation of M A on V defined by ma — a*o(m). The
same letter will be used for the representation of P which is obtained by letting N,
act trivially. We define ¥V = Vx = G xp V as a G-equivariant vector bundle over
the real flag variety X = G/ P associated to o). The (unnormalized) principal series
representation 7, ) = Ind% () is defined on the Fréchet space C*°(X, V) of smooth
sections of the vector bundle V — X.

Let g(R) = n_(R)+m(R)+a(R)+n,(R) be the Gelfand-Naimark decomposition.
The vector bundle V — X is trivialized when restricted to the open Bruhat cell

n_(R)~N_ < G/P =X,

and we may regard C*°(X,V) as a subspace of C*(n_(R)) ® V via the restriction.
This model is called the N -picture or flat picture of the principal series representation
and the case of the Lorentz group G = O(n+1,1) was discussed in detail in Chapter
2l The infinitesimal representation of the Lie algebra on C*(n_(R)) ® V will be
denoted by dm,,»).

Let 2p € a* be the homomorphism on a(R) defined by Z +— Trace(ad(Z): ny(R) —
n;(R)). Asarepresentation of P, Cy, is given by p — x2,(p) := |det(Ad(p): ni(R) —
n, (R))|. We also define a one-dimensional representation sgn of P by p — sgn o
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det(Ad(p): ni(R) — ni (R)). Observe that the density bundle Qx and the ori-
entation bundle of X = G/P are then given as the homogeneous line bundles
G xp Cy, and G xp sgn, respectively. Since M N, acts trivially on C,,, we shall
sometimes regard Cy, as a representation of A ~ P/MN,. Write V¥V = Hom¢(V, C)
and let (¢v, V") denote the contragredient representation of the finite-dimensional
representation (o,V) of M. For A € a*, we define two representations of P by
(02)" == (0Y)_n = 0V K C_, and o} := 0¥ K Cy,_, with trivial action of N, as
before, and form a representation

Mo = Ind3(03})

of G on C*(X,V*) where V* = G xp V" is the dualizing bundle associated to the
representation oy of P. The integration over X gives rise to a natural G-invariant
nondegenerate bilinear form

Ind%(oy) x Ind%(0%) — C.

The infinitesimal representation of 7, )« in the N-picture is given by a Lie algebra
homomorphism

dmeay+: 8 — D(n_) ® End(VY).

Applying the algebraic Fourier transform of the Weyl algebra (see Definition ,
we get a Lie algebra homomorphism

—

Ao+ § — D(ny) @ End(VY),

where we have identified nY with ny by an Ad(G)-invariant, nondegenerate symmet-
ric bilinear form on g.
We define a g-module (generalized Verma module) by

ind} (V") := U(g) Qu) VY,

where V'V is regarded as a p-module through doV ® (—\) with trivial n -action. We
let P act on V¥ by (0)". Then the g-module indj(V'") carries a P-module structure,
so that we may regard indj(V"") as a (g, P)-module. This observation will be useful
when G is a real reductive Lie group because the parabolic subgroup P may be
disconnected. We recall from [20], (3.23)] that the algebraic Fourier transform of the
generalized Verma module is a (g, P)-isomorphism

F.: ind§(VY) — Pol(ny) @ V¥,
where Pol(n,) ® V'V is regarded as a (g, P)-module via dm

Let G’ be a real reductive subgroup of G, and P’ a parabolic subgroup of G'.
Given a finite-dimensional representation W of P’, we define two homogeneous vector
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bundles:
Wy = G’ Xp W —Y = G//P/,
Wy 2:GXP/W—)ZZ:G/P,.

Similarly to the representation (o, V) of P = M AN, , we shall consider a repre-
sentation (7, W) of P' = M'A'N!_ which extends the outer tensor product represen-
tation 7 X C, for v € (a')* by letting N’ act trivially.

We note that the base space Z is not compact in general, whereas Y is a real flag
variety and thus compact. If P* C P, then there are natural maps:

Y — 7 — X.

We denote by Diff o (Vx, Wy) the space of G’-equivariant operators from C*°(X, V)
to C*°(Y, Wy ) which are differential operators with respect to the above G’-equivariant
map Y — X in the sense of Definition [3.2] The space Diff¢(Vx, Wy) is defined in a
similar way.

The map taking symbols of differential operators on R", to be denoted by Symb,
induces an isomorphism below when restricted to differential operators with constant
coefficients,

(3.3)
Symb : Diff®*" (C*(R™) @ V, C*°(R") @ W) — Pol[(i, . .., (] ® Home (V, W)

such that
e 9D (9 @ v) = Symb(D)(v) € Pol[¢y, - -+ , ¢ @ W

for all v € V. We summarize the F-method in this setting from [20, Thm. 2.9, Rem.
2.18, Thm. 4.1, Cor. 4.3]:

Fact 3.3. Let G D G’ be a pair of real reductive Lie groups, and P D P’ a pair
of parabolic subgroups with compatible Levi decompositions P = LN, > P' = L'N!,
such that L > L' and Ny D N.. Let (01, V) and (1,,W) be finite-dimensional
representations of P and P" with trivial actions of Ny and N'_, respectively.

(1) (duality) There is a natural isomorphism.:
Dx_yy: Homy p(ind$ (W), ind3(V")) = Diffe: (Vx, Wr).
(2) (extension) The restriction Wy|y ~ Wy induces the bijection
Resty : Diff¢(Vx, Wz) — Diff o (Vx, Wy).

(3) (F-method) For ¢ € (Pol(ny)®VY) @ W ~ Homc(V,W ® Pol(n,)), we
consider a system of partial differential equations (F-system)

(3.4) (AT (g (C) ®idy )y =0 for all C € n},
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and set

(3.5) Sol(ny; oy, 7,) = {¢ € Homp (V, W ® Pol(ny)) : ¢ solves (3.4)} .

Then there is a natural isomorphism
(3.6) Homyg, pr(ind% (W), indS (V) < Sol(ny; 0x, 7).

(4) Assume that the nilradical ny is abelian. Then, the system ([3.4)) is of second
order, and the following diagram of siz isomorphisms commutes:

Sol(ny; o, 7))

F.®id Resty o Symb~!

Diffe(Vy, W)

{ m;

Homy pr (indgi (WY),indd(VV)) Diffr (Vx, Wy')

Dx .y

Fact (3) implies that, once we find such a polynomial solution v to the F-
system, we obtain a P’-submodule WY in indj(V") (sometimes referred to as sin-
gular vectors) by (F. ® id)7'(¢), where we have used the canonical isomorphism
Homp (WY, indy(V'")) =~ Homg/,p/(indgi(WV), indy (V")) when we apply the algebraic
Fourier transform F, of a generalized Verma module. Simultaneously, we obtain a
differential symmetry breaking operator by Resty o Symb™'(¢) in the flat picture
(N-picture), when n, is abelian.

The following useful lemma guarantees that the F-system can be verified by
a single nonzero element C' € n/, when L’ acts irreducibly on n’, , equivalently, when
n’_is abelian.

Lemma 3.4. Suppose v/, is abelian. Then the following two conditions on 1 €
Homy (V,Pol(ny) ® W) are equivalent.

(i) For every C e n',, (d?(g\)\)(C’) ® idw) Y =0.
(ii) For some nonzero Cy € 0/, (dm*(C'o) ® idw> Y =0.
Proof. The implication (i)=-(ii) is obvious. We shall prove (ii)=-(i). We set
[ = Oy.
Suppose 1 € Homy, (V, Pol(ny) @ W) ~ (V¥ @ Pol(n,) ® W) This means that
Xo,(Op(t ) @ Ady(0 Y @7, (Y =¢  forall (el
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If ¢/ satisfies (ii), then we have

(3.7) (dmu(Co) @ idw) (u(¢™)Ad(¢7)) v =0,
We let the group L act on VY ® Pol(n_) by m,(¢) = pu(¢)Adx(¢). Then we have
dm,(Ad(0)Cp) = m,(O)dm,(Co)m,(¢7')  forall ¢e L'(C L).
Applying to the case where F =n_, A = Ad({), and T' = E(CO), we have
dm,(Ad(0)Co) = p(O)AA(0) g (Co)Ad(C) (),
where we identify the action ‘Ad(¢)~! on n¥ with the one of Ad(¢) on ny . Then

(T@(Ad(@)CO) ® idW) ¥ =0,

by . Since n/_ is abelian, the Levi subgroup L' acts irreducibly on the nilradical
n’, of the parabolic subalgebra p’ = ' + 1, , and therefore Ad(¢)Cy (¢ € L') spans
n’ . Hence (ii)=(i) is proved. O
3.4. Matrix-valued differential operators in the F-method. This section pro-
vides a structural result on the key operator dm* in the F-method for the principal
series representation Indg(a,\) when P is a parabolic subgroup with abelian unipo-
tent radical. We shall prove that dm* has a canonical decomposition into a sum

of the “scalar part” (differential operator of second order) depending only on the
continuous parameter A € a* and the “vector part” (differential operator of first

order) depending only on ¢ € M.
We retain the notation in Section [3.3] and simply write

e : g — D(n,),

for dm* when (o, V) is the trivial one-dimensional representation. We define the

—

“vector part” of dm(, - as a linear map A,: g — D(n;) ® End(V"Y) characterized
by the formula

(3.8) Aoy (V) = dmr- (V) ®@idyv + A,(Y) for Y €g.

Let {N, } be a basis of n_(R), and (¢, -+, (,) be the corresponding coordinates on
11\_/ (R) ~ n+ (R)

Proposition 3.5. Assume ny is abelian. Then, for any Y € ny, A,(Y) is a holo-
morphic vector field on ny with constant coefficients in End(V'). An ezplicit formula
s given as follows.

n 9 ~ y
(3.9) A (Y)F = — ; ge.Fodo ([Y, N; ]‘m) for F € Pol(n,)® VY.
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In particular, the “vector part” A, is independent of the continuous parameter \.
Moreover, A, is zero if do = 0.

Proof. Let G¢ be a connected complex Lie group with Lie algebra g = g(R) ®g C,
and Pc = L¢expn,y the parabolic subgroup with Lie algebra p = [+ n,. According
to the Gelfand—Naimark decomposition g = n_ + [+ n, of the Lie algebra g, we have
a diffeomorphism

n_ X Lexny — Ge, (Z,0,Y)— (expZ)l(expY),
into an open dense subset G¢® of Gc. Let
pr: Ge® — ny, Po: G¢&® — Le,
be the projections characterized by the identity

exp(p-(9))p.(9) exp(p4(9)) = g.

Then the following maps a and (3 are determined by the Gelfand-Naimark decom-
position g = n_ + [+ n, and independent of the choice of the complex Lie group
G(CZ

d
(3.10) (,B):gxn_—=Ildn, (Y,Z)— - (po (e %) ,p_ (e e?)).
t=0
According to the direct sum decomposition [ = m + a, we write

a(Y, Z) = (Y, Z)|n + a(¥, Z).

For a fixed element Y € g, A(Y,-) induces a complex linear map n_ — n_, and thus
we may regard (Y, -) as a holomorphic vector field on n_ via the identification of
n_ with the holomorphic tangent space at each point:

n>Z—pY,Z)en_ ~Tyn_.
Suppose f € C®°(n_(R),VY), Y € g(R) and Z € n_(R). Since N, acts trivially
on V, the infinitesimal representation dm, »)- is given by
Ao (Y)f(Z) = do*(a(Y, Z)|n)f(Z) + (dX(a(Y, Z)]a) [(Z) = B(Y. ") f(2)).

vect

In view of the decomposition, we define d’/T(U)\)*,d’/T?Z?)le € Homg(g,D(n_) ®
End(VV)) by

dTrE/;C;) * (Y) :
drseelss (V) 1=
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vect scalar

Clearly, dm sy = dwff}\?i +d7r(0_ NI We say dw(a’ NG is the scalar part of dm(, -, and
dﬂz’gc)f)* is the vector part. Then the scalar part dﬂ?ﬁa)lf)”ﬁ does not depend on (o, V),
and takes the form
dﬂ?ﬁ?}jﬁ (V) =dm(Y)®idyv forallY €g.
Let us compute their algebraic Fourier transforms. Obviously, the algebraic Fourier
transform of dﬂ?ﬁ?}@i (V) is dmy+(Y) ® idyv.
If n, is abelian, we have

oY.Z2) =Y, 2), BY.Z)= %[Z, ZY]] forY en,andZen

see [20, Lem. 3.8].
We write Z =, 2N, . Then for Y € n,, we have

(dris-Mf) (2) = —f(Z) o do([Y, Z]|w)
= =Y zfodo([Y,N/][w).
0

By ({3.1)) its algebraic Fourier transform is given by (3.9). The remaining assertions
of Proposition [3.5| are clear. O
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4. MATRIX-VALUED F-METHOD FOR O(n + 1,1)

This chapter summarizes a strategy and technical details in applying the F-mehod
to find matrix-valued symmetry breaking operators in the setting where (G,G") =

(O(n+1,1),0(n,1)).

4.1. Strategy of matrix-valued F-method for (G,G’) = (O(n+1,1),0(n,1)).
We retain the notation of Chapter 2| In particular, P = Lexp(n;(R)) and P’ =
L'exp(/,(R)) are the minimal parabolic subgroups of G = O(n + 1,1) and G’ =

O(n, 1), respectively, such that L D L' and n(R) D n/ (R). We recall L = MA ~
O( ) O(1) x R and ny(R) is identified with R" via the basis {N{",..., N}, see
. Let (C1,...,¢,) be the coordinates of ny (~ n"). Then the L-module Pol(n,) is
i entlﬁed with the polynomial ring Pol[(y, .. ., (,] on which the action of L = M A >
((B,b),e'*0) is given by

(4.1) F(Q) = fo e BTI() for ¢ = (Cry.. i Ga).

The subgroup L' = M'A ~ O(n — 1) x O(1) x R stabilizes the last variable (,,
and acts irreducibly on n/, ~ C"!. Then we may apply Lemma by choosing
Co = N{". With this notation, the F-method (Fact [3.3)) implies the following:

Proposition 4.1. Let (G,G") = (O(n + 1,1),0(n,1)), ox = 0 K Cy be a finite-
dimensional representation of P on V that factors the quotient group P/N, ~ L =
MA, and 7, = T®C, be that of P’ that factors P'/N! ~ L' = M'A on W. The flat

pictures of the principal series representations Ind%(oy) of G and IDdG:<T,,) of G' are
defined in C°(R") @V and C®(R"1) @ W, respectively, as in (2.7). Then we have
the following.

(1) Sol(ny;on, ) (see (3.5))) is given by

Sol(ny;on, 7))
(42) = {zp € Homp (V,W @ Pol[(i, ..., C]) : (dm*(]\ff) ® idW) W= o} .

(2) Suppose ¥ € Sol(ny;oy,7,). Let D be the Home(V, W)-valued differential
operator on R™ with constant coefficients such that Symb(D) = 1p. Then the
differential operator

Restznzo oD: COO(]Rn) RV — COO(Rn—l) QW

extends to a symmetry breaking operator from Ind%(cy) to Ind% (7).
(3) Conversely, any G’ -equivariant differential operator from Ind%(oy) to IndS, (7,,)
is obtained in this manner.

The rest of this chapter is devoted to an explicit characterization of the main
ingredients of Proposition [4.1] Namely, the space Homp (V,W @ Pol[(y, ..., () is
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described in Section , the scalar and vector parts of the operator dm*(]\ff ) are
given in Section and the matrix components of (4.2)) are studied in Section [4.5]

Harmonic polynomials play a key role in the first two steps of this characterization.

4.2. Harmonic polynomials.

We review a classical fact on harmonic polynomials. Let N € N, (later, we take N
toben—1orn). For k € N, we denote by Pol* [C1, -+, (] the space of homogeneous
polynomials of degree k. The space H¥(CY) of harmonic polynomials of degree k is
defined by

HH(CN) := {h € Pol*[G1, -+, (v] t Aevh =0},

where Acnv 1= g—; + - 4+ % denotes the holomorphic Laplacian on CV. Then
1 N

HE(CN) # {0} for all k € N if N > 2 and H*(C') # {0} for k € {0,1}.
The orthogonal group O(N) acts irreducibly on H*¥(CY) for all k € N unless it is
zero. We set

H(CY) = EPHE(C).

Then we have a natural decomposition of the space of polynomials into spherical
harmonics and O(N)-invariant polynomials for any N € N,:

(4.3) Pol[¢Z + - + 3] @ H(CN) S Pol[¢y, - -+, .

4.3. Description of Hom (V, W ® Pol(n,)). As the first step of the matrix-valued
F-method for the Lorentz group G = O(n + 1, 1), we give a description of the space
Homy (V, W ® Pol(ny)) by using harmonic polynomials.

We retain the notation of Section in particular, ((,- -, (,) are the coordinates
of ny such that n'_ is characterized by ¢, = 0. For b € Z and a polynomial g(t) of
one variable ¢, we define a multi-valued meromorphic function of n variables { =

(€17 T 7Cn) b)
g ( Cn )
Qn—l(g/) 7

where (" = (G-, Guo1) and @n(¢') = ¢ + -+ + (g Cleatly, (Thg)(¢) = 0
if and only if ¢g(t) = 0. We observe that (T,¢)(¢) is a homogeneous polynomial of
(C1y--.,Cn) of degree b if b € N and g € Poly[t]even, where we set

SISy

(4.4) (To9)(C) == @n-1(¢')

(4.5) Poly[fJeven = C-span <tb2j20 << ED



CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 41

Then we have the following bijection
(46) Tb POlb even @ POle Cl ' Cn—l] ® Pol® [Cn}
20+c=b

Lemma 4.2. Suppose n > 2. Then for every a € N, there is a natural bijection:

B Polu—k[t]even ® Homog—1)(V, W @ H*(C" ")) 5 Homp—1)(V, W @ Pol*(n.))
k=0
induced by

d g @ HY > (Torgr) HY
k=0 k=0

Proof. Combining the following two O(n — 1)-isomorphisms

Pola @ POlb C1, ey Cn—l] ® POIC[CH]?

b+c=a

and (4.3) with N = n — 1, namely,
Poll¢y, ..., o1l = @ HHC) @ Pol'[(] + -+ + (4],

k+20=b
we have

Homo -1y (V, W ® Pol®(n.))
B Homop-) (V. W @ HHC"™)) @ Pol’[(} + -+ + (2_4] @ Pol[(,].
k+20+c=a
Then the statement follows from the bijection ({4.6]). 0
By the F-method (Proposition combined with results on finite-dimensional

representations, we obtain a necessary condition for the existence of nonzero differ-
ential symmetry breaking operators in the general setting:

12

Corollary 4.3. Suppose (0,V) € ]\//T, (r,W) € M’ and A\ v e C. Suppose olon) is
a multiple of o € Z/27 ~ O(1), and T|oqay is a multiple of B € Z/27Z, where O(1)
denotes the second factor of M ~ O(n) x O(1) (or M' ~O(n —1) x O(1)). Then
Diff s (IndG(aA) IndP,(Ty)) £ {0}

only if the following three conditions hold:

v—AeN,

b—a=v—X\ mod 2,

Homo—1) (V. W @ H¥(C" 1)) # {0}  for some 0<k<wv— A\
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In particular, if (o,7) € M x M satisfies
Homo(n_l) (V, W & H(Cnil)) = {0},

then Diff o (Indg(o,\), Indg:(ﬂ,)) = {0} for all \,v € C.

Proof. Tt follows from Proposition [4.1| that Diff(Ind$ (o), Ind% (7)) # {0} only if
HomL’(V7 W POI[Cl) cee 7Cn]) 7é {0}

First, we consider the action of the first factor O(n—1) of L' ~ O(n—1) x O(1) xR.
Then we find @ € N such that Homo,—1)(V, W®Pol®[(i, . .., (,]) # {0}, and therefore
Homo,—1)(V, W ® HF(C"1)) # {0} for some k (0 < k < a).

Second, we consider the actions of the second and third factors of L'. Since e!o ¢
A and —1 € O(1) act on n, ~ C" as the scalars ¢’ and —1, respectively,

Homo(1),a(V, W & Pol*[¢y, ..., Ga]) # {0}

if and only if
v=A+a and [ =a+amod?2.
Thus the corollary is proved. 0

In Chapter [f], we shall prove a necessary and sufficient condition that the space
Homo,—1)(V, W@HF(C"1)) does not vanish when V' = AY(C") and W = A7(C"*1),
and find their explicit generators, see Proposition [5.14]

4.4. Decomposition of the equation (dm(Nf) ®idw )y = 0.

In Lemma [1.2] we have given a description of Homy (V, W ® Pol*(n,)) by using
spherical harmonics. The next step of the matrix-valued F-method in our setting is
to write down explicitly the F-system according to the canonical decomposition

(3-8)

—

dﬂ'(m)\)* ® idy = CE-T;k X idHom(V,W) + A, ®idw.

The main result (Proposition [4.4)) of this section asserts that the differential operator
whose symbol is in (4.2)) is given by

Gegenbauer-type operators + matrix-valued vector fields.

To be precise, we introduce the following differential operator of second order

1 d? d
4. pi=—o (1487 + (L4 2M\)t— — £(£ + 2
(47) Ry im =g (@ )+ (2005 — e 2)
with parameters A € C and ¢ € N. Note that R}g(t) = 0 is the “imaginary”

Gegenbauer differential equation (see Lemma (14.3]).
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Proposition 4.4. Let G = O(n+1,1), (o,V) € M, A€ C, and W be a vector space
over C. Suppose 0 < k < a and ¢ = (T,_pgr) H® with gi(t) € Poly_i[tleven and
H® € Home(V, W @ H*(C"™1Y)). Then,

— e G
(1) (dmy(Ny)®idw )y = a0

(2) (Ao(NT") @ idw)y Zag wkgi) H® 0 do(Xen).

OH®)
o¢

n 1
Tas (Ri K gk) H® + (X +a—1)(Torgx)

The rest of this section is devoted to the proof of Proposition [4.4 We note that
the L'-intertwining property of the linear maps H®) is not used in Propositi.

We begin with an explicit formula of the canonical decomposition ({3.8) of dm, )«
We define the Euler homogeneity operator on C" by

- 0
Eg = Z Cg—.
o o
Then we have:

Lemma 4.5. Let G = O(n + 1,1) and {N{",..., N} be the basis of n,(R), see
(2.2). Suppose (o,V) € M and X\ € C. Then the decomposition (3.8) amounts to

d7ory (NF) = dmye (N) @ idyv + A,(N;) (1<m<n),
where
0 o 1
4. I (ND) = Ae— + Er—— — =(nAcn
+ ~ 0 v
(4.9) A,(NDF =Y ¢ Fodo(Xen) for F € Pol(ng) VY.
l

(=1

Proof. The “scalar part” is given in [2I, Lem. 6.5].
According to Proposition and . the vector part A,(N;}) is given by

A (NDF = —Za—@Foda N )
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Thus, the second assertion on the vector part of Proposition is proved. In order
to show the first assertion on the scalar part, we give a useful formula for the action

of the second-order differential operator dmy- (N;}) on Pol[(y,. .., ().

Lemma 4.6. If f € Pol* *(C")°"10) and h € H*(C" 1), then

cﬁr;(N;;)(fh):dTT;(N,t)(f)h—l—(/\%—a—l) ;;h for1<m<n-—1
Proof. By , we have
— 0 0
@10) A (V) = Age () + B (/) = 5Gnen(fh)

Observe that f % is homogeneous of degree a — 1, and therefore E¢ ( f ﬂ) =

(@ —1) 8<h . We also observe that Aca(fh) = (Acnf)h+2>, gg SZL because
Acnh = 0. It then follows from a direct computation that | - may be simplified

to

(4.11)
Jon (N2 () = e (N (P + (At 0 — ) f o 2L g )= Gngt 0f Oh

m O exsen

Since the polynomial f is O(n — 1, C)-invariant, it is annihilated by the generators
Xy of the Lie algebra o(n — 1) (see (2.1), that is, Cmagf = Graes 8f forall 1 <r,m <
n — 1. Therefore,

- af oh af oh 0 f
4.12
(4.12) 2 Smge o Z “3en06 ~ g, )
Now the proposed equality follows from (4.11]) and - O

Finally, we recall the following formula from [21, Lem. 6.11]:

Lemma 4.7. Suppose { € N and A € C. For any g € Poly[t]even,

~Gm
in

We are ready to complete the proof of Proposition [4.4]

37\5\*(]\[ W(Trg) = (C’) <R/\_Tg) for1<m<n-—1.

Proof of Proposition[{.4. The first statement of Proposition follows from (4.8)
and Lemmas and [£.7 The second statement has been proved in Lemma [4.5]
Hence the proof of Proposition [£.4] is completed.

O
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4.5. Matrix components in the F-method. For actual computations in later
chapters, it is convenient to rewrite Proposition by means of matrix coefficients.

Let V' be a vector space with a basis {e;};e7r, W with a basis {w,} ez, and
{wY}jes denote the dual basis in WVY. Given a linear map 7: V. — W we define
its matrix coefficient by

Try = (T(er),wy),
where (, ) denotes the canonical pairing between W and WYV. Clearly, we have for
Sew
(4.13) (SoT)(er) =Y S(w,)Ty,.
JeJ

Suppose that (o, V) is a finite-dimensional representation of M (~ O(n)x O(1)). We
introduce a holomorphic vector field on n, by

_ 0
(414) AII/ = AII/ = Z (dU(Xél)II’) -,

=1 0
with respect to the basis {e;};cz of V' and the dual basis {e},}rez of VY. Then
{Arp} is the matrix expression of the vector part A,(N;") of dm(, ) (N7") in the
following sense.

Lemma 4.8. Recall that A,: g — D(ny) @ End(VY) is defined by (3.8). Suppose
F(¢) =Y, Fi(Q)e} € Pol(ny) @ VV. Then A,(N;")F is given by

AU(N;_)F = Z (Z A[[/F]/) er

IeT \I'eT

Proof. By (4.13), (e}, o do(Xem))(er) = dO'(Xgm - By (3.9) and (2.3)), we have
<A0<N Z Z a—eF[/ dO' le I = Z A[[/F[/

I'el ¢ I'el

Given ¢ € Home(V, W ® Pol(n,)), we write
Y = Z%Je} ® wy,
1,J

ey (N = Y Myje} @wy,

1J
for some polynomials 1;;(¢), Mr;(¢) € Pol(ny). Then the (I, .J)-components My,
of dm(y »)+(N; )1 can be computed from {¢;,} by the following formula.
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Proposition 4.9. Let ¢;; and M;; be the matriz coefficients of 1 and ofdw/@,;)(Nf“)w
with respect to the basis {er} of V and {w;} of W. Then we have M;y = M5%ar 4
MYSt if we set

0 3}

Mscalar — A—— B—
i = (o g

ect
M = E Arrry,
I/

1
- §C1A<Cn) Vi,

where Ay is a vector field defined in (4.14)). In particular, if ¢ is of the form
¢ = (To—rgr)H®

with gi(t) € Polg_p[tleven and H® =37, | H¥eY @ w; € Hom(V, W @ H*(C"1)) for
some 0 < k < a, then

(k)
G A-ngt (k) on
Mscalar: T, (R_ 2 )H + (A+a—1)(1T,— IJ,
0= gy ek Bt o) Hi J(Tak9) e,
Myst = Z Arr(Toige) HY)
I/
Rels 0 (k)
= Z Z do(Xo)ir =+ ((Ta—kgk)HI’J> :
I =1 o
Proof. Immediate from Lemmas and [£.8] u

in Proposition for V.= AYC") and W = A7(C" ') by solving the system of
ordinary differential equations for {¢r;}

M[s;alar + M}z;ct =0
for all the indices I and J of the bases of V' and W, respectively.

In Chapters d , we shall address the matrix-valued differential equation (|4.2])
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5. APPLICATION OF FINITE-DIMENSIONAL REPRESENTATION THEORY

In this chapter we prepare some results on finite-dimensional representations that
will be used in applying the general theory developed in Chapters [3] and [ to sym-
metry breaking operators for differential forms.

For this, we construct an explicit basis of Homog,—1)(V,W & Pol[(y,. .., (,]) for
V = AYC") and W = A\J(C" ') (see Proposition . The key ingredient of the
proof is to determine O(N)-invariant elements in the triple tensor product A/(C")®
N (CN)@H*(CN), which is carried out in Section[5.4] see Lemma[5.6)and Proposition
.7

At the end of this chapter, we give a proof of the (easy) implication (i)=-(iii) in
Theorem [2.8

5.1. Signatures in index sets.

We fix some set theoretic notation. Given a set S, let |S| denote the cardinality
of elements in S. We denote by S\ T' the relative complement of 7" in S for given
two sets S and 7', that is, S\ T :={z € S:a2 ¢ T}.

For k€ {1,..., N}, we set

(5.1) Iy ={RCA{l,....N} : |R| =k}.
It is convenient to define Zy o as Zy := {0}.
Definition 5.1. For I C {1,--- , N} and p,q € N, we set
sgn([;p) — (_1>|{r61:r<p}|,
sgn([;p, q) = (_1>|{7"€[: min(p,q)< r <max(p,q)}|

Here are some basic formulee for sgn(7;p) and sgn(/;p, q).
Lemma 5.2. For I C {1,--- ,N} and p,q € N, we have
(1) sgn(l;p) = sgu(l U{p}; p);
(2) sgn(Z;p,q) = sgn(l U{p};p,q) =sgn{l U {q};p,q);

. . ooy J i min(p,q) & 1,
® seatpsenlts san(rip) = { 1) ) b0

(4) sgn(l U {p}; q)sgn(I;p) + sgn(l U{q}; p)sgn(l; q) = 0 for p,q ¢ I.
Proof. The proof is a straightforward computation. 0

Note that, by Lemma (2) and (3), for I € Iy, with N € I, the following
identity holds:

(5.2) sgn(I\ {N};p) = {<—1)”Sgn(l;p, N) ifp¢l,

(=1)isgn(I;p,N) ifpel.
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5.2. Action of O(N) on the exterior algebra A\*(CV). Let {e;, - ,ex} be the
standard basis of CV. Given I = {iy, -+ ,ix} C {1,--+, N} with i; < -+ < iz, we
form the standard basis {e;} of A*(CV) by setting

The natural action o of O(N) on C¥ induces the exterior representation on A\*(CY),
to be denoted by the same letter 0. Let X,, = —E,;+ Ey € o(N) (1 <p#¢qg<N)
as in (2.1)). The matrix coefficient do(X,,)rr = (do(X,,)(er), €},) of the infinitesimal
representation do is given by
sen(l;p,q) if I =JU{p}, I'=JU{q},
(5.3) do(Xpg)ir = § —sen(l;p,q) if I=JU{q}, I'=JU{p},
0 otherwise,

where J := I NI’ in the first two cases.
Recall from Section that, given a representation (o,V) of M ~ O(n) x O(1)

and A € a*, we denote by dm, )~ the algebraic Fourier transform of the Lie algebra
homomorphism dm g+ : g — D(n_) ® End(V"Y). Whe A(C™) and oo is

no =
—_— —_—

the exterior representation, we write simply dm(; x)« for dm(, ), as it is independent
of the restriction of ¢ to the second factor O(liThen the matrix components Ay

of the vector part of m (N{") (see Lemma |4.8)) takes the following form:
Lemma 5.3. Let I,I' € Z,,;. Then the (I,I")-component Arp of the vector part of
dm - (NT) is given by the following vector field

Ay — {sgn(l;@a% i (\ YT\ D) = {1,6} (¢ 4£1),

0 otherwise.

Proof. We recall from (4.14) that A;p = >, do(Xa) 9 Hence the lemma is

Oxy”
clear from (/5.3)). Z O
Example 5.4. With respect to the basis {dxy A dxs,dxy A drs, dzy A dxs} of E2(R3)
as a C™(R®)-module, the vector part of dm(;y«(Ni") with i = 2 acts on F =
Zl§k<£§3 Fkgdl‘k N d!L“g c 52(R3) ~ COO(R3> & (CB by

) )
Fs Oa o 9 Fys
F13 — G 0 0 F13
Fio 8%3 0 0 Fio

5.3. Construction of intertwining operators. For V = A{(C") and W = A\7(CV),
we shall construct building blocks of O(N)-equivariant bilinear maps

B®: NY(CY) x N(CY) — PollGr, -+, G,
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as follows. Suppose j =i. For I,I' € Iy, we define C-bilinear maps BO) and B®
by giving the images of the basis elements:
{1 if I=1,

(0) ._
(5.4) B (er,er) = 0 otherwise.

3¢ if =1,
el

(5:5)  B®(erer) = sen(Jip,q) ¢, if [=JU{p}I' = JU{qg}p # 4,
0 if |1\ 1I')] > 1.

Suppose j =% — 1. For I € Iy, and J € Iy 1, we set
1) _ fsen(J;0) ¢ if T =JU{L},
(5.6) BY (e, ey) = {0 it Jg L
Lemma 5.5. The bilinear maps B® (k =0,1,2) are O(N)-equivariant, namely,

B®)(gu, gw)(g¢) = B® (v, w)(C)
forallge O(N),veV,weW, and ( = ((1,...,(N)-

We could prove Lemma directly by the formula , but we shall give an
alternative and simpler proof in Section by using the symbol map for O(N)-
equivariant differential operators.

