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NONCOMMUTATIVE ENHANCEMENTS OF CONTRACTIONS

WILL DONOVAN AND MICHAEL WEMYSS

Abstract. Given a contraction of a variety X to a base Y , we enhance the locus in Y

over which the contraction is not an isomorphism with a certain sheaf of noncommu-
tative rings D, under mild assumptions which hold in the case of (1) crepant partial
resolutions admitting a tilting bundle with trivial summand, and (2) all contractions
with fibre dimension at most one. In all cases, this produces a global invariant. In
the crepant setting, we then apply this to study derived autoequivalences of X. We
work generally, dropping many of the usual restrictions, and so both extend and unify
existing approaches. In full generality we construct a new endofunctor of the de-
rived category of X by twisting over D, and then, under appropriate restrictions on
singularities, give conditions for when it is an autoequivalence. We show that these
conditions hold automatically when the non-isomorphism locus in Y has codimension 3
or more, which covers determinantal flops, and we also control the conditions when
the non-isomorphism locus has codimension 2, which covers 3-fold divisor-to-curve
contractions.
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1. Introduction

It has become increasingly clear that various aspects of birational geometry should be
enhanced into a mildly noncommutative setting. One example of this, namely associating
noncommutative algebras to certain contractions, has recently yielded many new results,
including: algorithmic ways to relate minimal models based on cluster theory [W], new
invariants for flips and flops [DW1] linked to Gopakumar–Vafa invariants [T2], the braiding
of flop functors [DW3], noncommutative versions of curve counting [T3], a full conjectural
analytic classification of 3-fold flops [DW1, HT, BW], and, in addition, the first new
examples of 3-fold flops since 1983 [BW].

However, a major technical and philosophical drawback of many of these constructions
is that they are local in nature, or apply only to contractions of curves. In this paper, we
work in a much more general setting. We take a contraction f : X → Y satisfying mild
characteristic-free assumptions, and enhance the non-isomorphism locus Z in Y with a
certain sheaf of noncommutative rings. Amongst other things, we use this sheaf to give a
new class of derived autoequivalences.
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2 WILL DONOVAN AND MICHAEL WEMYSS

In this paper we accomplish the following.

• In an axiomatic framework sketched in §1.1, we construct a noncommutative
ringed space (Z,D) where Z is the non-isomorphism locus in Y . In 3-folds this
applies to flopping, flipping, and divisor-to-curve contractions, but also works in
arbitrary dimension, and for contractions with higher-dimensional fibres.

• In a crepant setting given in §1.2, using the sheaf of noncommutative rings D
above, we construct an endofunctor TwistX of D(QcohX) associated to the con-
traction f , and establish criteria for it to be an autoequivalence.

The main benefit of this approach is its generality: we show in 2.5(1) that the ax-
iomatic framework applies when f is a crepant resolution of a Gorenstein d-fold Y , with
mild restrictions which hold in many known settings, including those of Haiman [H1],
Bezrukavnikov–Kaledin [BK], Procesi bundles [L], Toda–Uehara [TU], Springer resolu-
tions of determinantal varieties [BLV], and all known 3-fold crepant resolutions including
derived McKay correspondence [BKR]. We note in 2.7 that it covers all 3-fold projective
crepant resolutions, if the Craw–Ishii conjecture holds. Further we show in 2.5(2) that
our framework applies to all contractions with fibres of dimension at most one.

As the construction of D is the most subtle part of the paper, we first briefly outline
the local-to-global problems that arise in one specific example. Consider the following
crepant divisor-to-curve contraction, given explicitly in 2.25. Y is singular along a one-
dimensional locus Z, and above every point in Z is an irreducible curve.

0 z
Z

X

Y

f k〈〈x,y〉〉
x2,y2

k[[x]]

At every closed point z ∈ Z, [DW2] constructs a noncommutative deformation algebra
Acon,z, which induces a universal sheaf Ez on the formal fibre above z. In the above
example, at every closed point of Z away from the origin, Acon,z is isomorphic to k[[x]],
and at the origin it has the form shown above. The question is whether there exists a
global sheaf of algebras D on Z which specialises, complete locally, to the algebras Acon,z.
Similarly one can ask whether the universal sheaves Ez, as z varies over Z, can be glued
into a single coherent sheaf E on X .

The key insight in this paper is that this can be done, but not on the nose; we
construct a global D that recovers the algebras Acon,z up morita equivalence, and in (1.B)
a global E that recovers the Ez up to additive equivalence. In the above example this
means that D completed at a point z away from the origin is the ring of 2 × 2 matrices
over k[[x]], instead of k[[x]] itself. This is rather harmless, since to extract local invariants,
we pass to the basic algebra [DW1, §3], and for construction of derived autoequivalences,
passing through morita equivalences is a mild and necessary procedure.

1.1. Construction of invariant (Z,D) and global E. We sketch this briefly, before
describing our main results and applications. The construction does not use deformation
theory, or any restrictions on singularities or fibre dimension. Full details are given in §2.

By a contraction, we mean a projective birational map f : X → Y between d-
dimensional normal varieties over an algebraically closed field k, satisfying Rf∗OX = OY ,
where we assume that Y is quasi-projective. Write Z for the locus of points of Y above
which f is not an isomorphism.
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We then assume that there is a vector bundle P on X containing OX as a summand,
such that

(1) The natural map f∗EndX(P) → EndY (f∗P) is an isomorphism.
(2) The functor

Rf∗RHomX(P ,−) : Db(cohX) → Db(modB) (1.A)

is an equivalence, where B := f∗EndX(P) is considered as a sheaf of OY -algebras.

Given this setup, we write Q := f∗P , so that B ∼= EndY (Q). We then define a
subsheaf I of B consisting of local sections that at each stalk factor through a finitely
generated projective module, in 2.8. We show in 2.9 that I is naturally a subsheaf of
two-sided ideals of B.

Thus we may also view I as a subsheaf of Bop, and define D := Bop/I, which we
call the sheafy contraction algebra. For most purposes, taking the opposite ring structure
can be ignored. In 2.11 we give two alternative descriptions of I, which are important
since they allow us to control local sections of D, to such an extent that we can prove the
following.

Theorem 1.1 (=2.16, Global Contraction Theorem). SuppY D = Z.

It follows that D is naturally a sheaf of algebras on the locus Z, and thus we can
view the ringed space (Z,D) as a noncommutative enhancement of Z.

Remark 1.2. When the locus Z can be realized as a moduli spaces M of stable sheaves,
Toda [T4] constructs, under restrictions on dimZ, another noncommutative enhancement
of Z which is different to ours, since it is unusual for the stalks of D to be local rings; see
also 2.20 and 2.26.

The noncommutative sheaf of rings D constructed is naturally a sheaf on the base
Y of the contraction f : X → Y . We next lift this to give an object on X , by observing
that by construction D is a factor of Bop, so it also carries the natural structure of a
B-bimodule. In particular, we can view D as an object of Db(modBop), and hence, across
a dual version of (1.A), it gives an object

E := f−1D⊗L

f−1Bop P∗ (1.B)

of Db(cohX). In general E need not be a sheaf. In our most general setup, we prove the
following.

Proposition 1.3 (=3.2). Rf∗E = 0. In particular, if E is a sheaf then SuppX E lies in
the exceptional locus.

The case of one-dimensional fibres is particularly pleasant, and a typical example is
sketched below.

Supp E

SuppD

X

Y

The following are our main results in this setting. In particular, this globalises the local
noncommutative deformation theory as studied in [DW1, DW2, BB, K1].

Theorem 1.4. Suppose that f : X → Y is a contraction where the fibres have dimension
at most one. Then the following hold.
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(1) (=2.24) The completion of D at a closed point z ∈ Z is morita equivalent to
the algebra that prorepresents noncommutative deformations of the reduced fibre
over z.

(2) (=3.5) E is a sheaf.
(3) (=3.7) SuppX E equals the exceptional locus of f .
(4) (=3.8) The restriction of E to the formal fibre above a closed point z ∈ Z recovers

the universal sheaf Ez from noncommutative deformation theory, up to additive
equivalence.

The fact that in the one-dimensional fibre setting E is a sheaf is our main motivation
for considering Bop instead of B.

1.2. Applications to autoequivalences TwistX . We next turn our attention to crepant
contractions and autoequivalences. One benefit of the construction of E onX is that, using
the natural exact sequence

0 → I → Bop → D → 0,

we can construct in §5, under our most general setup in §1.1, a functor TwistX , which sits
in a functorial triangle

f−1Rf∗RHomX(E , a)⊗L

f−1D E → a→ TwistX(a) → .

For a precise description of the terms in these expressions, we refer the reader to §5,
but remark here that when Z is a point, TwistX reduces to a noncommutative twist
over a contraction algebra, as studied in [DW1, DW3]. The existence of a global sheafy
contraction algebra D allows us to avoid delicate local-to-global gluing arguments.

In general, TwistX is not an equivalence, but we have the following criterion in terms
of a Cohen–Macaulay property of D on Y , under a restriction to hypersurface singularities.
There are two main reasons for this restriction on singularities (although it is not used
everywhere), outlined in 2.20 below: note however that it holds automatically in the two
main applications in this paper, namely to Springer resolutions of determinantal varieties
of n× n matrices in 1.6, and to 3-fold divisor-to-curve contractions in 1.8.

Theorem 1.5 (=5.7). Under the general assumptions of 2.3, assume that f is crepant,

and ÔY,z are hypersurfaces for all closed points z ∈ Z. Then the following are equivalent.