Since A(CV) is self-dual as an O(N)-module (cf. (8:4)), the bilinear forms B*)

induce the following O(N)-equivariant linear maps

HY: N(CY) = N(CV) @ Pol*[¢y, -, Cn]

given by

(57) HZ(EBZ(GI) = Z B 6[761/ ey = ey,
I’EZNl

(5.8) HY, ((er) = Y BWerep)es =Y sen(l;Oen
JEIN,i—1 lel

(5.9) HZ-(i)l_”-<€J) = Z BW (e, ej)e :ngn(J;E)eJU{g}Cg,
I€Tn o]

(5.10) HZ(er) = Y BP(er,ep)er
[’EINl

= O _Der+>Y sen(lip, g)enpyoiasply-

lel q¢I pel

k)

";; are harmonic polynomials for the first

Then all the matrix coefficients of H’Z

three cases, but not for Hl( Jl In order to make the matrix coefficients to be harmonic
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polynomials, we set

Y. = HY fj—i=k=0or|j—il=k=1,
- i
(5.11) Hﬁfz = Hi(i)i - NQN(C)Hi(i)i‘

Then the matrix coefficients (ﬁ]fi) = <]:T-(2)
r

11—

(61),6}/,> (I,I' € Iy;) are given by

. Q1(Q) it 1=,
(H2)) =3 sen(lip )Gl it T=JU{phI'=JU{ghwithp£q
0 otherwise,
where we set
~ i
(5.12) Qr(¢)=> ¢ - FON(C)  for €Ty,
el

Thus (ﬁfﬂ) are harmonic polynomials for all I, I" € Zy ;. Hence we have defined
the linear maps

~ . ‘
(5.13) ) N(CY) — N(CY) @ (),

which are obviously O(N)-equivariant in all the cases. In the next section, we shall
prove that ?[l(i)] exhaust all such O(N)-linear maps up to scalars, see Proposition
B.7 below. B

We need to be careful at the extremal places where the modified maps Hi(i)j may
vanish:

(5.14) a?,=HY. , =0

—0 —

5.4. Application of finite-dimensional representation theory. In this section
we prove that the linear maps ]Tli(i)j introduced in ([5.13]) exhaust all nonzero O(N)-
homomorphisms A*(CY) — AJ(CY) @ H*(CY) up to scalar multiplication. The
results will be used for actual calculations in solving the F-system, which yield all
differential symmetry breaking operators £/(S"),s — &/(S™1),., see Theorems

1.8 To be more precise, we prove the following.
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Lemma 5.6. Let N > 1. Then the following three conditions on (i, j,k) with 0 <
1,7 < N and k € N are equivalent.

(i) Homoqy) (A'(CY), N(CY) @ HH(CY)) # {0},

(ii) dimc (Homovy (AY(CY), A/(CY) @ HF(CY))) =1,

(iii) The triple (i, 7, k) belongs to one of the following three cases :
(a) i=7and k= 0.
(b) i=je{l,2,...,N—1}and k = 2.
(c) [i—jl=*k=1

We observe that nonzero O(N)-homomorphisms ~Z»(i)j were constructed in Section
for all the triples (i, j, k) appearing in (iii) of Lemma[5.6] Then the multiplicity-

free property ((ii) of Lemma implies the following proposition.

Proposition 5.7. Suppose (i, j, k) satisfies one of (therefore all of) the equivalent
conditions in Lemma[5.6. Then, we have

Homoy (A'(CY), A/(CV) @ HH(CN)) = CHY)..

Remark 5.8. Since Pol(CY) ~ C[Qy] ® H(CY) as an O(N)-module (see (4.3)), any
O(N)-homomorphism from A*(C") to A?(CY) @ Pol(C") can be written as a linear
combination of Q4H™. (¢ € N, k € {0,1,2}).

1—]

The rest of this section is devoted to the proof of Lemma[5.6] For this, we observe
that A(C") may be thought of as a U (N )-module, whereas H*(C") is just an O(N)-
module. Then our strategy is to use the branching laws with respect to a chain of
subgroups

UN)xU(N)DU(N)DO(N),
and the proof is divided into the following two steps.
Step 1. Decompose A/(CY) @ AJ(CY) into irreducible U(N)-modules, see Lemma
0.9l
Step 2. Consider the branching law U(N) | O(N), and find the multiplicities of the
O(N)-module H*(CY) occurring in the irreducible U(N)-summands of the tensor
product representation in Step 1, see Lemma [5.10]

We fix some notations. We set
AN ={A=(A1,... ., An) €ZN : M > N> > Ay >0}

We write F(U(N), ) for the irreducible finite-dimensional representation of U(N)

(or equivalently, the irreducible polynomial representation of GL(N, C)) with highest

weight \. If X is of the form (¢1,--- ,c1,¢9,-++ ,¢9,-++ ,¢o- v+ ,¢,0-++,0), then we
—— N——

vV
mi ma my
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also write A = ("', 52, - -+, ") as usual. For instance F(U(N),1%) ~ AY(CY). As
Step 1, we use the following lemma:

Lemma 5.9. We have the following isomorphisms of U(N)-modules.
N(CY) @ N(CY) =~ B Fow) @),
k=max(0,2i—N)
i—1
N(CY) @ NTHCY) =~ B Fow), e ).

k=max(0,2i—N—1)

Proof. Both decompositions are given by the skew Pieri rule for the tensor product

of the exterior representations A\*(CV). O

As Step 2, we consider how each U(N)-irreducible summand in Lemma de-
composes as an O(N)-module. This decomposition is not always multiplicity-free,
however, it turns out that the O(N)-irreducible module H*(CY) (s € N) occurs at
most once. To be precise, we have the following.

Lemma 5.10. Let N > 2. Suppose s, k,l € N satisfy k+¢ < N. Then the following
three conditions on (s, k,l) are equivalent:

) Homogw (H(C"), FOW). (19| ) #10)

O(N)
(ii) dim Homo(ny <’HS((CN), F(U(N), (2, 15))‘0(1\7)) =1,

(iii) (s,¢) = (0,0) with 0 < k < N, (s,¢) = (1,1) with 0 < &k < N —1, or

(s,) =1(2,0) with 1 <k < N.

For the proof of Lemma [5.10, we need some combinatorics related to representa-
tions of U(N) and O(N).

We shall identify A € AT(N) with the corresponding Young diagram. For \, v, i €
AT(N), we denote by C;\u € N the Littlewood-Richardson coefficient, namely, the
structure constant for the product in the C-algebra of symmetric functions with
respect to the basis of Schur functions

5,8, = CouSa-
A

We note that ci‘u # 0 only if v C A and g C A, namely, v; < \; and p; < A; for

all j (1 < j < N). The Littlewood-Richardson coefficient cﬁu has a combinatorial

description in several ways such as

cl’}u = [{tableau T on skew diagram A\ v: weight(7T) = u, word(T) is a lattice permutation}|,
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where we recall:
e \\ v is the skew diagram obtained by removing all the boxes of v from the
diagram A with the same top-left corner;

e a tableau T is a filling of the boxes of a skew diagram with positive integers,
weakly increasing in rows and strictly decreasing in columns;

e weight(7') is a vector such that i-th component equals the times of occurrences
of the positive integer ¢ in the tableau T

e word(7T) is a sequence of positive integers in 7" when we read from right to
left in successive rows, starting with the top row;

e A sequence aq,...,ay of positive integers is said to be a lattice permutation
if {1 <k <r:ap=1}| is a weakly decreasing function of i € N for every r
(1<r<N).
We introduce the following map
(5.15) AT(N) x AT(N) — ZIAT(N)], (AL =M= @
HEAT(N)
where Z[S] denotes the free Z-module generated by elements of a set S.
If the skew diagram A \ v is a Young diagram, namely, if v; = \; (1 < j < k)
and v; = 0 (k+1 < j < N) for some k, then it is readily seen from the above
combinatorial description that

(5.16) Y :{1 if p=XA\v,

“on 0 if u#A\v.

Thus, \/v = A\ v if A\ v is a Young diagram.
We define two subsets of AT(N) by

AT (Neyen :={AN€AT(N): \; €2Z for 1 < j < N},
AT (N)gp :=={A € AT(N) : \] + X, < N},
where A} := max{i : \; > 1} and A, := max{i : Ay > 2} for A = (A1,...,A\n) €

AT(N). Then A] is nothing but the maximal column length, denoted also by ¢(\).
It is readily seen that AT(N)pp consists of elements of the following two types:

Type I: (aq,... 7a/k,O’... 70)7
——
N—k
Type II: (CLl?”' 7a’k717"' 71707"' 70)7
——— ——
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Witha12a22--~2ak>03nd0§k§[%].

Following Weyl ([27, Chap. V, Sect. 7]), we parametrize the set O(N) of equivalence
classes of irreducible representations of O(NV) as

(5.17) A (N)pp = O(N), A [N,

where [A] is the O(N)-irreducible summand of F(U(N), \) which contains the highest
weight vector.

Example 5.11. H*(CN) = [s] (s € N), and A\(CV) = [1Y] (0 < ¢ < N).
Moreover, Types I and II are related by the following O(N )-isomorphism:
(5.18) (a1, - ,ag, 1,-+-,1,0,--- ,0)] =det ®[(as, - ,ax,0,---,0)].

The restriction of the O(N)-module [(ay,...,a,0,...,0)] to the subgroup SO(N) is
reducible if and only if N = 2k. In this case we have:

[(&1, Ty Ay 07 T 70)”50(]\7) = F(SO(N>7 (ala T 7ak))®F(SO(N)’ (a'la ct, Ap—1, _ak))
For A ¢ AT(N)gp, we apply the O(N)-modification rule which is a map

(5.19) AH(N)\ AT (N)pp — ZIO(N)], A [\

constructed as follows (see [12, Sect. 3], [23]). If £(A) > [§] then we define A to be
the removal of a continuous boundary hook of length h := 2/(\) — N and row length
x, starting in the first column of the Young diagram associated to A. We set [A\] :=0
if X is not a Young diagram; [\ := (—1)*det ®[A] if A € AT(N)gp. Otherwise, we
repeat this procedure to A € AT(N)\ A*(N)gp.

We note that A*(N)pp contains elements A with ¢(\) > [£], namely, elements
of Type II. The O(N)-modification rule also applies to these elements, and yields
the isomorphism (5.18). In fact, suppose A € AT(N)gp is of Type II, say A\ =
(ay,...,ag,1,...,1,0,...,0). In this case, {(A\) =n—Fk (> [%D, h=2n—k)—n=

n — 2k and z = 0, and thus \ = (ay,...,ax,0,...,0). Thus the O(N)-modification
rule in this special case gives rise to the isomorphism ([5.18)).

Combining (5.17)) and (5.19), we get a Z-linear map
(5.20) ZIANH(N)] — ZIO(N)], Ao [\

For A € AT(N), the representation F(U(N),\) decomposes as an O(N)-module
in accordance with the O(N)-modification rule applied to the universal character
formula [12], [23]:

(5.21) FUN)Nowm~ & v,

V€A+(N)even



CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 55

where \/v is defined in ((5.15)) as an element of Z[A*(N)]. For the proof of Lemma
5.10, we use the following two claims.

Claim 5.12. Suppose A = (2¥,1%) € AT(N) and v € AT (N)eyen With v C A, Then v
is of the form v = (2¥7") for some 0 < r < k and \/v = (27, 1%).

Proof of Claim[5.13, The first assertion is clear because v C (2%, 1%) and v € AT (N)eyen-
Then, the skew diagram X \ v is actually a Young diagram (27, 1%), and therefore,
the claim follows from ([5.16]). O

We write pry,: Z[O/(JV)] — Z[{H*(C") : s € N}] for the canonical projection.

Claim 5.13. Suppose X = (27,1%) € A*(N). Then we have

HPH(CN) if (r,0) = (0,0),(0,1), or (1,0),
pr (V) = (C) it (r,6) = (0,0), (0,1), or (1,0)
0 otherwise.
Proof of Claim[5.13. The assertion is obvious from the bijection (5.17) if A € AT (N)gp.
What remains to prove is pry, ([A]) = 0 for A ¢ A*T(N)pp. First of all, we see from
the O(N)-modification rule (5.19) that the H*(CY)-component of [\] is nonzero

only if s € {0,1,2} corresponding to 0, [ Jor L1 Further, s = |A\] — h and
h=2(r+4¢)— N (>0). Hence { = N — s.

For s = 0, we have £ = N, and therefore, the only possible form of A is A = (1%).
Hence the corresponding O(N)-representation is [A\] = det 2 1.

For s = 1, we have £ = N — 1, and therefore, the only possible forms of A are either
(1N=1) with N > 3 or (2!, 1¥71). Then [\ ~ det @H(CY) or {0}, respectively, by
the O(N)-modification rule (5.19). Thus pry,([A]) = 0 in either case.

For s = 2, we have ¢/ = N — 2, and therefore, the only possible forms of A
are either A = (2',1¥72) with N > 3 or (2%,1¥72). Then [\] = det @H?*(C") or
— det @H2(CY), respectively, again by the O(N)-modification rule (5.19). Hence,
we have pry, ([A]) = 0 in either case. Thus the claim is shown. O

We are ready to complete the proof of Lemma |5.10L

Proof of Lemmal[5.10. By the branching law (5.21)) for the restriction U(N) | O(N),
we have from Claim [(.12]

k

F(U(N), <2k7 16))'0(1\7) = @[(2T7 1Z)]~

r=0
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Therefore
HO(CN) (k>€) = (an)’
HL(CN) {=1%k>0
F(U(N), (2%, 1° = T
pr?—[( ( ( )7( ) ))‘O(N)> /HD((CN) @H2(CN) _ 0,]{? > 1,
0 otherwise.
Thus the lemma is proved. O

5.5. Classification of Homo,—1) (A'(C"), A?(C"') @ H¥(C"')). We recall that
the group O(n — 1) acts on ny ~ C" stabilizing the last coordinate (,, and thus acts
also on v, = n; N{¢, = 0} ~ C* !, and thus we have an isomorphism Pol(n,) =~
Pol[¢y, ..., (uo1] ® Pol[¢,,] as an O(n — 1)-module. In this section we determine ex-
plicitly Homo -1y (V]o@m-1), W @ H(C"™)) for the O(n)-module V = A(C") and
the O(n — 1)-module W = A’(C"!). The results will play a basic role in the classi-
fication of all differential symmetry breaking operators £(S™),.s — E7(S™ 1), ..
The main result of this section is the following:

Proposition 5.14. Let n > 2. Suppose that 0 <i<n,0<j<n-—1, and k € N.
Then the following three conditions on (i, j, k) are equivalent.

(1) Homog-1) (A'(C™), N(C"1) @ HM(C"Y)) # {0}.
(i) dimHomo,—1y (AY(C™), AV(C"™) @ HF(C" ™)) = 1.

(iii) The triple (i, 7, k) belongs to one of the following cases:
Case 1: j=i—2(2<i<n), k=1,

Case 2: j=1i—1
2-a:1=1,k=0,1,
2-0:2<i<n-1,k=0,1,2,
2-c:i1=mn, k=0,

Case 3: j =1i:
3-a:1=0, k=0,
3-b:1<i<n—-2k=0,1,2,
3-cct=n—1,k=0,1,

Case 4: j=i+1(0<i<n-2), k=1.

Explicit generator h\*) . in Homon—1) (AY(C"), A (C"™1) @ H*(C"~1)) will be given

i—]

in (5.24)—(5.27) below. We begin with the following elementary lemma:
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Lemma 5.15. As an O(n — 1,C)-module, V = \'(C") decomposes as
NC) = NC ) @ A (E )

The spaces AY(C"!) and A""'(C"') have bases {e; : [ € Z,_1,;} and {e; : [ €
Z,—1i-1}, respectively. We normalize the first and the second projections by

er 1fn§§],

5.22 . =
(522 prialer) {0 .

0 ifngl
5.23 i , ’
( ) P (6[) { (_1)17161\{71} ifnel.
The signature of pr;_,, ; is taken in a way that it fits with the interior multiplication
v o for differential forms (see (8.18))).

Proof of Proposition |5.14. By Lemma [5.15, the proof reduces to Lemma with

N =n — 1. In fact, explicit generator hﬁ@ is given as follows:

J

(5.24)
Case j =i —2: th 2 - Hi(i)lmd OPrji1-
(5.25)
o k) > (k 2~
Case j =i —1: hf—n 1= Hi(—)l—n'—l opr; ;1 (k=0,2), hz(l—)n‘—l = i(gi—l © Pri-
(5.26)
Case j = hg—)n = Hz(—zz Py (k = 0? 2)7 hgl—)m = ﬁz(i)lﬁz O P51
(5.27)
Case j =1+ 1t hHlJrl = ngl O Pr_,;-
Here we have applied - ) to N — 1 for f[ ) in the above formula.
We see from (j5.14] - ) that some of these operators Vanlsh namely,
2 1 2 1 2
(5-28) h( )0 =0, thin 1= thl)n 1 =0, h((H)o = hO%O =0, th)lﬁn 1 =0,

and that h'®) # 0 as far as (i, j, k) satisfies the condition (iii) in Proposition |5.14}

i—J
Hence we have shown Proposition [5.14]

We shall use the basis hE ~,;i—1 in Chapter @ and hZ ~it1 in Chapter , respectively.
For later purpose, we give explicit formulae of hi—)>j< 1) for I € Z,; in Table .
The proof is immediate from (5.7)-(5.11]) and the definitions (5.22)~(5.27). Here we

recall from ( - ) that QJ s ZEGJ Cg — n#;lQn,l(C’) for ¢ = (¢1,...,Cu1) and
J el 1.
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TABLE 5.1. Formulee of hgﬁzj (er) for I €Z,,;

né¢l nel
o, (er) 0 (=1 enny
hz@—)n (er) €1 0
hz(‘l—)n‘—z (er) 0 - Z sgn([; ¢, TL)‘ff\{M}CZ
Le\{n}
sy (er) | D sen(T; Oen 0
Lel
h, (er) 0 > sen(I; £, n)en myun e
01
i (er) | > sen(T; Oervn G 0
&
0 ifné¢l,

hz@)i— (er) = i— A .
e (D)7 Qi @engy + > D sen(1:p,q) Glenpmutay | Hfn el

pel\{n} q¢I

Qr(¢er+ > Y sen(l;p, )Glen g fnél,
2
m2; (er) = e

0 ifnel.

5.6. Descriptions of Homog,—1)(A'(C"), A7(C" ) @ Pol|Gi, . .., G))-
It follows from Lemma [4.2| and Proposition that the spaces Homo,—1)(V, W®
Pol(n,)) are determined explicitly for (V, W) = (A*(C™), A?(C"1)) as follows:

Proposition 5.16. Letn > 2, 0<i <n, and 0 < 7 < n —1. Then the following
two conditions on (i,j) are equivalent:

(i) Homog-1) (A'(C"), AV(C"™) @ Pol¢y, ..., Ga]) # {0}
(i) je{i—2,i—1,4,i+1}.
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Proposition 5.17. Let n > 2. Suppose that 0 <1 <n,0<j7<n-—1, and a € N.
Then Homom—1) (A (C"), A7 (C* 1) @ Pol®[(y, . .., () is equal to

{(Tar9)hY; 5+ 9 € Polu_s[t]even} if j=i-2,
C -span {(Ta_kgk)hl@iflz gi € Pola_k[t]even} if j=4—1,

(C_Span (Ta*kgk)h"fi)m Ik € POlafk[t]even} 1f] =1,
{Tanl)iy1: g € Polys[feven | i,
{0} otherwise.

Here we regard Pol_i[t]even = {0}. We also regard
(5.29) p¥) =0 when (i, k) = (1,2), (n,1), or (n,2),

i—i—
(5.30) hF) =0 when (i,k) = (0,1),(0,2), or (n—1,2).
We note that when j =i, i — 1, we have k£ < min{2,a}.

5.7. Proof of the implication (i)=-(iii) in Theorem In this section, we
give a proof of the implication (i) = (iii) in Theorem [2.8|

We recall that characters of A are parametrized by C via the normalization ([2.6).
For 0 <i < n, o € Z/2Z, and X € C, we denote by agl the outer tensor product
representation /\*(C")X(—1)*KC, of the Levi subgroup L = M A ~ O(n)x O(1) xR
on the i-th exterior tensor space A’(C"). Similarly, TIEJB) 0<j<n-1,veC,
B € Z,/27) stands for the outer tensor product representation A7(C" 1)K (—1)’KC,
of the Levi subgroup L' = M'A~O(n—1) x O(1) x R.
Lemma 5.18. Suppose that n > 2. Let 0 <1 <n, 0 < j <n-1, \,v € C,
a,f € /27 and a € N. Then the following two conditions on (i,j, \,v,a, B,a) are
equivalent:

(i) Homy: (04|, 7 ® Pol’(n.)) # {0}.
(i) je{i—2,i—1,i,i+1}, v—A=a, and [ —a=amod2.
Moreover, a > 1 when j =1—2 ori+ 1.
Proof. First of all, we consider the actions of the second and third factors of L' ~
O(n —1) x O(1) x R. Since e € A and —1 € O(1) act on n, ~ C" as the scalars
e! and —1, respectively,

Homo(ya (03075 @ Pol’(n.) ) # {0}

if and only if
v=A+a and [ =a-+ amod2.
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Then the proof of the lemma reduces to Proposition for the action of the first
factor O(n — 1) of L'. O

We recall from Section 2.1 that I(i, \), and J(j,v)s are (unnormalized) principal
series representations of G and G’, respectively. By the F-method summarized in
Fact [3.3) we have a natural bijection

(5.31) Diff: (1(i, N)a, J (4, v)5) = Sol(ny; o), 7)),

where we recall from (3.5))

Sol(ny; 0l 9y = { € Homp (01|, 79)@Pol(ny) : drgsny (C)ib = 0 for all C € w,}.
Proposition 5.19. Suppose 0 <i<n,0<j<n-—1, \veC, and o, € Z/27.

Then,
(1) Diffe (1(2, Na, J(J,v)5) # {0} only if
(5.32) j e {i—2,z—1,z,z+1}, v—XAeN,andf —a=v— Amod2.

(2) Suppose (5 is satisfied. Then,
Sol(n.; 030, i) = {w € Homog1) (A(C"), N (€)@ Pol ™ (ny)) s dry- (NI ) = 0}

Proof. (1) The first assertion is a direct consequence of ((5.31)) and Lemma
(2) Suppose ((5.32)) is fulfilled. Then, it follows from the proof of Lemma that

Homj, (af\i’)ah/, TIEJﬁ ® Pol(n+)> ~ Homo-1) (A (C™), A(C"") @ Pol” *(n})) .

Hence the second statement follows. O

Owing to Proposition|[5.17jand Proposition|5.19|(2), the F-system for Sol(n,; ay)a, 7',%)

boils down to a system of ordinary differential equations of g;(t) (j = 0,1, 2). We shall

find explicitly the polynomials g;(¢), and determine Sol (n+, a/(\)a, T, 5) forj=1—1

in Chapter [ and for j =i + 1 in Chapter [7]
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6. F-SYSTEM FOR SYMMETRY BREAKING OPERATORS (j =7 — 1,7 CASE)

As we discussed in the previous chapter, the F-method (see Fact establishes
a natural bijection (5.31)) between the space Diff s (1(¢, A)q, J(J,v)s) of differential
symmetry breaking operators and the space Sol <n+; ng)a, l%) of Home (AY(C™), A7(C™1))-
valued polynomial solutions to the F-system.

In this chapter, we study the F-system in detail for j =7 — 1. The case j =i+ 1
will be investigated in the next chapter. Via the duality theorem (see Theorem
, the cases 7 = 7,7 — 2 are understood as the dual to the cases j =4 — 1,7+ 1,
respectively. The results of this chapter (j =i — 1 case) are summarized as follows.

We recall from (5.25) that ).+ AI(C") — ATH(C" 1) @ H*(C™ 1) are O(n —1)-
homomorphisms for k = 0,1, and 2. Let C/(t) be the renormalized Gegenbauer

polynomial (see (14.3))).

Theorem 6.1. Let n > 3. Suppose 1 <i<n, \,v € C and o, € Z/2Z. Let JAQ,
7 ) be the outer tensor product representations of L=MA~ O(n) x O(1) x

L’ =MA~0Mn—-1)x0(1)xR on AY(C")K(-1)*KC,, ATHC" K (—1)5®C,,,

respectively. Then

(6.1)
2
@ (i CS (T, ag) B ifv—AeNand B—a=v—Amod2,
{0} otherwise.
From now, we assume a :== v — X € N and f — a = a mod 2. We consider the
following polynomials:
T/ —1 ~)\_n=3 ™ ~ n n=3 v/ —1
(6.2) e*TrBth_IQ () e (7).
(6.3) AT (eﬂ\Ft) ,
(6.4) 52_*2"% (ef t> ,
where

o I
A=r0-"=a), B:A<1+u>, coATnti

a a n—1

codd); = p+ 5 (a:even) (see (1.3)). Then the polynomials
re given as follows.

S

=
>

2

F
&

I
—_
gf\
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(1) i=1a>1: (90(1), 91(1), 92(t)) = ((6-2), (6.3), 0);
(2) 2<i<n—1,a>1: (g(t),q(t),9:(t) = ((6-2), (6-3), (-4));
3) i=n,a>1: (90(£), 91(£), ga(t)) = (52‘”7_3 (¢%57¢),0,0);
4) 1<i<n,a=0: (90(t), 91(t), 92(1)) = (1,0,0).
Remark 6.2. The exceptional cases (3) and (4) in Theorem [6.1] are closely related to

the vanishing conditions of the family of the symmetry breaking operators Difaifl

given in Proposition . As we introduced the renormalized operator 25;_‘;“1 in
(1.9), we separated (3) and (4) from the others. The relationship will be clarified
in Section where we explain how the triple (go, g1, g2) of polynomials gives rise
to the differential symmetry breaking operator 52—;1—1 (= @)fl,_ Y from &(R") to
ETH(R") as stated in Theorem [2.9]

The proof of Theorem [6.1] is divided into two parts:

e to reduce a system of partial differential equations (F-system) to a system of
ordinary differential equations on gx(t) (k =0, 1,2) (see Theorem [6.5]).
e to find explicit polynomial solutions {gx(t)} to the latter system (see Theorem
5.7).
In the next section we first complete the proof of Theorem for j =1— 1,7 by
admitting Theorem

6.1. Proof of Theorem for j = 7—1,7. In this section, we prove that Theorem
determines the dimension of the space of differential symmetry breaking operators
from principal series representations (i, ), of G = O(n+1,1) to J(j,v)s of G' =
O(n,1) when j =i —1,i. The following two theorems correspond to Theorem in
the cases 7 =1 — 1 and i, respectively.

Theorem 6.3 (j = i — 1 case). Let n > 3. Suppose 1 < 1 < n, \,v € C, and
o, € ZJ27. Then the following three conditions on (i, \,v,«, ) are equivalent:
(i) Differ (I(i,N)a, J(i — 1,v)5) # {0}.
(i) dim Differ (1(4, N)a, J(i — 1,v)5) = 1.
(iii) v—=AeN, a—=v—Amod 2.

Theorem 6.4 (j = i case). Let n > 3. Suppose 0 < i < n—1, \,v € C and
o, € ZJ2Z. Then the following three conditions on (i, \,v,«, 3) are equivalent:
(1) DiﬂG’ (1(27 /\)om ‘](27 V)B) 7& {O}
(ii) dim Differ (1(4, N)a, J(i,v)5) = 1.
(iii) v—=AeN, a—=v—Amod 2.
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Proof of Theorem[0.3. By the general theory of the F-method (see (5.31])), we have
the vector space isomorphism ([5.31)). Thus the equivalence will follow if we show
that the solutions in Theorem [6.1| are nonzero when the condition (iii) is satisfied.
For this, we observe that we renormalized the Gegenbauer polynomial in a way
that C7(t) is nonzero for all & € C and ¢ € N (see Section ﬁi . We also know

that hz@i_l # 0 except for the cases (i,k) = (1,2),(n,1), or (n,2) (see (5.29)).

Moreover, for each i (1 < i < n), these nonzero maps hﬁ)ﬂ._l (k= 0,1,2) are linearly

independent by Proposition [5.14) Hence the solutions constructed in Theorem [6.1
are nonzero by the decomposition (4.3). Now the desired statement is proved. [

For the proof of Theorem [6.4] we use the duality theorem for symmetry breaking
operators (Theorem instead of solving the F-system.

Proof of Theorem[6.4]. Tt follows from Theorem [2.7] that we have a natural bijection

Diffes (I(i, \)a, J (i, )5) ~ Diffe (I GN), T (-1, u)5> ,

where i := n — 4. Then it is easy to see that (E, A\, v, a, 3) satisfies the condition
(iii) in Theorem [6.3|if and only if (i, A\, v, «, §) satisfies (iii) in Theorem Hence
Theorem [6.4] is deduced from Theorem [6.3] O

6.2. Reduction theorem. We begin by stating the main theorem of the rest of this
chapter. Recall from Section that, for 4 € C and ¢ € N, R} denotes the following
differential operator

2

1 d d
R = =3 ((1 )2 (L 2t — 00+ 2@) ,

equivalently,

1
(6.5) Ry = ~53 (1 + )07 — (1 = 2ut?)9, — (0 + 2p)t?)
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with ¢, := t<. For polynomials g;(t) (j = 0,1,2) of one variable ¢, we then define
other polynomials L,(go, g1, g2)(t) of the same variable ¢ (r =1,2,...,7) as follows:

_n-3
(6.6) L1(90,91,92) := Ri_g > g9,
A—n=3
(67) L2(907glag2> = Ra—l 2 g1,
d
(6.8) L3(90, 91, 92) == (a — 1 = ;)g1 — %,
d
(6.9) La(go. 91,92) = (9o +2) +-a —n + 1)gy = 1.
dgo n—1idgs .
Nl L = e _
(6 O) 5(90791792) dt n—1 dt (a+)\ n+Z)gl7
. n-—1
(6.11) L6(90,91,92) = (A=n+i+a— o 1(“ —Ut))g2 — (a = Vt)go,
A—n=l n—1dg
.12 L = a 2 -
(6.12) 7(90, 91, 92) == R 9t 1

For later convenience we also set Lg(go, g1,92) = Le(go, 91, 92) — tLs(g0, 91, g2),
Lo(g0, 91, 92) := 2= L3(go, 91, 92) + L5(go, g1, g2), namely,

(6.13)

coali—1
L8(90791792) = ()\—n+2—|— ( )

n—1

) g2(t) + (a+ X —n+i)tg(t) — ago(t),

d 1—1
L9(90>91792)=%+ (n_l(ﬁt—n—a—i-?)—(19t—|—)\—n+2)) gi-

Note that L1(go, g1, 92), - - - » L1(go, g1, g2) are independent of go. Likewise, L2(go, g1, g2),
L7(g0, 91, 92), and Lo (go, g1, g2) are independent of go. '
By Proposition5.17], any element ¢ € Homo,—1) (A*(C™), A" (C") @ Pol®[(, . .., ()

is of the form
th:O(Ta—k:gk)thO (i =1),
¥ =1 Yio(Torge)iDi, (2<i<n—1),
(Tago) s (i =n),
for some polynomials gi(t) € Poly_g[t]even (k = 0, 1,2), where T,_jgi € Pol®*[Cy, ..., )]
are given as in ([£.4). For i = 1 or n, we may also write as 1) = ZzZO(Ta_kgk)hgﬁzi_l
with go =0 for : = 1 and g; = g5 = 0 for ¢ = n. In what follows, we understand

(6.14)
g1=¢g=0 fora=0; ¢go=0 fora=1; ¢g=0 fort=1;, g =g, =0 fori=n.

Theorem can be separated into Theorem (finding equations) and Theorem
6.7| (finding solutions) below.
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Theorem 6.5. Let n > 3 and 1 < i < n. Then, for ) = ZiZO(Ta,kgk)h( the

i—1—17
following hold.

(1) Suppose i = 1. The following two conditions on go, g1 are equivalent:
1 satisfies am y+ = or a en,.
i ' dmn-(C 0 INCen
(i1) L,(g0,91,0) =0 forr=2,7,9.
(2) Suppose 2 <i<n—1. The following two conditions on go, g1, g2 are equiva-
lent:
1 satisfies dme; yy» = or a en,.
i) ¢ sfies dmi ny«(C)p = 0 for all C' € n!,
(H> Lr(907917g2):()f0r G,”T'Zl,...,7.
(3) Suppose i =n. The following two conditions on go are equivalent:
1 satisfies A, )+ = or a en, .
i ' dmnn-(C 0 INC e
(if) L7(g0,0,0) = 0.

Remark 6.6. For i = n, the equatlon L7(go,0 0) = 0 amounts to the imaginary

Gegenbauer differential equation Ra T go = 0.

Theorem 6.7. Let n > 3 and 1 < i < n. Suppose gi(t) € Poly_i[tleven (K =0,1,2)
with the convention . Then, up to scalar multiple, the solution (go, g1,92) of
the F-system L.(go,1,0) = 0 for r = 2,7,9 when i = 1; L.(g0,91,92) = 0 for
r=1,...,7 when 2 <i<n-—1; L.(go,0,0) = 0 for r =7 when i = n, is given as
follows:

(1) L= 17 a Z 1: (907g1792) (a 70)a

71 ™ 1
(3) = n, a Z 1: (90,91792) = C (6 \/27t> a070> ;
(4) 1§z§n,a:() (907glag2>:(170 )

Remark 6.8. The formula (3) for a = 0 coincides with the formula (4) for i = n
because C¥'(t) = 1.

The proof of Theorem [6.7| will be given in Section by using some basic proper-
ties of the Gegenbauer polynomials that are summarized in Appendix. Alternatively,
the theorem could also be shown by solving directly the F-system L,(go, g1,92) = 0
(r=1...,7) with the following remark.

Remark 6.9. Let a > 3 and assume that (go, g1, g2) satisfies L,(go, g1,92) = 0 for
r = 1,2,3. Then the following two conditions on the triple (go, g1, g2) are equivalent:
(i) L-(g0,91,92) =0 for r =4,5,6,7.
(ii) Ls(g0, g1, 92) = 0.
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The rest of this chapter is devoted to proving Theorem Since the argument
requires a number of lemmas and propositions, we separate it into a few steps as
follows. Let N;" be the element of the nilpotent Lie algebra n/, defined in (2.2).

Step 1. Reduce the condition m(C)w =0 for all C € n/, to m(]\/fr)w = 0.

Step 2. Consider the equation m(i\ff“ )¢ = 0 in terms of matrix coefficients M.

Step 3. Reduce the number of cases for the matrix coefficients M;; to consider.

Step 4. Express the matrix coefficients My in terms of L,(go, g1, 92) for r=1,...,7.

Step 5. Deduce L,(go,g1,92) =0 for r =1,...,7 (resp. for r = 7) from M;; = 0 for
2<i<n-—1 (resp. for i =n)

Observe that Step 1 was done in Lemma in a more general setting (see also
Proposition [5.19] (2)). In the next sections we shall discuss Steps 2-5.

6.3. Step 2: Matrix coefficients M;; for CHZT)(NIJ“)@/J In this section, along
the strategy discussed in Section |4.5 we consider the differential equation (F-system)
m* (N;7)e = 0 in terms of matrix coefficients My; = M35 + MySt. The scalar
part M5eer of M is also computed. Since the arguments work for any n and i, we
assume that n > 1 and 1 < ¢ < n in this section.

We begin with a quick review of Section 4.5 First, for £ € {1,...,n} and m €
{0,1,...,n}, we write

om={RCA{L,....0} : |R| =m}

as in (5.1). Here Z,, is understood as Z,o = {(0}. Note that {e; : I € Z,;} and
{wy:J €I, 1,1} are the standard bases of A’(C") and A\""'(C"!), respectively.
For{e;: I €Z,;} and {w;:J € Z,_1,_1}, we then set

My = Mi5(g0, 91, 92) := <d7r(i,)\)*(N1+)¢(<)elaw\J/> .

Lemma 6.10. The following two conditions on (go, g1, g2) are equivalent:

(i) dﬁ(i,x)*(Nfr)%ﬁ = 0.
(ii)) My =0 foralll €Z,;, and J € L,,_1,; ;.

Proof. Clear. 0
According to the decomposition (|3.8)) into the “scalar part” and “vector part”
dix (NF) = dmne (NF) @ idyy + Ay (NF)

with V' = AY(C"), we decompose Mj; as
Myy = Melar 4 ppyect
(see Proposition [£.9).
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Forl €Z1,;and J € Z,,_1,_1, we write hyf]) for the matrix coeflicient (hl@i_1> =
1J
(h(k)»_ (er),eYy) of hi* It follows from Table |5.1| that we have

—i—1 z—>z 1
B i—1 ([)) o 1 lf J C [ > n,
(6.15) (=) hry = {0 otherwise.
) _ [sen(L;0)¢ if JCIFn,
(6.16) hij = {0 otherwise.
> G- E=Qua(¢) if JCI>n,
i1 ) ten{n}
(6.17) (=1)""hy; = sgn(l;p, 4)pG, if |[J\I|=1and I > n,
0 otherwise.
Here Q,_1(¢") = 201 (2, and we write [ = JU{f} (1< <n—-1)if JCIZn,

and[—KU{p,n}J-KU{q}1f!J\[|—1and[9n By (6.15)-(6.17), we
observe:

(6.18) WK =0 forn ¢l (ie. I €T, ;) for k=0,2
(6.19) h]J—O fornel (e. I €Z,; \ Ln-1,).

By using 5% 7 J, we then have the following.

_n=1
Lemma 6.11. With G), := T, (Rj_; gk) for k =0,1,2, the scalar part M;5'™

15 given as follows.

C Cl (2) B ahlj
ppsestar — ) Qn- G (€) OO + gy Gt + O a = DTiagTget (ne ).
C 8hIJ
Gragy Oty + Ok a= Do pe (n g 1)

Proof. As 1) = Zk:o(Ta—kgk)hQi—la it follows from Proposition (1) that

2 0 on)
M?S“r=z Q@) ¥l + Ok a = DTomsg) 5ot |

Since 11 8 =0 by (6.17), the proposed identity holds from ({ and ((6.19)). O
In Sectlon . 6.6 by using — and Lemma , we shall give explicit for-

_ scalar vect
mulee for My; = M7F* + M5,

We conclude this section by showing the following lemma.



68 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

Lemma 6.12. The following hold.
(1) If [T\ I| > 1 and n & I, then M5t = 0.
(2) If|J\I| >2 and n € I, then M35 = (.
Consequently, if |J \ I| > 2, then M;galaf 0.

Proof. To show the first claim, as n ¢ I, it suffices to show that h?J) = 0. Since
J ¢ I, it follows that h(;]) = (. The second claim may be shown similarly. Indeed, if
|J\ I| > 2, then h[.] =0 for k =0, 1,2. Therefore the second claim also holds. [

The vector part M5 will be treated in the next section.

6.4. Step 3: Case-reduction for M5, In view of Lemma [6.10, we wish to solve
My =0forall I €Z,; and J € Z,,_;;—;. The aim of this section is to reduce the
number of cases for M;; to consider. We would like to emphasize that, consequently,
no matter how large n is, it is sufficient to consider at most eleven cases. This is
achieved in Proposition [6.19] As in Section [6.3] throughout this section, we assume
that n >1and 1 <3¢ <n.

As Lemma treats M35 for My, = MG + Myst, it suffices to consider
Myeet,

It follows from Proposition [4.9| that, for 1 = Y27 (T kgk)hf_zz 1, we have

Myt = Z Arpry = Z Z AH’( a— kgkh[/J>

I'eT, k=0 I'€Z, ;
where Ay is the vector field given in Lemma [5.3] namely,

Ay = {Sgﬂ(1§€)% if (I\NI)]JI'\T) ={1,¢} ((#1),

(6.20) )
0 otherwise.

Then, in order to evaluate M}, one needs to compute >, ., = Arptpp ;. However, in
n,i

fact, almost all the terms A1), are zero. We formulate it precisely by introducing
the definition of Supp(7, J; k) as follows.

Definition 6.13. For I € Z,,;,, J € Z,_1,1, and k € {0,1,2}, define a subset
Supp(/, J; k) of Z,,; by

Supp(I, J: k) :={I' € I,; : A;p # 0, and hI’J 7 0}.

It follow from (|6.15)), (6.16]), and (6.17) that we have

-,Z'-ni\—’z/—nfli fOI'k:O,Q,
S 1,J;k)C ’ ’
upp( ) {In_l,i for k = 1.
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By using Supp(I, J; k), My5* may be given as follows:

2

(6.21) M;;Ct = Z Z AH/ (Ta_kgkhyf‘»

k=0 \ I'’eSupp(I,J;k)

We now show that if |J \ I| is large, then Supp(Z, J; k) = ) and thus M5t = 0.
Together with the results in Lemma [6.12] this allows us to focus on the cases when
|J \ I| is small. In fact, it turns out that it suffices to consider only the cases when

|J\ I] € {0, 1}, see Lemma below.

We first show that if |J\ I| > 2, then M5 = 0. We prove it in two steps, namely,
Lemmas [6.14] and [6.15] The following “triangle inequality” for arbitrary three sets
I, I'; and J is used in the proof for Lemma [6.14}

(6.22) NI S NI+ 1),

Lemma 6.14. We have the following:
(1) If |J\ I| > 2, then Supp(I, J; k) =0 for k=0,1.
(2) If |J\ I| > 3, then Supp(1, J;2) = 0.
Consequently, if |J\ I| > 3, then M5 = 0.

Proof. Observe that, for k =0, 1,2, if Supp(/, J; k) # 0, then there exists I’ so that
Aqp # 0; in particular, [I'\ I| = 1 by (6.20)). On the other hand, if I’ € Supp(Z, J; k),
then h{¥) # 0, and therefore |.J\ I = 0 for k = 0,1 and |J\ I'| < 1 for k = 2 by
6.15)-(6.17). We then get |J\ I| < 2 for k = 0,1 and |J\ I| < 1 for k = 2 by
6.22)). [l

Lemma 6.15. If |J \ I| = 2, then M5 = 0.

Proof. Under the condition |J\ I| = 2, we first observe Supp(Z, J; k) = () for £ =0, 1
by Lemma (1). Further, for any I’ € Supp(/,J;2), I’ > nand |J\ I'| <1 by
(6.17). On the other hand, |J\ I'| > [J\I| = |[\I'| =2 —1=1 by (6.20). Hence
|J\I'| = 1.

Assume n ¢ I. Then (I,I') must be of the form [ = K U {1} and I’ = K U {n}
by (6.20), which is impossible because 2 = [J\ I| < |J\ K| = |J\ I’ = 1. Hence
Supp(Z,J;2)=0ifn ¢ I and |J\ I| = 2.

Assume now n € I. Then there are two cases, namely, 1 € [ and 1 ¢ I, and in
each case Supp(/, J;2) consists of two elements. Indeed, for K :=1NJ C Z,_1,-3,
we have the following.

(1) I =KU{l,r,n}, J=KU{p,q} for some :
Supp(1, J;2) = {K U {p,r,n}, K U{q,rn}}.
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(2) I = KU{p,q,n}, J =K U{1,r} for some r:

Supp(Z, J;2) ={K U{l,p,n}, KU{l,q,n}}.

In either case, we have M}5 = 0 if and only if (. (Cpa%, — an%p) (Tu—292) = 0, which
clearly holds, as T, _2¢2 is O(n — 1, C)-invariant. Now the assertion holds. O

Remark 6.16. The case that |J \ I| = 2 happens only when n > 5 and 3 <i <n—2.
Now we obtain the following lemma.
Lemma 6.17. If |J \ I| > 2 then M}$* = 0.

Proof. This follows from Lemmas and [6.15] OJ

By Lemmas and [6.17] it suffices to focus on My, with |J \ I| < 1. Observe
that among the indices 1,2,...,n for {1,2,...,n}, “1” and “n” play special roles

(139

for I and J, as “1” comes from our choice of N;" for d?(,JT)(Nfr ) and as “n” makes
the difference between M = O(n) x O(1) and M’ = O(n — 1) x O(1). On the other
hand, all the pairs (I,J) € Z,; X Z,,_1,_1 with |J\ I| < 1 are classified into 2*(= 16)
cases according to whether each of the following conditions on (7, .J) holds or not:
leJ,1el,nel, and J C I. For simplicity we represent them by quadruples
[+, +, £, +] as follows.

Definition 6.18. We mean by quadruples [+, +, &, +] the cases according to whether
each condition 1 € J, 1 € I,n € I, and J C [ holds.

For instance, by [—, 4+, —, 4], we mean that (I, J) satisfies 1 ¢ J,1 € I,n & I and
JClI.

Among 2*(= 16) cases for (I,J) with |J \ I| < 1, we show that at most eleven
cases need to be taken into account, and thus Lemma [6.10] can be refined as follows.

Proposition 6.19. Let ¢ = Zi:O(Ta_kgk)hgifl.
on (9o, g1, g2) are equivalent:

(i) dmginy-(Ny ) = 0.
(ii) M1y =0 for any (I,J) € Z,,; x I,—1,-1, subject to the eleven cases in Table
0. 1)

The the following two conditions
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TABLE 6.1. (I,J)for 1 <i<n

I J [£, £, &, +]
1) JU{n} J ++++
2) Ku{l,n} Kufp} —++—
3) Ku{pnl KU{l} +—+—
4 Juln) J S
®) Kuf{pn} Kufqg ——+-
6) Kuipq Ku{l} +--—
1) Ju{p) J S
(8) J U {p} J ++ —+
9 Ku{lp} Kufqg —+-—-
(10)  Ju{1} J —+—+
(11) KU{l,p,n} KU{l,q} +++—

For later convenience, we have described in Table |6.1|the general form of (1, J) for
types (1)-(11), where each union is disjoint and 1, p, ¢, n are all distinct numbers. By
this description, we observe that some of these types do not occur when i or n — 4 is
very small. To be precise, we have:

Remark 6.20. For i = 1,n — 1, or n, only the following cases occur:

(a) i =n: (1);
(b) n=2and i =1: (4), (10);
(¢) n >3

(cl) i=1: (4),(7), (10);
(c2) i=n—1: (1),(2),(3),(4),(8), (10).

Hence Proposition [6.19| includes the following degenerate cases.

Proposition 6.21 (i = 1). The following two conditions on (go, g1) are equivalent:
(i) dﬂ(l’)\)* (Nf_)w = 0.
(ii) My; = 0 for any pair (I,J) € I,1 X L,,—1 that belongs to (4), (7), (10) in
Table 61} namely, for (I,7) = ({n},0), ({p},0) (1 <p<n—1), ({1},0).

Proposition 6.22 (i =n). The following two conditions on go are equivalent:
(i) dﬁ(ny)\)*(Nf_)@/J = O.
(il) Mr; =0 for any (I,J) € Ly, X Ly—1n—1 that belongs to (1) in Table
namely, (I,J) = ({1,...,n},{1,...,n—1}).

The proof of Proposition [6.19|consists of several lemmas; nonetheless, it is basically
done in two steps. First we observe that the three cases [+, —, +,+], [+, —, —, +],
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and [—, +, +, 4] do not exist set-theoretically. We then show that, for the other two
cases [+, +, —, —] and [—, —, —, —], we have M; = 0.

Lemma 6.23. Set-theoretically, the three cases [+, —, +,+], [+, —, —, +], and [—, +, +, +]
do not exist.

Proof. It 1 € J C I, then 1 € I. Therefore [+, —, 4, +] do not exist. If J C I and
n € I, then J = I\ {n}; in particular, in the case, if 1 € I, then 1 € J. Hence,
[—,+, +, +] does not exist. O

Next we aim to show that M;; = 0 for (I, J) of type [+, +, —, —] and [—, —, —, —].
More generally, we observe that the set Supp(/,J; k) (see Definition is deter-
mined by the types of [+, 4+, £, 4|, and actually, this is the reason that we introduced
the notation [+, 4+, £, 4| here. The simplest case is k = 0, where we have

o JJu{n} for [= 4 — +or[+,—,+ -],
Supp(/, J;0) = { 0 otherwise.

By using this idea we consider Lemmas and below.

Lemma 6.24. The following hold.

(1) If (I, J) is of type [+, +, &, ], then Supp(I, J;1) = 0.
(2) If (1,J) is of type [+, +, —, —], then Supp(I, J; k) =0 for k =0,1,2.

Proof. For the first statement suppose that 1 € I'NJ. If I' € Z,,; satisfies A;p # 0,

then 1 ¢ I’ as 1 € I. Hence J ¢ I’ since 1 € J. Therefore hg?, = 0.

To show the second statement, it suffices to show that J C ['if 1€ J, 1 €[ En,
and Supp([,J;k‘)#@fork—OorQ For k = 0,2, let I’ € Supp(I, J; k). By (6.20),
I':I\{l}U{n}becauselEI%nandnE[’ Then|J\(I’\{n})|—1+|J\[|

because
SN\ An}) =\ I\ {1}) = {1} U (J\ D).
Since hglf} # 0 implies that |J \ (I"\ {n})| < 1, this shows that J C I. O

Lemma 6.25. The following hold.

(1) [f (I7 J) is Of type [_7 ) _7:i:]7 then Supp<[7 J; 0) = Supp<[7 J; 2) = (Z)
(2) If (I,J) is of type [—, —, —, =], then Supp(I, J; k) =0 for k=0,1,2.

Proof. For the first statement observe that if A;p # 0, then I’ C T U {1} because
1¢ 1. Since n ¢ I, we have n ¢ I', which shows that Supp(Z, J; k) = () for k = 0,2
by . To show the second statement, it suffices to show that J C Iif 1 ¢ J,
1 ¢ 1 #n, and Supp(Z,J;1) # 0. Let I' € Supp(l,J;1). Since A;p # 0, we have
I' c Tu{1} by because 1 ¢ I. Since h% # 0, we have J C I’ by (6.16). Thus
J C TU{1}. Therefore J C [ as1¢ J. O
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Lemma 6.26. For the cases [+,+,—, —] and [—, —, —, —], we have M;; = 0.

Proof. By Lemma [6.12 we have M;ar = (0. Moreover, it follows from Lemmas
and that Myst = 0. As My, = M35 + M7St, this proves the lemma. O

Proof for Proposition[6.19. The assertion follows from Lemmas and[6.26f O

6.5. Step 4 - Part I: Formula for saturated differential equations. The goal
of Step 4 is to express the matrix coefficients M;; for (I, .J) in Table in terms of
L.(g0,1,92) for r =1,...,7. In this short section we collect several useful formulze.

The actual expressions for M;; are obtained in the next section.
Recall from (4.4)) that we have defined a multi-valued meromorphic function 7;,g()
of n variables ( = ((1,...,(,) by

Q¢ [ =
(Ta9)(C) = Qu-1(¢)2g ( Qn—l(gl>>

for a € N and g(t) € C[t], where Q,,_1(¢') = (2 +---+ (2 _,. Asin [21] Sect. 3.2], we
say that a differential operator D on C" is T'-saturated if there exists an operator F
on CJt] such that the following diagram commutes:

C[t] ——C(C1, -5 Cn)

Such an operator E is unique as far as it exists. We denote the operator E by T¢D.
We allow D to have meromorphic coefficients. We note that

Ti(Dy - Dy) = Ti(Dy) - THD,)

whenever it makes sense. For more general definition of T-saturated differential
operators see [21], Sect. 3.2].
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Lemma 6.27. Let R} be the differential operator defined in (4.7) and ¥; = t% be
the Euler operator. For a € N and g(t) € Poly[t]even (see (4.5), the following hold:

(1) (Tag)(¢) = Qu-1(¢)(Ta—29)(¢),
(2) Tal(tg(1))(C) = Cu(Ta-19)(C),

0 Gm
3) —(Tug)(C) = =" T, ((a—¥ 1<m<mn-—1),
) 5 Ta)0) = =T (la= 00 ©) )
0 dg
W) 500 =T (F)
(5) T(Q ) -, (I1<m<n-1),
Cm 5’Cm
I n—1
6) T¢ (anl(f dr e NJ“)) —Rz\_T (1<m<n-1).
Proof. Formula (6) is a restatement of Lemma[d.7] Formula (5) is shown in [21], Lem.
6.10]. Also (1), ..., (4) can be verified in the same spirit. O
Lemma 6.28. For p € C and ¢ € N, we have
(6.23) R =Ry + (0 —1,).
Proof. This immediately follows from the definition of R} U

6.6. Step 4 - Part II: Explicit formulae for M;;. In this section, by using the
formulae in Lemma , we express Mp; for (I,J) in Table in terms of L, =

L.(go,91,92) for r=1,...,7. For J € T, ;_1, we write Q;(¢') = >, .o, (2

Lemma 6.29. Let n > 3 and 1 <i < n. For each case of (1),...,(11) in Table[6.1],
My is given as follows:

(1) My = (1) (Qu(¢)Taa(Lr) + Tuoa (Ly — =20y + 222 Ly) ),
(2) My = (=1)""sgn(K; p)G (G Tu—a(L1) + Tu—z (Lg) ),

(3) My = (—1)"'sgn(K; p)Cp (G Tua(Ly) + Tae 2(L4 — LG))@

<4> MJ ( 1)Z 1(1(QJ( ) a— 4(L1) +Ta 2 <L7 11L1 - ;:11[/4));
(5) MJ ( 1) Sgn(K p,q )CleCq a74(L1>7

(6) My =0,

(7) My, = SgH(Jap)CleTa—s(Lﬂ;

(8) Mry =sgn(J;p)Ci¢pTa—3(La — L),

(9) Mr; = sgn(K;p,q )Cp(q a—3(L3),

(10) My = T, 3(L2)+QJ(C) a—3(L3) = Ty—1(Ls + Ls),

(11) Mry = (—=1)""sgn(K;p, )C1¢pCTa—a(L1).
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Remark 6.30. Suppose i = 1. Then, only (4), (7), and (10) occur (see Remark [6.20))
on one hand, go = 0 by (6.14) on the other hand. Therefore M;; in Lemma

amounts to

(4) Mr; = G(Ta—2L7),
(5) Mr; = C1¢p(Tu—3Ls),
(8) My; = (F(Tu—sLs) — Tou—1(L3+ Ls).

Remark 6.31. Suppose i = n. Then only (1) occurs (see Remark [6.20)) on one hand,
g1 = g2 = 0 by (6.14) on the other hand. Therefore, M;; in Lemma is given by

My = (—1)""'GT,—2(L7).

Proof. We only demonstrate two cases explicitly, namely, Cases (3) and (6); the other
nine cases can be shown similarly. We choose Case (6) as an easy example and Case
(3) as the most complicated example.

Case (6): I = KU{p,q}, J = KU{1}.
We wish to show that M;; = 0. Since n ¢ I, by Lemma m, M3l is given by

scalar )‘_L_l ah(l)
M = G Tor (R 12 gl) hY + (A +a— 1T, L

Qu1(() o 98¢

As I 2 J, we have hﬂ}(g ) =0 by (6.16). Therefore, M52 = 0. To evaluate M}S,
observe that we have

Supp([, J;0) = 0,
Supp(Z, J;1) = {K U {1,p}, K U{1,q}},
Supp(I, J;2) = 0.

It then follows from (6.21f) and Lemma (1) and (3) that
M}/Lejzct — Z Z A[]/ (Tagghglf}> + Z A]]/ (Ta,191h93>
k=0,2 I’eSupp(I,J;k) I'eSupp(1,J;1)
1 1
= AKU{p,a},KU{1p} <h(K)U{1,p},KU{1}(C)Ta_lgl> + AkUip.ah.KU{Lg) (hg{zj{l,q},KU{l}(C)Ta—lgl>
= —(sgn(K U {p}; q)sgn(K;p) +sgn(K U {q};p)sen(K; q)) (¢ Tu-s((a — 1 — Ui)gr),

which vanishes by Lemma [5.2] (4). Hence we obtain M, = M5 + Myst = 0.
Case (3): [ = KU{p,n}, J = KU{l}.
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We wish to show that

(6.24) My = (=1)"'sgn(K ;p)<p<C12Ta_4 (RQ:;%S g2>

n —

d — 1
+Ta2((a—l9t)go—%+()\—|—a—i+l—z 1<0J_79t))92))

As in Case (6), we evaluate M55 and MySt, separately. To begin with, we claim
that

scalar i— A-n5t
(6.25) My5™ = (=1 'sgn(K:p)Gy (s (RZ27 02) + Tua((A+a— 1)) ).

First observe that, as I # J, we have hg)((’ ) = 0. Then, by Lemma m Mieplar g
given by

(1 A—n=1 (2) 8h(2)
Mscalar — —Ta, (Ra— 2 ) h Tt N+a—1 Ta, 1J
IJ Ona(C) 2 2% g2) hig +( )Ta—292 ac,
=: (S1) + (52),
asn € I. By (1) of Lemma we have
1 A—nzl

QTF—MT(VQ (Ra—22 92> =G,y (R:::;%ng) .

Moreover, h%)(( ) is given by
1 (C) = Wy oy () = ()™ sgn(K U {p, n}: p)GiGp = (— 1) sgn(K;p) i

Therefore,
(51) = (~1) sgn(K: )G T (RYT ) and (52) = (<1 sen(K: p)G Tua((A 4+ a — 1))
Now follows from (S1) and (52).
To evaluate M5, observe that we have
Supp(/, J;0) = {K U {1,n}},
Supp(Z, J;1) = {K U{1,p}},

(6.26) Supp(Z,.J;2) = {K U{1,n}} U | J {(K\ {r}) u{L,p,n}}.

reK
Accordingly, we decompose M}S* as M5 = (MO) + (M1) 4+ (M2), where we set
(M/{I) = Z A[[/ (Ta,kgkhglfD y

I'eSupp(I,J;k)

(M'k) = (=1)" "sgn(K;p)¢, (M)

P
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for k =0,1,2. We claim that
(6.27) (M'0) = Tua((a — Vt)g0),

(6.28) (M'1) = —T,_ (ﬁ»

(6.29) (M'2) =T, 4((a —2—13)g2) — Tu_s ((z —-2)+ - 11(a — ﬁt)g2> )

n —

Indeed, for (MO0), we have

(MO0) = Z A < agoth>

I’eSupp(I,J;0)

(0)
= AkUgpn). KU1 <hKu{1,n},Ku{1} <C)Ta90>

~ (<) sanlKsp) 3 (T

Now (6.27) follows from (1) and (3) of Lemma [6.27} (6.28) can be shown similarly.
Then, we have from ((6.26))

(M2) = Z Arp ( a— 292hI’J>

I’eSupp(1,J;2)
_ (2)
- AKu{p,n},KU{l,n} (hKu{l,n},Ku{1}Ta—292>

(2)
+ Z ARUlpn} (K\{rHU{1,pn} <h(K\{r})u{1,p,n},Ku{1}(C)Taﬂgz) .
reK

By the formula of h%g in Table and a computation of signature

(6.30) sgn(K U {p};r)sgn(K U {p};p,r) = —sgn(K U {p};p) = —sgn(K;p)

from Lemma (1) and (3), we have

0
(6.31) (M'2) = p_ 8( <QKu{1}(C) a— 292) Z@Q GTu—292),

reK

where @Ku{l}(cl) = Qruy(¢’) — ;__11 Qn-1(¢"). By applying the formuls in Lemma
accordingly, (6.31]) is evaluated to
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- C; (QKU{1}(C) a— 292) Z@C (G To—292)

rekK
L0 _
» 5C (QKU{l}(C )Ta—292 — ; — 11Ta92) - TGZK (To-292 + GTu—s((a — 2 — 9y)g2))
= QKu{l}(C/)Ta 4((G —-2- ﬁt)gz L (G - 79t)92)

2

—((1 = 2)Ta292 + (Q (¢) Tu- 4((a - 2 —U1)g2))
2 1—1

=(To-a((a—2—=10¢)g2) — Ty—s <(Z —-2)+ 1(& — ?9t)92) .

n —
Thus, (6.29) holds.
Now, by using Lemma [6.28 one obtains (6.24]) from (6.25)), (6.27), (6.28), and
(6.29) as M;; = M5star 4+ (MO) + (M1) + (M2). This completes the proof for Case

(3). O

6.7. Step 5: Deduction from M;; =0 to L,(go, g1, 92) = 0. In this final step we
deduce L,(go, g1, 92) = 0 from M;; = 0. The following observation is useful.

Lemma 6.32. Let p1, p2 be O(n — 1, C)-invariant polynomials in Pol(C") and R C
{17 e, 1} If (ZT‘ER Cz)pl +p2 - O) then b1 =Dp2 = 0.

Proof. If p; # 0, then it follows from the hypothesis that ., (? = % is O(n —

1, C)-invariant. However, since R C {1,...,n—1}, wehave }_, . (? ¢ Pol(C)0(—1.0),
Hence, p; = 0 and, Consequently, Py = O. U

Proposition 6.33. Letn >3 and 1 <i <n. Let gy € Pol,_g[t]even (kK =0,1,2).
(1) Suppose i = 1. The following two conditions on (go, g1) are equivalent:
(i) Mry=0 foralll €Z,; and J € T,_1 ;1.
(ii) Lr(.gO»gla 0) =0 (T =2,7, 9)
(2) Suppose 2 < i < n — 1. The following two conditions on (go, g1, ge) are
equivalent:
(i) Mry=0 foralll €Z,; and J € T,_1,_1.
(ii) L-(90,91,92) =0 forallr=1,...,7.
(3) Suppose i =mn. The following two conditions on (go, g1, 92) are equivalent:
(i) Mry=0 foralll €Z,; and J € T,y ;1.
(11> L7(90791792) = 0.

Proof. (1) Suppose i = 1. Then the equivalence follows from Proposition and
Remark [6.30L
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(2) Suppose 2 < i < n— 2. By Proposition [6.19 we can replace condition (i) with
the condition that M;; = 0 for all (1, J) in (1),...,(11) in Table[6.]] By Lemmal6.29]
the implication from (ii) to (i) is then clear. The other implication also easily follows
from Lemmas and [6.32] as Ty(g(t)) is O(n — 1, C)-invariant for any b € N (see
(4.6))). For i =n — 1, we can replace condition (i) with the condition that M;; = 0
for the six cases (1),...,(4), (8), (10) in Table as we saw in (c2) of Remark [6.20]
If M;; = 0 for the six cases, we still get L,.(go,91,92) = 0 for r = 1,2,...,7 by
Lemmas and [6.32] Thus the implication (i)=(ii) is verified also for i = n — 1.
The converse implication is clear.

(3) Suppose i = n. The equivalence follows from Proposition and Remark
with the same argument as above. O

Now we give a proof for Theorem [6.5] as a summary of this section.

Proof for Theorem[6.5 The equivalence of the statements follow from Lemma [3.4]
Lemma [6.10, and Propositions and [6.33] O
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7. F-SYSTEM FOR SYMMETRY BREAKING OPERATORS (j =i —2, i+ 1 CASE)

In this chapter we solve the F-system for 7 = i+1, and give a complete classification
of differential symmetry breaking operators which raise the degree of differential
forms by one or decrease the degree by two,

I(i,\)o — J(i+ 1,v)g,
I(i,N\)o — J(i —2,v)3,

for \,v € C and «, € Z/27.

In contrast to the case with j = ¢ — 1,4 that was treated in Chapter [6] we see
that there are not many differential symmetry breaking operators for 7 = i — 2 or
1+ 1. Here are the main results of this chapter, which are a part of Theorem
(j=1—2,1+1 case):

Theorem 7.1. Suppose 0 < i < n—2, \,v € C, and o, € Z/2Z. Then the
following three conditions on (i, \,v,«, ) are equivalent:
(i) Differ(1(3,N)a, J(i + 1,v)5) # {0}.
(11) dlmchffgl(I(Z, >\)o¢> J(Z + 1, I/)ﬁ) =1.
(i) A e {0,—1,-2,---}, v=1, =a+ A+ 1mod 2 when i = 0;
A=, v=1i+1, =a+1mod 2 when i > 1.

Theorem 7.2. Suppose 2 < i <n, \,v € C, and o, 3 € Z/27Z. Then the following
three conditions on (i, \,v,«, B) are equivalent:
(i) Differ (1(3, Nas J(i — 2,)5) # {0}.
(i) dimeDiffer (1(3, N)a, J(i —2,v)5) = 1.
(i) A€ {0,-1,-2,---},v=1,6=a+ A+ 1 mod 2 when i = n;
ANv)=(n—in—i+1),=a+1mod2 when 2 <i<n-—1.
For the proof of Theorems [7.1] and [7.2] we first observe that the latter is derived

from the former. In fact, the duality theorem for symmetry breaking operators (see
Theorem [2.7)) implies that there is a natural bijection:

Diff ey (I(i, N)a, J(i — 2,)5) ~ Diffe (1 (,A) ,J(i+1, u)ﬁ>

o’

where i :=n — i. Then it is easy to see that (i, \, v, o, 3) satisfies the condition (iii)
in Theorem if and only if (i, A\, v, a, B) satisfies the condition (iii) in Theorem
[7.2] whence we conclude that Theorem [7.2] follows from Theorem [7.1] applied to the
right-hand side. The rest of this chapter is devoted to the proof of Theorem [7.1]

7.1. Proof of Theorem [7.1, We have seen in (5.31)) that the F-method gives a

natural isomorphism

Diffr (I3, A)a, J(i + 1,0)a) = Sol (00, 75"
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where Sol(n,; U,(\i)w TlEi;l)) is the space of Home (A*(C"), A" (C"1))-valued polyno-
mial solutions on n, ~ C" to the F-system associated to the outer tensor product
representations O’/(\,)a N/(C" X (—1)* K C, and T(H_l = A\NTHC"HYR (1)K C,,
of L and L/, respectively. Then Theorem [7.1] is deduced from the following explicit
results.

Theorem 7.3. Suppose 0 < i < n—2. We recall from (5.27)) that h§1_)>i+1: N(C") —
ATHC ) @ HY(C™ 1Y) is a nonzero O(n — 1)-homomorphism. Let \,v € C, and
o, € L/2Z. Then

Sol (), 7l570)

c( T.,CF (e"ft))hgm fr=1-XeN, f—a=1-Amod2, i =0,
= NC. thﬂ if ( \,v)=(>i,i+1), =a+1mod2, 1 <i<n-—2
{0} otherwise.

In order to determine Sol(n.; JE\ )a, Tl%r ), we begin with a description of Homy, (a/(\ )a, 51;1) ®

Pol[(y, ..., Cal)-
Lemma 7.4. Suppose that 0 < i <n — 2. Then,

Homy, (Ug)a s @ Poll(y, - - ,Cn]>
N {(Tl,,,\,lg)hgiﬂ: g€ Poly,)\,l[t]even} ifr—AeN,and f—a=v— Amod 2,
{0} otherwise.
Proof. The statement follows from Proposition and Lemma [5.18] O

From now, assume v — A € N, and f — a = v — A mod 2. We set
a:=v-—A\
Then it follows from Proposition 4.1 and Lemma [7.4] that we have a bijection:

{g € Poly_1[t]even : m*(Nf)(Ta,lg)hgiH = O} = Sol (n+, JSL,TV(?I)> ,

by g — ¢ = (T lg)hg—)n-‘rl
Given g € Pol,_1[t]even, We define ¢ as above, and polynomials M5 of n variables

CiyooyCofor I €T,  and I € Z,,_y 41 by
Mz = M3(g) = {dmgn- (N )¥(er), 7).

7
As in Section , clearly m(]\/f)w = 0 if and only if M,7 =0 for all I € Z,,;
and [ € In—l,i-‘,—l-
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Now the proof of Theorem [7.3]is reduced to the following lemma:

Lemma 7.5. Suppose a :==v — X € N, f=a+1mod 2, and g(t) € Pol,_1[t]even
is a nonzero polynomial such that M,7(g) =0 for all I € Z,,; and I € T,,_1;11.