(1) D is a Cohen–Macaulay sheaf on Y , and E is a perfect complex on X.
(2) D is relatively spherical (in the sense of 5.6) for all closed points z ∈ Z.

If these conditions hold, and they are automatic provided that dimZ ≤ dimY − 3, then
the functor TwistX is an autoequivalence of Db(cohX).

We remark that both parts of 1.5(1) can fail in general, and indeed if Z is not
equidimensional, then D is not relatively spherical for some z ∈ Z.

The last statement in 1.5 ensures that our framework recovers previous autoequiv-
alences associated to flopping contractions [T1, DW1, BB], since the assumptions of 1.5
are satisfied in the one-dimensional fibre flops setting described in [V1, Theorem C], but
the main advantage of 1.5 is that it includes other interesting settings, which we briefly
outline here.

Our first new application is to the varieties of singular n×n matrices, namely the de-
terminantal varieties k[xij ]/(detx). For each such variety, the Springer resolution admits
a suitable tilting bundle by work of Buchweitz, Leuschke, and Van den Bergh [BLV].

Corollary 1.6 (=5.8). Consider the Springer resolution X → Y of the variety of singular
n× n matrices. Then TwistX is an autoequivalence of X.

We then establish results for one-dimensional fibre contractions which are not an
isomorphism in codimension two, where the conditions in 1.5 are not automatic. Amongst
others, this includes partial resolutions of Kleinian singularities, and 3-fold crepant divisor-
to-curve examples. Leveraging our control of E in this setting, which by 1.4 is a sheaf
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with support coinciding with the exceptional locus, we reformulate the first part of 1.5(1),
namely D being a Cohen–Macaulay sheaf on Y , in terms of a Cohen–Macaulay property
for E on X .

Theorem 1.7 (=6.2). With the general setup in 1.5, suppose further that the fibres of f
have dimension at most one. Then the following are equivalent.

(1) D is a Cohen–Macaulay sheaf on Y .
(2) For all y ∈ Z, and all x ∈ f−1(y), we have Ex ∈ CMdimZy+1 OX,x.

In particular, if these conditions hold, then above every y ∈ Z, the exceptional locus is
equidimensional of dimension dimZy + 1.

Combining with 1.5, the dimension criterion above gives an easy-to-check obstruction
to D being relatively spherical, and we demonstrate this in various examples, such as 6.4.
Furthermore, the conditions above enable us to prove that TwistX is a equivalence in the
motivating divisor-to-curve contraction example.

Theorem 1.8 (=6.5). With the setup in 1.7, suppose in addition that X is smooth and
dimX = 3, such that every reduced fibre above a closed point in Z contains precisely one
irreducible curve. Then TwistX is an autoequivalence of X.

This generalises results on twists in families, for instance as in [H3, DS].

Remark 1.9. We expect that, when TwistX is an autoequivalence, it can be expressed
as a twist of a spherical functor as in [A2, A1, AL, K2]. However, we do not address this
question in this paper, as it would not simplify our proofs.

1.3. Acknowledgements. We are grateful for conversations with Arend Bayer, Ag-
nieszka Bodzenta, and Yukinobu Toda.

1.4. Conventions. Throughout we work over an algebraically closed field k. Unquali-
fied uses of the word ‘module’ refer to right modules, and modA denotes the category
of finitely generated right A-modules. We use the functional convention for composing
homomorphisms, so f ◦ g means g then f . In particular, naturally this makesM ∈ modA
into an EndA(M)op-module.

For a ∈ A an abelian category, we let adda denote all possible summands of finite
direct sums of a. Given two objects a, b ∈ A where a is a summand of b, we then write [a]
for the two-sided ideal of EndA(b) consisting of all morphisms that factor through add a.

2. Global Thickenings

In this section we will noncommutatively enhance the non-isomorphism locus of a
contraction f : X → Y which satisfies some mild conditions. We first recall what this
means, and fix the setting.

Definition 2.1. By a contraction, we will mean a projective birational morphism f : X →
Y between normal varieties over k, satisfying Rf∗OX = OY . It will be assumed that Y
is quasi-projective.

Notation 2.2. Given a contraction f : X → Y , write Z for the locus of (not necessarily
closed) points of Y above which f is not an isomorphism.

Given a contraction, we will furthermore assume the following condition.

Assumption 2.3. For a contraction f : X → Y , where d = dimX ≥ 2, assume that
there is vector bundle P = OX ⊕ P0 on X, such that the following conditions hold.

(1) The natural map f∗EndX(P) → EndY (f∗P) is an isomorphism.
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(2) The bundle P is tilting relative to Y , namely

Rf∗EndX(P) = f∗EndX(P) =: B,

and furthermore there is an equivalence

Rf∗RHomX(P ,−) : Db(cohX)
∼
−→ Db(coh(Y,B)). (2.A)

Here B is considered as a sheaf of OY -algebras in the sense of [KS, §18.1], and the bounded
derived category of modules over B is denoted by Db(coh(Y,B)).

With mind to our applications, we will show in 2.5 below that the assumption is
rather mild, and holds in general settings. This requires the following easy consequence
of 2.3(2).

Lemma 2.4. Suppose that 2.3(2) holds, V is an affine open subset of Y , and U :=
f−1(V ). Then P|U is a tilting bundle on U .

Proof. Setting Λ := EndU (P|U ), the following diagram commutes.

Db(cohX) Db(coh(Y,B))

Db(cohU) Db(modΛ)

Rf∗RHomX(P,−)

∼

|U |V

RHomU (P|U ,−)

In particular, RHomU (P|U ,P|U ) ∼= B|V ∼= Λ, which gives Ext vanishing. For generation,
suppose that a ∈ D(QcohU) with RHomU (P|U , a) = 0. We must show that a = 0.
By adjunction RHomX(P ,Ri∗a) = 0 where i : U →֒ X is the open inclusion. Since P
compactly generates D(QcohX), it follows that Ri∗a = 0, and thus a = 0 since Ri∗ is
fully faithful. �

Proposition 2.5. Assumption 2.3 is guaranteed to hold in the following two settings.

(1) Y is a Gorenstein d-fold, f is crepant, and X admits a relative tilting bundle
containing OX as a summand.

(2) X is a d-fold, and the fibres of f have dimension at most one.

Proof. (1) Take P to be the relative tilting bundle on X , with P = OX ⊕ P0. Condi-
tion 2.3(2) is immediate. Condition 2.3(1) is local, therefore it suffices to consider affine
Y = SpecR, in which case the condition translates into showing that

EndX(P) → EndR(f∗P), (2.B)

is an isomorphism. Note that EndX(P) is a maximal Cohen–Macaulay R-module since
f is crepant [IW3, 4.8]. We next claim that f∗P is also maximal Cohen–Macaulay. The
tilting property for P implies that Hi(P0) = 0 = Hi(P∗

0 ) for all i > 0, and so

RHomR(f∗P0, R) ∼= RHomR(Rf∗P0,OR)

∼= Rf∗RHomX(P0, f
!OR)

∼= Rf∗RHomX(P0,OX)

= Rf∗(P
∗
0 ) = f∗(P

∗
0 ),

where we use Grothendieck duality and crepancy. Thus RHomR(f∗P0, R) is concentrated
in degree zero, hence f∗P0 is maximal Cohen–Macaulay, and thence f∗P is also. In
particular, (2.B) is a morphism between reflexive R-modules, so since it is an isomorphism
in codimension two, it must be an isomorphism.
(2) Let P denote the bundle constructed by Van den Bergh in [V1, 3.3.2], which is relatively
generated by global sections. Condition 2.3(2) is [V1, 3.3.1]. For condition 2.3(1), note
first that f∗ gives rise to the natural morphism

B = f∗EndX(P) → EndY (f∗P).
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It suffices to check that this is an isomorphism on open affines V of Y , on which it is just
the following, where we write U := f−1(V ).

f∗ : EndU (P|U ) → EndV (f∗P|V ) (2.C)

By 2.4 P|U is tilting, so Ext1U (P|U ,P|U ) = 0. Since further Y is normal, f is projective
birational, and P|U is generated by global sections, it follows from [DW2, 4.3] that (2.C)
is an isomorphism. �

Remark 2.6. The relative tilting assumption from 2.5(1) reduces, in the case of affine

Y = SpecR, to the condition that ExtiX(P ,P) = 0 for i > 0, and P generates.

Remark 2.7. We remark that if d = 3 in 2.5(1), the assumption that X admits a tilting
bundle is automatic if X is constructed as the moduli of an NCCR of an affine Y [V2,
§6]. It is expected that the tilting bundle condition in 2.5(1) for d = 3 always holds, as a
consequence of the Craw–Ishii conjecture and work of Iyama and the second author [IW2,
4.18(2)].

2.1. Construction of I. In this subsection we work under the general assumptions of
2.3, and define an ideal subsheaf I of B := f∗EndX(P) ∼= EndY (f∗P). To ease notation,
we put Q := f∗P , so that B ∼= EndY (Q). For F a sheaf, s ∈ F(V ), and v ∈ V , we write
〈s, V 〉v for s viewed in the stalk Fv.

Definition 2.8. With notation as above, for each open subset V of Y , define

I(V ) := {s ∈ EndV (Q|V ) | Qv
〈s,V 〉v
−−−−→ Qv factors through addOY,v for all v ∈ V },

which is a two-sided ideal of B(V ). That is, I consists of local sections of B that at each
stalk factor through a finitely generated projective OY,v-module.