. . , e .V
(1) If i =0, then A\ =1—a,v =1, and g is proportional to C,_ * (e 2 t) )
(2) Ifi>1,then \=1i,v=1i+1,a=1 and g(t) is a constant.
In order to prove Lemma [7.5, we examine the matrix components M,; by decom-
posing
M[f — M;%alar 4 M}z}gct
as in Proposition , corresponding to the decomposition of d?(E(Nf’ ) into the
scalar and vector parts. We use the following lemma.
Lemma 7.6. For I €Z,; and = Lp—1iy1, we set

Ui = ((er), €LY = (Tamrg) (B4 (1), ).
(1) We have

. {sgnu;m(fra_lgxp if [=10{p},
0 if Tp1.

(2) Ml =0 if I 4 1. If I = 1 U{p}, then

M;%alar — Sgn(f,p) <QCI—1CE)CI>TGI(R2_:;9) + ()\ +a— 1)5p1Talg> )

where 6,1 is the Kronecker delta.
(3) The vector part M}’I?Ct s given by

Mvgct — qul Sgl’l([, Q)%@DI\{q}U{l}j lf 1 g I,
N 2z S8 Do Vo i 11

Proof. The first statement is immediate from Table on the matrix coefficients of
hﬁ@j. The second statement follows from Proposition (1), and the third one from

Lemma [5.3] and Proposition [4.9] O
We are ready to prove Lemma [7.5]

Proof of Lemma[7.5 (1) Suppose ¢ = 0. Then Myt = 0 by Proposition 3.5, We

note that I = (. Let I = {p} 1 <p<n-1). By Lemma (3),

-1
My = M= S (R s (g a - 1)(Tag).

T Quaa(Q)

a—
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Hence M7 = 0 for all I = {p} if and only if

nl
R)\ 2 g=0 and A+a—-1=0.

Thus the first assertion is obtained by Lemma [14. 3 about the polynomial solutions

to imaginary Gegenbauer differential equation Ra 1 2 g=0.
(2) Let © > 1. Obviously M7 = 0 for all / and I if g is a constant function. In
order to prove the converse statement, we choose the following four cases.
Case 1. [C[andlgé[
Case2. I Cland 1€ .
Case 3. ICIandlgé] lel
Case 4. [I\I|=1,1¢1 and1¢eI.

First we treat Case 1. We may write [ = I U {p}. By Lemma , we have

§1¢ A—nl
Msgalar — gon 17 —pTa— R, 2 7
I g ( p)Qn_1<CI> 1( g)
vect
M7E = 0.
Hence the condition M7 = 0 implies
(7.1) R ,7 g=0.

Second, we treat Case 2. We may write I=1U {p} with p # 1 and 1 € I. By using
(7.1]), we have M;?Iar = 0, whereas Lemma [7.6| (3) shows

vec 8
M7 = sgn(l;p)G 8Cp( a-19)-

Hence the condition M7 = 0 implies

0

7.2 —(Th-19) = 0.
(7:2) 5 Th10)
By Lemma (3), (7.2)) yields an ordinary differential equation on g(t):
(7.3) (a—1—1d)g(t) =0,

where ¥, = ¢-£. Third, we treat Case 4 before Case 3. We may write I = K U {n}
and [ = K U{l,p} with K € Z,, 1,1 and p € {2,--- ,n— 1} \ K. Then, again by
Lemma [7.6} Mls%alar =0 and
vect . 9
Mip™ = seallm)g=¥nmuony.r

0
= —sgn(K;p, n)Cp%(Ta—lg)-
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Hence the condition M7 =0 implies -2-(T,_1g) = 0, and therefore we get

9n

dg
To- =0
by Lemma [6.27] (4). Hence g(t) is a constant. In turn, a = 1 by (7.3).

Finally, we consider Case 3, namely, I = I U {1}. Then
Meler :(A+a—Dﬂ1g
Myt = Z o Te19)6 = =i(Tumrg),
qel q
where we have used ([7.2)) for p € {2,--- ,n — 1}. Hence we get
Mi=A+a—-1-149)T, 19,
and conclude A = i. Hence the proof of Lemma is completed.
Thus we have proved Theorem [7.3] whence Theorem [7.1]
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8. BASIC OPERATORS IN DIFFERENTIAL GEOMETRY AND CONFORMAL
COVARIANCE

In this chapter we collect some elementary properties of basic operators such as
the Hodge star operators, the codifferential d*, and the interior multiplication ¢y, (x)
by the normal vector field for hypersurfaces Y in pseudo-Riemannian manifolds X.
These operators are obviously invariant under isometries, but also satisfy certain
conformal covariance which we formulate in terms of the representations wi% (u €
C,0 € Z)2Z), see ([1.1)), of the conformal group on the space £'(X) of i-forms.

The conformal covariance of the Hodge star plays an important role in the clas-

sification of differential symmetry breaking operators as we have seen in Theorem
and shall see in Section [I0.3] whereas that of the other operators such as d, d*
or Ly, (x) is only a small part of the global conformal covariance of our symmetry
breaking operators D}, /.
8.1. Twisted pull-back of differential forms by conformal transformations.
Suppose (X, gx) and (X', gx+) are pseudo-Riemannian manifolds of the same dimen-
sion n. A local diffeomorphism ®: X — X' is said to be conformal if there exists a
positive-valued function 2 = Qg (conformal factor) on X such that

CI)*(QX’,<1>(x)) = Q(ZL’)2QX’$ forall z € X.

We define a locally constant function or(®) on X by
(8.1)

or(®)(z) = orx (P)(z) = {

1 if ®,,: T, X — Tp(,)X is orientation-preserving,
=1 if &, T, X — Ty, X is orientation-reversing.

The twisted pull-back &} 5 = (@S)5>* with parameters v € C and 0 € Z/27Z on
i-forms is defined by
(8.2) Or 5 ENX') — E(X), ar (D) Q"D

If X = X’ and G is the conformal group of X acting by z — Lz (h € G), then the
representation wfﬁ)& of G on £(X) introduced in (1.1)) is written as

(8.3) 20 = (L))

8.2. Hodge star operators under conformal transformations.
We recall the standard notion of the Hodge star operator, and fix some notations.
Given an oriented real vector space V of dimension n = p + ¢ equipped with a
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nondegenerate symmetric bilinear form ( , ) of signature (p,q), we have canonical
isomorphisms V' ~ VY and A"V ~ R. Then the natural perfect pairing

ANV ANV — AN"V~R (0<i<n)
gives rise to the i-th Hodge star operator
(8.4) w: NV = (AIV) = ATV,
Equivalently, for any w,n € AV,
w Asn = (w, m)vol,
where (, ); denotes the nondegenerate symmetric bilinear form on A*V induced by
(ug A=+ Ay op A== Ay = det ((ug, ve))

and vol € A"V is the oriented unit.
Suppose {e1,---,e,} is a basis of V' such that (ey,ex) = £1 (1 < k < n) and
(er,e0) =0 (K #L). If e A -+ A e, defines the orientation of V', then

(8.5) xep = (=1)eWe (e forl € T,

where we set I¢:={1,2,--- ;n}\ I and

(8.6) neg(l) :=|{i € I: (e, ex) = —1}|,

(8.7) e(I) = en(I) 1= (—1)Hlehen et — TTsgn (1
acl

The last equality of (8.7) follows readily from the definition of sgn(7; a) (see Definition
. A special case of (8.5 shows x1 = vol. The signature ,,: Z,,; — {£1} satisfies
the following formulee.

(8.8) en(Den(I) = (1)1,

(8.9) en(De(IN{0}) = (=1)"*" ifrel,

(8.10) en(DNen1(J) = 1 ifJ €T 1, (CToy).
From and (8.8), we have

(8.11) sk = (=1)"9(-1)9id on \'V.

For an oriented pseudo-Riemannian manifold (X, g) of dimension n, the Hodge star
operator is a linear map

xx =+ E(X) — E"U(X)
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induced from the bijection xx,: ATYX — A" 'TYX for the cotangent space
T)X at every z € X. If w,n € £(X) and if at least one of the supports of w or 7 is
compact, we set

(8.12) (w,n) ::/ w A 1.
X
We continue a review on basic notion and results. The codifferential d*: £/(X) —
EY(X) is given by
(8.13) d* = (1) 5 dx = (=1)" T (=D x dx = (—1)"TH x dx!

if the signature of the pseudo-Riemannian metric is (n — ¢, ¢). The second and third
identities follow from (8.11). Then the codifferential d* is the formal adjoint of the
exterior derivative d in the sense that

(w,d*n) = (dw,n) for all w € E(X) and n € £ (X),
because [ d(w A *n) = 0.
Lemma 8.1. The following identities hold:
wdd* st = d*d, xd*dx"' = dd*.
Proof. Use (8.11)) and ({8.13]). O

The Hodge Laplacian A, also known as the Laplace-de Rham operator, is a dif-
ferential operator acting on differential forms is given by

(8.14) A = —(dd* + d*d).

Obviously, the Hodge star operator commutes with isometries. More generally,
the Hodge star operator has a conformal covariance, which is formulated in terms of

the twisted pull-back (8.2) as follows.

Lemma 8.2. Suppose that (X, gx) and (X', gx/) are oriented pseudo-Riemannian
manifolds of the same dimension n and that ®: X — X' is a conformal map with
conformal factor Q € C*°(X). Then, for anyu € C, ¢ € Z/2Z and 0 < i < n, we
have

*x O (@J)E)* = (CIDELH_XJ)F%EJFI)* o*y/ on Si(X’).
Proof. By ®*gx o) = Q(x)?gx 4, we have the following equality:
(8.15) x5 00" = or(®)Qx) "THP* 0 xxr gy on E(X).
Suppose w € £(X’). By the definition of (CIDS)E)*, we have
sx 0 (D) w = #x (or(®)*QD*w) .

u,e
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By , the right-hand side is equal to
or (B)E Qo (B) Q2" (s xw0) = (CbﬁjﬂrziﬁH)* (*xw).
Hence the lemma is proved. O

By Lemma and (8.3), the Hodge star operator can be considered as an in-

tertwining operator of the representations (wff,)g,é’i(X )) of the conformal group of
X:

Proposition 8.3. Suppose that G acts conformally on an oriented pseudo-Riemannian
manifold X of dimensionn. Let u € C and e € Z/27Z. Then the Hodge star operator

x: EN(X) — EH(X)

intertwines the two representations wyr and @\ o; 1, of G, i.e.

)

xow(h) =", . (h)ox forall h€G.

u, u—n+2i,e+1
Example 8.4. For n > 2 the conformal group of the standard Riemannian sphere
X = 85" is given by Conf(X) ~ O(n + 1,1)/{x1l,+2}. The Hodge star operator
mduces an isomorphism
Ei(S”)A,Lo ;> gnii(sn))\fnJri,l
as Conf(X)-modules by Proposition which gives a geometric realization of the
G-i1somorphism between principal series representations

(8.16) I(i,N); — I(n —i,\); ® x__
(see Lemma[2.9) via ([2.12).

The exterior derivative d commutes with any diffeomorphism. By the conformal
covariance for the Hodge star operator (Proposition , we have one for the codif-
ferential d*:

Lemma 8.5. Suppose that X and X' are oriented pseudo-Riemennian manifolds of
the same dimension n, and that ®: X — X' is a conformal map with conformal

factor Q € C(X).
(1) dyo (q>gf1>* — (cpgfj”)*odx, on £(X").
@) dyo(0s.) = (055, ) o di on E(X).

Proof. The first statement is obvious because the exterior derivative d commutes
with any diffeomorphism. To see the second statement, we recall from (8.13) that
d* = c* dx with ¢ := (=1)""*1(=1)7 if the signature of the pseudo-Riemannian
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metric is (n — ¢,q). By Proposition and the first statement of this lemma, we
have

dy o <<I>ff)_2i,€) = Ckx odx 0%y O ((I)fzi)—%,s>

R
= C *X OdX O (®(()n6:—?> (o] *X/

*
:C*XO<®gn€+Zf— )) OdX/O*X/

=C <(I)£Z:21i)+2’6) O xxs O dx/ O *x
i—1 Yo
= (q)5172i)+2,5> o dx:.
Thus the lemma is proved. 0

The following proposition is immediate from Lemma [8.5|

Proposition 8.6. Suppose X is an oriented pseudo-Riemannian manifold of dimen-
sion n, and G acts conformally on X.

(1) The exterior derivative d: E(X) — ETY(X) intertwines the two represen-
tations w(()g and @V of G for e € ZJ2Z.

,E

(2) The codifferential d*: ETH(X) — EY(X) intertwines the two representations
o) 2 and @, of G fore € Z)2Z.

n—2i— n—21,e

Remark 8.7. We shall prove in Section [12|that there does not exist any nonzero con-
formally equivariant differential operator £(X), s — ETH(X), . or ETHX),s —
EY(X)y. other than the differential d or the codifferential d* (up to scalar), respec-
tively, when X is the standard Riemannian sphere S™.

Applying the conformal covariance of the Hodge star operator, we obtain a duality
theorem for symmetry breaking operators in conformal geometry:

Theorem 8.8 (duality theorem). Suppose (X, g) is an n-dimensional oriented pseudo-
Riemannian manifold, Y is an m-dimensional submanifold such that gly is nonde-
generate, and G’ is a group acting conformally on X and leaving Y invariant. Then
for any u,v € C,0,e € Z/27Z, and 0 < i <n, 0 < j < m there is a natural bijection

DiHG’ (51 (X)u,57 Sj(Y)v,s) ;> DiHG’ (Snil (X)ufn+2i,5+17 Sm7j<Y)vfm+2j,s+1)~

Proof. Let xx and *y be the Hodge star operators on (X, ¢g) and (Y, g|y ), respectively.
Then the assertion of the theorem is deduced from Proposition [8.3 summarized in
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the following diagram of G’-homomorphisms:

ENX)us . E" X )u—ntaist1

| |

gj(y)v,s N gm_j(y)v—m+2j,s+1-

~

*y

O

8.3. Normal derivatives under conformal transformations. Suppose that (X, g)
is an oriented pseudo-Riemannian manifold of dimension n, and Y an oriented sub-
manifold of X such that gy is nondegenerate. Let G = Conf(X) = Conf(X, g) be
the group of conformal diffeomorphisms of (X, g), and

G'=Conf(X;Y):={heG:hY =Y}
As in (8.1)), we have group homomorphisms
orx: G — {£1}, ory: G — {£1},
depending on whether or not the transformation preserves the orientation of X, Y,

respectively.
We begin with the conformal invariance of the restriction map Resty-.

Lemma 8.9. Let X andY be oriented pseudo-Riemannian manifolds as above. Then
the restriction map

Resty : £1(X) — EY(Y)
s a symmetry breaking operator from the representation wfz)élg/ of G restricted to G’
to the representation wf,(f)g of G' for all uw € C if ) = ¢ =0 mod 2.
Proof. We consider the condition on (u,v;d,e) € C? x (Z/27Z)? such that Resty
intertwines wl(z)(ﬂgl and @\, For h € G’ and n € EY(X),
wq(f)g(h) o Restyn = ory (h)*Q(h™", Resty -)"(Ly-1)*Restyn,
Resty o wfj)&(h)n = orx(h)°Q(h™", Resty -)“(Ly-1)*Restyn,

by the definition ((1.1)). Hence the right-hand sides of the two equalities coincide for
any h € G'if u =v and § = ¢ = 0 mod 2. OJ

Suppose now that Y is of codimension one in X. Then we can define the normal
vector field Ny (X) on Y such that

n—1

LNy (x)VOlxy = (=1)""voly onY,

where voly and voly are the oriented volume forms of X and Y, respectively.
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Example 8.10. Let (X,Y) = (R",R"! x {0}). With the standard orientation for
Y C X, the normal vector field Ny (X) is given by

NY(X) = ain on }/7
because t_o_(dxy A -+ ANdwz,) = (=1)" Yoy A+ Ada,_.

Oxn

Similarly to the pair X D Y, suppose Y’ is an oriented hypersurface of a pseudo-
Riemannian manifold (X', ¢). Let ®: X — X’ be a conformal map such that ®(Y) C
Y'. We write Q = Qg € C(X) for the conformal factor, namely, ®*(gx/) = Q%gx.
By a little abuse of notation, we define orx,y (®) € {£1} by the identity

(8.17) orx(®) = ory (®)orx)y(P),
where we recall ory(®) € {£1} from (8.1), and ory(®) € {+1} is defined similarly
for ®|y: Y — Y’. Then, we have the following:
Lemma 8.11. (1) For all w € £/(X’), we have
LNy (x)(P*w) = orx )y (P)QD (LNy,(X/)w) on Y.
(2) For any u € C, we have

(Resty o) LNy(X)) o) <(I)EZ)1> = <(I)Ef_;11,)1) @) (Resty/ o LNy/(X/)) on SZ(XI>

Proof. (1) Take p € Y and local coordinates (zf,---,z)) on X' near p' := ®(p)
)
iz
orthonormal basis of T (X'). We set z; := 2, o ®. Then (x1,---,,) are local
coordinates near p and the submanifold Y is given locally by x,, = 0. Then,

{ot) )2 oy (@190) 5 o (#1905 |

is an oriented orthonormal basis of T,X. We note that 32-|,; and orx,y (®)Q(p) 52|,

OTn
are the normal vectors to Y’ in X’ at p/, and to Y in X at p, respectively.
Let w = fdz; be an i-form near p’, where I € 7, ;. Then,

such that Y’ is given locally by x/ = 0 and that {%, e forms an oriented
1

iy () (DW= orxpy (R)f (D )eagy) oy, do

Qo* (LNy,(X/)w) |p = Q(p)q)* L o
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Hence we have proved
LNy(X)((I)*W) = OTX/Y((D)Qq)* (LNy/(X’)w)

for all p’ € Y and w € £(X’).
(2) We consider the condition on (u,v;d,e) € C? x (Z/27Z)* such that

(ReSty o LNy(X)) ¢} <(I)£Z,)§)* = ((I)Ell’gl))* o (Resty/ o LNy/(X’)) on Sz(X/)
Let n € £(X’). Then

(Resty o tny(x)) © ((IJS)J)* n = orx(®)°(Resty o Q)"“Resty o tyy (x)(®*n)
= orx(®)°(Resty 0 Q)" ory/y (®)Resty o ®* (i, (x)1)
by the first statement. On the other hand,
(<I>1(f;€_l))* o (Restys o 1y, (x1))n = ory (®)°(Resty o Q)"Resty o ®* (v, (x1yn)

because the conformal factor of the map ®|y: Y — Y’ is given by Resty o €. The
right-hand sides are equal if

u+1=v, orx(h)orx/y(h) = ory(h).
Hence the second statement follows from the definition (8.17)) of orx/y. U

As an immediate consequence of Lemma [8.11] (2), we obtain:

Proposition 8.12. Let G = Conf(X) and G' = Conf(X;Y) :={he G : hY =Y}.
Then the interior multiplication by a normal vector field

Resty 0 Ly (x): E(X) — E7H(Y)
yields a symmetry breaking operator from the representation w% of G to the repre-
sentation wg’;ll)g of the subgroup G', for allu € C if 6 = e = 1 mod 2.

Remark 8.13. Alternatively, we can reduce the proof of Proposition to Lemma
by Theorem [8.8 and by the following identity:

*y o Resty o Ly (x) © (*x) ' = K Resty

with £ = +1 depending on the signature of g(Ny(X), Ny(X)). See Lemma [8.19)
below for the case (X,Y) = (R*,R"1).
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8.4. Basic operators on £/(R™). In this section, we assume that Y = R"! is the
hyperplane given by x, = 0 in the Euclidean space X = R" equipped with the
standard flat Riemannian structure, and collect some basic formulee for operators
d,d*, *, ty(y) and Resty on differential forms £(R™) (0 < i < n).

By definition, the interior multiplication ¢ a is given by

L itné&l,
(8.18) L%(fdfl) = {(_1)2'—1]”([;1;[\{”} ifnel,

for f € C*(R") and I € Z,,.
By using the notation sgn(7; ¢) (see Definition [5.1)), the differential d and its formal
adjoint d* (codifferential) are given by

0
(8.19) dgn(fdxr) = ngn (I;¢ a—fdﬂffu{e},
g1
. of
(8.20) diy(fdry) = = sgn(l; E)a—dxj\{g}
tel

Combining (8.19) and (8.20]) with Lemma [5.2] (3), we have

. 0
(821) dandp(fdu;) = Z@dxz—ngnI P4 g dz\(p)u{e)
pel pel
q¢l
. f
(8.22) dindpn(fdr;) = —Z dx1+ngn (I, 4) 5——den pyuia)-
q&l T4 pEL P
q¢l

The Laplacian Agn = — (dgndgn + dfndgn) on EY(R™) ((8.14))) takes the form
ARn (fdl‘[) = < 8—];> d.l’].
=1 T

We note that the “scalar-valued” operators % and Ag» € End(£Y(R™)) commute
with any of “vector-valued” operators #gn, dgn, dg., and ¢ o Here are commutation

relations among vector-valued operators £1(R") —s &7 (R"):



94 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

Lemma 8.14. We have the following identities on E'(R™) (0 <i < n).
0

0x,

(2) dﬁk{nL%jLL%din =0.

(1) anLL—FLaLan =

Oxm

% * * 8
(3) L%and n = ananL% +d na_xn.
* * * 8
(4) L%anan = ananL% — ana—xn.
Proof. The first and second statements follow from (8.18]), (8.19)), and (8.20). The
third and fourth statements are immediate from (1) and (2). O

Next we deal with differential operators from ¢-forms on R™ to j-forms on the
hyperplane R"~!. We collect commutation relations among dgn, dj, and ¢ E together

Tn

with the restriction map Rest,, —o.
Lemma 8.15. We have the following identities of operators from EY(R™) to E7(R™1).
(1) dgn-1 0 Rest,, —o = Rest,, g o dgn.

(2)  dgn-1 o Resty,—o = Rest,,—¢ o (dg. +

81‘” Bon

0
(3) dgn-1dgn-1 o Rest,, —g = Rest,, o o (andﬁgn + a—anLaa) )
T on

. 0 . 0
(4)  dgn-1dgn-1 0 Resty,—o = Rest,,—o 0 (@ + dgndrn — o dR"Lafn) :

Proof. (1) Clear. (2) Verified by (8.18) and (8.20). (3) Immediate from (1) and (2).

(4) Applying df,—, to the identity (1), and using Lemma[8.14] (1), we get the fourth
statement. O

8.5. Transformation rules involving the Hodge star operator and Rest, _.
This section collects some useful formule involving the Hodge star operator, in par-
ticular, those for R” and its hyperplane R"~!, see Lemma m

We begin with basic formulee for the conjugation by the Hodge star operator in
R™.
Definition 8.16. Given an operator T: E"/(R") — £"(R"), we define a linear
operator T%: £{(R") — EI(R™) by

T% := (=1)""" xgn oT o (g ).
Lemma 8.17. The correspondence T — T* is given as in Table[8.1]
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TABLE 8.1. Correspondence for T+ T*

* 0 * * *
T an an Lagn Er 53; +‘d n ——anLA%;an ananbﬁg;
T | —dgn | dgn | —dz, A | dgn — %dwn/\ —(dzp,N) o dpndfyn | —dindgn o (dz,N)

Proof. The first two formulee follow from the definition of the Hodge star operator,
the codifferential and (8.11)), and the last three follow from the first three. We thus

only demonstrate the third one, namely,
(8.23) (=1)"" *gn L%(*Rn)*l(fdml) = —dx, N fdx;

for f € C°(R") and I € Z,,;. Obviously, both sides vanish if n € I. Suppose n ¢ 1.
Then,

(—1)"" *gn L%(*Rn)’l(fdxl) = —e(I)e(I°\ {n}) fdxum
by (8.5) and (8.18), which amounts to (—1)"*! fdzyyy by (8.9). Hence (8.23) is
0

proved.
We introduce a linear operator IT,,_;: £E(R™) — EY(R™) by
(8.24) I, 1 : =16 o(dx,N).

Oxn

In the coordinates, for f € C*°(R") and I € Z,;, we have

o iy {0 102

Then we have

Lemma 8.18. The following identities hold on E'(R™):

(8.26) Rest,, —goIl,_1 = Rest,, —o,
(8.27) (dxn,N) o Lo+l O (dx,N) = 1id,
(828) *pn O Hn—l @) (*Rn)_l = id — Hn—l'

Proof. The first identity follows immediately from (8.25). A simple computation
using (8.18]) and (8.19) shows the second identity. To see the third identity (8.28)),
we apply Lemma [8.17, Then

() 0 Ty 0 (i) = ((=1)"" 0D g 0000 (x3n) 1) 0 ((=1)" e o{da) © (130) ™)
= (—dz,N) ot o .

Oxn

Hence we get (8.28) by (8.24) and ({8.27)). O
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By the definition of the interior multiplication, we have the following direct sum
decomposition

E'(R™) = Image(dz,N\) © Ker (LL> :

Tn

Then the formulae (8.25) and ({8.27)) show that the operators id—1II,,_; = (d%z/\)OLai

Tn

and IT,,_1 = 20 (dz,N) are the first and second projections, respectively.

Next, we consider the conjugation by the two Hodge star operators sgr» and #gn-1
on R" and R"!, simultaneously. For this, we observe the following basic formula.

Lemma 8.19. We have

spn-1 0 Rest,, —o 0 (kgn) ' = (=1)*'Rest,,_gor_o on EF(R™).

Oxp,

Proof. Fix I € T, and take f(z) = f(2/,z,) € C*(R"). We set w := f(z)dx;. By
(18.5)), we have

(#rn) " 'w = e, (I°) f(x)dx e,
and thus

en(L9)f(2',0)dxre ifnel,

-1
Resty,—o 0 (¥gn) w = { 0 otherwise

In turn, we obtain from (8.10)

f(l‘/, O)dI[\{n} ifnel,

#gn—1 0 Resty, —o 0 (gn) " 'w = { 0 otherwise

Now the proposed equality follows from the identity (8.18]). O

We collect some useful formulae involving *g» and sxgn—1. All of the operators T" in
the next lemma decrease the degree of forms by one.

Lemma 8.20. Let (T,T") be a pair of linear operators T': E"7(R") — E"~"1(R")
and T°: EY(R™) — EY(R™) such that

(1) (T, T°) = (T, —L%Tﬁ) with T* the linear operator defined in Definition|8.16
or "

(2) T and T" are given in Table .
Then they satisfy the following identity:

(8.29) (—1)""! sgn-1 oRest,, —g 0 T o (%gn) "t = Rest,, —g o T".
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TABLE 8.2. Pairs of operators (7', 1”) satisfying (8.29)
T| din |t | —diat o drn | 5o-t o +dhe

Ozn

jﬂb __Lgﬁi(jRn

Oxp, Oxn

id and*n anLi

Remark 8.21. We note that 7" is not uniquely determined by 7. For instance,
(T,T°) = (L%,Hn,l) also satisfies (8.29)), as —L%(bi)ﬁ = II,,_y. The choices of

Oxp

T in Table are intended for simple description of differential symmetry breaking
operators D, see (L.4)-(L.12).

Proof of Lemma[8.20. (1) We compose the formula

sgn-1 0 Resty, —g 0 (%gn) " = (=1)'Rest,, g0t o on EFTHR™)

Ozn

(see Lemma m (1)) with the defining relation of T%:

segn 0 T 0 (gn) ~H = (—1)"7T%.
Then we see that is equivalent to the relation
(8.30) Rest,, o o T = —Rest,, —got o T*

dxn

Hence the first statement is proved.
(2) For T = d., we have T% = dg« by the second formula of Lemma [8.17 and

therefore T° = — o dgn satisfies (8.29).
For T' = o, we have T = —dz,A by the third formula of Lemma [8.17, and

therefore —¢ o T = I1,,—1 by (8.24). Hence (8.29) holds by (8.26)).

For T = —anL o dgn, we have T% = —(dz,A) o dradi. by the fifth formula of
Lemma [8.17, and therefore —t_o T* = TI,,_ydgndl.. Hence ) holds again by

(8:20). o

For T = ;%1 o + dj., we have T* = dgn — %dmn/\ by the fourth formula of

Tn Oxm

Lemma and therefore

) .0
—L%Tﬁ —t o dgn + 1T, P =dgrt o+ (I _ld)axn

by Lemma (1). Hence holds by (8.26)). O

For the operator T' = dgndg.t_o , we also need another expression:
Oxn
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Lemma 8.22. For T = andﬁ‘%nLai, the following equality holds as elements in
Homg (E'(R"), £'(R"))
(8.31) (=1)"" xgn-1 oRest,, g0 T 0 (¥gn) " = din_1dgn—1 o Rest,, .

Proof. By the sixth formula of Lemma m, Tt = —d%, dgn o (dz,N). By (8.29 - and
(8.30)), it suffices to show

(8.32) Resty, 0 0 t_o_dpndgn o (dxp,N) = diyn-1dgn-1 o Resty, —o.

By Lemma [38.14] (2), the left-hand side of (8.32)) amounts to
—Rest,,—o 0 d;@nLaian o (dzp,N).

By Lemma [8.15( (2) and by (Lai)2 = 0, this is equal to

—dgn-1Rest,, g0 t_a dgn o (dx,N).

Oxmn

Using Lemma [8.14] (1), and by the obvious identity Rest,,—q o (dz,A) = 0, this is
equal to
dpyn—1dgn—1Rest,, —g 0 Lo o (dxpN).

Now the desired equation (8.32)) follows from (8.24]) and ({8.26)). O

8.6. Symbol maps for differential operators acting on forms. In this section,
we relate matrix-valued invariant polynomials

HY). € Homoy) (A(CY), N (CV) @ Pol[¢y, ..., Cn])
HY), € Homo(x, (A'(CY), N(CV) @ HH(CY))
(see Section with basic operators in differential geometry via the symbol map
Symb: Diff*™"(&(R"), &/ (RY)) — Homg (A(CY), A7(CY) @ Pol[¢y, -+, (n]) -

The dimension N will be taken to be n—1 in the next section and to be n in Chapter
L2

Lemma 8.23.

(1) Symb(dgn~) = H£2i+1'

(2) Symb(dy ) =-HY, . _ ‘

(3) Symb(dandsy) = —H; = —H7, — 5O H")

(4) Symb( RNdRN) = —QNHz@i + Hfi)i = Hi(i)i + (ﬁ - 1) QNHZ(E”
(5) Symb(dandiy + diydgn) = —QvH,.

(6) Symb ((& — 1) dgndi + Edindgy) = HE),.
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Proof. We compare (8.19) with (5.9)), which yields the first identity. Likewise, com-

paring (8.20)) with (5.8)), we get the second identity.
The third and fourth statements follow from (8.21) and (8.22)). The last two

identities are now clear. O

As a consequence of Lemma [8.23] we give a short proof of Lemma which has
been postponed.

Proof of Lemmal[5.5 Since the symbol map is O(N)-equivariant, and since both dgn
and dy, commute with O(N)-actions, we conclude that all the terms in the right-
hand sides in Lemma are O(N)-equivariant maps.

Therefore the bilinear maps B® (k = 0,1, 2) are O(N )-equivariant because /\7(C")
is self-dual as an O(N)-module. O

In Proposition we have determined the triple (4,7, k) of nonnegative inte-
gers for which the space Homo(n_l) (/\Z((C”), A (C™1) @ HE (C"1)) is nonzero, and
found an explicit basas hZ Sjn - - . The next proposition describes differ-
: E(RY) — EJ(R”) such that Symb ( ) = h, k)J in all the

ential operators T;

z%]
cases.
Proposition 8.24. We have
Case j =1 — 2.
(1) hY._, = Symb ( & Lai)
Case 7 =1 — 1.
(2) hgz‘fl = Symb <L82n

(4) 12,

i—i—1

Symb

(3) b, 1_symb( T, o d}n — aa Lo )

Case j = 1.

(6) hl_m — Symb (d o1 o )

Bdxn

(7) hZ*}’L = Symb( n—1© (—dﬂgndﬁ%n —d]Rn 0 L o — n ! 1ARnl)>

Case j =1+ 1.
(8) h{l;py = Symb (I, © dgn).

Proof. We shall prove the formula for hZ ~.; according as k = 0,1, 2.

J



100 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

Case k = 0, namely, (2) and (5). We compare (8.18) with the formula for hgo_)n_l in
Table 5.1, and get the second identity. Likewise, comparing (8.25)) with the formula

for hgo_n» in Table , we get the fifth identity.
Case k = 1, namely, (1), (3), (6), and (8).

1) By (B-I8) and (8:20), we have

din 0t o (fdrr) = (1" Y sgn(2\ {n}; e) dxf\{g np fornel.
¢e1\{n}
Since (—1)tsgn(I\ {n}; ¢) = —sgn(I; ¢, n), we get Symb ( Rn O Lo ) hgl_)n 5 by
the formula of hgl_)n»_Q in Table E
(3) We apply II,,_1 to (8.20)), and get
— > sen(I;0) amdxf\{g} (nglI),

Lel

(8.33) I 1dpa (fdar) =

\ —sgn([;n)%dm\{n} (nel).
In turn, by using (8.20)), (8.18)) and (8.33)), we have

(_Hn_lo & M)(f gy = {Zegsgn(foé) Ldr o Ezz g

Tn

Comparing this with the formula for hgl_)n»_l in Table again, we get the third
identity. The proofs for (6) and (8) are similar, and we omit them.
Case k = 2, namely, (4) and (7). Let us prove (4). It follows from Lemma [8.23]

(3) and Proposition (2) that
)

1 —1 -1
Symb( dundgn 0t o — 1AW1L3) H? ,  oh®, - — 1 Qu n?,_,.

Oxn n — Oxn
By the definitions (5.11)) and (5.25)), this amounts to
2)
H( )1—>z 19Plisi—1 = hz(—m 1

The case (7) is similar. O
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9. IDENTITIES OF SCALAR-VALUED DIFFERENTIAL OPERATORS 'Dg

In this chapter, we derive identities for the (scalar-valued) differential operators
Dy (see for the definition) systematically from those for the Gegenbauer poly-
nomials given in Appendix. We note that some of the formulae here were previously
known up to the restriction map Rest,,—o, see [L1} 15 19 22].