Proposition 2.9. I is a subsheaf of B consisting of two-sided ideals.

Proof. We just need to prove that I is a subsheaf. For opens U ⊆ V of Y , denote the
restriction morphisms of B by ρV U . Note that if s ∈ I(V ) then since

〈s, V 〉u = 〈ρV U (s), U〉u,

and this factors through a projective for all u ∈ U , it follows that ρV U takes I(V ) to
I(U). The presheaf axioms of B then imply that I is a subpresheaf of B, so it suffices to
check the two sheaf axioms.

Suppose then that U =
⋃
Ui and s ∈ I(U) is such that s|Ui

= 0 for all i. Viewing
this in B, it follows that s = 0.

Lastly, suppose that U =
⋃
Ui and there is a collection si ∈ I(Ui) ⊆ B(Ui) such that

si|Ui∩Uj
= sj |Ui∩Uj

for all i, j. Then since B is a sheaf certainly there exists s ∈ B(U) such that s|Ui
= si

for all i. We claim that s ∈ I(U), that is 〈s, U〉u factors through addOY,u for all u ∈ U .
Thus let u ∈ U , then certainly u ∈ Ui for some i. But then

〈s, U〉u = 〈s|Ui
, Ui〉u,

which factors through a projective since s|Ui
= si ∈ I(Ui). �

We now show that on affine open subsets, I takes a particularly nice form. To
simplify notation, for an affine open subset V = SpecR of Y , write Q for the R-module
corresponding to Q|SpecR, so that B(SpecR) ∼= EndR(Q). Choose a surjection h : F ։ Q
with F a free R-module, and write

HomR(Q,F )
α:=(h◦)
−−−−−→ HomR(Q,Q).

It is standard that this localises to

HomRp
(Qp, Fp)

αp=(hp◦)
−−−−−−→ HomRp

(Qp, Qp).
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By the defining property of projective modules, any morphism from an object in
P ∈ addR to Q has to factor as

FP Q,
h

and any morphism from an object of P ∈ addRp to Qp has to factor as

FpP Qp.
hp

Hence
{g : Q→ Q | g factors through addR} = Im(α), (2.D)

and

I(SpecR) = {g : Q→ Q | gp factors through addRp for all p ∈ SpecR}

= {g : Q→ Q | gp ∈ Im(αp) for all p ∈ SpecR}. (2.E)

The following lemma says that a morphism factors stalk-locally if and only if it factors
affine-locally.

Lemma 2.10. If SpecR is an affine open subset of Y , then

I(SpecR) = {g : Q→ Q | g factors through addR}.

Proof. By (2.D) and (2.E), it suffices to prove that

g ∈ Imα ⇐⇒ gp ∈ Imαp

for all p ∈ SpecR. The direction (⇒) is clear. For the (⇐) direction, suppose that
g ∈ Im(αp) for all p ∈ SpecR, and consider g+Imα ∈ EndR(Q)/ Imα. Then stalk-locally
this element is zero, hence it is zero (see e.g. [E, Lemma 2.8(a)]), and thus g ∈ Imα. �

It follows that we can define I in various equivalent ways, without referring to stalks.

Corollary 2.11. Suppose that V is an open subset of Y , and s ∈ B(V ). Then the
following conditions are equivalent.

(1) s ∈ I(V ).
(2) There exists an open affine cover V =

⋃
Vi such that s|Vi

factors through addOVi

for all i.
(3) For every open affine cover V =

⋃
Vi, s|Vi

factors through addOVi
for all i.

Proof. Since I is a sheaf by 2.9, if s ∈ I(V ) then s|Vi
∈ I(Vi). Hence (1)⇒(3) follows

from 2.10. (3)⇒(2) is obvious, and (2)⇒(1) is clear. �

2.2. Sheafy Contraction Algebras. In this subsection we continue to work under the
general assumptions of 2.3, but consider the dual bundle V := P∗, and A := f∗EndX(V).
Although not strictly necessary (up to taking opposite algebras, we show in the proof of
2.15 below that it gives the same objects), taking the dual is convenient since in the setting
2.5(2) of fibre dimension at most one, it will allow us to relate the above construction to
our previous work, and deformation theory, in an easier way.

By 2.9, I is a sheaf of two-sided ideals of B := f∗EndX(P). Since A ∼= Bop, we can
also view I as a subsheaf of two-sided ideals of A. Thus we can consider the presheaf
quotient of A by I, which is naturally a presheaf of algebras, and hence its sheafification
D := A/I is a sheaf of algebras on Y .

Definition 2.12. We call D := A/I the sheaf of contraction algebras on Y .

Note that there is a natural OY -algebra structure on D given by a morphism of
sheaves of rings OY → A, as in [KS, §18.1], however this morphism is not injective, as a
consequence of 2.16 below. Locally, the sections of D have a particularly easy form, which
we now describe. For an affine neighbourhood V in Y , consider the following Zariski local
setup obtained by base change.
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Setup 2.13. (Zariski local) Suppose that f : U → V = SpecR is a projective birational
morphism between normal varieties over k, with Rf∗OU = OV .

We set ΛV := EndU (V|U ). The following is an extension of [DW2, §3.1], which only
considered contractions with fibre dimension at most one.

Definition 2.14. Write Icon for the two-sided ideal of ΛV consisting of those morphisms
ϕ : V|U → V|U which factor through an object F ∈ addOU , as follows.

V|U

F

V|U
ϕ

Then the contraction algebra for ΛV is defined to be (ΛV )con := ΛV /Icon.

The following proposition is important, and will be heavily used later.

Proposition 2.15. If V = SpecR is an affine open subset of Y , then D(V ) ∼= (ΛV )con.

Proof. For all affine open subsets V = SpecR of Y

0 → I(V ) → A(V ) → D(V ) → 0

is exact. It follows that, for U := f−1(V ),

D(V ) = A(V )/I(V ) =
(
B(V )/I(V )

)op

∼=
(
EndR(f∗P|U )/[R]

)op
(by (2.C), 2.10)

=
(
EndU (P|U )/[OU ]

)op
(by 2.3(1))

which is EndU (V|U )/[OU ] = (ΛV )con. �

A benefit of our global construction of D, which we will make use of later, is that
the contraction theorem in [DW2] can be globalised. Although [DW2, 4.4–4.7] was stated
in the one-dimensional fibre setting, the proof works word-for-word in the more general
setup here.

Corollary 2.16 (Global Contraction Theorem). SuppY D = Z.

Proof. By [DW2, 4.7], which does not require the one-dimensional fibre assumption, we see
that SuppV (ΛV )con = Z∩V for all affine opens V in Y . Since SuppV (ΛV )con = SuppV D|V
by 2.15, the result follows. �

Remark 2.17. By construction D is a sheaf of algebras on Y . By 2.16 it is naturally a
sheaf of algebras on Z, and thus we can view the ringed space (Z,D) as a noncommutative
enhancement of the locus Z. Note further that coh(Y,D) = coh(Z,D).

Example 2.18. Consider R := C[x, y, z, t]/(x2t + y3 − z2) and Y = SpecR. This is
singular along x = y = z = 0, and has a crepant resolution sketched below, obtained by
blowing up the ideal (x, y, z).

X

Y
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In this example X is derived equivalent to Λ := EndR(R ⊕M), where M is the cokernel
of the following 4× 4 matrix.

R4





x z −y 0
z xt 0 y
y2 0 xt z
0 y2 −z −x





−−−−−−−−−−−−−−−−−−→ R4 (2.F)

We now calculate the stalks of the sheaf D at the closed points of Z. It is clear that,
away from the origin, complete locally R is given by the equation x2 + y3 − z2. This is
the A2 surface singularity crossed with the affine line, and thus the generic fibre is just
the minimal resolution of A2 crossed with the affine line. Since M has rank two, it follows
that for all points of Z away from the origin, the completion of the stalk of D is given by
the completion of the following quiver with relations.

a

b
s t

a ◦ s = t ◦ a

b ◦ t = s ◦ b

a ◦ b = 0

b ◦ a = 0

On the other hand, the origin is a cD4 point, and calculating the stalk of D there is
a little trickier. Using the matrix in (2.F), it is easy to first present Λ as a quiver with
relations, as in [AM, §4], then calculate the contraction algebra, as in [DW1, 1.3]. Doing
this, one finds that the completion of D at the origin is the completion of

C〈a, b〉

ab+ ba, a2

at the ideal (a, b).

By 2.17 there is a noncommutative ringed space (Z,D), and it is natural to compare
this to the usual commutative ringed space (Z,OZ), where OZ is the structure sheaf that
endows Z with its reduced subscheme structure. A key property of (Z,OZ) is that for
every point z ∈ Z, the stalk OZ,z is local, that is, it admits only one simple module.
This is not true in general for the stalk Dz. However, in the crepant setting of 2.5(1), the
following holds.

Proposition 2.19. Suppose the crepant setting of 2.5(1), let z ∈ Z be a closed point,

and furthermore assume that d = 3 and X is smooth. If D̂z is local, then ÔY,z is a
hypersurface.