Using these identities together with the results of Chapter [§ we study matrix-
valued symmetry breaking operators Di_’j in details. In particular, the condition for
the vanishing of the operators Dl_” ! and Dl_’Z (Proposition is proved in Section
. and the identity . about the two expressions of Dl_” lis proved in
Sectlon m Various functlonal 1dent1tles among Df;;f are proved in Chapter .

9.1. Homogeneous polynomial inflation I,. Suppose a € N. For g(t) € Pol,[t]|even
(see (4.5))), we define a polynomial of two variables 2 and y (a-inflated polynomial

of g) by
(9.1) Lg(z,y) = x%g (%) -

Notice that (I,9)(2?,y) is a homogeneous polynomial of 2 and y of degree a.
By definition, we have

(9.2) Lo (tg®)(z,y) = y(lag)(z,y),
(9.3) (av29)(z,y) = x(lg)(x,y).

We recall Q,—1(¢") =G+ -+ ¢, for (' = (¢1,...,Cu1), and from that
(Tu9)(¢) = Qu-1(¢)2g &

anl(c)
(C1y- -+ Cno1,Cn) of degree a. By definition, we have the following identity:

(94) (Tag> (€> = ag(Qn—l(C/)a gn)

If we substitute the differential operators Ag».-1 and % into I,g(z,y), we get a

is a homogeneous polynomial of n-variables ¢ =

/_\

homogeneous differential operator I,g (ARn—l

(9.4) that its symbol (see (3.3)) is given by

0
(9.5) Symb (]ag(ARnl, a—xn)) = Ta.g.

, %) of order a. It then follows from

We recall from (I.2)) that D* = (1,C*) (—Aan, %) is a homogeneous differential

operator on R" of order a, where éfj(t) is the renormalized Gegenbauer polynomial

(see (14.3)). Then its symbol is given as follows:
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Lemma 9.1. Symb(D#) = e T, (C’“ < S ))

Proof. Suppose g(t) € Poly[t]even is of the form g(t) = e~ ™2 (e ™z
Pol,[$]even- By definition we have

Iag(ﬂf, y) = a¢<_x7 y)?

and thus I,g(Agn-1, 8;) = L,p(—Agn-1, ) In turn, Symb( p(—Agn-1, 5.- )) =
T.g by (9.5). Hence Lemma follows. O

9.2. Identities among Juhl’s conformally covariant differential operators.
The composition Rest,,—o o D¥: C*®°(R") — C(R"!) is a conformally covariant
differential operator, which we refer to as Juhl’s operator. In this section we collect
identities for the scalar-valued differential operators D¥ that hold before taking the
restriction operator Rest, _o:

e three-term relations for general parameter p (Proposition
e factorization identities for integral parameter p (Proposition[9.3] Lemma[9.4).

Proposition 9.2. Let a € N, p € C, and y(u,a) be defined as in (1.3). Then we

have
(9.6) D Agns +7(, ) Dl 5— = 5D
00 2L am e Lo, <0
ox,, 2
(9.8) D A + (M - —) ( + [;‘ ) Drt,
09 AWwaPAw+ (1= ) Dy = St (- 50Dl
(9.10) (14 a)D* — D) Agn1 = (u + {a ; 1}) DHFL

Proof. By using (9.2) and (9.3), we see that these three-term relations for D¥ =
([ﬁg) <—ARn71, %) are derived from those for Gegenbauer polynomials 6’5(2)
that will be proved in Chapter (Appendix). The correspondence is given in the
following table:

The (scalar-valued) differential operator D for specific parameter p and ¢ may be
written as the product of another operator DZ/ and the Laplacian Agn (or Agn-1).
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Identities for D% | (0.6) | @79 | @8 | (.9 | (0.10)
Identities for C# | (T419) | (T421) | (1417 | (T4.16) | (T2.19)

For example,
1
DY = A1 DY if 1= —2; DY = ApaDy " if = ~5

We collect such factorization identities as follows.
For « € N and ¢ € N, we recall from (1.13)) that K,, = Hi:l ([%] —i—k) is a
positive integer. For ¢ =0, we set K, = 1.

Proposition 9.3. Let a,f/ € N. Then

¢ 10
(1) KouD2yy =D& Al
(2) Koo D% =D, AL
Proof. According to definition (9.1)) for every ¢ € N we have
(9.11) Lovae ((2° = 1)'g) (2,y) = (y* = 2)"(Lag)(z, ).

Thus, applying I, 9, to the identity (14.23) in Proposition [14.11| we get (1).
Similarly, applying l,42¢ to (14.22)) and using (9.3)) we get (2) and conclude the
proof. O

Analogous formule are derived from Proposition [9.3 and will be used in the proof

of Theorems [13.1] and [13.2]
Lemma 9.4. Leta € N and ¢ € N,.

_¢4+3 a _1
(1) KeaDoisis = (04 |5]) DAk

2
1 1 5 B}
@) iy (¢4 ga1)7 (<4 v Db = o D200l ik
0 o= (1 g o

(4) y(=a,0)Ke D57 = v(—a—£,a)D T A

Proof. (1) Apply Proposition (1) with ¢ replaced by ¢ — 1.
(2) We again apply Proposition (2) with a replaced by a + 1 and ¢ replaced
by ¢ — 1 this time. Then the assertion follows from the identity below
Keo o (a+1)(a+20)
Koy qar1 4y (€+%,a— 1)7(—€+%,a+2€)'

(9.12)
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The proof of (9.12)) is elementary, and we omit it.
Identities (3) and (4) follow from Proposition (2) by similar argument as we
used for cases (1) and (2) above. We also use an elementary formula

Ken __(-a,0)
Ko, v(—a—{,a)

O

In the rest of this chapter, we apply the three-term relations given in Proposition

0.2

9.3. Proof of Proposition Given a linear operator T : £/(R™) — &/(R"1),
we define the “matrix component” T7; for I € Z,,;, and J € Z,_; ; by the identity:

T(fdx;) = Z (T[Jf)d.TJ.
JEL, 1
If T is a differential operator, so is T7; : C°(R™) — C>°(R"1).
We find the (I, .J)-component of the symmetry breaking operator D; ;"' : £(R") —
ETYR™ ) introduced in (1.4) as follows:

Lemma 9.5. For I €1,; and J € 1,1 ,_1, we consider

Case 1. ne I, J =1\ {n},

Case2. ne I, |J\I|=1, say I = KU{p,n},J = K U{q},
Case3. n¢I,JC 1, say I =JU{p}.

Let pp:=u+i—3(n— 1) Then the matriz component (DL 1)
Case 1. —D"*) >overe o 8232 + (a+u+2i —n)D¥,

Case 2. (—1)"tsgn(I;p, q)D"*,,

Case 3. san(l; p) (s, a) DA

a—1>
followed by the restriction map Rest,, —o. Here I° = {1,2,--- ,n} \ I in Case 1.

Otherwise, the (I,J) component (foaifl)u vanishes.

17 15 grven as

Proof. We recall from (1.4)) that
o 1
D, ' = Rest,,—g o (—Df;f%dﬂgndﬂ‘gne;s — y(p, ) D d + i(u +2i — n)ijaaa)

We begin by computing the (I, .J)-components of the basis elements Rest,, —o o
ananL 2 , Rest,, —o o dg., and Rest,,, =0t 2 .

It follows from - - and - that (I, J)-components of these operators
are given as the entries in the table below, followed by the restriction map Rest,, —¢:
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(Resty, —o oandl}gnL%)U (Resty, —odgn )1 (Resty,—0ot o )1s

Oxn

Case 1 CDY aé% (_1)i% (=
- pel\{n} ! )

Case 2| (—1)'sgn(I;p, Q)amfaxq 0 ’

Case 3 0 —sgn(l;p)a%p 0

Then Cases 2 and 3 of the lemma follow from ([1.4)). In Case 1, the (1, J)-component
of D; ;""" is given by

| i 0
i1 pt1 il ptl
(—=1)"'Rest,,—o 0 | DiF, D 52 TV a) Dty or.

pel\{n} P

1
+§(u+2i—n)D(’j s
which amounts to

; 1 o2
(—1)"'Rest,,—g o §(a +u+2i—n)Dt + Dgf; Z —— = Agas

peN{n} P
by the three-term relation for D¥. Thus the lemma is proved. U

Lemma will be used for the proof of Proposition (1). We may deduce
Proposition [1.4] (2) from Proposition (1) by the duality (10.6), however, we give

explicit formulee for the matrix components of foal for later purpose.

Lemma 9.6. For I €1, ; and J € 1,1, we consider
Casel.n¢gl,J=1.

Case2. ng I, |J\I|=1, say I = KU{p},J = KU{q}.
Case3. nel,|J\I|=1, say I = KU{n},JJ =K U{q}.

Let p:=u+1— "Tfl Then the matriz component (Df;;i)u 1S given as

1 9 1
Case 1. =Dy > o) 52 T 5(u+a)D¥,

Case 2. —sgn(I;p, q)D"", &

a—2 9zp,0xzq”’

Case 3. —sgn(I;q,n)y(u, a)Di*] 2

a—1 x4’

followed by the restriction map Rest,,—o. Otherwise, the (I,.J)-component (D)1,
18 equal to zero.

Proof. From the expressions (8.21f), (8.18) and ({8.19)), we have:
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(ReStanO o and]En)[J (Restmn_o o anL fé} )]J
Case 1 —Rest,,—g 0 Zpel 8:1:2
Case 2 | —sgn(I;p, q)Rest,, oo Fr0me
Case 3 | —sgn(/l;q,n)Rest,, oo (%f%n (—1)"1sgn(I; q)Resty, —o 0 ax

Then Cases 1 and 2 of the lemma follow from (1.6). In Case 3, we also use the
identity sgn(I;q,n) = (—1)"'sgn([;q) and the three-term relation ({9.7)). O

We are ready to complete the proof of Proposition [1.4]

Proof of Proposition[1.4 (1). Suppose i = n. Then, only Case 1 in Lemma
occurs. In this case I = (). Thus Dﬁ;”_l =0 if and only if a + v+ 2¢ —n = 0,
equivalently, u = —n — a.

Suppose 1 < i < mn — 1. Then Cases 1 and 3 in Lemma occur, and Case 2
occurs if 2 < ¢ <n—1.

First, we see from Lemmathat (foaifl) ;; = 0in Case 1 if and only if D) =
and a +u + 2i —n = 0, equivalently, n — u — 2i = a € {0, 1}.

Second, (DHFl) — 0 in Case 3 if and only if v(g, a)D** = 0. This happens
if and only if a = 0 because a € {0,1}. Hence D; ;"' = 0 implies that (u,a) =
(n — 2i,0). The converse statement also holds because (Di2i7"),, vanishes in Case
2 if a = 0. Thus Proposition (1) is proved.

(2). The proof of Proposition (2) is similar to the one of (1) by using Lemma
[9.6] and we omit it. O

9.4. Two expressions of D}, *~'. In this section, we prove in Proposition [9.9| the
identity (L.4) = (L.5) for the two expressions of the differential operator D, ;*~': £(R") —
ETHR™ 1) by using the three-term relations that we established in Section 0.2

In order to prove the identity = , we begin with the relationship between
the following two triples of matrix-valued differential operators

0
dpndipnt o dan, L o and {—dint o dgn, ——1t o +dan,t o
{ R7 URn P R” m} { R" Bo anax 5= R7 > m}

that map &'(R™) to & 1(R™).
Lemma 9.7. Suppose A, B,C, P, Q) and R are scalar-valued differential operators on
R" satisfying

+C.

a R - —AA]Rnfl — B a

1 P=-A =B—-A
(9-13) @ ox,’ 0x,,
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Then
0
oz,

(9.14) Aand&nL%_’_Bd&n"roL% = P(_dﬁnb%an>+Q( L%+d]§n)+Ra%.

Proof. 1t follows from Lemma (1) and (8.14) that
0 0
it s dgn = dudpnt o — = —dgu = ~dgndint o — = —dgn — Apnt o .

Tn aa’:n Tn amn Oxn
Hence the right-hand side of (9.14) is equal to

‘ 0 " 9
_PananL% + (—Pa—% + Q)dpn + (—PAgrn + Qamn + R)L%.
Thus the equality (9.14)) holds if
A=-P, B:—Pa +Q, C:—PARn+Qa + R,
8xn axn
or equivalently if (9.13)) is satisfied. O

Lemma 9.8. Suppose p € C and a € N. Then we have the following identity as
linear operators from E'(R") to E1(R"):

1 1
Dt it — (s )DL + (i — =)D
) 1 9 N D |
= —Difydint_o dpn —y(n - 5 a)Dﬁ_l(aan% +dp) + 5 (i o= +a)Dge 2
Proof. By Lemma [9.7 with
1 1
A=-Dit), B=—y(ma)Diil, €= (u+i- "Dk
the proof of Lemma [9.8 reduces to the following identities
0 1
Dl gy V@)Dl = —7(n = 5Dl
0 1 . n+1 1 . on+1
DI, Agns +7(M7G)D5f1laxn + Q(M T )Dy = 5(# Tim T a)Dy.

These are nothing but the three-term relations among the operators D} that we

proved in (9.7)) and , respectively. O

We are ready to prove the second expression ({1.5)) of 'Dfiaifl.
Proposition 9.9. As operators E/(R") — EHR™1), we have (1.4) = (1.5)).
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Proof. Tt follows from Lemma [8.17] (2) that

0
Rest,,—o o DY, <8x Lo+ d§n> = djn-1 0 Rest,, oo DY _,.
n n

Hence the proposition follows from Lemma composed by Rest, _g. 0

By the expression (1.4)), the symmetry breaking operator D}, "' takes a simpler
form when 7 = 1:

Dizo = Rest,, -0 (—’Y(u _n ,a)D, 1 ? dg. + E(u +2—-—n)D, * Laa>

because

andf{wLaL =0 on&'(R"),
and so the first term of ([1.4]) vanishes. On the other hand, by the expression (|1.5)),
we see that the symmetry breaking operator D}, ;'~" takes a simpler form when i = n:

1 wrnil
(9.15) Dronl = —(u+n4—a)RestIn:00Da+ 210,

u,a 2 For

since both the operators

Oxn Oxn

0
—dgnt o dgn and Resty,, oo (3 L o +d]>1§n) (= dgn-1 o Resty, )

n

in the first and third terms of (1.5]) vanish on £"(R™). This operator is dual (via the
Hodge star operator) to the symmetry breaking operator ngzoi_ma (Juhl’s operator)
for functions (see Section [10.4)).
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10. CONSTRUCTION OF DIFFERENTIAL SYMMETRY BREAKING OPERATORS

We proved in Proposition that there exist nonzero differential symmetry
breaking operators from the G-representation (i, A), to the G’-representation J(j, v)s
only if

jef{i—2,i—1,ii+1}

In this chapter, we complete the proof of Theorem 2.9 which provides explicit formulae
of these symmetry breaking operators. The formulee are given in the flat picture ,
namely, as differential operators £/(R") — £7/(R"1).

By the F-method (see Fact [3.3), we have a natural bijection (see (5.31))

(10.1) Diff g (1(i, N, J(j, v)5) =~ soz(m,aya,fyg)

where the right-hand side consists of (vector-valued) polynomial solutions to the F-
sytem. In the previous chapters, we determined explicitly these polynomial when
j=1i—1and i+ 1 (see Theorems and respectively). Then the proof for
Theorem is divided into the following two parts:

e For j =i—1 and i+ 1, we translate these polynomial solutions into geometric
operators acting on differential forms via the symbol map according to the
F-method. We show that the resulting symmetry breaking operators coincide
with Cy') ! and CZA’;L ! respectively.

e For j = i—2 and 7, we use the duality theorem of symmetry breaking operators
(Theorem [2.7)).

This completes the proof of Theorem [2.9) In the next chapter, we shall derive
Theorems [LAHLS from Theorem 2.9

10.1. Proof of Theorem in the case j = i—1. In this section, we give a proof
of Theorem [2.9]in the case j = ¢ — 1. Suppose that we are in Case 2 of Theorem [2.8]
namely,

1<i<n,a:=v—X(eN)and f—a=amod 2.

Let (go, g1,92) be the triple of the nonzero polynomials given in Theorem SO
that

2
SOl(ﬂJ,_, O'E\)a, " 1) (CZ a— kgk z—>z 1
=0
We recall that g; = go = 0 if i = n or A = v. By the isomorphism ([10.1]), the gener-

ator Zi:O(Ta—kgk)hz('i))ifl gives rise to a differential symmetry breaking operator, to

be denoted by D. What remains to prove is that D is a nonzero scalar multiple of
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@)\ZV_ 1= 15;_:;17 ) defined in (2.29) in the flat coordinates. We set

(10.2)
A-nsl o
D, Lo if i =n,
Oxn
P:=Xt1a if A=v,
dxn
A—n3 1 1 Ani A-ngt .
—D, _5* dpndgnt o — 7y (/\ —5=a )Hn 1D 2 dgn + 5Dy * 1o otherwise.
Oxn, Oxn

We shall verify
Togo)hy”) =nor A=v,
° Symb(P) — ( gﬂ(;—; 1 " [/ n or 1%
Zk o (Tu—kgr) hiss;_y  otherwise.
° @f\zy_ ! = Resty,—g o P.

By the general theory of the F-method (Fact , Theorem in the case j =i—1
follows from these two statements. The second statement is Clear from the identity
Resty, —o© Hn 1 = Rest,, —o (see (8 ) and the definition of the renormalized
operator C )\’Z ! The first statement in the case i = n or /\ =v follows directly from
the formula for the symbol map given in Lemma [9.1] and Proposition [8.24] (2). Thus
the rest of this section will be devoted to a proof of the first statement in the case
i #n and A # v (see Lemma , which requires some few computations.

Let A, B,C € C, and we set

g2(t) = 55_2 <ewft>,

a(t) = e_ﬂTﬁAéﬁt‘,l (eﬂﬁt),
golt) = ( m ) +coc" ( ﬂmt)

Lemma 10.1. Let a € N and € C. We set

. 1—1
D, = (—anan + ( _ 1) ARnl) Lo,

0
Dy = —All, jodg. + (_A+B)8x Lo .

3

Then the symbol of the differential operator
D! ,Dy+Dh | Dy: E'R") — E7HR™)

18 given by

77\/7
Symb(D}_,Dy + Dy 1 Ds) = (@=2) Z —kgr)h 1—)7, 1



CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 111

Proof. We first claim the following equalities:

Symb(DY ;) = e~ a—292-
v/ —1(a—2
Symb(ADY ) = e o w101
Symmb (BDZ_l - +0Dg_2ARn1) = T g

The first two follow from Lemma [9.1] For the third equality we note that

V=1

Tago = ¢ BGTuy (Cly (557) ) + CQua()Tus (Cliy (757))

by Lemma [6.27] (1) and (2).
Combining the above formulee with Proposition [8.24] (4), (3), and (2), respectively,
we get

. 1—1 . 0
Symb(—DZ‘_g (anan + _ lARn_l) L% + ADg_l(—Hn,lan - a—an%)
+ (Bpgfl o, + C'DZLQARn—l)L%)
_ny/1(a=2)
= € 2 ((Ta—292>hz(‘2—)>i—1 + (Ta—lgl)hgl—)nq + (Tago)h§0—)>i—1> :
A simple computation shows that the left-hand side is equal to
Hence Lemma [10.1] is proved. U
We put
-1 A— ' A— 1 —1
A::’y()\—n ,a), B:= 1—1—& A C = n—|—2+1 :
2 a a n—1

Lemma 10.2. Let a := v — X € Ny and i # n. Suppose go(t), g1(t), and go(t) are
giwen by the above A, B,C with p = \ — "T_?’ Then the matriz-valued differential

operator P given in (10.2]) satisfies

_rv=1(a=2)
Symb(P) =e 2 Z(Ta—kgk)hgi—l-

2
k=0
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Proof. With the above constants A, B, and C, the differential operators D; and D,
in Lemma [T0.1] amount to

. A—n—+1i
D1 = (_anan—i_TARn_l) L%,
A—n+1i 0 )

Dy, = v <_Hn—l o dgpn +

a &Enbagn
Therefore
n 3 n—3 —1 _n-3
DT D 4D T D= —D\ dindint o — (A = ”2 ,a)D) 17 T, ydie
A—n+1 - n—1 \_n=3 0
+T( = ARn1—|—7()\ 5 ,a)D, 2 amn)bain.

Applying the three-term relation of the scalar-valued differential operators D),

it amounts to
-1 A— PRI
”2 O, DT g, + 2,

A—n=3 "
-D, ,* ananL% —( 5 i
Hence, Lemma [10.1| implies the statement of Lemma [10.2 0

Thus we have completed the proof of Theorem in the case j =1 — 1.

10.2. Proof of Theorem in the case j = i+ 1. In this section, we give a proof
of Theorem in the case j = i + 1. Suppose we are in Cases 4 or 4’ in Theorem
2.9, namely,

Cased. 1<i<n—2,(\v)=(i,i+1)and f =a+ 1 mod 2,

Case4d. i=0, € —-N,v=1and f=a+ A+ 1mod 2.

Then we have from Theorem [7.3]

~\— n 1 7{\/7 (1) .
I ® ( o ( )) h Case 4/,
SOl(n+7 O_g\)on T( ;1)) (1) - ‘ o ?n o
Ch in Case 4.

i—i+1

We define a differential operator Q: £/(R") — £1(R") by the formula

™ — 11— ;1 . .
Q= e~ \/;Mﬂn 1o'D/\ 2 dgn ifi=0,
|, o dgn, if1<i<n-—2.

We shall verify the following claims in both Case 4 and Case 4’

e Symb(Q)) is a generator of Sol <n+, U/(\ZLJ_IEZ?))‘

e Rest,, o0 Q: E(R") — ETHR™ ) coincides with @;VH
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By the general theory of the F-method (Fact , Theorem in the case j =141
follows from these two claims. The first claim follows from the computation of
the symbol in Lemma and Proposition (8). Now, by use of the identity

Rest,, —ooIl,—1 = Rest,, —o (see (8.26))) and the definition (2.30]) of @;j "(= Df\_ftl A)
we obtain @;Zj T = Rest, —o o Q. Thus we have completed the proof of Theorem |2
in the case j =1+ 1.

10.3. Application of the duality theorem for symmetry breaking operators.
In the following two Sections and [10.5] we shall give a proof of Theorem [2.9]in
the cases j = ¢ and ¢ — 2 by applying the duality theorem for symmetry breaking
operators (Theorem , instead of solving the F-system. We shall see that the cases
j=1andi— 2 are derlved from the cases j =1 — 1 and 7 + 1, for which the proof

was completed in Sections [10.1] and [10.2] respectively.
In this section we give a set—up for the duality theorem. We put

i=n—1i, ji=n—1-j.

First we examine a geometric meaning of the proof of Lemma and Theorem
2.7 Let x__ be the one-dimensional representation of G as defined in (2.9). Then
the proof of Lemma shows that the Hodge star operator on £(R™) induces the
G-isomorphism 1(i, A)y =~ I(i,\)s ® Y—_ in the flat picture (see ([2.8)) as below:

(10.3) ER") —E s &(R™) ~ E(R") @ C
0 ] I 0
1(i,\)a (1, M )q @ Y.

We recall the proof of Theorem is based on the G- and G’-isomorphisms
16, Na = 1, N0 ® ¥
J(G,v)s = J(5,v)s @ X——|ar,
which induce the duality of symmetry breaking operators
Differ (1(i, N)a, J(4,)5) = Differ (15, Na @ x——, J(G,¥)s @ x__|a), T+ T @id.
In the flat picture, this isomorphism is realized by in the following key diagram:

E(R™) 21(i; A)a - J (5, V)5S &I (R)

- N -

ER™) ——0(1, M) @ x— J(, V) ® xo, . —— EI(R™)
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We note that the 6-tuple (7, j, A\, v, o, B) for j =i belongs to Case 3 in Theorem [2.8
(which we shall consider in this section) if and only if (¢,7 — 1, \, v, , ) belongs to

Case 2 in Theorem [2.§| (which was treated in Section [10.1). Likewise (i,j, A, v, av, 3)
for j = ¢ —2 belongs to Cases 1 and 1" in Theoremif and only if (i,7+1,\, v, , B)
belongs to Cases 4 and 4’ in Theorem [2.§] (which were treated in Section [10.2)).

In view of the above geometric interpretation of the duality theorem (Theorem
2.7)), Theorem in the case j = ¢ and i — 2 is deduced from the following identities

(10.4) CY, = (—1)" agnor 0T, 0 (k)
(10.5) @f\z;z = (=1)"" xga o(fé%\’?;rl o (*Rn)_l ,

in the flat picture, which will be treated in Propositions and respectively,

in the next two sections.

10.4. Proof of Theorem [2.9| in the case j; = i. In this section, we prove the

duality ((10.2)) as well as the equality (2.23|) = (2.24)) for the two expressions of (Ci’fy

(or equivalently, (L.6) = (L.7) for Dj "), and complete the proof of Theorem [2.9|in
the case j =i.

Proposition 10.3. Let 0 <i <n—1, and (\,v) € C*> withv— X € N. We consider
a matriz-valued differential operator

(10.6) (=1)" " a1 oC5 o (kpe) T E(R™) — EYR™),

where i == n —i. Then (10.6) and the two expressions ([2.23)), [2.24) of C’;\’i, are

equal to each other. Moreover, we have the following identity for the renormalized
symmetry breaking operators (see (2.29) for the definition)

(10.7) (Ef\lu = (—1)" ! xgna o@if;l o (xgn) '

—1

Proof. We recall the notation from (2.21)) that @,\W = Rest,, - © D;\:: 2 . By (2.25)
or by (1.4), we have
Gi—1 _ yisi—1
C/\,V - D)\fg,uf)\
P n—1 -3

= Rest,,—go (—Dy: .

A—n=1

1 .
Vo drndint o — (A — 5 v —=AND, 2 dgn —1-5()\—@)1?”_)\2 Lo

Oxnm

)
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Applying the formulee for sgn—10Rest,, _g0T o (+g=) ! given in Lemma[8.20)(T = d.

and Lai) and in Lemma [8.22 (T =

(—Jjnfl*Rn_loéiﬁﬂ

drndfnt o ), we obtain
Oxn

o (sgn) !

A— TL 3

—dpn-1dgn-1Rest,, g0 D,,_, 2,

+ Rest,,, —¢ 0 <’y()\ -

= _dinflan—I@AJ’»l’l/fl + ’)/()\ —

2

n—1 n—3 1 _n—1
,V—MDSANadW 5@-@@3;)

A — 7~
ZC}\V

-1 -
n , V — )\)C)H’LVLBLan +

Hence we have proved the equality (10.6]) = (2.24]). B
On the other hand, we have proved in Proposition m that Cf\l; ! is equal to

Rest,,, - ©

A—n= 3
DV A— QanL 0 an

A_L_l n A—n_l

1 , = a1 f 0
2(V—Z)DV_)\ Lo —y A==, v=ND,_ 2 <an —i—a—xnb

B 2

Applying Lemma [8.20/to T' = — ]’{{nbaian, Lo, and dpn + %Lai, we have

(—1)" ! sgna o(Ci?V_l o (kgn)~

1

= Rest,,—¢ o (Dl),‘)\QQ drndiyn +

~, 1 o~ n _
= Cht1p-1drndpn + 5(7/ —1)Cr, —y(N — 5 v—ANCx,1,

which is equal to the formula (2.23]). Thus we have shown the equalities: (2.23)) =

20 - [,

Finally, let us prove the identity (10.7). We have already shown (10.7) when
A#vandi#0 (ie i #n) because Ci’fu = (Cf\’fy and C;Z;l = Cz)\ly_l in this case. For
=vori=0 (ie i =mn), the identity (10.7) is an immediate consequence of the

definition ([2.29) and Lemma
is completed.

3.20

with T'=1 o Thus the proof of the proposition
' 0

10.5. Proof of Theorem in the case j = ¢ — 2. In this section, we prove
Theorem [2.9)in the remaining case, namely, j =i — 2. We keep the notation (4, ) =
(n—i,n— 1 —j), and assume j = ¢ — 2 in this section. Then Cases 1 (resp. 1) and
4 (resp. 4') in Theorem are dual to each other, namely,

Case4: j=1+1,1<i<n—-2 (\v)=(i,i+1), 3=a+1mod2,

Case 4: (1,7) = (0,1), A€ =N, v =1, =a+ A+ 1 mod 2,

e}

Oxm

)



116 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

are equivalent to
Case 1: j=1—2,2<i<n—-1,(\v)=(n—in—i+1), 6=a+1mod?2,

Case 1": (i,j) =(n,n—2), € -N,v=1,=a+ A+ 1mod 2,
respectively.

By the duality (Theorem and the proof of Theorem in the case j =i + 1,
Theorem in the case j = ¢ — 2 is deduced from the following proposition.

Proposition 10.4. We have the identity ((10.5 - namely,

(C:“LZ zzn i+1 — (_1>n ! F*Rn—1 OCZ +1 (*R")_l in Case 1,

C;,?—Q = (-1)"" 1 S (3(:)\71 o (*Rn)_l in Case 1'.

Proof. We recall from ([2.30)) that @)\Z:r ' = Resty, g 0 D;\__j_n%an. It follows from

Lemma [8.20] (1) and from Lemma with 7' = dg» that
(_1)n71 kpn—1 OReStInZO o an o (*Rn) = Restx 001l 3 an

Hence we have
A— 7,7;1

(10.8) (—1)" " xgna o@iifl o (¥gn) ' = Rest,,—g 0 D., ° 2 din -
In Case 1, A = 4 and therefore (10.8)) amounts to Rest,, ot 2 s, = CH- ZQH Iy
~ n—1
In Case 1’, i = n, i = 0, and therefore amounts to Rest, oD/\ 2 Lo dpn
which is equal to @;?72 O

Hence the proof of Theorem [2.9]is completed.
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11. SOLUTIONS TO PROBLEMS |A| AND [B| FOR (5™, S™1)

In this chapter, we complete the proof of Theorem and Theorems 1.8
which solve Problems [A] and [B| of conformal geometry for the model space (X,Y) =
(5™, S™~1), respectively.

11.1. Problems |A| and B| for conformal transformation group Conf(X;Y).
We begin with the general setting where (X, gy) is a pseudo-Riemannian manifold
of dimension n, and Y is a submanifold of dimension m such that the metric tensor
gx is nondegenerate when restricted to Y. We define Conf(X;Y") as a subgroup of
the full conformal group Conf(X) := {¢: X — X is a conformal diffeomorphism}
by

(11.1) Conf(X;Y) :={p € Conf(X) : p(Y) =Y}.

Then £%(X),s is a Conf(X)-module for 0 < i < n,u € C, § € Z/2Z, and E/(Y),.
is a Conf(X;Y)-module for 0 < j <m, v € C, ¢ € Z/2Z. The group Conf(X;Y) is
the largest effective group for Problems [A] and [B] on differential symmetry breaking
operators from E(X), s to E(Y ), ..

The first reduction is the duality theorem for symmetry breaking operators. We
recall from Proposition that the Hodge star operator *xx carrying i-forms to
(n — i)-forms is a conformally equivariant operator for X, and xy carrying j-forms
to (m — j)-forms is a conformally equivariant for Y. Then, a solution to Problem
(or Problem (B]) for i-forms on X and j-forms on the submanifold Y, to be denoted
by the (7, 7) case, leads us to solutions for (i,m — j), (n —i,7), and (n —i,m — j)
cases via the following natural bijections:

(11.2)

DiHConf(X;Y) (gi(X)u,Ou 5] (Y)’U,O) - = DiﬁCOHf(X;Y) (gz (X>u,07 gm_j(y)v—m-i-Qj,l)

\2 \2

Diff cont(x:v) (€™ UX )u—n+2i15 E (Y )0,0) == Diff cont(x:v) (E" (X )uent2i1, E™ (Y )pmmt2j1) »

given by

(11.3) D4y oD

| |

Dosxyr—=xyoDoxx.

In other words, a solution to Problem [A| (or Problem [B) for a fixed (d,¢) € (Z/27)>
yields solutions to Problem [A| (or Problem , respectively) for the other three cases
of (6,¢) € (Z/27)>.
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11.2. Model space (X,Y) = (S™, 5"!). From now we consider the model space
(X,Y) = (5", 5™1). We shall see that Problems |[A| and [B| are deduced from the
problems on symmetry breaking operators between principal series representations
of G = O(n+1,1) and G’ = O(n,1) which were proved in Theorems and
2.9, respectively. For this, we first clarify small differences such as disconnected
components and coverings between the groups G and Conf(X), and also between G’
and Conf(X;Y).

We recall from Section [2.1| that the natural action of G = O(n + 1, 1) on the light
cone = C R""1! induces a conformal action on the standard Riemann sphere S™
via the isomorphism S™ ~ Z/R*. Conversely, it is well-known that any conformal
transformation of the standard sphere X = S™ is obtained in this manner if n > 2,
and thus we have a natural isomorphism:

(11.4) Conf(X) ~ O(n + 1,1)/{= s}

Let us compute Conf(X;Y) for (X,Y) = (S™, 8" !). We realize Y = S"! as a
submanifold {(z,...,xy_1,2,) € S™ : x, = 0} of X = S™ as before.

Lemma 11.1. Via the isomorphism (11.4]), we have
Conf(X;Y) ~ (O(n,1) x O(1)) /{xlL12}.

Proof. Suppose g = (gij)o<ij<nt1 € O(n +1,1) leaves Y = S™! invariant. This
means that Y 77) g,;&; = 0 for all £ = (&, ..., &up) € Z with &, = 0, which implies
gn; = 0 for all j # n. In turn, g; = 0 for all 7 # n and g,, = £1 because
g € O(n+1,1). Hence we have shown g € O(n,1) x O(1). Conversely, any element

of O(n,1) x O(1) clearly leaves S"! invariant. Thus the lemma is proved. O

The above lemma says that the group Conf(X;Y) is the quotient of the direct
product group of G = O(n, 1) and O(1), however, we do not have to consider the
second factor O(1) in solving Problems|Aland [B] In order to state this claim precisely,

we write
) if 6 = ] if e =
T L S P
n—1i ifd=1, n—1—75 ife=1,

for 0,6 € Z/2Z and 0 < i < n,0 < j <n — 1. We recall that I(i, \), is a principal
series representation with parameter A € C and o € Z/2Z of G = O(n + 1,1), and
J(j,v)p is that of G' = O(n,1). Then we have

Lemma 11.2. For (X,Y) = (S, S™1), we have a natural isomorphism:
(11.5) | |
Homconf(x;y) (gZ(X)u’g, 53 (Y)v,s) ~ Homo(n,l) (1(5 . i, u 4+ i)(;.i, J(é? . j, v+ ])5]) .

Here the subscripts § - i and € - j are regarded as elements in Z/27.
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Proof. For o € Z/2Z, we write (—1)® for the one-dimensional representation of O(1)
as before, namely,

N 1 (trivial representation) if a =0,
(=)= . S
sgn (signature representation) if a = 1.

Since the central element —1I,,5 of G acts on the principal series representation
I(i, \)q as the scalar (—1)"", and since —1I,,; acts on J(j, ) as the scalar (—1)77,
we have

HomO(n,l)XO(l) (I(Z7 )‘)Ozv J(]? V)B X (_1)7)

_JHomog1y (I(i,A)a, J(J,v)g) if vy =i+ j+a+ B mod 2,
| {0} otherwise.

On the other hand, since the second factor O(1) acts trivially on the submanifold
Y = Sn=1 Proposition implies that the representation wf,]g of Conf(X;Y) on
EI(S™1) is given by the outer tensor product representation of O(n,1) x O(1) as
below:

wgg ~ J(e j,u+j)e; X1

(2
u,

Again by Proposition , we have an isomorphism @ )5 ~ [(0 - i,u + 1)5; as repre-

sentations of G = O(n + 1,1). Thus we conclude

Homconf(X;Y) (wf(j,)lS’ wf]{g) ~ HomO(n,l)xO(l) ([((5 S, U+ i)g.i, J(é? : j, v+ j)g.j X ]1)
~ Homo(ml) (1(5 -1, U+ i)g.i, J(€ R ])63) .

Hence the lemma is proved. ([l

11.3. Proof of Theorem In this section we complete the proof of Theorem
[1.1l We shall see that Theorem (conformal geometry) is derived from Theo-
rem (representation theory). Actually, we only need principal series represen-
tations I(7',\), and J(j',v)s with o = ¢ and § = j' mod 2 in order to classify
Diffr (E/(S™)us,E7(S™),c), see Remark [2.4]

Suppose that a symmetry breaking operator D: I(i', ), — J(j',v)p with a = ¢’
and $ = j' mod 2 is given. We set

i'=n—4, ji=n—-1—j, b=j—4, b:=-b—1
We note b = 4'—1" and that b — b defines a permutation of the finite set {-2,-1,0,1}.
Then the diagram ([11.3]) of the double dualities induces four symmetry breaking op-

erators T': E(S™),s — EI(S™ 1), with (T4, j,u,v,4,¢) listed in Table below:
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TABLE 11.1. Conditions for (7,1, j,u,v,d,¢) in the double dualities

T j u v d | ¢
D j=i+b | N—4d| v—j=v—i—-b 010
x0Dox J=i4+b | AN=7| v—j=v—7—-b |1]1
x0D J=n—i4+blA—i|v—j =v+i—-n—0| 0] 1
Dox |7 |jf=n—"+b|X—7|v—j=v+7—n—-0b|1]0

In the columns in Table[11.1, we give formulee for v in two ways for later purpose.
We note that b or b gives a relationship between 7 and j.

Let us translate Theorem [2.8 on symmetry breaking operators for principal series
representations into those for conformal geometry via the isomorphism by
using the dictionary in Table The resulting list is given in Table[I1.2] We note
that among the six cases in Theorem (iii), Case 1 does not contribute to Problem
[Alfor (X,Y) = (S™, S"1) because Proposition [5.19] (1) requires v — A = 8 —a mod 2
for Diff o/ (I(i', N)a, J(j', v)5) not to be zero, whereas v— XA = (n—i'+1)—(n—74) =1
in Case 1 does not have the same parity with § — « if we take o = 4" and = j/'(=
i" —2) mod 2. Then the remaining five cases in Theorem (iii) yield 5 x 4 = 20
cases according to the choice of (a, 8) € (Z/27Z)?, which are listed in Table

Let us explain Table [11.2] in more details. We fix a case among the five cases
1/, 2, 3, 4, or 4 in Theorem [2.§ (iii), choose («, 3) € (Z/27)?, and take a nonzero
D € Homg (I(7', N)a, J(j', V) 5) which is unique up to scalar multiplication. Here we
assume o =i’ and 8 = j' mod 2, which was not necessary in Theorem (iii). The
operators T = D, xo D, Do, or x o D o x (see ) are listed in Table
according to the choice of (§,¢) € (Z/2Z)?%, and the operator T gives a symmetry
breaking operator £/(S"),s — £7(S" '), where (i, j,u,v) is determined by the
formulee (7,5, \,v) — (i,j,u,v) given by Table for each fixed 6,e € Z/27Z.
This procedure transforms the classification data given in Theorem (iii) with the
additional parity condition o = i’ and 8 = j” into Table [11.2]

For instance, xo(4)ox* in Table means the following: we begin with parameter
(7,7, A\, v, ar, B) belonging to Case 4 in Theorem (iii), namely, j/ =7 +1, 1 <
,L'/

<n—2,(\v)=(i4+1), take D € Diffo(n,1) (1(i', N)a, J(j',v)5) With @ = 7" and
B = j' mod 2, and then obtain * o D o x € Diffo(n1) (E/(S™)us, EI(S"1)y,e) Where
i,u,0,7,v,¢) is determined by

§=e=1mod?2, i=7i(=n—i), j=j(=n—-1—j5), u=X—7, and v=rv—j.

A short computation shows that

j=i—2, 2<i<n-1, and (u,v)=(n—2i,n—2i+3),
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giving the first row of Table [11.2]

The order of differential symmetry breaking operators of D is given by a := v — .
Since the Hodge star operator is of order zero as a differential operator, the operators
xoDox, xo D and Dox have the same order a. We listed also the data for a in Table
[11.2] Collecting these data according to the values of j and i, we get the classification
of the 6-tuples (4, j, u, v, d, ) for the nonvanishing of Diff o, 1) (E(S™) w5, E7(S™ ) ve)
as listed in Table[I1.2] or exactly the condition in Theorem h (iii). Thus Theorem
[1.1)is proved.

11.4. Proof of Theorems[1.5HI.8. Theorems[I.5,[1.6}[1.7] and[I.8are derived from
Theorem [2.9| by using Table [11.2] and by the formula C}’, = D:7J with a = v — A

and u = A — 7 (see (2.22))) and the duality results (Propoéitions and (10.4)).
We give a proof of Theorem below. The other three theorems are similarly

shown.

Proof of Theorem[1.5. There are two rows in Table that deal with the case

7 =1 — 1. The symmetry breaking operator 7" in this case is given as

T (2) for (9,¢) = (0,0),
k0 (3)ox for (d,¢) =(1,1),

where T' = (2) means that T is proportional to @)\ZV_ " in the flat picture corresponding
to Case 2 of Theorem and T' = %o (3) o x means that T is proportional to *gn-1 0
CY """ o *gn corresponding to Case 3 of Theorem . It follows from Proposition

10.3| that the latter equals :I:@f\’; ' In both cases, T is proportional to (Ef\llf l =

Dﬁ:;’;l_ ) (see (2.21))). Thus Theorem [1.5(is proved. O

11.5. Change of coordinates in symmetry breaking operators. So far we have
discussed explicit formulee of symmetry breaking operators in the flat coordinates.
This section explains how to compute explicit symmetry breaking operators in the
coordinates of (X,Y) = (5", 5" ') from the formulse that we found in the flat
coordinates of (R™, R"™1).

We recall from and that the stereographic projection and its inverse are

given, respectively by
1

1+w0
1

1T Qul)

p: S"\{[¢7]} —R", w=Ywy,...,wn)— (wi, ... wn),

t: R* — 5™ r="x,...,2,) 1 - Qn(x),27,...,21,),



122 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

TABLE 11.2. Relation between Theorem L1l for
Diff o1 (8’(5”)%5, SJ(S”_I)U’E) and operators in Theorem
in cases (1)-(4)’

j 1 U v 6 € Operators a
2<i<n-1 n—2i n—2i+3 1 1 %0 (4) 0% 1
i—2 u€-n—1-2N 0 0 (1)
1=n 3—n l—-u—n
u € —n—2N 1 1 x 0 (4) o %
v—u€2N+2 0 0 (2)
i—1 1<i<n v—u—1
v—u€2N+1 1 1 %0 (3) 0%
v—u€2N 0 0 (3)
1 0<i<n-1 V—U
v—u€2N+1 1 1 %0 (2) 0%
1<i<n-—2 0 0 0 (4) 1
i+1 u € —2N 0 0 0 (4)
1=0 1—u
u€ —1-2N 1 1 x0 (1) ox
1<i<n-—2 0 2i—n+3| 0 1 %0 (4)
n—i—2 u € —2N 0 1 * o (4)
1=0 3—n 1—u
u€ —-1-2N 1 0 (1) o %
v—u€(2i—n+1)+2N 0 1 0 (3)
n—1—110<:1<n-1 v—u+n—21—1
v—u€ (20 —n+2)+2N 1 0 (2) o x
v—u€(2i—n+1)+2N 0 1 x 0 (2)
n—1 1<i<n v—u-+n-—21
v—u€(2i—n)+2N 1 0 (3) o x
2<i<n-—1 n—2i 1 0 (4) o % 1
n—i+1 ue—-n—1-2N 0 0 1 xo (1)
1=n l—u—n
u € —n—2N 1 0 (4)" o
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where £~ = {(—1,0,...,0). As is well-known, p and ¢ are conformal maps with the
following conformal factors (see [I8, Lem. 3.3] for example):

9 2
: ) =\ T A o ng | GRna
L gsn . (z) (1+Qn(9€)) gRrn, or x

2
1 —|—1w0) gsn w for w e S™\ {[¢7]}.

In turn, the twisted pull-back of differential forms defined in (8.2) amounts to
(P) " ERY) — (ST, @ (1+wo) P

(1) lsm) — ), g (B2 s

P IR pw) = (

forue C, 6 € Z/2Z, and 0 < i < n.
Then the following proposition gives a change of coordinates in differential sym-
metry breaking operators.

Proposition 11.3. Suppose a 6-tuple (i,7,u,v,d,) belongs to Cases (I)-(IV') or
Cases (x1)-(xIV') in Theorem u and D = 1517}1]%_2 (or *gn-1 0 ﬁﬁiﬁ;ﬂw re-
spectively) is a differential operator E(R™) — EI(R™) defined as in (1.9)-(1.12).
Then the compositions

(b)) 0 Do (i) s €ism) — gi(sm

v,E

)

(n—j-1) - D @\". gi(sn gi(gn—1
*gn—1 O pv—n+2j+1,€+1 O (¢] Lu,5 . ( )—> ( )7
respectively, are differential symmetry breaking operators from (w%,ﬁ(S”)) to
<w1(,{g,5j(5”_1)> in the coordinates of (S™,S™™1).

In Proposition [11.3] ¢: R™ — S™ denotes the conformal compactification in the
n-dimensional setting as before, but p: S"7'\ {[{7]} — R™"! is the stereographic
projection in the (n — 1)-dimensional setting.

The proof of Proposition in Cases (I)-(IV') is clear. For Cases (xI)-(xIV’), we
use Lemma R.2}

(11.6) *gn—10 (pgn_jlglj)_HﬁH) = (pi{g)* o*gn-1 on EMTITHR™MTY).

We end this section by giving some few examples of (pgfg) oD o (LS)&) from

Lemmas [8.5 8.9, and B.11] The last one is related to the factorization identity,
which we see in Theorem [13.18] (4).
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j u |6 v 3 D (pgf,g> oD <Li)a>
1—1 u 1 u—+1 1 5;31"1 = Rest,,—g 0 Lo Restgn-1 0 L, _, (sm)

i u |0 u 0 NfL})”' = Resty, —o Restgn-1
i+1] 0 |0 0 0| Dig™" = Resty,—o 0 dgn Restgn-1 0 dgn
i—1|n—2i|0[n—2i+2|0| D1 =—Rest,,oods —Restgn-1 o d¥n
i—2n—2i|1|n—-2i+3|1 5;__”223 = Resty, o 0 Lo © dn | Restgn-1 0y, (sn) 0 dgn
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12. INTERTWINING OPERATORS

In this chapter we determine all conformally covariant differential operators be-
tween the spaces of differential forms on the standard Riemannian sphere S”, and
thus solve Problems [Al and [Bl in the case where X =Y = S™. We note that the case
X =Y (and G = G’) is much easier than the case X 2 Y which we have discussed
in Chapters [6H{L1]

We have seen in Proposition [8.6] that the differential d: £/(X) — £(X) (the
codifferential d*: £71(X) — E(X), respectively) intertwines two representations
wl(z)d and wq(f;;rl) (see (L.1)) of the conformal group of any oriented pseudo-Riemannian
manifold X for appropriate twisting parameters (u,d) and (v, ), respectively. Con-
versely, our classification (Theorem shows that d is the unique differential
operator from £(S™) to £7(S™) (up to scalar multiplication) that commutes with
conformal diffeomorphisms of S™. Similarly, we shall prove that the codifferential
d* is characterized as the unique differential operator (up to scalar multiplication)
EFL(S™) — £(S™) that intertwines twisted representations of the conformal group
of S™. On the other hand, we find countably many bases of conformally covariant
differential operators of higher order that map £(S™) into £7(S™) when j = i (see
Theorem .

One could give a proof of those results by combining the algebraic results on
the classification of homomorphisms between generalized Verma modules by Boe—
Collingwood [2] with the geometric construction of differential operators by Branson
[4], although the existing literature treats only connected groups and one needs
some extra work to discuss disconnected groups. Alternatively, we shall give a self-
contained proof of these results from scratch by the matrix-valued F-method. We
know we could shorten a significant part of the proof (e.g. the relationship between
A and p) if we used some elementary results on Verma modules. Instead we provide
an alternative approach, as this baby example might be illustrative about the use of
the F-method in a more general matrix-valued setting.

12.1. Classification of differential intertwining operators between forms on
S™. Let 0 <i <n. For ¢ € N, define a differential operator (Branson’s operator)

T : E(R") — E(RY)

n

(12.1) W= (5= i) duadi + (5 =i+ ) dindn )AL

1
= (—25 and[En - (571 + l— Z) ARn) Aﬂggll

Then the following theorem is the main result of this chapter.
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Theorem 12.1. Let n > 2.
(1) Let 0 <i<mn and { € N.. We set

u::g—i—ﬁ, U::g—z’—l—ﬁ.

Then the differential operator 7‘2(5) extends to the conformal compactification
S™ of R™, and induces a nonzero O(n + 1,1)-homomorphism E'(S™),s —
EYS™)ys for 6 € Z)2Z, to be denoted simply by the same letter 7’2(5).

(2) Let 0 < i,j < n,(u,v) € C* and (6,¢) € (Z/2Z)*. Then the space of con-
formally covariant differential operators, Diff ons1,1)(E(S™)u5, E1(S™)u,e), is
at most one-dimensional. More precisely, this space is nonzero in the eight

cases listed below. The corresponding generators are given as follows:
Casea. 0<i<n,ueC,decZ/2Z.

id: E(S™)us — E(S™)us-
Caseb. 0<i<n-—1,0§€Z/2Z.
d: E(S)0s — ET(S)os.
Casec. 1 <i<n,de€Z/27.
d*: EN(S™)p 25 — ETHS")n 2it0s-
Cased. 0<i<n,leN,,§eZ/27Z.
T3 (S aormis —> E(S™) 3 4emis:
Case xa. 0<i<n,u€eC andd € Z/2Z.
%1 E(S™)us — E"US™unsisi1-
Case xb. 0<i<n—1, € Z/27Z.
xod: E'(S")os — E" NS )2ir2 nsr1-
Case xc. 1 <i<n, 0 €Z/2Z.
dox: E(S™)p_0is — E" (S o541
Case xd. 0<i<n,leN,, 0 €Z/2Z.
* 0 75(2): gi(sn)%—e—i,é — 5n_i(5n)—g+é+i,5+1-

We shall give a proof of Theorem [12.1]in Section [12.7]



CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 127

12.2. Differential symmetry breaking operators between principal series
representations. We reformulate the problem in terms of representation theory.
Let I(i,\), be the principal series representation of the Lorentz group G = O(n +
1,1). We determine differential symmetry breaking operators between (i, A),s as
follows:

Theorem 12.2. Letn >2,0<4,j<n, (\,v) € C?> and (o, 8) € (Z/27)>.

(1) The following three conditions on the G-tuple (i, 7§, \, v, a, B) are equivalent:

(1) DiHO(n+l,1)(I(i’A>aa ( J ) ) {O}

(ii) dimeDiffops1,1)(L(4,N)a, (4, v)5) = 1.

(iii) The 6-tuple belongs to one of the following:
Casel. j=i+1, (\,v)=(i,i+1), and o =+ 1 mod 2;
Case2. j=i—1, (\,v)=(n—i,n—i+1), and o« = f+1 mod 2;
Case 3. j=i, \+v=n,v—XAe€2N,, and a = [ mod 2,
Case 4. j =1, A\=v, and a = f mod 2.

(2) Any differential G-intertwining operators from I(i, N) to I(j,v)s are propor-
tional to the following differential operators E'(R™) — EI(R™) in the flat
picture:

Case 1. d;
Case 2. d*; 1
Case 3. 7:}1& = (3(n—2i — v+ Ndpndfyn + 3(n — 2i + v — N)djndrn) AH%,(LV_)\)_l;
Case 4. id.
For the proof we apply the F-method in the special case where G = G’ = O(n +
1,1). For 0 <i < n, a € Z/2Z, and A € C, we denote by agf)a the outer tensor
product representation A'(C") X (—1)* X C, of the Levi subgroup L = MA ~

O(n)x O(1) xR on the i-th exterior tensor space A*(C™). We recall that the principal
series representation (i, ), of G = O(n + 1,1) is the unnormalized induction from

the representation ag\ of P with trivial action by N,.
By Fact [3.3] we have a bijection:

(12.2) Diffoms1, (10 N 1, 1)5) = Sol (43 0, 09))
where the right-hand side is given by Lemma as
{¢ € Homy,, (a@a, o9 @ PollCy, ..., G ]) Aoy (N = 0}

We recall from (5.7)—(5.9) and ([5.11)) that Hl(i] and Hz_” are Homg (A (C"), A?(C"))-

valued harmonic polynomials. Then the following proposition holds:
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Proposition 12.3. Suppose n > 2. Let the 6-tuple (i,7,\,v,«, ) be as in Cases
1-4 of Theorem[12.3. Then,

Sol (mr,og\)a,al(lj%)

(CH’L—H—FI Case 1,
CHH@ . Case 2,
= C<—-(n—|—l/—)\) (1—ﬁ)Q B H(O) + (v —/\)Qﬁilff@)-) Case 3
n 11— 1—1 )
CHz—n Case 4,

0 otherwise.

\

We note that Hl(iz =0 for : =0, n.

We shall give a proof of Proposition in Sections to [12.6, Admitting
Proposition [12.3] we first complete the proof of Theorem [12.2]

Proof of Theorem [12.2. The first statement is a direct consequence of Proposition
and the bijection @[} To see the second statement, we recall from Fact
that the bijection (|12. 2 is given by the symbol map if we use the flat coordinates.
Since Symb (dg-) = H, ,, Symb (dg.) = H{Y),_;, and Symb (id) = H”); by Lemma
[8.23] the second statement in Cases 1, 2, and 4 is verified.

In Case 3, we need a supplementary computation. Indeed, we apply Lemma [8.23
(3) and (4) to get the formula

Symb <( A+ (— — 1) B) dgn iy + (—A + %B) dﬁgndw) AQ.HY, + BH®).
By putting A = —%(n +v—A) (1 — %) and B = v — A, we have
1 N
Symb (udgndin + vdjndin) = =3 (n+v = X) <1 - —) QuHY. + (v = NHZ,

where u = 1(n — 2i — v+ A) and v = (n — 2 + v — X). Thus the second statement
in Case 3 is also verified. 0

12.3. Description of Hom(V, W ® Pol(n.)). In order to prove Proposition [12.3]
we begin with an elementary algebraic lemma.
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Lemma 12.4.
Hom;, <a§?a, o) @ Poll(y, .. ., gn]>
( v—=A—1
CQ. * HY,, if j=i+1, v—A€2N+1, B=a+1mod2,
v—A—1
CQn Y. if j=i—1, v—A€E2N+1, B=a+1mod?2,
_ ) corr HH+CQ TED i j—ie{l,....n—1}, v—A€2N,, f=amod2
(CQn2 Ho—)m if j=ie{0,n}, v—Ae2N,, 8 = amod 2,
(CHHZ if j=1, v=A., [ = amod 2,
(0 otherwise.

Proof. We may restrict ourselves to homogeneous polynomials because L preserves
the degree of homogeneity in Pol(n,). We consider the action of the second and
third factors of L ~ O(n) x O(1) xR. Since e¢'* € A and —1 € O(1) act on n, ~ C"
as the scalars ef and —1, respectively, we conclude

Homo(1)x 4 <a§i)a, 0% ® Pol“(n+)> # {0}

if and only if
v=A+a and [(=a+ amod?2.

In this case, we have
Hom/, <0‘§\Z;)a, O'I(jj’% ® Pol?[¢y, .. ., Cn]> Homo) (A(C™), /\J((C”) ® Pol®[C1, ..., Ga)
@ Homo,) (A'(C™), N’ (C") @ H*(C™))

0<k<a
k=a mod 2

because we have an O(n)-isomorphism:

Pol[Cy, - -+, Cu] =~ Pol[Qn (¢ <@H’“ (c") )

Now Lemma follows from Lemma and Proposition [5.7] 0

In order to prove Proposition m, it is sufficient to find 1 (7& 0) that belongs to

the right-hand side of the identity in Lemma |12.4] satisfying d7r(l N+ (N ) = 0. We
shall carry out this computation in the next sections.

12.4. Solving the F-system when j = i+1. This section treats the case j = i+1.
We shall use I, I’ to denote elements in Z,,; and [ for those in Z,, ;1. This is slightly
different from the convention for index sets adopted in the previous chapters.
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According to Lemma [12.4] we may assume v — X\ = 2¢ + 1 for some ¢ € N and
B8 =a+1mod 2. We set ) = QﬁHi(2i+l. With respect to the standard basis
{er: I €Z,;} of N(C") and {e7: I € T,,;41} of A" (C™), we set, as in Section ,

Q) = Qul0) (HY) (),

M7 = <d7T(z,A)*(N1+W(€I),6¥>-

Then the proof of Proposition for j =i+ 1 reduces to the following lemma:

Lemma 12.5. Suppose 0 < i < n — 1. Then the following three conditions are
equivalent:
(i) dmgip- (N )v = 0. B
(i) M7 =0 forall I €Z,,; and I € L, ;4.
(iii) (A, v)=(i,i+1) and £ = 0.

Let us verify this lemma. According to the decomposition of m (N{") into the
scalar and vector parts, we decompose M7 its matrix components M,; = M;%alar +

MIVj?Ct as in Proposition where

0 0

Msgalar — d/\* N-‘r ~= [ A\— BE—
T T (NT )Yy 7 ( 6C1+ C@Q

vect _
Myt = N Ay

I'€T,;

1
- §C1A<c"> (S

Lemma 12.6. For I €1,; and Ie Ly iv1, we have
. {@f;@)sgn(f;p)cp it I=1U{p},
7=

0 if 1¢1.

Proof. Clear from the definition of ng 41 given in (5.9). O
Lemma 12.7. For I € 1,; and Ie Zyi+1, we have

0 it 1¢1,

Myt = LA +20 = m)GQIT () + (A +20Q(0) if I\ ={1},

02X+ 2¢ = n)sgn(1;p)16Qp(€) it I\NT=A{p},p#1
Proof. Since AcnQ(¢) = 26(20 — 2+ n)Q5(¢), we have the identity:
(12.3) dmy (NF)Q3(C) = £ (23 + 2 = )65 (€).

Then the lemma follows from Lemma [4.6] O
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By the formula of A;; (see Lemma , we have

(12.4) et qz@: Sgn(I;Q)_a(qu/JI\{q}U{l}j 11,
12. vec |

17 %legn(f;Q)—a?qwl\{l}u{q}j i lel
q

Combining Lemma with an easy computation of M}’]E“, we get the following.

Lemma 12.8. Letn>2,0<i<n—1,1€Z,; and [ € T,,;,,.

(1) Assume 1 € I and I=1U {p} for some p & I. Then

M7 = €21 + 20 — n + 2)sgn(1;p)GGQ0 (€)-
(2) Assume 1 €1 and I =1U{1}. Then
M= (A =i+ 20)Q,(C) + (2X + 20 = n){GFQ;(C) — 20Q1()Qy (0.
(3) Assume I=KuU {1,¢}, 1 = KU{p} with 1 #p# q# 1. Then,
M7= —20sgn(K;p, )G (€)-
(4) Assume 1 €1 and I =1U{p}. Then
M7 = €21 + 20 = 2)sgn(L;p)GGQ5 ' (€)-
(5) Otherwise, M7 = 0.
We are ready to give a proof of Lemma [12.5] and consequently Proposition [12.3

for j =1+ 1.

Proof of Lemma[12.5. Suppose M,; =0 for all I € Z,,; and I € Z,, ;1. Then ¢ must
be zero, as is seen from Lemma [12.8] (3) which works for i # 0 or from Lemma [12.§
(4) which works for i = 0 and n > 2. In turn, Lemma [12.§] (2) implies A = 4, and
thus v =14 + 1. B
Conversely, if £ = 0 and (X, v) = (4,74 1), then clearly M;7 = 0 for all I and I by
Lemma [12.8, Thus Lemma [12.5|is proved. ([l

12.5. Solving the F-system when j = i. In this section we treat the case j =i
and § —a = 0 mod 2. According to Lemma [12.4], we need to consider the case

v — A € 2N. Since the case v = ) is easy, let us assume v — A € 2N,. We set
1

ﬁ:zé(y—)\)—leN

First consider that j = ¢ = 0. Then any element in Homj, (UE\ZL, 0,(/{ [)3 ® Pol[¢y, . . ., Cn]>

is proportional to QfZHH(QO by Lemma . We set 9 := QfLHHé(EO. Then we have
the following.
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Lemma 12.9. Supposei =0 orn and v—\ = 20+2 with ¢ € N. Then the following
two conditions are equivalent:

(i) drr- (N ) = 0.
(i) Av)=(5—0—-1,2+0+1).

Proof. Since ¢ = 0 or n, there is no “vector part” of d/7T(;T (N{) = d7r,\*(N+), and
thus

i (NTJ(Q) = (¢ + 12X+ 20 = 1+ 2) Q1 (O) Hyo
by (12.3). Now the lemma is clear. O

From now, we assume ¢ # 0 and n > 2. For A, B € C we set
(12.5) ¢ = AQ“'HY. + BQ'A®. € Hom; (ag?a, o) @ Poll(y, . .. ,gn]) :
My = {dmaa- (M) d(er),el) for 1,1 € T,

Lemma 12.10. Let 1 < i < n—1, and v — X = 20 + 2 with { € N. Suppose
(A, B) # (0,0). Then the following three conditions are equivalent:

()dﬂ'w\)< )Y = 0.
( )M][/—OfOI‘ all[ IIEInZ
)

(ili) (A\,v) = (2 —€—1,%2+(+1) and (A, B) is proportional to (—5(n+v — X\)(1 — 2),v —

The equivalence (i) < (ii) is obvious, and we shall prove the equivalence (ii) <
(iii) after Lemma |12.13| where we compute M explicitly. For this we use a couple
of lemmas as follows.

Lemma 12.11. Let ¢ be given as in (12.5). Then, for I,1' € 1, ;, we have

AQIHQ) + BQHOQL(C) =T
Y () = § Bsgn(K;p, )Q1,(0)¢¢,  if I=KU{p}and I' = K U {q},
0 otherwise,
where we recall G1(C) = Yy G2 — £Qu(€) from (B12).
Proof. Clear from the definitions of H\"), and H”), given in (5.7) and (5.11). O
Lemma 12.12. For I,I' € Z,,;, the scalar part M$* is given as follows.
(1) I'=KU{p}, I'=KU{q}:

pseatar _ ) Bsgn(KGp) (€20 + 20 = m)(G,Q071 () + (A + 204 1)GQ(Q)) - if g =1,
" Bsen(K p, @) (02X + 20 — n) G166, Q471 (€) if g #1.

\).



CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 133

(2) I =1I'": Suppose that I = K U{p}. Then,

Mg =
{lef:l(C) (Bl(a=2)Qs(Q) + {aA(l +1) = £ ((n+a)(n—i) + £(2n —ia)} @u(()) if p=1,
Q@ (¢) (Bl(a —2)Q1(¢) + {aA(l + 1) — (a(l + 1) +n) } Qu(C)) if p# 1.
Proof. Direct computation by using Lemma [12.11] and Lemma [1.6] O
We set
a = 224+20—n+2
b= 2A(£+1)+B<g+€+1) (1-%) .

Lemma 12.13. Let ¢ be as in (12.5) and I,1' € ;.
(1) Assume 1 ¢ I =1'. Then

M = a6 ) (4 1) (4= 2) Qul0) + Bri(©) )
(2) Assume 1 € I =I'. Then
My = aliQ5! ((A(£ +1)+B (1 — MTH))) Qn + BEQI) .
(3) Assume T = K U{1},I' = K U {p} with p #1. Then
Myp = sgn(K p)G,Q5 (aEBcf ¥ (%B - b) Qn) |
(4) Assume T = KU {p},I' = K U{1} with p £ 1. Then
My = s @4 (at6t + (S +0) Q. )

(5) Assume I = K U{p},I' = KU{q} withp#q, 1 €1, and 1 & I'. Then

MI[’ = CI,BE Sgn(K;p, q)CleCq QfL_l'

(6) Otherwise, My = 0.
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Proof. We give a proof for (1). Suppose 1 ¢ I = I'. It follows from Lemmas [5.3[ and
[2.11] that

M =Y (sgnu; k)%) (Bsga(I; L, QL))

kel

~BaY. a% (QL(OG)

kel
=BG (20Q,71(¢)Q1(¢) +iQ(Q)) -
Together with the formula of M3 given in Lemma , we have
MII’ — M[s??lar + M}/}e,ctor
_ iB
—a6@O (01 (4= ) Qu(@) + B

Thus the first assertion is proved. The other cases are similar and omitted. 0

We are ready to give a proof of Lemma [12.10, and consequently Proposition [12.3
for 5 =i.

Proof of Lemma[12.10. Since 1 < i < n — 1, the cases (3) and (4) occur in Lemma
12.13] Hence M;; = 0 implies that

1
aEBzﬁaB:i:b:O,

or equivalently a = b =0 or b = B = 0. Since (4, B) # (0,0), the case b= B =0
does not occur. The condition a = 0 implies A + v = n, and the condition b = 0
gives the ratio of (A, B) as stated in (iii). Therefore the implication (ii) = (iii) is
proved. The converse statement (iii) = (ii) is clear from Lemma [12.13] O

12.6. Solving the F-system when j = ¢ — 1. The case j = ¢ — 1 is similar to the
case j =1+ 1.

According to Lemma [12.4] we may assume v — A = 2{ 4+ 1 for some ¢ € N and
b =a-+1mod 2. We set ¢ := Qle(l)

isi—1- Then we have:

Lemma 12.14. Suppose 1 < i < n. Then the following two conditions are equiva-
lent:

(i) dmiip- (N )y =0.

(i) \,v)=(n—i,n—i+1) and { = 0.

The proof of Lemma goes similarly to that of Lemma in the case j = i+1,
and so we omit it. Alternatively, Lemma [12.14] follows from Lemma [12.5] In fact,
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the following duality as in Theorem
lefg<I(Z, )\)a, ](j, V)ﬁ) >~ lefg(f(n — i, )\)a, I(n - j, V)ﬁ)
implies a bijection between the space of solutions for the F-systems

(4) (j)

SOl(n-‘r) 0-)\ a’ 01/6 o (nij))

SOl(n+,0'>\a ’O—V’B
Thus we have completed the proof of Proposition [12.3, whence Theorem [12.2

12.7. Proof of Theorem [12.1} In this section, we deduce Theorem [12.1] (conformal
representations) from Theorem m (principal series representations), as we did in
Chapter [11] for symmetry breaking operators. Needless to say, the case (G = G’) in
this section is much simpler than the case (G # G’) in the previous chapter. We
recall from Proposition that there are the natural isomorphisms as G-modules:

(12.6) I(i ) =l g~ w0

We note that there are two geometric models of the same principal series repre-
sentations /(i, \);. We translate the four cases in Theorem in terms of ((12.6)).

Casel. j=i+1, (\v)=(i,i+1),a=0+1.
We take o =4, and § =17+ 1 mod 2. Then we have
I(i,i)i = wip = w3y,
I(i+ 1,04 1)1 =~ W(Z(JJFI) ~ wéﬁ% 711)1
Case2. j=i—1, (A, v)=(n—i,n—1i+1).
We take a« =7 and f =7 — 1 mod 2. Then we have
I(Zn—z)z_wg)mzwénl ),
I(i—=1,n—i+1) 1—@55 2lz)+20:w(()n1 .