Proof. Put R := ÔY,z, and write D̂z = EndR(R ⊕ M). Since by assumption D̂z is
local, necessarily M must be indecomposable. Then by [IW2, 6.25(3)] mutation at the
indecomposable summand M must be an involution, and so Ω2M ∼=M . But this implies
that the complexity of M must be less than or equal to one, which easily (see for example
the proof of [W, 6.14]) implies that R is a hypersurface. �

Remark 2.20. The converse to 2.19 is false, since if R is complete locally a hypersurface,

D̂z need not be local. Nevertheless, being the only situation with smooth X where a local

D̂z is possible, the situation where Y is complete locally a hypersurface has special status.
It is also the only situation where ourD can possibly coincide with Toda’s noncommutative
thickening [T4]. This partially motivates the hypersurface assumptions in §4 below.

2.3. D and Deformations. In the setting 2.5(2) when f has fibres of dimension at most
one, in this subsection we briefly relateD to noncommutative deformation theory. For this,
recall that an n-pointed k-algebra Γ is an associative k-algebra equipped with k-algebra
morphisms

k
n i
→ Γ

p
→ k

n
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which compose to the identity. Note that the morphisms p and i allow us to lift the
canonical idempotents {e1, . . . , en} of k

n to Γ. We refer to Γ as artinian if it is finite-
dimensional as a vector space over k, and the ideal Ker p is nilpotent. Such algebras
naturally form a categoryArtn, and we write pArtn for the category of pro-artinian algebras
(see for instance [DW2, §2] for the precise construction).

Recall that a DG category is a graded category A whose morphism spaces have the
structure of DG vector spaces. We write DGn for the category which has as objects the
DG categories with precisely n objects. Given a DG category A ∈ DGn and an algebra
Γ ∈ Artn, we now recall an appropriate notion of deformations over Γ, according to the
standard Maurer–Cartan formulation. Writing n = Ker p ⊂ Γ, first consider the DG
category A⊗ n ∈ DGn with objects {1, . . . , n}, morphisms

HomA⊗ n(i, j) := HomA(i, j)⊗k (ejnei),

and differential induced from A. (Note that the convention used here for notating com-
positions in Γ is opposite to that of [DW2].) Given a degree-1 morphism ξ ∈ (A⊗ n)1

consider the Maurer–Cartan equation

MC(ξ) := dξ + 1
2 [ξ, ξ] ∈ (A⊗ n)2 = 0

where d is the differential, and the bracket is induced from the commutator brackets on
A and n.

Definition 2.21. Given A ∈ DGn, the associated deformation functor is given by

DefA : Artn → Sets

Γ 7→
{
ξ ∈ (A⊗ n)1 | MC(ξ) = 0

}
/ ∼

where the standard gauge equivalence relation ∼ is given in e.g. [DW2, 2.6].

Given objects E1, . . . , En ∈ coh(X), and injective resolutions Ei → Ii•, then

A := EndDG
(⊕

Ii•

)

naturally lies in DGn, and the associated deformation functor DefA describes the simul-
taneous noncommutative deformations of the collection {Ei}.

Definition 2.22. A functor F : Artn → Sets is said to be prorepresentable by Γ ∈ pArtn
if the restriction of HompArtn

(Γ,−) to Artn is naturally isomorphic to F .

Given a contraction f with at most one dimensional fibres as in 2.5(2), for every
z ∈ Z, C = f−1(z) is a curve, and recall that we write Cred =

⋃n
i=1 Ci where each

Ci ∼= P1. We put Ei = OCi
(−1) and form A as above.

The following theorem was shown in [DW2, 1.1].

Theorem 2.23. In the setting 2.5(2), for each closed point z ∈ Z the functor of noncom-
mutative deformations DefA is represented by an algebra Acon,z.

The precise form of Acon,z is not important for now, but we do explain this in §4.2.
Recall from §2.2 that for an affine open V of Y , and U := f−1(V ), we write ΛV :=
EndU (P

∗|U ). It was shown in [DW2, 1.1, 1.2] that the completion of D|V = (ΛV )con at a
closed point z ∈ Z ∩V is morita equivalent to Acon,z. The following is then an immediate
corollary of 2.15.

Corollary 2.24. In the setting 2.5(2), let z ∈ Z be a closed point. Then the completion
of the stalk Dz is morita equivalent to Acon,z.

The morita equivalence above is illustrated in the following example.
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Example 2.25. Consider R := C[x, y, z, t]/(x3 − xyt − y3 + z2) and Y = SpecR, which
is singular along the t-axis. It has a crepant resolution sketched as follows.

X

Y

In this example X is derived equivalent to Λ = EndR(R ⊕M), where M is the cokernel
of the following 4× 4 matrix.

R4





x z −y 0
0 y2 −z x
−z x2 − yt 0 y
−y2 0 x2 − yt z





−−−−−−−−−−−−−−−−−−−−−−−−−→ R4

Away from the origin, the singular locus is just the A1 surface singularity crossed
with the affine line, so since M has rank two, complete locally away from the origin it
must split into two isomorphic copies of the same rank-one CM module L, so that

Λ̂ ∼= EndR(R⊕ L⊕2).

Hence, away from the origin, the completion of the stalk of D is the 2 × 2 matrices over
C[t], since C[t] is the contraction algebra of EndR(R⊕ L).

At the origin, complete locally M is indecomposable, so that the stalk of D at the
origin must be a local algebra. Using the same method as in 2.18, it is not difficult to
show that the completion of the stalk is isomorphic to the completion of C〈a, b〉/(a2, b2)
at the ideal (a, b).

Remark 2.26. This remark explains why our thickening is different to the one con-
structed by Toda [T4]. In the above example, the generic exceptional fibre consists of a
single smooth projective curve, and so pick its structure sheaf and consider its Hilbert
polynomial, which gives rise to a moduli space of simple sheaves. All generic fibres have
this Hilbert polynomial (by flatness), and the moduli space has a point for each one of
these, plus a point corresponding to the origin, to give a pure dimension one scheme. The
completion of Toda’s sheaf D′ at each point abelianizes to give the completion of the stalk
of the structure sheaf of the moduli space at that point. In particular, since the moduli
space has pure dimension one, this stalk cannot be finite dimensional. But D abelianizes
at the central point to give C[[a, b]]/(a2, b2), which is finite dimensional, and hence the
sheaves D and D′ are different.

3. A Universal Sheaf E

In this section we use D from 2.12 to construct a complex of sheaves E on X , and we
present some of its basic properties. In the case of fibre dimension at most one, 2.5(2),
we will show that E is a sheaf, with support equal to the exceptional locus.

3.1. General Construction of E. In this subsection we work under the general assump-
tions of 2.3. By definition, 2.12, D is a sheaf on Y . However, in the setting 2.5(2), consider
V := P∗, which induces an equivalence

Db(cohX) Db(coh(Y,A)).
Rf∗RHomX(V,−)

∼
(3.A)
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The sheaf of algebras D := A/I constructed in 2.12 is in particular an A-module, and
thus an object of Db(coh(Y,A)).

Notation 3.1. We write E for the object in Db(cohX) which corresponds to D across
the equivalence (3.A).

Proposition 3.2. Under the general assumptions of 2.3, for an affine open V = SpecR ⊆
Y , set U = f−1(V ) and write f ′ : U → V for the restricted map. Then the following hold.

(1) Rf ′
∗(E|U ) = 0.

(2) Rf∗E = 0.

In particular, if E is a sheaf then SuppX E is contained in the exceptional locus.

Proof. (1) There is a commutative diagram as follows.

Db(cohX) Db(coh(Y,A))

Db(cohU) Db(modΛV )

Rf∗RHomX(V,−)

∼

|U |V

RHomU (V|U ,−)

∼

(3.B)

Since E corresponds to D on the top equivalence, it follows that E|U corresponds to D(V )
across the bottom equivalence. Hence by 2.15 E|U corresponds to (ΛV )con.

Let e denote the idempotent in ΛV corresponding to R. Then the following diagram
commutes.

Db(cohU) Db(modΛV )

Db(cohSpecR) Db(modR)

RHomU (V|U ,−)

∼

Rf ′

∗
(−)e (3.C)

Since (ΛV )con ∈ modΛV satisfies (ΛV )cone = 0, it follows that E|U satisfies Rf ′
∗(E|U ) = 0.

(2) Since Rif∗E|V = Rif ′
∗(E|U ) by flat base change (see e.g. [H2, III.8.2]), it follows from

(1) that Rf∗E = 0. �

It may be the case that SuppX E always equals the exceptional locus, but this seems
tricky to prove without more control over where the simple (ΛV )con-modules go under the
derived equivalence. Controlling the support of E is important, since later it will give an
easy-to-check obstruction to D being relatively spherical.

3.2. E and Fibre Dimension One. This subsection considers the setting of 2.5(2) when
f has fibres of dimension at most one, and proves that E is a sheaf whose support SuppX E
equals the exceptional locus.

In the setting of 2.5(2), recall from [B, §3] and [V1, §3.1] that perverse coherent
sheaves on X may be defined as follows.

Definition 3.3. The category −1Per(X,Y ), respectively 0Per(X,Y ), consists of those
objects a ∈ Db(cohX) such that

(1) Hi(a) = 0 if i 6= 0,−1,
(2) f∗H

−1(a) = 0, R1f∗H
0(a) = 0,

(3) HomX(H0(a), c) = 0, respectively HomX(c,H−1(a)) = 0, for all c ∈ C0

where C := kerRf∗ and C0 denotes the full subcategory of C whose objects have cohomology
only in degree 0.

It follows from [V1, 3.3.1, proof of 3.3.2] that the P in 2.5(2) is a local progenerator
of −1Per(X/Y ), and V = P∗ likewise for 0Per(X/Y ).

To show that E is a sheaf requires the following lemma, which is well known.