Then the intertwining operators assured in Theorem in Cases 1 and 2 are given
in the following four arrows (after switching ¢ and n — ¢ in Case 2):

gi(Sn)O,(S - 5n7i(8n)2i—n,5+1

| > |

EFL(SM) 06— = = EH S git2-n 541

The vertical arrows are scalar multiples of d and d* (see Proposition [12.3] and the
horizontal dotted arrows are given by Hodge star operators. This explains the four
Cases b, b, ¢, and *c in Theorem [12.1]
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Case 3. j =i, A\+v=n,v—\e2N,.
We set (= %(1/ —A) sothat A = § — ¢ and v = § + /. Then we have isomorphisms
as G-modules:

I (@', g — E) = w(ﬂi)fefio ~ w&nﬂ_i)

. n ~ (1) ~ —(n—1)
1 <Z7 5 + g) = Walpio0 = Yoo

i

This yields Cases d and *d in Theorem Case 4 yields Cases a and *a. Thus we
have listed all possible cases, and the proof of Theorem [12.1]is completed.

12.8. Hodge star operator and Branson’s operator 7;(;) By the multiplicity-
freeness result, ‘ ’

dim DiffO(n—i—l,l) (51(871)%5, EJ(S”)M) S 1
in Theorem we know a prior: that the composition % o ’TZ(Z) o*~1 of conformally

covariant operators is proportional to 7'2(;71‘). To be explicit, we have the following

proposition.
Proposition 12.15. Let0 <i<nandl € N,. Weputu:=35—1—{, v:=5—i+/(.
Then the following diagram commutes for any 6 € Z/27.

. T .
gl(sn)Uﬁ - gl(Sn)v,é

- l T j
EMTUS™) v o1 EMHS™) —pr20,641-

Proof. The vertical isomorphisms are given by Proposition because u —n + 2i =
—v. It then follows from Lemma [8.1|and (12.1)) that

T~ = = wwo 0Ty 0 (4zn)

in the flat coordinates. Hence the proposition follows from Lemma (see also
(11.6)). 0
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13. MATRIX-VALUED FACTORIZATION IDENTITIES

Differential symmetry breaking operators may be expressed as a composition of
two equivariant differential operators for some special values of the parameters. Such
formulee in the scalar case are called “factorization identities” in [I1] or “functional
identities for symmetry breaking operators” in [22].

In this chapter we establish “factorization identities” for conformally covariant
differential operators on differential forms. A number of results have been known
in the scalar case [11, 5], 19, 22], however, what we treat here is matriz-valued
factorization identities. The setting we consider is (X,Y) = (§", 5" 1) and (G, G’) =
(O(n+1,1),0(n, 1)) as before, and Tx (respectively, Ty) is a G- (respectively, G'-)
intertwining operator in the following diagrams:

=7
Du,a

E(X)us ENX)us ENY )y
l % \ j
Tx Ty
) | D )
& (X)u’ﬁ’ . &l (Y)v,sa &l (Y)v’,a’
D’ ,—;J

In Theorem [L.1], we have classified all the parameters for which there exist nonzero
differential symmetry breaking operators, and have proved a multiplicity-one theo-
rem. This guarantees the following “factorization identities” for some p,q € C:

i'—j i—j
Du',b oTx = pD /

u,a

i—j i—j’
Ty oD, =qD,..

u,c

Explicit generators for symmetry breaking operators D’/ are given in Theorems
1.8, whereas nontrivial G- or G’-intertwining operators Ty or Ty are classified in
Theorem [12.1| In this chapter, we shall consider all possible combinations of these

operators under the parity condition
d=¢d=ecmod2 or §d=¢e=¢c"mod?2,

and determine factorization identities. The explicit formulee are given in Theorem
13.1for Tx = 75(5) (Branson’s operator), in Theorem for Ty = 7;/5(] ), in Theorem
13.3|for Tx = d or d*, and in Theorem for Ty = d or d*. Factorization identities
for the other parity case are derived easily from the same parity case by using the
Hodge star operators.

In Section [13.1] we summarize these factorization identities in terms of the unnor-

malized symmetry breaking operators foaj rather than the renormalized ones 5;23 ,
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because the formule take a simpler form. Factorization identities for the renormal-
ized operators will be discussed in Section [13.8 with focus on the exact condition
when the composition of two nonzero operators vanishes.

13.1. Matrix-valued factorization identities. This section summarizes the fac-
torization identities for unnormalized operators for (X,Y) = (5™, 5" ') with the
same parity of 0,¢’, e, and &'.

We begin with the case Ty = T,y) or Ty = T5”’, where we recall from Theorem
that for ¢ € N, the G- and G'-intertwining operators (Branson’s operators)

T o €Sz ie — E(S) s it
T,éje) : Ej(SnA)“T—l—j—e — 5j(5n71)"7—1—j+e-
Let 6 = a+ i+ j mod 2. Here are basic diagrams:

Di%j

. . D*i*ﬂ*f,a . _
ENS™)g—i-ts " ENS" )t i g5 — ENS" ) uct_jus
i D%*i*l,d«kQZ
T(l) T/(j)
%l \ Difjl\} l 2¢
. . 5= —i—a—~,a+20 .
E(S") g-ives = E (5" ) gjrares, i E(S™ )zt e
%77}‘1’@,&

As in (1.13]), we define a positive integer K, , by K, = Hizl ([%] + k) for ¢ € N
and a € N. Then we have:

Theorem 13.1. Suppose 0 <i <n,a € Nandl € N,. Wesetu:=5—1—L. Then

(1) D=zl o Tf) — (ﬁ i g) K D, ifi #0.

u+2¢,a 92
i—i @ _ (M i—i e
(2) u+20,a © T’ = 9 i+ 0) KeoDyyoliop it # n.
Theorem 13.2. Suppose 0 <1 <n,a € Nandl € N,. We setu:= "T_l —i—{—a.
Then
i— L 1 . o o
(1) T/ge Do Divil = (n 1 + g) KyoDy iy ifi #0.
@ THev = (U5 —iot) KDty it

We shall prove Theorems and in Sections and [13.5] respectively.

Next, we consider the case where Tx = d or d*. Here are basic diagrams:
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ENS)os N ENS™)n2is o
d e
(C/‘i—l-l(Sn)O’a ,DéJrlﬁj 8j<Sn_1)a+1+ifj,5 gi_l(Sn)aniJrQ,é 'Dif_lzﬁ_gé gj(Sn_1>n,i,j+a+1,5.
(j=14,i+1) (j=i—1,i—2)

In this setting, the condition on 0 € Z/27Z from Theorem is listed in the theorem
below.

Theorem 13.3. For any a € N, we have

1) Dit'%iod —=~(i+1— 2 a)Divi 0<i<n-1, d=a+1mod?2.
0,a 2 0,a+1

(2) Dyt *lod =0, 0<i<n-—1, §=0mod2.

3) D, hsaod =—y(—i+1+ g a)D, e, 1<i<n, § = a mod 2.

(4) D, 52 0d =0, 2<i<n, = 1 mod 2.

Here we recall from (1.3) that v(u,a) = 1 if a is odd; = p + § if a is even.
The proof of Theorem [13.3| will be given in Section [13.6
Finally, we consider the case where Ty = d or d*. Here are basic diagrams:

i/ Qn Di__a)];i*j’a i Qn—1 i Qn D;jg_j_a_l’a i Qn—1
ENS™)—a—itis ENS" o E(Sn—i—ja16—————=E(S" N n2j-15

k Ld \ jd*
(3 17—
D—a]—i+j,a+1 D

n—i—j—a—1,a+1

(c/'jJrl(Sn—l)(m7 gjil(snil)n—Qj-i-l,&'
(j=1i—1,7) (j=1i—1,7)
In these two diagrams, 6 = a + ¢ + j mod 2.

Theorem 13.4. For any a € N, we have

o 1 .

1) doDi7i ! = — —a+i—n+ ,a | D" forl1<i<n-—1.
a—1l,a Y 2 a—1l,a+1

(2) doDZ), =0 for 0 <i<n-—2.

o —1 o
(3) d* oD .= <—a it . ,a) Divil . forl<i<n.

(4) d*oDi7i =0 for 2 <7 <n.

n—2i—a,q
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Here we consider only the case wherea = 0if 1 <i <n—1in(2),orif2 <i<n-—1
in (4). The proof of Theorem will be given in Section [13.7]

Remark 13.5. Theorem [13.3] (2) for a # 0 reflects Theorem which asserts that
there is no nonzero conformally equivariant symmetry breaking operators £/(S™) —
ET1(S"1) other than the obvious one Restgs o d (i.e. @ = 0 case) up to scalar if
1t # 0. On the other hand, we recall from Proposition that the differential

symmetry breaking operators D~/ may vanish for specific parameters, for instance,

D =0 if i=0 or a=0.

In such cases, the fomulee like Theorem [13.3] (2) for @ = 0 or Theorem (2)
for i = 0 or a = 0 are trivial, however, by using the renormalized operators D;, '
and D}, 2" given in (L.10) and (L.11]), we have the following nontrivial factorization
identities:

ryit+1it1 _ Pyi—itl
Dy o od="Dqg

doD*0 =D2!,, foralla€N,

do 6631 = 56?11
We shall discuss in Section the factorization identities for renormalized sym-
metry breaking operators of this kind corresponding to Theorem (2) and (4), and

Theorem [13.4] (2) and (4) among others. We also determine the vanishing condition
of the composition of two nonzero operators in detail.

)

As an immediate corollary of Theorem [13.4] we can tell exactly when the image of

the symmetry breaking operator Dijai:ﬂa consists of closed forms on the submanifold
Snt

Corollary 13.6.
(1) Assume that n is odd and a is even with 0 < a <n —1. We set

1
(13.1) 1= §(a—|—n—|—1).
Then ”T“ <i<n and D"fai_’l}aw is a closed i-form on S™! for any i-form w
on S™.

(2) Conversely, suppose 1 < i < mn—1. Ifn is even or if a # 2i —n — 1, then

there exists w € E(S™) such that D" w is not a closed form on S"'.

Proof. For i = n, the (n — 1)-form Dﬁjn_lw is automatically closed for any w €
E"(S™). Suppose 1 <i<n—1anda€N. By Theorem [13.4] (1), do D)'5!, = 0 if

and only if v (—a -1+ ”TH, a) = 0. By the definition ((1.3) of v(u,a), this happens
exactly when a is even and 7 = %(a +n+ 1). This forces n to be even. We also note
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that 0 < a is equivalent to %(n +1) <i,and a < n—1is equivalent to i < n. Hence
the corollary follows. ([l

13.2. Proof of Theorem [13.1] (1). We shall work with the flat coordinates. The-
orem [13.1] (1) will be shown by the following proposition.

Proposition 13.7. There exist scalar-valued differential operators P,Q, R, P, Q'
and R' on R™ satisfying the following three conditions:

Oxn

Di%_:iiilé,a+2£ = Rest,,—g 0 (Pandﬁ%nL% + Qdgn + Rt o ) ,
(13.2) Dy, o T = Resty, g 0 (P'dwd;w% QL + R'%) ,
P=c(O)P, Q=c;(0)Q", R=c({)R,
where ¢;({) is defined by

o0y == (5= 0)Ker (== (G- T1([5] +4))

The rest of this section is devoted to the proof of Proposition [13.7
We take

_g4_§
P = _Da+2é2—27
1 —e+3
Q = _7(_6 + 57 a—+ 2£>Da+2€2—17
1 /m —+1
- _5 <§ — 1+ €> Da+2€27

according to the formula (1.4) of D} "' In order to find P’,Q’, and R’, we use:

Lemma 13.8. Suppose A, B,C,p and q are (scalar-valued) differential operators on
R™ with constant coefficients. We set

0
P':= —ApAgn + Cp+ Aq, Q' := —BpAgn + Cp

+Bq, R :=0Cq.
oz,

Then,
(A derdint o+ Bilf + OLBL) o (pdgndi +q) = Pdsndit o+ Q'du + Rt o .

Proof. This is an easy consequence of the commutation relations among the operators
dgn, dn, and ¢_o_ given in Lemma [8.14] together with (dg.)? = 0 and dgedf. +

Tn

s = —Apa. 0
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Lemma 13.9. The equation (13.2)) holds if we take

P (o (o fp)or e
(2 —i—0) (a+1)(a+20) o

r -1
O = U la—y)  Pwife

R = %(g— = <§—z+€> DAL,

Proof. By Theorems [1.5] and [12.1]
Dz—n L — Rest,, 90 (Aand]’gn + Bdg, + OL@L) ;

—i+l,a

7;[ = de"dIE” + q,

if we set

3 1 1 1
A=-D5, B=—y(t+3,a)D ﬁ*%, C=-3(5-i-0)Da p==2,q=—(5-i+1).
Applying Lemma we get ([13.2]) if we set

P = (g —z’—ﬁ) (D”?AW + (D, ) AL

n o 1 043 e+l 0 _
Q/ — <§ — 7 — 6) ("}/(6 + 5, a)Da_l ARn + nga axn> Aénl’
1 /m . n o o+
= oz —i— - — Do 2AL..

R 2 (2 ! g) (2 ' M) ®
Then the lemma follows from the three-term relations for P, for ()" with
v=1I{+ % O

We are ready to give a proof of Proposition [13.7]

Proof of Proposition [13.7]. The assertions P = ¢;({)P’, Q = ¢;(£)Q’, and R = ¢;({)R’
are now reduced to the factorization identities for scalar-valued differential operators
(Juhl’s operators) which were proved in Lemma [9.4] (1), (2), and Proposition (9.3 (1),
respectively. 0

Thus the proof of Theorem [13.1] (1) is completed.

13.3. Proof of Theorem (2). We deduce the second statement of Theorem
from the first one by using the Hodge star operator. By Theorem (1) with

1 :=n —1, we have

i—i—1 (~)_ n 1—i—1
(13.3) D 0T = — (5 —i—0) KD L,
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We recall from Proposition [12.15

*Rn O ,E(Zl) @) (*Rn)il = — 2(2)7

and from (T.8) with i :=n —i

i—>i _ n—1 i—i—1 -1
F—itla T (_1) R OD%—E-M,(L © (*Rn) ’
i—i _ (_1)n—1 fom1 OID~'—>Z~—1 o <* n)—l
§—it+la+2l R 2 _itla+20 R :

Then Theorem (2) follows from ([13.3) by applying #gn-: from the left and
(*gn)~! from the right.

13.4. Proof of Theorem (1). This section gives a proof of Theorem [13.2]
(1). As in the proof of Theorem (2), we shall reduce the proof to an analogous
identity for the scalar-valued case (Proposition (2)). For this, we need some
computation for matrix-valued differential operators that are stated in the lemmas
below.

Lemma 13.10. Suppose that p,q,r, A, B and C" are (scalar-valued) differential op-
erators with constant coefficients on R™. We set

2

R := —pAAgn—1 —pAa— +pC+rA—qgB+qA 0 .
0x2 oz,

n

Then the following identity holds:
(dendﬂin+qanLai+r)O(Aandﬁ§nLai+Bdﬂ§n+Caai) = RandﬁnL%+rBdi§n+rCaai.
Proof. Direct computation by Lemma [8.14] as in the proof of Lemma [13.8| 0

Lemma 13.11. Let p,q, and r be (scalar-valued) differential operators of Oth, first,
and second order, respectively, given by

1
p=—20, q:—%a, r=— nt + /0 —i| Agn-1.
ox,, 2

Then,
T’g[l) o Rest,, o = Resty,—¢ o (pdrndin + QanLai + 7).

Proof. The identity follows from the commutation relations among Rest,, —o, drndgn,
and dj.dg» given in Lemma (3) and (4). O

Let u := "5+ —i—a — (. Then by the formula (1.4) of DL "', we have
Dlil,:;i_l — ReStxn:() o (AandfénLai + Bd?&n =+ Cbai)’
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where
(13.4)
1 1
A=-D,5", B:i=—y(-a=t,a)D,5"", C:=—3 ("; —ita+t f) D,

Then the composition

TS o Dinvil = (T'S[” ° Restxnzo) o (Adgndgnt o + B, +Ct o )

Ozn
can be computed explicitly as follows.

Lemma 13.12.

(e

2

Sy @) Rest,, o o ((12 + [g]) D, ALY ddit o

I fn+1 Ca—
+y(—a—£,a)D; AL d + 3 ( 5 —z+a+€) D, ZA%n_lL%).

Proof. The first two terms are derived directly from Lemmas [13.10] and [13.11] For
the third term, we use three-term relations among D,'s that were studied in Chapter

O What we actually need is the claim below. U

Claim 13.13. Suppose p,q and r are given as in Lemma [13.11| and A, B and C by
(13.4). Then the differential operator R in Lemma [13.10| amounts to

n+1 a
0 — i (g |:_i|> D—a—f—i—l'
( 5 + 1) + 5 o
Proof of Claim|[13.15. A direct computation shows
1 1
R = (n ; —f— z) D, Agn1 + (% +a+l— z) (Dt

— 2y(—a -1, a)Daaleﬂai.
T,

Applying the three-term relation to Da_fl_”l% in the last term, we see

1
R= (” ; +4— z) (D% Agns + LD,

Finally, by the three-term relation (9.10) with © = —a — ¢, we get the claim. O
We are ready to complete the proof of Theorem [13.2] (1). By the definition (L.4)
of Dﬁl_l again,

i—i—1
Du,a+2£

1 1
= Rest,, oo (—Daf%e_gldwdin/,a —v(—a,a)D, % — 3 ( 5 i+a +€> Daf?(f”afn) :

Oxn,
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Substituting the formulee for the (scalar) differential operators D} from Lemma [9.4]
we have

pi—i—l —KZ;ReStxn:O o <<£ + [g}) ’D—a—é—i-lAé;l,land]EnLai

u,a+2¢ a o

2 2
Comparing this with Lemma [13.12] we have completed the proof of Theorem [13.2
(1).

13.5. Proof of Theorem (2). We deduce the second statement of Theorem
from the first one by using the Hodge operator . By Theorem [13.2] (1) with

"T_l—i—a—é, we have

1 1
+y(—a —€,a)D, T ALy din + = (n T itar E) D;“_eAﬁnwaa) :

i:=n—1and 4 :=

(13.5) T oDt = — (” L £> Ko Do
We recall from Proposition [12.15
st 0 T8 0 (pnn) ™ = =T,
and from
(—1)" L kgar oDE2 o (k) Tt = DI
(=1 ager oD 0 (k)T = Dl

Then Theorem (2) follows by applying *gn-1 from the left and (g~ )~! from the
right to (13.5]).

13.6. Proof of Theorem In this section, we complete the proof of Theorem
ool
(1) We first show the following lemma:

Lemma 13.14. Let 0 <i<n—1and a € N. We set u:=1— "T_?’ and define the
following scalar-valued differential operators:

B
P = =Dt 5 — +9(ma)Di,
Q = —D'" ) Apn — (z +1— g) Dy,
. n 0
R = y(p,a)D"t Apa + (@—i— - 5) Dig

Then
Déﬁllﬁi o dgn = Restg,—g © (Plandﬁk{n + Qlan/,aL + R/> )
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Proof. The lemma follows from the formula (1.4)) for Dé;lﬁi by (8.14) and Lemma
814 (1). 0

We observe that  +1 — 5 = u — % Then applying the three-term relations (9.7,
, and @D for Dl's, we see that the scalar-valued operators P’, @', and R’ in
Lemma [[3.74] amounts to

1
P/ = V(M_éaa)pg 1>

¢ - (-

1
a7 CL)'DQL;%,

1
o1 _
R = 5 (a4 1)y(p 5

respectively. In view of the formula ((1.6)) of Dézil and of the following elementary

identity of y(u,a) (see (1.3)))

3 1 a 1
5 1 5 - |:_] Y
p=gratilu—ga)=pt|5] -5
we obtain the first statement of Theorem [I3.3]
(2) By the formula ([1.7)) for Dg*, we get D" o dgn = 0 from Lemmaw (1) and
d%, = 0.
(3) By Theorem [13.3] (1) with i replaced by n — i, we have

Dy 7" o dgn = (=i + 1+ 5, 0) D"

2’
Then we apply #gn-1 from the left and (*#gs)~! from the right to the above identity,
and use the following identities

1 — ( 1)n 1Dz 1—i—1

*Rn-1 ODn s (*R") n—2i,a
sgn 0 dgn 0 (xgn) ™t = (=1)"""'d5,  on EYR"),
) 1 ( )z—i—lpzaz 1 on SZGR”),

Dn i—n—1i
n—2i,a

*kpn-1 0 Dy T 0 (kg
as in the proof of Theorem [13.2] (2). Now the third statement of Theorem [13.3]
follows. o -
(4) By the formula (L4) for D;,_5%535, we get Dl 552 o din = 0 from Lemma
8.14) (2) and (d%.)* = 0.
Thus Theorem has been proved.
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13.7. Proof of Theorem In this section we complete the proof of Theorem
134

Proof of Theorem (1). We set

u:=—a—1, p=u+1i—

n—1

2

By the first expression of ((1.4]), we have

o 1
dgn-1 0 D" = Rest,,—o 0 (—v(u, a) D" dpndgn + §(u + 2i — n)DHdgn Laa> :

—a—1,a

On the other hand, by the formula (1.6 of D¢, we have

L 1
D2y 41 = Resty,—g 0 <ijf11and]§n —y(p — 304 + 1)D!dgn Laa) .

It follows from these formulae that we get

(136) d]R”—l © Dl?f—]}a + 7(”7 a)Dijil,a+l =

1 1
Rest,, o © (§(u +2i—n)—y(p,a)y(pw— 3@ + 1)) ngRnLBL.
By using the following elementary identity

(s @)y (g = %ﬂ +1) =p+ g
we see that the right-hand side of vanishes. O
Proof of Theorem[13.4] (2). 1t follows from the formula (1.6) of DL and Lemma
8.15[ (1) that we have
dgn1 0D}, )0 = %(u + a)Resty,—o 0 DX o dgn.
Hence dgn-1 0 D", = 0. O

Proof of Theorem (3). By Theorem [13.4] (1) with ¢ replaced by n — i, we have

n—1

(137)  dwer o DI = —(ma— i+ s @)D

We recall from (8.13))

#gn-1 0 dgn-1 0 (kgn-1) "' = (=1)""'dga on E(R"TY),
and from (|1.8]

wgn1 0 DI o (ame) ™ = (1) D v

—1 n—i—n—1 _ n—1layi—i—1
(*R”_1> © Dfafl,aJrl O *gn = (_1) Dn—Qi—a—l,a—l—l'
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Since (¥gn)? = (—=1)"™9id on &(R") and (¥gn-—1)? = (—1)=)0=Did on £ (R™1),
the last formula yields

#gn—1 0 DI o (ke ) T = (_1)i+1DZ_—>;Z—1a—17a+1~
Applying #gn-1 from the left and (#g«)~! from the right to the identity , we
get

n—1

(‘Uiﬂd* 7L*1D:Ljéi—a—1,a = _(_1)i+1’7(_a —i+ o G)D:Ljé;jafl,a+1-
Thus Theorem (3) is proved. O
Proof of Theorem (4). By the formula of D; """, we have
dinr 0 D25 o = —dins 0 Resty, g0 ng;dignL%an

because (d%,-1)* = 0. By Lemma m (2) and Lemma m (2), the right-hand side
vanishes because (di.)? = 0 and (Lai)z = 0. O

Alternatively, Theorem (3) and (4) can be deduced from Theorem (1)
and (2), respectively, by using the Hodge star operators.

13.8. Renormalized factorization identities. In Section [13.1, we have shown
various factorization identities for (unnormalized) symmetry breaking operators.
Now observe from Proposition that D ;"' and D}’ may vanish for specific
parameters (u,a,i). In this section, we discuss factorization identities for renor-
malized symmetry breaking operators 1533“1 and 15;?; defined in and ,
respectively. We do not pursue finding all the constants explicitly for factorization
identities in this section, as they are directly computed from the theorems for the
unnormalized case in Section and from and below. Instead we
shall formulate results for renormalized operators in a way that we can benefit the
following two advantages:

e to find some further nontrivial factorization identities that were stated as
Ty o0 =0 or 0oTyx = 0 for unnormalized operators with specific parameters;

e to determine exactly when the composition of two nonzero intertwining op-
erators vanish.

The latter view point plays an important role in the branching problem for sub-
quotients of principal series representations, see [22]. For this purpose, we use the
notations (i, A), and J(j,v)s for principal series representations of G = O(n+1,1)
and G’ = O(n, 1), respectively, instead of £(S™), s and E7(S™ 1), . for the notation
in conformal geometry.
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By definitions ([1.9)) and (1.6 on one hand, and ({1.10)) and (|1.4)) on the other hand,

we have
L l(a+u)5Hi ifi=0o0ra=0

13.8 Doii=q%, = " ’

(13.8) e {D@l ifi£0anda+0,

%(a+u+2i—n)ﬁifai*1 ifi=nora=0,

13.9 Dot =k
( ) u,a {Dﬂz—l if i 2n and a # 0.

Consider the following diagrams for j =7 and j =7 — 1:

I(5-1),

B o
70 2 )
20 Fiovi 2¢
n—1

[(i,% +£)a S J(],% —|—CL+€)6, ozl i—t—a,at2e J(j)”T_l +€)5’

%—H—E,a

where parameters ¢ and € are chosen according to Theorem (iii). In what follows,
we put

itl—2  ifa#£0,

= 0, a) =
p+ = p(i fa) {iQ ifa =0,

(i 40— ifi#0,a#0,
g=q(i,l,a) =< =2 if i £0,a =0,
- (+15) ifi=0,
(i — ¢~ ifi#na#0,
r=r(i,la) =142 ifi #n,a=0,
- (+1t) ifi=n,

and recall Ky, = Hizl ([%} + k:) Then the factorization identities for renormal-
ized differential symmetry breaking operators ijaj for j € {i — 1,i} and Branson’s
conformally covariant operators 7;(5) or T’ éje) are given as follows.
Theorem 13.15. Suppose 0 <i<n—1,a € N and { € N,. Then

(1) D?jwre,a © 2(41) = p*K@,aD%iiifE,aJr%‘

1) N
(2) THeD ,,,,

_ ~Ni—i
= QK&aD"T*l—i—é—a,aJr%'
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Theorem 13.16. Suppose 1 <i<n,a €N and ¢ € N.. Then

(1) Dl_nz-l—lf a © 7-2(5) = erKg ale_:Zz 1((1—&-2(

1(i—1) _ yi—i—1 i—i—1
(2) T D"Tflfifffa, _TKEQD" L _i—t—a,a+20

Since Ky, > 0, by examining the condition on (¢, ¢, a) for the constants p., ¢, r van-
ish, we see that Theorems [13.15 and [13.16| determine exactly when the composition
of the two nonzero operators vanish:

Corollary 13.17. Suppose we are in the setting of Theorems|13.15 or|15.16|

(1) DH’HM o 2(;) # 0 except for the following case:
i i 2
Dy o' o 0 =0 for n even, <i<n-—1,and a € N,.

(2) D’_” L 7‘2(5) £ 0 except for the following case:

—i+l,a
i ; —2
Djfgullo 0. =0 forneven, 1<i< o= andaeN,.
(3) 7'/ i—1) ODHZ 1Z raa # 0 except for the following case:

2i—n—1° n—2i—a,a

i S
T o pimil fornodd,%gzgn—l,andaeﬁh.

(4) T’éig) o @Zﬁ;@l wa 7 0 except for the following case:
2 K

—i——

i i , -3
T, 0D =0 fornodd, 1<i< = andaeN;.

Next we consider the factorization identities corresponding to Theorems [13.3| and
13.4. By focusing on the “two advantages” as we mentioned at the beginning of this
section, we omit giving the explicit constants and formulate the results as follows:

Theorem 13.18. Let n > 2.
(1) Letae N and 0 < i <n—1. For

Ni+1—1i

1(6,4); -5 T(i+ 1,0+ 1)y —=— J(i,i +a+ 1),
the following two conditions on (i,a,n) are equivalent:
(1> D(i)J’ralﬁi od= 07.
(i) n is even, 0 < i < %52, and a =n — 2i — 2.
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We note that, for n even,

~n_,n—2 ~n—2_,n—2
Dg, * od=D,] °
(2) Letae N and 0 <i<n—2. For
d ~Ni+1—i+1
](172)1 — ](Z+ 17'L+ 1)i+1 0,a—> ‘](l + 1al +a+ 1)i+17
the following two conditions on (i,a,n) are equivalent:
(i) Déj;l_”'“ od=0;
We note that

56751_"“ od = 56;’”1 for0<i<n-—2.

(3) Let a e N and 1 <1i <n. For

~Ni—1—i—1
n—2i4+2a

I(i,n—1) 2 I(i—1,n—i+ 1)y Ji—1n+i+a+1),

the following two conditions on (i,a,n) are equivalent:

-\ yi—1—i—1 x __ ().
(1) Dn—2i+2,a od" = 07

(ii) n is even, 2 < i <n, and a =2i —n — 2.
We note that, for n even,
~n_n ~nt+2 . n
Dy 2 od =-D_3, °.
(4) Let a € N and 2 < i <n. For
~Ni—1—i—2
n—2i+2,a

I(in—i); 2 I(i—1,n—i+ 1)y JGi—2,n—i+a+ 1),
the following two conditions on (i,a,n) are equivalent:
(i) Dy sifaa0d =0;
We note that

~Ni—1—i—2 % _ yi—i—2 .
D, hivapod” =D 51 for2<i<n.

(5) Leta e Nand 1 <i<n-—1. For
~Ni—i—1
I(i,i—a—1); —= J(i—1,i — )i -5 J(,1),,
the following two conditions on (i,a,n) are equivalent:
(i) do D5, =0

(i) nis odd, 2 <i<n—-1,a=2i—n—1.
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We note that, for n odd,

n+1 n—1 ~ n+1 n+1
o — =
17

N2 Tz 2
doD_L0 =-D_ 1, .

(6) Leta e N and 0 <i<n—2. For
rﬁi—)i
(i — a); —= J(i,i); = J(i+ 1,4 + 1)ip1,
the follozgmg two conditions on (i,a,n) are equivalent:
(a) do D, = 0;
(b) ae Ny and 1 <i<n-—2.
We note that

doD7) =DM ifa=0o0ri=0.

—a,a

(7) Leta e N and 0 <i<n—1. For

D —2i—a—1,a . . * . .
I(in—i—a—1); /=% T(in—i—1); -5 J(i — 1,n— )1,
the following two conditions on (i,a,n) are equivalent:
(1) d* © D;j%i—a—l,a =0
(ii) nis odd, 0 < i < "5*, and a =n —2i — 1.
We note that, for n odd,
~n-1_,n-1 ~n-1_,n-3
d*ODO,(Q) o :_Doj T

(8) Let a e N and 2 <1i <n. For

I(in—i—a) ——=22% Jli—1,n— i)y —— J(i—2,n — i+ 1),
the following two conditions on (i,a,n) are equivalent:
(a> d* o Di—>i—1 — 0;

n—2i—a,a

(b) ae Ny and2 <i<n-—1.
We note that

~ ~ _ .
d oD,y e ="D, % a1 fa=0o0ri=n.

Proof. Each equivalence in (1)-(8) is shown by the corresponding factorization iden-
tities for unnormalized operators given in Theorems or and by ((13.8)) and
(13.9).

The factorization identities for specific parameters can be verified directly from the
definition ([L.9)-(1.12)) of the renormalized operators D}, ;7. In fact, these operators for
the specific values in Theorem [13.18 are “degenerate” and of much simple forms. [
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14. APPENDIX: GEGENBAUER POLYNOMIALS
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This chapter collects some properties of the Gegenbauer polynomials that we use
throughout the paper, in particular, in the proof of the explicit formulae for symmetry
breaking differential operators (Theorems and [1.8)) and the factorization
identities for special parameters (Theorems [13.1],[13.2, and [13.3). In Section [14.5] we
give a proof of Theorem that determines solutions to the F-system for symmetry

breaking operators from (i, A), to J(i —1,v)s (2 < i <n).

14.1. Normalized Gegenbauer polynomials. For A € C and ¢ € N, the Gegen-
bauer (or ultraspherical) polynomial C}}(z) is given by the following formula ([I], 6.4],

8, 3.15 (2))):
[5]
'l —k+\) -
A — -1 k 2) {—2k
Ci(z) D rovr —an )
k=0
L0+ 2X) 1 1-=2
RO <£+1)2F1< £O+2XA+ 53— )
The generating function for C}(z) is
o= (W (22r)F
(14.1) (1—2zr+7*) = kz R Z(Jf
—0

and C}(z) solves the Gegenbauer differential equation

Gy f(z) =0,

where G} is the Gegenbauer differential operator given by

kI — 2k)!