Lemma 3.4. Suppose that a ∈ Db(cohX) such that Rf∗a = 0.
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(1) a ∈ −1Per(X,Y ) if and only if a is concentrated in degree −1.
(2) a ∈ 0Per(X,Y ) if and only if a is concentrated in degree 0.

Proof. (1) (⇒) By definition Hi(a) = 0 unless i = −1 or 0, so we need only show H0(a) =
0. As f has at most one-dimensional fibres, Rf∗a = 0 implies that Rf∗H

0(a) = 0 using
[B, 3.1]. But HomX(H0(a), c) = 0 for all sheaves c such that Rf∗c = 0, in particular for
c = H0(a), and the claim follows.
(⇐) This follows immediately from the definition.
(2) The proof is similar. �

Corollary 3.5. In the setting of 2.5(2), the following statements hold.

(1) E|U ∼= (ΛV )con ⊗Λ V|U .
(2) E is a sheaf in degree zero.

Proof. Both results follow from 3.2 and 3.4(2) applied to 0Per(U, V ). �

For a closed point z ∈ Z, consider an affine neighbourhood V = SpecR of z, and
consider U := f−1(V ) and f |U : U → V = SpecR. The fibre above each closed point in Z,
with reduced scheme structure, decomposes into curves Ci say, each isomorphic to P1.

Proposition 3.6. In the setting of 2.5(2), if x is a closed point in the exceptional locus
of f |U , then x ∈ SuppU E|U .

Proof. Certainly x sits on some Ci, so x ∈ SuppOCi
(−1). Write T for the ΛV -module

corresponding to OCi
(−1) across the bottom equivalence in (3.B), then by [V1, 3.5.8] T is

a simple ΛV -module. But since Rf∗OCi
(−1) = 0, it follows from (3.C) that T is also a

(ΛV )con-module, and hence a simple (ΛV )con-module. As such, there exists a surjection
(ΛV )con ։ T , and so back across the bottom equivalence in (3.B) there is a short exact
sequence

0 → K → E|U → OCi
(−1) → 0

in 0Per(U, V ). Since the last two terms are sheaves, it follows from the long exact sequence
in ordinary cohomology that so too is K. Hence since passing to stalks is exact, the stalk
of E at x must be non-zero, since it surjects onto the stalk of OCi

(−1) at x, which is
non-zero. It follows that x ∈ Supp E|U . �

Corollary 3.7. In the setting of 2.5(2), SuppX E is equal to the exceptional locus.

Proof. By 3.6, by varying z ∈ Z we see that the set of closed points in the support of
E contains the set of closed points in the exceptional locus. Since Rf∗E = 0 by 3.2(2),
Supp E does not contain any further closed points. Since X is a variety, and so Zariski
locally every prime ideal is the intersection of maximal ideals, we are done. �

We next show that the global E recovers the universal sheaves from noncommutative
deformation theory in the setting of 2.5(2). For a closed point z ∈ Z, write Rz for the
completion of the structure sheaf of Y at z, and consider the following flat base change
diagram.

Xz X

SpecRz Y

jz

iz

fz f

The deformation theory in §2.3 gives rise to a universal sheaf Ez ∈ cohXz for every z ∈ Z.

Proposition 3.8. In the setting of 2.5(2), for every z ∈ Z, add j∗zE = add Ez.

Proof. This is implicit in [DW2, 3.7], but we sketch the argument here. To ease notation,
write Λ = ΛV .
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As in [DW2, 3.7] the algebra Λ̂ is morita equivalent to an algebra A, via a functor F,

and furthermore there are decompositions as Λ̂-modules

FAcon = P1 ⊕ . . .⊕ Pn and Λ̂con = P⊕a1
1 ⊕ . . .⊕ P⊕an

n (3.D)

for some ai ≥ 1, where the Pi are the projective Λ̂con-modules. Now

RHomXz
(j∗zV ,−) : Db(cohXz) → Db(mod Λ̂)

is an equivalence, and it is easy to see using flat base change that j∗zE corresponds to Λ̂con.
As in [W, 4.14] and [DW1, §3.2], Ez corresponds across the equivalence to FAcon. Since

(3.D) implies that add Λ̂con = addFAcon, it follows that add j
∗
zE = addEz. �

4. Spherical Properties via Cohen–Macaulay Modules

This section considers the Zariski local crepant contractions of 2.5(1) and charac-
terises, under some assumptions on singularities, when the noncommutative enhancement
D is relatively spherical. These results are globalised in §5. All this involves the Cohen–
Macaulay property, which we now review.

4.1. Cohen–Macaulay modules. Recall that if (R,m) is a commutative local noether-
ian ring, with M ∈ modR, then the depth of M is defined to be

depthRM := min{i | ExtiR(R/m,M) 6= 0},

and for all p ∈ Ass(M) there is a chain of inequalities

depthRM ≤ dimR/p ≤ dimRM.

Then M is called a Cohen–Macaulay module if either M = 0, or M 6= 0 and

depthRM = dimRM.

We write CMS R for the category of such modules. It is clear that if M is Cohen–
Macaulay, necessarily M is equidimensional (i.e. dimR/p = dimRM for every minimal
prime p ∈ SuppM), and has no embedded primes (i.e. every associated prime is minimal).

If R is local Gorenstein, and M 6= 0, then by local duality (see e.g. [BH, 3.5.11])

M ∈ CMS R ⇐⇒ RHomR(M,R) is concentrated in degree dimR− dimRM.

When R is not necessarily local, but is still Gorenstein and equi-codimensional, we say
that M ∈ modR is CM if Mm ∈ CMS Rm for all maximal ideals m of R, and again write
CMS R for the category of CM R-modules. Since dimRm

Mm can vary between maximal
ideals, RHomR(M,R) may have cohomology in more than one degree.

We say that M ∈ modR is maximal Cohen–Macaulay if depthRm
Mm = dimRm

for all m ∈ MaxR, and we write MCMR for the category of maximal Cohen–Macaulay
R-modules.

4.2. Setting. The remainder of this section considers the following refinement of the
affine crepant contraction setting of 2.5(1).

Setup 4.1. Suppose that f : X → Y is a contraction as in 2.1, where in addition Y =
SpecR is affine and Gorenstein, d = dimX ≥ 2, f is crepant, and X admits a tilting
bundle P = OX ⊕ P0.

Necessarily R is equi-codimensional by [E, 13.4], and a Gorenstein normal domain by
assumption.

Notation 4.2. We set M := f∗P0, which is an R-module, and consider Λ := EndR(R ⊕
M), which is isomorphic to EndX(P) by 2.5(1). Further, since f is crepant necessarily
Λ ∈ MCMR by [IW3, 4.8], and thus M ∼= HomR(R,M) ∈ MCMR, being a summand
of Λ. We write Λcon := Λ/Icon, where Icon := [R].
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We will often reduce arguments about Λcon to the completions of closed points, in
which case the following notation will be useful. For a closed point z = m ∈ SpecR, write
R for the completion of R at z, and consider the Krull–Schmidt decomposition

M̂ = R⊕a0 ⊕M⊕a1
1 ⊕ . . .⊕M⊕an

n .

Then we write K =M1 ⊕ . . .⊕Mn, and A := EndR(R⊕K). This depends on z, but we
suppress this from the notation. We define

Acon,z := A/[R],

but throughout this section, to ease notation we will usually refer to this as simply Acon.

Definition 4.3. We say that Λcon is t-relatively spherical if

ExtjΛ(Λcon, T ) ∼=

{
k if j = 0, t
0 else,

for all simple Λcon-modules T . There is no requirement that Λcon is perfect.

There is an obvious variant of 4.3 for Acon. The following two subsections characterise
when Λcon and Acon are relatively spherical, under the assumption that complete locally
R has only hypersurface singularities. This additional assumption is motivated in part
by 2.20, in part by the fact that in characteristic zero 3-dimensional Gorenstein terminal
singularities have this property [R83, 0.6(I)], and in part since one of our main applications
later in §6.2 will be to crepant divisor-to-curve contractions of 3-folds, in which case the
hypersurface singularity condition holds automatically.

4.3. Spherical via CM R-modules I. The following three results are elementary.

Lemma 4.4. In the setup 4.1, with p ∈ SpecR, the following are equivalent.

(1) p ∈ Z.
(2) p ∈ SuppΛcon.
(3) Mp is a non-free Rp-module.

Proof. (1)⇔(2) is the local version of 2.16.
(2)⇔(3) (Λcon)p ∼= EndRp

(Mp), which is zero if and only if Mp is free. �

The following is also elementary, and is a simple consequence of the depth lemma.

Lemma 4.5. In the setup 4.1, if dimR Λcon ≤ d− 3, then Ext1R(M,M) = 0.

Proof. By the assumption and 4.4, for p ∈ SpecR with ht p = 2, Mp is a free Rp-module,

and hence certainly Ext1Rp
(Mp,Mp) = 0. This implies that for all q ∈ SpecR with

ht q = 3, Ext1Rq
(Mq,Mq) is a finite length Rq-module.

But since EndRq
(Mq) ∈ MCMRq, by the depth lemma Ext1Rq

(Mq,Mq) = 0. In turn,
this implies that the Ext group for height four primes has finite length. Again, by the
depth lemma, this must be zero. By induction the result follows. �

Corollary 4.6. In the setup 4.1, if dimR SingR ≤ d− 3, then Ext1R(M,M) = 0.

Proof. Since M ∈ CMR, it is clear from 4.4 that dimR Λcon ≤ dimR SingR. The result
then follows immediately from 4.5. �

The remainder of this subsection considers the case when Λcon does not have maximal
dimension, that is when dimR Λcon ≤ d − 3. The case dimR Λcon = d − 2 is trickier, and
will be dealt with in the next subsection.

Lemma 4.7. In the setup 4.1, suppose further that Y is complete locally a hypersurface.
If dimR Λcon ≤ d− 3, then at every closed point z ∈ Z,

(1) pdA Acon,z = 3.
(2) Acon,z ∈ CMd−3 R, in particular dimAcon,z = d− 3.
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Furthermore, the following statements hold.

(3) The stalk of OY at every closed point of Z has dimension d− 3.
(4) pdΛ Λcon = 3.
(5) Λcon is 3-relatively spherical.

Proof. (1)(2) By matrix factorisation there is an exact sequence

0 → K → F → F → K → 0,

where F is a free R-module. Further by assumption and 4.5, we know that Ext1R(K,K) =
0, hence applying HomR(R⊕K,−) to the above sequence gives a projective resolution

0 → PK → P⊕b
0 → P⊕b

0 → PK → Acon → 0.

Thus pdA Acon ≤ 3, from which Auslander–Buchsbaum implies that depthAcon ≥ d − 3.
It thus follows that Acon ∈ CMd−3R, and so pdA Acon = 3.
(3) By (2) dimR Acon = d− 3, and by 4.4 dimR Acon = dimR Z.
(4) This follows from (1), since projective dimension can be checked complete locally.
(5) This follows by checking complete locally, and using the projective resolution of Acon

given above. �

4.4. Spherical via CM R-modules II. Seeking a more general version of 4.7 when
Λcon has maximal dimension is subtle, for two reasons. First, pdΛ Λcon = ∞ can occur,
and second the dimension of Z at closed points may vary, in which case asking for Λcon ∈
CMS R is more natural than specifying a particular CMd−tR.

Before extracting a global statement, we first work complete locally, and extend 4.7
as follows.

Theorem 4.8. In the setup 4.1, suppose further that R is complete locally a hypersurface.
Then Acon is t-relatively spherical if and only if

(1) pdA Acon <∞.
(2) Acon ∈ CMd−tR.

In this case necessarily t = d − dimAcon, which is either 2 or 3, and furthermore the
assumptions (1) and (2) hold when dimR Acon ≤ d− 3.

Proof. (⇐) Case t = 2: By Auslander–Buchsbaum, pdA Acon = 2. It then follows from
[W, A.3] that ΩK ∼= K, and so applying HomR(R⊕K,−) to the exact sequence

0 → ΩK → F → K → 0

gives the minimal projective resolution

0 → PK → P⊕a
0 → PK → Acon → 0.

Hence Acon is 2-relatively spherical, and since by assumption Acon ∈ CMd−2R, t =
d− dimAcon.
Case t ≥ 3: Since Acon ∈ CMtR, necessarily dimAcon ≤ d − 3, so by 4.7 Acon is 3-
relatively spherical, and t = d− dimAcon.
(⇒) Case t = 2: Consider the beginning of the minimal projective resolution of Acon.
Since Acon is 2-relatively spherical, this has the form

→ PK → P⊕a
0

ψ
−→ PK → Acon → 0

Certainly Kerψ = HomR(R⊕K,ΩK), hence the projective cover of Kerψ is obtained by
applying HomR(R⊕K,−) to a minimal add(R⊕K)-approximation

f : U → ΩK.

But since the projective cover of Kerψ is PK , it follows that HomR(R⊕K,U) ∼= PK :=
HomR(R⊕K,K), so by reflexive equivalence U ∼= K. Further, since f is in particular an
addR-approximation, it is necessarily surjective. But R is a hypersurface, so the rank of
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K equals the rank of ΩK, hence Ker f = 0 and thus f is an isomorphism. In turn, this
implies that Kerψ ∼= PK , and hence pdA Acon = 2.

By Auslander–Buchsbaum, depthR Acon = d−2. But as in 4.6, and since R is normal

d− 2 = depthR Acon ≤ dimAcon ≤ dimSingR ≤ d− 2.

Hence equality holds throughout, and Acon ∈ CMd−2R.
Case t ≥ 3: Again, consider the beginning of the minimal projective resolution of Acon,
which now has the form

→ P⊕b
0

φ
−→ P⊕c

0

ψ
−→ PK → Acon → 0.

The morphism P⊕b
0 → Kerψ = HomR(R ⊕ K,ΩK) is induced from a morphism of the

form f : F → ΩK (where F is free), which is a minimal add(R⊕K)-approximation. Again,
necessarily this f is surjective, and its kernel is ΩΩK ∼= K, since R is a hypersurface. But
then, applying HomR(R⊕K,−) to the exact sequence

0 → K → F
f
−→ ΩK → 0

and using the fact that f is an add(R⊕K)-approximation,

0 → HomR(R⊕K,K) → HomR(R⊕K,F ) ։ HomR(R⊕K,ΩK) → Ext1R(K,K) → 0

is exact. It follows that Ext1R(K,K) = 0, and Kerφ = PK . Consequently, pdA Acon = 3
and Acon is 3-relatively spherical, thus t = 3.

By Auslander–Buchsbaum, depthR Acon = d − 3. We claim that Acon ∈ CMd−3 R,
so we just need to prove that dimAcon 6= d− 2. If there exists p ∈ SuppAcon with height
two, then by 4.4 Kp is a non-free Rp-module. But by the above

HomCMRp
(Kp,Kp[1]) ∼= Ext1Rp

(Kp,Kp) = 0,

and further since Rp is a Gorenstein surface with only an isolated singular point, CMRp is
1-CY. This implies that HomRp

(Kp,Kp) = 0, and so Kp is free, which is a contradiction.
Hence such a p with height two cannot exist, and so Acon ∈ CMd−3 R.

The last statement is 4.7. �

Remark 4.9. Neither condition (1) or (2) in 4.8 is guaranteed if dimAcon = d − 2; see
4.12 below and also [W, 4.18].

Remaining complete local, gives the following tilting consequence.

Proposition 4.10. In the setup 4.1, suppose further that R is complete locally a hyper-
surface. If the equivalent conditions of 4.8 hold, then IA is a tilting A-module.

Proof. By 4.8 there are only two cases, t = 2 and t = 3. When t = 2, the fact that IA
is tilting is just [W, A.3, A.5]. When t = 3, the argument is identical to [DW1, 5.10(1)],
since although in that proof d = 3, the fact that by 4.5 Ext1R(K,K) = 0 means that
[DW1, (5.F)] is still exact, so exactly the same proof works. �

It is the global version of 4.10 that interests us the most. The fact that Acon can be
relatively spherical at all closed points, but that the value of the spherical parameter can
vary, is problematic; similarly the projective dimension of IA can vary over the maximal
ideals. Hence we do not seek an autoequivalence condition globally in terms of one pa-
rameter. Instead, in condition (3) below we ask for Λcon to belong to CMS R, which gives
the required flexibility. The following is one of our main results.

Theorem 4.11. In the setup 4.1, suppose further that R is complete locally a hypersur-
face. Then the following are equivalent.

(1) Acon,z is a relatively spherical A-module for all z ∈ MaxR.
(2) pdA Acon,z <∞ and Acon,z ∈ CMS R for all z ∈ MaxR.
(3) pdΛ Λcon <∞ and Λcon ∈ CMS R.
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If any of these conditions hold, and they are automatic if dimSingR ≤ d− 3, then Icon is
a tilting Λ-module, and −⊗L

Λ Icon preserves Db(modΛ).

Proof. (1)⇔(2) is 4.8, since d− t = d− (d− dimAcon) = dimAcon.
(2)⇔(3) just follows since finite projective dimension can be checked complete locally at
maximal ideals, and Λcon ∈ CMS R is again defined locally.

The statement about the assumptions being automatic is 4.7. The fact Icon is a tilting
module then follows since being a tilting module can be checked complete locally (see e.g.
the proof of [DW1, 6.2]), and the complete local statement is 4.10. �

Example 4.12. Consider M := (u, x) ⊕ (u, x2) for R = C[u, v, x, y]/(uv − x2y). Then
Λ := EndR(R⊕M) is an NCCR of R. Complete locally at the origin, since ΩM ≇M , as
in 4.8 it follows that Acon /∈ CMS R. In fact, this can be seen directly, since the minimal
projective resolution of Acon has the form

0 → P⊕2
2 → P⊕3

0 ⊕ P1 → P⊕4
0 → P1 ⊕ P2 → Acon → 0,

which is evidently not relatively spherical. Note that since Acon /∈ CMS R, it follows that
Λcon /∈ CMS R. However, the other condition in 4.11(3), namely pdΛ Λcon <∞, does hold
since Λ is an NCCR.

A more conceptual geometric explanation of the above example is given in 6.4 below.

5. Global Twist Functors

In this section, under our most general d-fold contraction assumptions of 2.3, where
additionally f is crepant, we produce an endofunctor TwistX of Db(cohX). After restrict-
ing singularities, we then give a criterion for TwistX to be an autoequivalence, before giving
our first application. Further applications will appear in §6.

5.1. Twist construction. By the definition of D in 2.12, there is an exact sequence of
A-bimodules

0 → I → A → D → 0. (5.A)

The bimodule I induces a functor

RHomA(I,−) : D(ModA) → D(Mod EndA I),

and the following lemma, which is simply the global version of [DW1, 6.1], ensures that
it furthermore yields an endofunctor of D(ModA).