2
(14.2) Gy i=(1—z )% — (22 + 1)2di +L(0+ 2N).
We note that C}(z) = 0if £ > 1 and A =0,—1,-2,--- ,— [%] . As in [21], we
renormalize the Gegenbauer polynomial by
(14.3)
]
~ I'(\) 1 ['l—Fk+N) 12k
Ci(2) = o Ce(?) = sy (D o (207
ro Y T ) &

k=0

Then C(z) is a nonzero polynomial of degree ¢ for all A € C and ¢ € N. Here are

the first five renormalized Gegenbauer polynomials.
e Co2) =
o CNz) =2z,
o« C(2) =201+ 1)22 — 1.
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o C3(2) = (A +2)2° — 2z
o C(2) = 2(A+2)(A+3)2" —2(A +2)2 + L.
Then the (-inflated polynomial (see (9.1])) of 5}(2) is given by

1) = 40 (L)

D0 —k+ )
I (A+ [E2])T(k+ 1) — 2k +1)

(14.4) — (—1)k
k=0
For instance, (]05'3)(m,y) =1, (LC))(z,y) = 2y, (LCY)(x,y) = 2(A+ 1)y2 — z, etc.
From ([14.3)), the coefficient of z¢ in C}(z) is found to be
DA+ 0)2°
r(A+[52])a
The dimension of the space of polynomial solutions to the Gegenbauer differential
equation G7f(z) = 0 is generically one, however, it jumps to two when A\ — % €7
and 1 — 2/ < 2\ < —/, for which we have found an interpretation in the represen-

tation theory of SL(2,R) [21]. The renormalized Gegenbauer polynomial C(z) is
characterized among polynomial solutions by the following ([21, Thm. 11.4]):

Fact 14.1. For all A\ € C and ¢ € N,
{f(z) € Poly[2]even : G7 f(2) =0} = CCMz).
See for the definition of Poly[z]eyven-
In , we introduced the imaginary Gegenbauer differential operator
R -1 ((1 oyl o ey 2>\)) |
2 dt? dt

which is related with the Gegenbauer differential operator Gy defined in (14.2)) as
follows:

(Qy)g_%{pk,

(14.5)

Lemma 14.2. Let f(z) be a polynomial in z, and g(t) = f(z) with z = =5t
Then

(14.6) 2 (Rbg) (1) = (GM) (=)

Proof. Direct from % = eﬁ\?d%. 0

Therefore, Fact implies the following:
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Lemma 14.3. For any A € C and ¢ € N, the Poly[t]eyen-solution space of the ordinary
differential equation R)g(t) = 0 is one-dimensional. Moreover, it is spanned by

OA( ”Ft>.

14.2. Derivatives of Gegenbauer polynomials. For y € C and ¢ € N, we recall

from ([1.3))

1 if /is odd,
1+ % if Ziseven.

We collect two formulee about the first derivative of the renormalized Gegenbauer
polynomial C}(z).

Lemma 14.4. Let € C and ¢ € N.

(14.7) L88(:) = 1. 0T (),
(14.8) <z% - e) CH(z) = 2C" )1 (2).

Proof. The first identity (14.7) follows from £C¥(z) = 2uCt ! (2) (see [1I, (6.4.15)],
[8, 3.15.2 (30)] for example). To see the second identity, let ¥, := 2z and ¥, = r.
Applying ¥, — 9, to (14.1), we get

o0

2\ ZCA“ Z (9, — O)CN=

£=0 l=

whence (9, — ()0 (2) = 20071 (2). By (14.3), we get (0, —€)C)Nz) = 201 (2). O

14.3. Three-term relations among renormalized Gegenbauer polynomials.
In this section we collect three-term relations for renormalized Gegenbauer polyno-
mials C}' for p € C. Further identities for special values p will be treated in the next
section.

We begin with useful identities for Gegenbauer differential operators G (see
([T4.2)):
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Lemma 14.5. Let p € C and ¢ € N.

(14.9) G -Gl = -2 <zd% —~ £> :
(14.10) Gt — G =4(u+0).

(14.11) Ghz — 2GhH = 2%.

(14.12) Gt — G, =20, + 0+ 2u — 2).
(14.13) G2 —1) = (2= DG = —2(2u — 1).
(14.14) (2 - DGR -1 = 6r

Proof. The first four formulee are easily obtained by the definition (14.2]). For in-
stance, the third one is obtained by the following commutation relations

d d | d? d? d

—z—z— = —2z2— 2= =2—

dz dz T d2? dz? dz
in the Weyl algebra D(C) = C [z, d%}. To see the sixth one, we apply the following
identities:

d d
2 y+1 @2 -t _ 24
(22 —1) dz(z 1) (z 1)dz 20z,

d? d? d
2 042 2 0 _ (.2 2 2 2
Now ([14.14)) follows from the definition (14.2)) of the operator G. O

Lemma 14.6. Let ¢ € N and € C. Then

(14.15) (u+ 0OCH(z) + Crl(z) = (u + [TD CH(2).

Proof. By the relations ((14.9) and (14.10)) for Gegenbauer differential operators, we
have

- - d - -

G (e 008 ) + G5 6 = =2 ) (240 — ) B2 - 2022 )) =0
The second equality follows from (I4.8). Since (u + £)C*(2) + C*}(2) € Poly[2]even,
according to Fact there exists A € C such that

(n+OC;(2) + Oy (2) = AC; ().

Comparing the coefficients of the leading term z® in the both sides by using (14.5),
WegetA:u—i—[“TH]. O
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Lemma 14.7. Let { € N and pn € C. Then we have

~ 1. ~ 1 1
(14.16)  y(p, O)(2* = DI (2) + (p — 5)2C7 (2) = S0+ Dy(u — 5,
Proof. We apply (14.7)) to the left-hand side of the following formula (see [, 3.15
(10))):

0nCrl(z).

d o\l U+ D)+ 2 1) i B el
7 (1=2p7300()) = o= (= 2O ),
By using the identity 2v(u, ¢ —1)y(u — 3,€) = £+ 2 — 1, we see that the renormal-
ization ((14.3)) gives the formula (14.16)). O
Lemma 14.8. Let ¢ € N and € C. Then
~ 1 ~ l 1~
(417) D) - T = 5] - HC )

Proof. 1t follows from the identities (14.13)) and ((14.9) in the Weyl algebra that
_ ~ 1 ~
67t (2= DA + (- P )
d A A1
= p-1) ({5 1) Ol 2013 ) )
z
which vanishes by (14.8). By the uniqueness of the solutions to GY “'f(z) = 0 for
f € Poly[z]even (see Fact [14.1]), there exists ¢ € C, such that
- 1 ~ ~
(= = DO (2) + (- 3)Ci () = cCy 7 (2).
Comparing the coefficients of the leading term z¢ by (14.5)), and using the identity
14 1 (-1
(14.18) 4(,u + |:§:| — 5)(# + |:T:|) =07/ + 2(2,u — 1)(# + 0 — 1),
we conclude that ¢ = u + [g] — % O

Lemma 14.9. Let { € N and p € C. Then we have

1
2
Proof. The formula is a direct consequence of ((14.7) and (14.8]). Alternatively, the

lemma is derived from the following three-term relation (see [, 3.15 (27)]:

(14.20) (0} (2) = —2p1 (z011(2) — CI% (=)

(14.19) Ci (2) = (1, 02C1H (2) = 5T (2).
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Lemma 14.10. For ¢ € N and p € C,

- - 1 -
(14.21) G ) = (s O+ D)+ 5, £+ D) =0,
Proof. By ({14.10) and (|14.11]), we get

~ ~ d ~ d -
Gt (2017 (2) = v L+ D)CE (2)) = 2-CR (&) =2, 4+1) (% - z) Cri(z).

By (14.7) and (14.8]), this amounts to
4y(p+ 10— )OI (2) — dy(p, L+ 1)CL T (2) = 0,

because y(p+ 1,0 — 1) = v(u, £+ 1).
Since 2C* 1 (2) = y(i, £+ 1)C(2) € Poly[2]even, there exists A € C by Fact [14.1
such that

2O (2) = y(p 0+ 1)CE (2) = ACH(2).
Comparing the coefficients of the leading terms z* on both sides, we have
Y(p, €+ 1) (€ + 2p)
2(n+[5])
Alternatively, the lemma follows directly from the three-term relation 8, 3.15 (28)]
for the corresponding (unnormalized) Gegenbauer polynomials. O

A= —

1
= (=5 L+1).

14.4. Duality of Gegenbauer polynomials for special values. We recall from
(1.13)) that Ky, = H?:l ([2] + J) is a positive integer for any ¢,a € N.

Proposition 14.11. Let a,¢ € N. Then

(14.22) Co™(2) = (1)Kl (),

(14.23) (22 - 1)Ci™(2) = KuuClpm().

Proof. The first equality 1) was proved in [19, Lem. 4.12]. We thus give a proof
of the second equality ((14.23). Since Géﬁé’éﬁ(z) =0, we get from ([14.14)

~3+H
G;Hg (2= 1Ci () =o.
Since (22 — 1)€5a%+£(z) € Pol,9¢[z]even, there exists A € C such that

1,
(22 = 1)/Ci(2) = AC2 (=)
by Fact [14.1, Comparing the coefficients of the leading term z%+2¢ by (14.5)), we have

_F(%—l—[“ﬂ})(a—i-%) ﬁ([a

T2 (Lo [ ]) el _]Jrj):KZ’“’

2
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Hence ((14.23)) is proved. 0

14.5. Proof of Theorem [6.7] As an application of the three-term relations of
(renormalized) Gegenbauer polynomials developed in Section , we give a proof
of Theorem (solving the F-system) in this section.

Let a,7 € N and p € C. We define a linear isomorphism ¥ = ¥(a, i, u,n) by

2 2
(1424) v @ POla—k[t]even % @ POla—k[Z]evem (QOa g1, 92> = (an fla f2)

with the following relations: z = e™5 "t and

9(t) = ful2),
gai(t) = ¥

(2),
fo if a =0,
_é(a—{—“—n—%—i—l)Zfl(Z) ifCLGN_A,_.

Via the isomorphism 1} the convention ) for (go(t), g1(t), g2(t)) is trans-

lated into the following one for (fyo(z), f1(2), f (z))

(14.25)

fi=fo=0 fora=0; fo=0 fora=1; f,=0 fort=1;, fi=fo=0 fori=n.

In connection to the F-system for symmetry breaking operator from I(i, \), to J(i —
1,v)s, the parameter A € C in the principal series representation I(i, \), will be
related as

9o(t)

L= A n— 3
If (go(t), g1(t = ((6-2). (6.3), (6.4)) in Theorem- then
(14.26) \y(go?gl,gZ) = (01 o(2), AL (2), Cl(2))
with

A—n+1 -1 1 n+3 1 —1
14.2 A= —1 = =—(pu— ' .
(14.27) v(p—1,a), C S el (i e ) e

In what follows, we denote by (Lj) the differential equation L;(go, g1,92) = 0 (see
(6.6)-(6.13))) for simplicity. Then, via the transformation ¥, we observe that the
differential equations (Lj) for (go, g1, g2) in Section [6.2] are transferred to differential
equations for (fo, f1, f2) as follows:

Lemma 14.12. Via the isomorphism (14.24)), the triple (go(t), g1(t), g2(t)) satisfies
(Lyj) if and only if (fo(2), f1(2), f2(2)) satisfies the corresponding differential equation
(Gj) for each j =1,2,--- .9, where we set:
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(G1) Giafa(z) =0,
(G2) Go_1fi(2) =0,

(@3) (0. —at DA - )=,

(G1) (0. 20+ a2 ()~ D) =0,

(G5) C;—]Z)(z)—é(a+u—n;—3—|—i)(19z—a+1)f1(z)+z:i%(z):0,

€0 on) = (n="50 i+ D) fo)
—l—esz(%(z)—é(a—l—u—n;g—l—i)(ﬂz—a—i—l)fl(z)—i—z:i%(z)),

@ 56 (- 1 (atn=- "2 4i) 2h0) + 2 T —o

@) aite) = (=52 w1 D) e,

oy Yoy (i_l +é(u—ngg%—i))(19z—a+1)f1(z):0.

dz n—1

With the constants A, C as in (14.27)), we define polynomials Fi(z) (k = 0,1,2)

(1) i=1,a>1: (Fo(2), Fi(2), Fa(2)) i= (065,2@),,465,1@), o) :

(2) 2<i<n—laz1: (F(2), (), F) i= (CCLo(2), ACE,(2), Cly(2))
3) i=n,a>1: (Fo(2), Fi(2), Fa(2)) = (55_2(2),0,0) :

4) 1<i<n,a=0: (Fo(2), Fi(2), Fa(z)) := (1,0,0).

Note that Fy = CC" ,(z) € Poly_s[z]even C Polg[z]even. Then, Theorem is

equivalent to the following assertion via the transformation W.

Proposition 14.13. Let n > 3 and 1 < i < n. Suppose fi(2) € Poly_i[2]even
(k = 0,1,2) with the convention (14.25). Then, up to scalar multiple, the solution
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(fo, f1, f2) to
(G2), (GT7), (G9) i=1,
(Gr) (r=1,2,...,7) 2<i<n-—1,
(G1) i=n,

is given by (Fo, F1, Fy).

Proposition [14.13] in the case a = 0 is trivial. Since f; = fo = 0 for i = n,
Proposition in the case ¢ = n is clear from Fact because (G7) is reduced
to the Gegenbauer differential equation G#~1 f, = 0.

For 2 < i < n — 1, the proof of Proposition [14.13] is divided into Lemmas [14.14
and [14.15] bellow.

Lemma 14.14. Suppose that a > 1 and p € C. Then we have

dim(c {(f(), fl; f2) € @ POlafk[Z]even : (fo, f17 fg) solves (G]), j = 1, 2, 3, 4, 8} S 1.

k=0

The following lemma shows that the left-hand side is equal to one.

Lemma 14.15. Suppose 2 <1 < n—1. Then, for any a € N, and u € C, the triple
(Fo, F1, Fy) solves (Gj) for all j =1,...,09.

2

Proof of Lemma[1].1]] We shall prove that (fo, f1, f2) € @Pola_k[z]even satisfies
k=0

(Gy) for j = 1,2,3,4,8 only if (fo, f1, fa) = p(Fy, F1, Fp) for some p € C. We

consider the cases a = 1 and a > 2, separately.

1) a =1: If a = 1, then f, = 0 by (14.25). In turn, fo = 0 by (G8). Since
Poly i[tleven = C -1 for @ = k = 1, f; is a constant function. Thus (fo, f1, f2) €
C(O, ]., O) — (C(Fo, Fl, Fg)

2) a > 2: First we apply Fact to see that the polynomial solutions to (G1)
(G2) are of the form fy(z) = pé’g_z(z)(: pFy(2)), fi(z) = qés_l(z) for some p, q € C.
It then follows from ([14.7]) and (14.8) that (G3) is equivalent to

(G3) 2(g = py(u,a = 2))Ch%5(2) = 0,
whence we get for a > 3
(14.28) q=py(p,a—2)=py(p—1,a).

Similarly it follows from (14.7) and (14.8)), and Lemma that (G4) is equivalent

to

(G4) 2y(p,a — 1) (py(p.a — 2) — q) C75(2) = 0,
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where we have used the identity

(14.29) Y a—1)y(pa—2) = p+ {a;]

Hence ((14.28)) holds if v(u,a — 1) # 0, in particular, if @ = 2. Thus f; = q55—1 =

py(p—1,a)CY_, = pF for any a > 2.

Finally, (G8) is equivalent to fy = C'fy with C' in (14.27). Since f, = pF; and
FO = CF27 this 1mphes fo(Z) = OpFQ(Z) = pF()(Z) Hence (fo, fl,fg) = p(F(), Fl, FQ),
and the proof is completed. 0

Proof of Lemma[1.15 We consider the cases that a = 1 and a > 2, separately.
1) a = 1: Obviously, (Fy, F1, Fp) = (0,1, 0) satisfies the equations (G1)-(G9).

2) a > 2: (Fy, Fy, Fy) satisfies (Gr) (r = 1,2,8) by the definition of (Fy, Fy, F»)
and Fact [14.1] and (Gr) (r = 3,4) as is in the proof of Lemma [14.14] Thus it remains
to prove that (Fy, F1, Fy) solves (G5) and (GT7). (We recall that (G6) and (G9) are

linear combinations of the others.)
For (fo, f1, f2) = (Fb, F1, F3), the equation (G5) amounts to

nES A (2) = 0

n—1

- 2
— Loy 2 —
2 (C + 1) Y, a —2)CH 5 (2) a(a +u

by (14.7) and (14.8]). This identity obviously holds by the definition (14.27)) of the

constants A and C.

Finally, let us verify that the triple (Fy, Fy, F») satisfies the equation (G7). For
this we use (14.11)) and (14.12). Since G%_,Fy = GY_, Fy = 0, the left-hand side of
(GT) applied to (fo, f1, f2) = (Fo, F1, F») amounts to

SR i ol O

= (0 — a+ 2)Fo(2) + 2a+ j— 2 Fy(z) — C%(z)

1
(0: +a+2u—2)Fo(2) = ~(a+p -

_ _ d ~
e ((02 0+ 20 () + 2a+ = 2T () — (i 1,a)£(351(2)> .
By (14.7)), (14.8) and ({14.29)) again, this equals

20 ((75*41(2) +(a+p—2)Ch o(2) — (n+ [%1} YOty (Z)) ,

which vanishes by the three-term relation given in ((14.15)). Hence the proof of Lemma
14.15is complete. U

Thus Proposition for 2 <i<n—1is proved.
Finally, let us consider Proposition [14.13]in the case ¢ = 1. It is sufficient to show:
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Lemma 14.16. For any a € N, and p € C, we have

1
{( for £1) € @D Pola—i[Zleven © (fo f1,0) solves (G2), (GT), (GQ)} = C(Fy, F).
k=0

Proof of Lemma[I].10. Since (Fy, F1, F) solves (Gr) for all r = 1,...,9, and since
(Gr) (r = 2,7,9) does not involve gy, we conclude that (Fp, F;,0) also solves (Gr)
(r=2,7,9).

Conversely, let us show (fo, f1) € C(Fy, F1) if (fo, f1,0) satisfies (G2), (G7), and
(G9). We observe that for i = 1, (G7) and (G9) amount to

@1 61 (5= 1 (avn="31 ) 2n0) + L =0,
(G9) %(z)—l@—”“

a

) 0.~ a+ 1) o,
respectively. By (G2), we have fy(z) = pC*_,(z) for some constant p. It follows from
([14.8) that (9. —a + 1) f1(2) = 2pC*F5(2). Thus (G9) amounts to

(14.30) T =2 (n-"50) e

By (14.7), fo(z) is then of the form fo(2) = ¢;C"_,(2) + o, where ¢; and g5 are some
constants satisfying

1 n+1
(14.31) ay(p—1,a) = —p (u - ) :

a 2
Thus, for fi(z) = pég‘_l(z) and fo(z) = qlé’fj_z(z) + ¢ with (14.31]), by using the
identities (14.11)) and (14.12) of the Gegenbauer differential operator G's and the
three-term relation (14.15)), we see that (G7) implies

1. 1 n+1 d L .
0= 5657 () - L (a5 oh0) + P = Jor
Therefore go = 0 and so fy(z) = qlég_Q(z). It is then clear from ({14.31)) that (fo, f1)
is proportional to (Fy, F1) when v(u — 1,a) # 0. N
Now suppose that v(u—1,a) = 0. Since in this case we have (Fy, F1) € C(C¥_,,0),

it suffices to show p = 0 for f1(z) = pC¥_;(2). It follows from ([1.3) that if y(u—1,a) =
0, then p—1+35 = 0. Ifu—”T“ = 0, then, as n is assumed to be n > 3, we would have
a < —2. Thus p — ”TH # 0 and so, by ((14.31)), p = 0. This proves the lemma. U

Hence Proposition [14.13] is proved, and therefore the proof of Theorem is
completed.




164

[1]

TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

REFERENCES

G. E. Andrews, R. Askey, R. Roy, Special Functions. | Encyclopedia of Mathematics and its
Applications, 71, xvi+664 pp. Cambridge University Press, Cambridge (1999).

B. D. Boe, D. H. Collingwood, Intertwining operators between holomorphically induced modules,
Pacific J. Math. 124, (1986), pp. 73-84.

A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of
Reductive Groups. Second Edition, Math. Surveys Monogr. 67, Amer. Math. Soc., Providence,
RI, 2000. xviii4+-260 pp.

T. P. Branson, Conformally covariant equations on differential forms, Comm. Part. Diff. Eq.
7, (1982), pp. 393—431.

H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters,
Math. Ann. 217, (1975), | 271-285.

D. H. Collingwood, Representations of Rank One Lie Groups. Res. Notes Math. 137, Boston,
MA, 1985. vii+244 pp.

M. Eichler, D. Zagier, The theory of Jacobi forms, Progr. Math., 55. Birkhauser, 1985.

A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions.
Vol. 1. Based, in Part, on Notes Left by Harry Bateman, xxvi4+302 pp. McGraw-Hill Book
Company, Inc., New York (1953)

E. S. Fradkin, A. A. Tseytlin, Asymptotic freedom in extended conformal supergravities, Phys.
Lett. B 110, pp. 117-122 (1982).

C. R. Graham, R. Jenne, L. J. Mason, G. A. J. Sparling, Conformally invariant powers of the
Laplacian. I. Existence. J. London Math. Soc. (2) 46, (1992), pp. 557-565.

A. Juhl, Families of conformally covariant differential operators, Q-curvature and holography.
Progr. Math., |275. Birkhauser, Basel, 2009.

R. C. King, Modification rules and products of irreducible representations of the unitary,
orthogonal, and symplectic groups, J. Math. Phys. 12, (1971), pp. 1588-1598.

T. Kobayashi, Restrictions of generalized Verma modules to symmetric pairs. Transform.
Groups 17, (2012), pp. 523-546.

T. Kobayashi, F-method for constructing equivariant differential operators. In: Geometric
Analysis and Integral Geometry (eds. E. T. Quinto, F. B. Gonzalez, and J. Christensen)
Contemporary Mathematics, Amer. Math. Soc. 598, (2013), | pp. 141-148.

T. Kobayashi, F-method for symmetry breaking operators, Diff. Geometry and its Appl. 33,
(2014), pp. 272-289.

T. Kobayashi, T. Kubo, and M. Pevzner, Vector-valued covariant differential operators for the
Méobius transformation. Lie Theory and Its Applications in Physics (ed. V. Dobrev) Springer
Proceedings in Mathematics & Statistics, 111 (2015), pp. 67-86.

T. Kobayashi, T. Kubo, and M. Pevzner, Classification of differential symmetry breaking
operators for differential forms. Published online, 17 May 2016 C.R. Acad. Sci. Paris, Ser. I,
d0i:10.1016/j.crma.2016.04.012, 6 pp.

T. Kobayashi, B. Qrsted, Analysis on the minimal representation of O(p, ¢). I. Realization via
conformal geometry. Adv. Math. 180, (2003), pp. 486-512.

T. Kobayashi, B. Orsted, P. Somberg, and V. Soucek, Branching laws for Verma modules and
applications in parabolic geometry. I. Adv. Math., 285, (2015), pp. 1796-1852.

T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. I. General theory and
F-method, Selecta. Math. (N.S.), 22, (2016), pp. 801-845.


http://dx.doi.org/10.1017/CBO9781107325937
http://dx.doi.org/10.1017/CBO9781107325937
http://projecteuclid.org/euclid.pjm/1102700679
http://dx.doi.org/10.1080/03605308208820228
http://dx.doi.org/10.1007/BF01436180
http://dx.doi.org/10.1016/0370-2693(82)91018-8
http://dx.doi.org/10.1112/jlms/s2-46.3.557
http://link.springer.com/book/10.1007/978-3-7643-9900-9/page/1
http://dx.doi.org/10.1063/1.1665778
http://dx.doi.org/10.1007/s00031-012-9180-y
http://dx.doi.org/10.1090/conm/598/11998
http://dx.doi.org/10.1016/j.difgeo.2013.10.003
http://dx.doi.org/10.1007/978-4-431-55285-7_6
http://dx.doi.org/10.1016/j.crma.2016.04.012
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/j.aim.2015.08.020
http://dx.doi.org/10.1007/s00029-015-0207-9

[21]

[22]

CONFORMAL SYMMETRY BREAKING FOR DIFFERENTIAL FORMS 165

T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. II. Rankin—Cohen oper-
ators for symmetric pairs, Selecta. Math. (N.S.), 22, (2016), pp. 847-911.

T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal
Groups, Memoirs of American Mathematical Society, vol. 238, 2015. 118 pp. ISBN: 978-1-
4704-1922-6.

K. Koike, I. Terada, Young-Diagrammatic Methods for the Representation theory of the Clas-
sical Groups of Type B,,, Cy, D,,. J. Algebra 107, (1987), no. 2, pp. 466-511.

S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-
Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. |4 (2008), paper
036, 3p.

D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.) 104,
(1994), no. 1, pp. 57-75.

D. Vogan, G. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math.
53, (1984), no. 1, pp. 51-90.

H. Weyl, The Classical Groups: Their invariants and representations. Princeton Landmarks in
Mathematics. Princeton University Press, Princeton, NJ, 1997. xiv+320 pp.


http://dx.doi.org/10.1007/s00029-015-0208-8
http://dx.doi.org/10.1090/memo/1126
http://dx.doi.org/10.1090/memo/1126
http://dx.doi.org/10.1016/0021-8693(87)90099-8
http://www.emis.de/journals/SIGMA/2008/

166 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

List of Symbols

[+, +, +, 4],

*, Hodge star operator,

I

A+(N)even7

A+(N)BD7

A = —(dd* + d*d), Hodge Laplacian,
87

Agn-1,

Acn, holomorphic Laplacian,

=, light cone,

I1, 5, irreducible unitary representation
of O(n+1,1),

I1,_1, projection onto Ker(Lai), ,

@* —

00, (10
u,d — (q)g,)é) ’
Q(h, x), conformal factor,

). B [[39, [126, [177 [153

en(l), signature of index set I,
¢, conformal compactification, [15],

Lg\i), map to flat picture, 113
LNy(X)7 @7 m

Lo interior multiplication, |§|7 , ,
"

[A], O(N)-modification rule,
A\ v, skew diagram,

A,

W = 1’ (i), small K-type,
= p# (i), small K-type,

& (€5),
[€*] (€ B/R* = 57), [15] 1]
[¢7], north pole in 5", [15] [121]
izs conformal representation on i-forms,
2 17 B5
T(e,)), Principal series,
T(a,\)*>
p:[18 32
pe, 19

oy =0 XC,, [16] 32] B3 B9

oy =0 KCyy_,

o\ representation of P on Ai(C"),

[16} 59} [61} BT}, [109} [127]
7, =7XC,, 34
7'57]/6),, representation of P’ on A\7(C"™1),
21} [59} [6T}, BT}, [T09]
0. = = [ [155
X++, one-dimensional representation of
O(n+1,1), 18
[L13]

X——, 17

A, split torus ( ﬂ

AI 7, matrix component of Ag, - 48|

[68} 69, 130
A

#> @
A, vector part of d?(g,\w,
B®_ bilinear map, ,

C) (=2N,"), basis of n,(R),
C; (= N, ), basis of n_(R),
CY(t), Gegenbauer polynomial,
C

)
7 (1), renormalized Gegenbauer poly-

nomial, B}, 22

Conf(X), 0,

Conf (X; Y

C,, one-dimensional representation of
A, [15]

Cop, . -

(C,\y,, (— Rest,, —¢ o D

erator, [22]

D) E(RY) — SR,

(unnormalized) differential sym-

metry breaking operator,

Cll 23
Cy, (= Dgﬁf »;), normalized differen-
tial symmetry breaking opera-
tor, 23]

Cy 2 114
Ci2 116

n—i,n—i+1°

) Juhl’s op-

CY, (=




LIST OF SYMBOLS 167

Cri, [24] [116 G=0(n+1,1),

Cy 1 [24) 23] [110} [114

& b i BT

@?;i’l LAl i, 81} 9] 112

S n®),_, 57 61} 64l [67] [110

Ry A N(CY) — N(CY) @ HE(CY),

d. differential, B0} 98} [127]

d*, codifferential, [5] [89) H%’ g?vnerl?tor of & 22 [12)

D(E), Weyl algebra, HH(CT), rmomc polynomials, |40} |56

Dy, 6, 22, -

D}ff ;. 98 , 1(i)’,, irreducible subquotient,

Diff (& <)§)u678] (Y)v7§)7 . ) 1(i)#, irreducible subquotient,

Dy (= Cuiz writa) ! E(RY) — EI(RY), e , complement of index set 7, [86],
(unnormalized) differential sym- Iey (-inflated polynomial, [f] 22| [T01]
metry breaklng operator, 54

Dy, I(i, \)a, prmcipal series of O(n +1,1),
D 16, (17, 272 [0 [[09) [T [127]
IndP oy), . .

Dii (= (C” 51 R") — &1(R™Y),

u+1i, u+z+a
normalized d1fferent1al symme- 1ndg(VV) generalized Verma module,
try breaking operator, 33
Di—i-2 P T, k., index set, [47], [66]
ﬁz‘—)i—l’ 8l @L 149 J(j,v)s, principal series of O(n, 1), [21]
Dzﬁaz’ 149 @77@
Dt g odl [113 K
~ua l,as a ? ’
dry., [36] |44
d7r(g,\ l 5 ¢()\), column length,

dﬂ'(g’ )+, algebraic Fourier transform of é’:—]\]\/‘%{zl LEZi/ipa;ito(f)fPé
principal series, [33] (L 5 159’ g o

L;(90, 91, 92), (64} [159]

scalar
Ay

dﬂ'(i,)\)*, , 129 %'((_—O(n—l XO.u
Ef(X), M 7, matrix component of dm; x+(N7"),
E'(X)us, conformal representation on
i-forms on X, [2] [2] Mieplar
EN(S" Jus, [4 M5,

E¢, Euler homogeneity operator, [43
‘ n., complex nilpotent Lie algebra, [34]

(G5), i
G}, Gegenbauer differential operator, n’+,

[153] 154 n, (R), Lie algebra of N,



168 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

n’ (R), Lie algebra of N’ ,
neg(/),
N, unipotent subgroup of O(n+1,1),

15} I8, B2

N., unipotent subgroup of O(n, 1),

N
NJr (: :C;), basis of ni(R), ,
45} [66]
, (=C,), basis of n_(R), ,

O(n+1,1), 14
or. 2, [85, [0

orx/y, relative orientation,

p, stereographic projection, [}
P, parabolic subgroup of O(n + 1,1),

15}, [17, B4]
P’, parabolic subgroup of O(n, 1), [21]

34
POlk[Ch CN] .
Polg even,. 101}, [154] [155|
pro;: N(CT) — AT(C™T), 57} [i00)

(«). 5, I3

Qn+11(x), quadratic form of signature
(LD

in -.

quadratlc form for index set I,
R}, imaginary Gegenbauer differential

operator, 42| [63] [I54]

Resty oty (x), B} 02

sgn, [32]
sen(/; p)
segn(l;p,q

(

( ),
Sol(mr,a,\,ry

( OAa’ v,3 .
Supp(f J; k), -

Symb, B4 B3 B9} 98} [07) [[23
’7’2(;)', Branson’s operator, ,

75,110

7., A0} [73} [10]]

T¥, T-saturated differential operator,
3

T, algebraic Fourier transform,
X,q, basis of o(n), [14] 44

Z(g), center of U(g),

ZG(Q)a



INDEX

Index

algebraic Fourier transform (Weyl al-

gebra),
Branson’s operator, [10], [125]
codifferential, [5]

conformal factor,

conformal group,

conformal representation,
conformal representation on i-forms,

density bundle,
differential operator between two man-

ifolds,

differential symmetry breaking opera-
tor, [2] [I09

duality of Gegenbauer polynomials,

duality theorem (principal series), 135

duality theorem for symmetry break-
ing operators (conformal geom-
etry). [ B9 117

duality theorem for symmetry break-
ing operators (principal series),

[21}, 25, 63} [80} [109

Euler homogeneity operator,

F-method,
F-system, (52 [13, 50, 50 [T, (109} 29
[135} 159

factorization identity, [I0]

flat picture, [16]

Gegenbauer differential equation, [161
Gegenbauer differential operator, (153
Gegenbauer polynomial,
generalized Verma module,
GJMS operator, [3|

(g, K)-cohomology,

harmonic polynomials,
Hodge Laplacian,

Hodge star operator,

169

imaginary Gegenbauer differential equa-

tion, [42] [65] B3] [L54]

infinitesimal character,
inflated polynomial,

interior multiplication, 6] [93,

906l

Juhl’s operator,
light cone,

matrix-valued F-method,
matrix-valued functional identities, [10),

137
modification rule for O(n),

normal vector field,

N-picture, [16], [32] [35]

open Bruhat cell,
orientation bundle,

principal series representation,

renormalized differential symmetry break-

ing operator, [62]
renormalized Gegenbauer polynomial,
01}

scalar part of dm(, -,
singular vector, [30],

skew Pieri rule,
stereographic projection,

twisted pull-back,

vector part, [36]

vector part of dm(y x)«, , ,
Weyl algebra,

Yamabe operator,



170 TOSHIYUKI KOBAYASHI, TOSHIHISA KUBO, AND MICHAEL PEVZNER

T. KoBayasHI, KAvLI IPMU (WPI) AND GRADUATE SCHOOL OF MATHEMATICAL SCIENCES,
THE UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO, TOKYO, 153-8914 JAPAN
E-mail address: toshi@ms.u-tokyo.ac. jp

T. KuBo, FacuLty oF EcoNoMICS, RYUKOKU UNIVERSITY, 67 TSUKAMOTO-CHO, FUKAKUSA,
Fusaimi-ku, KyoTo 612-8577, JAPAN
E-mail address: toskubo@econ.ryukoku.ac. jp

M. PEVZNER, LABORATOIRE DE MATHEMATIQUES DE REIMS, UNIVERSITE DE REIMS-CHAMPAGNE-
ARDENNE, FR 3399 CNRS, F-51687, REIMS, FRANCE

E-mail address: pevzner@univ-reims.fr



	1. Introduction
	2. Symmetry breaking operators and principal series representations of G=O(n+1,1)
	3. F-method for matrix-valued differential operators
	4. Matrix-valued F-method for O(n+1,1)
	5. Application of finite-dimensional representation theory
	6. F-system for symmetry breaking operators (j=i-1, i case)
	7. F-system for symmetry breaking operators (j = i-2, i+1 case)
	8. Basic operators in differential geometry and conformal covariance
	9. Identities of scalar-valued differential operators D
	10. Construction of differential symmetry breaking operators
	11. Solutions to Problems A and B for (Sn, Sn-1)
	12. Intertwining operators
	13. Matrix-valued factorization identities
	14. Appendix: Gegenbauer polynomials
	References
	List of Symbols
	Index