Lemma 5.1. Under the general assumptions of 2.3, suppose further that f is crepant.

(1) There is an isomorphism of sheaves of algebras A ∼= EndA I.
(2) Under this isomorphism the (EndA I,A)-bimodule structure on I coincides with

the natural A-bimodule structure.

Proof. (1) There is a canonical morphism

A → EndA I (5.B)

given on any open subset V of Y by

A(V ) → HomA(V )(I(V ), I(V ))

λ 7→ αλ

with αλ : i 7→ λi. By our assumptions 2.3, dimX ≥ 2, so since f is crepant the proof of
[DW1, 6.1(1)] shows that this is an isomorphism for affine V , where 2.10 ensures that
I(V ) is the ideal considered in [DW1]. It follows that (5.B) is an isomorphism.
(2) This is a formal consequence of (1), as in [DW1, 6.1(2)]. �



20 WILL DONOVAN AND MICHAEL WEMYSS

Composing the above endofunctor with the equivalences

D(ModA) D(QcohX)
GRA=Rf∗RHomX(V,−)

G=f−1(−)⊗L

f−1A
V

(5.C)

leads to the following definition.

Definition 5.2. Under the general assumptions of 2.3, suppose further that f is crepant.
The twist and dual twist endofunctors are defined to be

TwistX ,Twist
∗
X : D(QcohX) → D(QcohX)

TwistX = G ◦RHomA(I,−) ◦GRA,

Twist∗X = G ◦ (−⊗L

A I) ◦GRA.

We will show that TwistX preserves Db(cohX) in 5.5(2) below, under the condition
that D is a perfect A-module, or equivalently E from 3.1 is an object in Perf(X). To do
this, we first describe some additional structure on E .

By definition E = f−1D⊗L

f−1A V is a complex of sheaves on X . Since this expression

can be computed using both factors, by resolving the second factor we see that E ∈
Db(mod f−1Dop).

Next, consider the following adjoint functors

D(ModD) D(ModA) D(QcohX).
RHomA(D,−)

−⊗L

D
D

GRA=Rf∗RHomX(V,−)

G=f−1(−)⊗L

f−1A
V

(5.D)

By construction and assumption, D and V are sheaves. We will write F for the composition
of the top functors, and FRA for the composition of the bottom functors. Note that F
and FRA can be expressed easily as

F = f−1(−⊗L

D D)⊗L

f−1A V

∼= f−1(−)⊗L

f−1D f
−1D⊗L

f−1A V (since f−1 distributes over tensor)

∼= f−1(−)⊗L

f−1A V ,

FRA = RHomA(D,Rf∗RHomX(V ,−))

∼= Rf∗RHomf−1A(f
−1D,RHomX(V ,−)) (by adjunction, c.f. [KS, (18.3.2)])

∼= Rf∗RHomX(f−1D⊗L

f−1A V ,−) (by adjunction)

= Rf∗RHomX(E ,−).

Remark 5.3. Regardless of whether E is a sheaf or a complex, below and throughout
when we write Rf∗RHomX(E ,−) we will mean the functor FRA, which takes values in
D(ModD). In particular, f−1Rf∗RHomX(E ,−) takes values in D(Mod f−1D).

Proposition 5.4. Under the general assumptions of 2.3, suppose further that f is crepant.
Then TwistX fits into a functorial triangle

f−1Rf∗RHomX(E ,−)⊗L

f−1D E → Id → TwistX → .

Proof. For any object a ∈ D(ModA), simply applying RHomA(−, a) to the sequence
(5.A) gives a functorial triangle in D(ModA)

RHomA(D, a) → a→ RHomA(I, a) → . (5.E)

We may reinterpret the left-hand term asRHomA(D, a)⊗
L

D DA, in other words, it is given
by a composition of the left-hand adjoint pair in the diagram (5.D).
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Hence precomposing (5.E) with GRA from (5.C), and postcomposing with G, gives a
functorial triangle

F ◦ FRA → a→ TwistX(a) → .

Using the expressions for F and FRA above, the result follows. �

Proposition 5.5. Under the general assumptions of 2.3, suppose further that f is crepant.
If D ∈ Perf(A), or equivalently E ∈ Perf(X), then

(1) RHomI(D,−) preserves Db(modA).
(2) TwistX preserves Db(cohX).

Proof. (1) Since D ∈ Perf(A), the functor RHomA(D,−) preserves bounded complexes.
It clearly preserves coherence, and so the result follows using the two-out-of-three property
for the triangles (5.E).
(2) Again, since D ∈ Perf(A), the functor RHomA(D,−) in (5.D) preserves bounded
coherent complexes, and all the other functors in (5.D) also preserve bounded coherence.
Hence F and FRA preserve bounded coherence, thus so does TwistX by 5.4, again using
the two-out-of-three property. �

5.2. Conditions for Equivalence. This subsection uses the Zariski local tilting result
4.11 to give a condition for when TwistX is an equivalence globally. Recall that D is a
Cohen–Macaulay sheaf if it is Cohen–Macaulay at each closed point, as defined in §4.1.

The following notion, a translation of 4.3, will be used.

Definition 5.6. We say that D is t-relatively spherical for a closed point z ∈ Z if

Extj
Âz

(D̂z , T ) ∼=

{
k if j = 0, t
0 else,

for all simple D̂z-modules T . Here D̂z is the completion of the stalk of D at z.

To set notation, choose an affine open cover Y =
⋃
Vi, and for any V = Vi consider

RHomA|V (I|V ,−) : D(ModA|V ) → D(ModA|V ).

As V is affine, say V = SpecR, we may use setup 4.1, where now A|V corresponds to Λ,
and I|V to the Λ-bimodule Icon by 2.10. It follows that the above functor is simply

RHomΛ(Icon,−) : D(ModΛ) → D(ModΛ).

The following is the main theorem of this section.

Theorem 5.7. Under the general assumptions of 2.3, assume that f is crepant, and ÔY,z

are hypersurfaces for all closed points z ∈ Z. Then the following are equivalent.

(1) D is a Cohen–Macaulay sheaf on Y , and E is a perfect complex on X.
(2) D is relatively spherical for all closed points z ∈ Z.

If these conditions hold, and they are automatic provided that dimZ ≤ d − 3, then the
functor TwistX is an autoequivalence of Db(cohX).

Proof. Since being Gorenstein is an open condition [M, 24.6], Y is Gorenstein in a neigh-
bourhood N of Z.

Conditions (1) and (2) can both be checked locally. Since D is supported on Z by 2.16,
and recalling from 3.1 that E is defined as the image of D under an equivalence, it suffices
to show that they are equivalent after restricting to N . But there, the required result is
4.11, which also shows that the conditions are automatic provided that dimZ ≤ d− 3.

For the final statement, since G and GRA are equivalences by definition, 5.2, it suffices
to prove that

RHomA(I,−) : Db(modA) → Db(modA)
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is an equivalence. We write η and η̃ respectively for the counits of the following adjunctions

−⊗L

A I ⊣ RHomA(I,−)

−⊗L

Λ Icon ⊣ RHomΛ(Icon,−).

Consider, for a ∈ D(ModA), the distinguished triangle

RHomA(I, a)⊗
L

A I
ηa
−→ a −→ Cone(ηa) −→ .

This restricts to each V = Vi along the inclusion j : V →֒ Y , to give

RHomΛ(Icon, j
∗a)⊗L

Λ Icon
j∗ηa
−−−→ j∗a −→ j∗ Cone(ηa) −→ .

By inspection, the counit is defined locally, so j∗ηa = η̃j∗a.
We may take our affine open cover Y =

⋃
Vi to be the union of a cover of N ⊃ Z,

and a cover of Y \Z. If V ⊆ Y \Z then Icon = Λ. If, on the other hand, V ⊆ N then we
have that V is Gorenstein, and then RHomΛ(Icon,−) is an equivalence by 4.11, condition
(3). In either case, it follows that j∗ηa is an isomorphism. Hence j∗ Cone(ηa) = 0 for all
V , so Cone(ηa) = 0 for all a, and thence η is an isomorphism.

The argument for the unit ǫ is similar, since it too by inspection is defined locally,
and so it follows from standard adjoint functor results that

D(ModA) D(ModA)
RHomA(I,−)

−⊗L

A
I

is an equivalence.
By 5.5(1) we already know that RHomA(I,−) preserves Db(modA), so it suffices to

prove that −⊗L

A I also has this property.
Consider a ∈ Db(modA), and a⊗L

A I. Restricting to V ⊆ N , we see that

j∗(a⊗L

A I) ∼= j∗a⊗L

Λ Icon,

which belongs to Db(modΛ) since j∗a does and −⊗L

Λ Icon preserves Db(modΛ) by 4.11.
On the other hand, for V ⊆ Y \Z, we have Icon = Λ, and so −⊗L

Λ Icon certainly preserves
Db(modΛ). Since the cover is finite, and the restriction of a⊗L

A I to each piece is bounded
coherent, it follows that a⊗L

A I is bounded coherent. �

5.3. Application to Springer resolutions. The following is a corollary of 5.7.

Corollary 5.8. Consider the Springer resolution X → Y of the variety of singular n×n
matrices. Then TwistX is an autoequivalence of X.

Proof. Y is a hypersurface cut out by the determinant. It is well known that Y is smooth
in codimension two [BLV, §5.1], and it is one of the main results of [BLV] that X admits
a tilting bundle with trivial summand [BLV, C]. �

6. One-Dimensional Fibre Applications

6.1. Relative spherical via CM sheaves. The first half of this subsection is general. If
X is a Gorenstein variety with tilting bundle T , necessarily Λ := EndX(T ) is an Iwanaga–
Gorenstein ring, namely it is noetherian with finite injective dimension on both the left
and right [KIWY, 4.4]. It follows that Λ with its natural bimodule structure gives rise to
a duality functor

RHomΛ(−,Λ): Db(modΛ) → Db(modΛop).
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On the other hand, since X is Gorenstein, it too has a good duality functor given by
RHomX(−,OX), and so we can consider the following diagram.

Db(cohX) Db(modΛ)

Db(cohX) Db(modΛop)

RHomX (T ,−)

∼

RHomX (T ∗,−)

∼

RHomX(−,OX) RHomΛ(−,Λ)

Proposition 6.1. Suppose that X is a Gorenstein variety with tilting bundle T . Then
for all a ∈ Db(cohX), there is an isomorphism

RHomX(T ∗,RHomX(a,OX)) ∼= RHomΛ(RHomX(T , a),Λ).

Proof. Since RHomX(T ,−) is a dg equivalence, there is an isomorphism

RHomX(a, b) ∼= RHomΛ(RHomX(T , a),RHomX(T , b))

for all a, b ∈ Db(cohX). Hence setting b = T gives an isomorphism

RHomX(a, T ) ∼= RHomΛ(RHomX(T , a),Λ) (6.A)

for all a ∈ Db(cohX).
Next, since X is Gorenstein (−)∨ := RHomX(−,OX) is a duality on Db(cohX), and

further since T ∗ = T ∨, there is an isomorphism

RHomX(a, T ) ∼= RHomX(T ∗, a∨) (6.B)

for all a ∈ Db(cohX). Combining (6.A) and (6.B) yields the result. �

The following is the main result of this subsection, and is specific to the setting of
one-dimensional fibres. It relates a homological condition about D on the base Y to a
homological condition about E at closed points of X .

Theorem 6.2. In the setting of 2.5(2), assume that Y is Gorenstein in a neighbourhood
of Z, and f is crepant. Then the following conditions are equivalent.

(1) D ∈ CMS Y .
(2) For all y ∈ Z, we have Dy ∈ CMdimZy

OY,y.

(3) For all y ∈ Z, and all x ∈ f−1(y), we have Ex ∈ CMdimZy+1 OX,x.

In particular, if these conditions hold, then above every y ∈ Z, the exceptional locus is
equidimensional of dimension dimZy + 1.

Proof. (1)⇔(2) This is the definition of CMS Y , together with the fact that dimZy =
dimDy by the contraction theorem 2.16.
(2)⇔(3) For y ∈ Z, choose a Gorenstein affine neighbourhood V = SpecR of y. To
simplify notation, write Λ = ΛV , k = dimZy and d = dimRy.

Since f is crepant, Λy is a maximal CM Ry-module [IW3, 4.14], so necessarily it is
singular Calabi–Yau [IW2, 2.22(2)]. Hence

ExtiRy
(M,Ry) ∼= ExtiΛy

(M,Λy) (6.C)

by [IR, 3.4], for all M ∈ modΛy and all i ≥ 0. Thus,

Dy ∈ CMkOY,y
2.15
⇐⇒ (Λcon)y ∈ CMk Ry

⇐⇒ RHomRy
((Λcon)y, Ry) is concentrated in degree d− k

⇐⇒ RHomΛy
((Λcon)y,Λy) is concentrated in degree d− k.

Now there is a chain of isomorphisms

RHomΛy
((Λcon)y,Λy) ∼= RHomΛy

(RHomXy
(V|Xy

, E|Xy
),Λy)

∼= RHomXy
(V|∗Xy

,RHomXy
(E|Xy

,OXy
)),
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where the first follows since Λcon corresponds across the equivalence to E , and the second
follows by 6.1 since Xy is Gorenstein (since SpecRy is), and V|Xy

is a progenerator of
0Per(Xy, Ry), so it is tilting on Xy, with endomorphism ring Λy (e.g. [IW3, 4.3(2)]).
Combining the above, we see that Dy ∈ CMkOY,y if and only if

RHomXy
(V|∗Xy

,RHomXy
(E|Xy

,OXy
)[d− k]) is concentrated in degree 0.

But now V|Xy
progenerates 0Per(Xy, Ry), and its dual progenerates −1Per(Xy, Ry), and

hence the above condition holds if and only if

RHomXy
(E|Xy

,OXy
)[d− k] ∈ −1Per(Xy, Ry).

But by crepancy and Grothendieck duality

Rf∗RHomXy
(E|Xy

,OXy
) ∼= Rf∗RHomXy

(E|Xy
, f !ORy

)

∼= RHomRy
(Rf∗E|Xy

,ORy
)
3.2
= 0,

so it follows from 3.4(1) that Dy ∈ CMkOY,y if and only if

RHomXy
(E|Xy

,OXy
)[d− (k + 1)] is concentrated in degree 0,

which holds if and only if Ex ∈ CMk+1 OXy ,x for all x ∈ f−1(y). Since OXy,x
∼= OX,x, the

result follows.
Since SuppX E equals the exceptional locus by 3.7, it follows for all x ∈ f−1(y),

dim Ex equals the dimension of the exceptional locus at the point x. Hence the condition
Ex ∈ CMdimZy+1 OX,x forces the exceptional locus to have dimension dimZy + 1 at all
points x above y, and so the last claim follows. �

Corollary 6.3. In the one-dimensional fibre setting of 2.5(2), assume that f is crepant,

and ÔY,z are hypersurfaces for all closed points z ∈ Z. Then the following are equivalent.

(1) D is relatively spherical for all closed points z ∈ Z.
(2) D ∈ Perf(A) and D ∈ CMS Y .
(3) E ∈ Perf(X) and D ∈ CMS Y .
(4) E ∈ Perf(X), and for all y ∈ Z and x ∈ f−1(y), we have Ex ∈ CMdimZy+1 OX,x.

If these conditions hold, and they are automatic provided that dimZ ≤ d − 3, then the
functor TwistX is an autoequivalence of Db(cohX).

Proof. The assumptions force Y to be Gorenstein in a neighbourhood of Z [M, 24.6].
Recalling from 3.1 that E is defined as the image ofD under an equivalence, the equivalence
of (1)–(4) follows from 6.2. The rest follows from 5.7. �

Example 6.4. Consider R = C[u, v, x, y]/(uv−x2y), and Y = SpecR. Then Y has three
crepant resolutions, sketched below.

ZY

Each gives a thickening of Z, which we write D1, D2, and D3, respectively. Above the
origin, the exceptional locus of the outer two resolutions is not equidimensional of dimen-
sion two, since in both cases there is a curve poking out of the surface. Thus, by 6.2 and
6.3, D1 and D3 are not relatively spherical at the origin. Note that Λ in 4.12 is derived
equivalent to the left-hand resolution, and so the failure of the exceptional locus to be
equidimensional explains geometrically why D1 = Λcon /∈ CMS R in 4.12.
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The exceptional locus of the middle resolution is equidimensional, but this does not
guarantee that D2 ∈ CMS Y . However, to see that this indeed holds, note that the middle
resolution is derived equivalent to Λ2 = EndR(R⊕N), where N = (u, x)⊕ (u, xy). Since
ΩN ∼= N , applying HomR(N,−) to the exact sequence

0 → N → R4 → N → 0

gives an exact sequence

0 → P1 → P⊕4
0 → P1 → D2 → 0.

Completing the above at every closed point of Z, we see that D2 is 2-relatively spherical
at each closed point, so as in 4.11, pdΛ2

D2 = 2 and D2 ∈ CMS R. Thus TwistX is an
autoequivalence on the derived category of the middle resolution.

6.2. The Single Curve Fibre Case. In the case when there is a single curve in each
fibre, and X is smooth, we show here that the assumptions in 6.3 hold. This can arise in
the setting of moduli of simple sheaves.

The following result covers both divisor-to-curve contractions and flops.

Theorem 6.5. In the one-dimensional fibre setting of 2.5(2), suppose that d = 3, X is
smooth, Y is Gorenstein, and f is crepant such that every reduced fibre above a closed
point in Z contains precisely one irreducible curve. Then

(1) Dz ∈ CMS OY,z for all closed points z ∈ Z.
(2) D ∈ CMS Y .
(3) TwistX is an autoequivalence of X.

Proof. Since there is only one curve above each point z ∈ Z, each Acon,z is local and so

by 2.19 every ÔY,z is a hypersurface.
(1) The assertion can be checked at the completion, thus we can assume that Y = SpecR,
with maximal ideal m lying in Z. We just need to check that Acon ∈ CMS R. But since
X is smooth, pdA Acon < ∞, and also by assumption dimR = 3, hence it follows by e.g.
[IW2, 6.19(4)] that inj.dimAcon

Acon ≤ 1. This being the case, since further Acon is local,
by Ramras [R, 2.15] there is a chain of equalities

depthR Acon = dimR Acon = inj.dimAcon
Acon

and hence Acon ∈ CMS R.
(2) Since the support of D equals Z by 2.16, this is an immediate corollary of (1).
(3) Since X is smooth, automatically E ∈ Perf(X). Hence the result follows by combin-
ing (2) and 6.3(3). �
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