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Abstract

We provide a generalization to the higher dimensional case of the
construction of the current algebra g((z)), its Kac-Moody extension g
and of the classical results relating them to the theory of G-bundles
over a curve. For a reductive algebraic group G with Lie algebra g,
we define a dg-Lie algebra g,, of n-dimensional currents in g. For any
symmetric G-invariant polynomial P on g of degree n + 1, we get a
higher Kac-Moody algebra g, p as a central extension of g,, by the
base field k. Further, for a smooth, projective variety X of dimension
n = 2, we show that g, acts infinitesimally on the derived moduli space
RBun, (X, z) of G-bundles over X trivialized at the neighborhood of
a point x € X. Finally, for a representation ¢ : G — G L, we construct
an associated determinantal line bundle on RBun.#(X, z) and prove
that the action of g,, extends to an action of gy, p, on such bundle for

P, the (n + 1)"" Chern character of ¢.
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0 Introduction

(0.1) Let G be a reductive algebraic group over C with Lie algebra g.
The formal current algebra g((z)) = g ®c C((z)) and its central extension g
(the Kac-Moody algebra) play a fundamental role in many fields. It can be
considered as the algebraic completion of the loop algebra Map(S?, g), see
[PreS].

In particular, g((z)) is fundamental in the study of Bung (X ), the moduli
stack of principal G-bundles on a smooth projective curve X over C. More
precisely, let © € X be a point. We then have the scheme (of infinite type)
Bungg(X ,x) parametrizing bundles P together with a trivialization on 7,
the formal neighborhood of x. The ring of functions on 7 is @X@ ~ Cl[[#]],
the completed local ring and its field of fractions K, ~ C((z)) corresponds
to the punctured formal neighborhood z°.

The key result [KNTY] is that the Lie algebra g, = g ® K, acts on the
scheme Bung®(X, z) by vector fields. Moreover, any representation ¢ of G
gives rise to the determinantal line bundle det® on Bun (X, z); the action
of g, extends to the action, on det?, of the central extension g, with central
charge given by a local version of the Riemann-Roch theorem for curves.

(0.2) Our goal in this paper is to generalize these results from curves to
n-dimensional varieties X over C, n > 1 (one can replace C by any field
of characteristic 0). The first question in this direction is what should play
the role of g((z)). In the analytic (as opposed to the formal series) theory,
natural generalizations of Map(S?, g) are provided by the current Lie algebras
Map(3, g) = g ®c C*(X) where ¥ is a compact C*-manifold of dimension
> 1. Our approach can be seen as extending this idea to the derived category.

More precisely, the role of g((z)) will be played by the dg-Lie algebra g2 =
g ®c A;,, where 2> = RI'(D;,O) is the commutative dg-algebra of derived
global sections of the sheaf O on the n-dimensional punctured formal disk
D;, = Spec(C[[z1,...,2,]]) — {0}. More invariantly, we have the punctured
formal disk z° ~ D¢ associated to a point x € X and the corresponding
current algebra g} ~ g°. For n > 1, passing from the non-punctured formal
disk Z, to Z° does not increase the ring of functions (Hartogs’ theorem) but
one gets new elements in the higher cohomology of the sheaf O, so 2’ can
be regarded as a “higher” generalization of the Laurent series field C((z)),



to which it reduces for n = 1.

Principal bundles on X form an Artin stack Bung(X) and we can still
form a scheme Bungg(X ,x) as above. However these objects are, for n > 1,
highly singular because deformation theory can be obstructed. The correct
object to consider is the derived moduli stack RBung(X) obtained, infor-
mally, by taking the non-abelian derived functor of Bung, i.e., extending
the moduli functor to test rings which are commutative dg-algebras [TV].
When X is a curve, RBung(X) ~ Bung(X), but for n > 1 there is a dif-
ference. Most importantly, the tangent complex of RBung(X) is perfect
(a smoothness property). We can similarly construct the derived scheme
RBunl¥(X,z), (an object which locally looks like the spectrum of a com-
mutative dg-algebra) which should also be intuitively considered as being
smooth.

We show, first of all, (Theorem 5.3.8) that g2 acts on RBun"$(X,z) by
vector fields, in the derived sense. At the level of cohomology, the action
gives, in particular, a map

HZ ' (g;) — H" ' (RBung#(X, z), T)

(here T is the tangent complex and 0 is the differential of g?). When n = 1,
it is the action by vector fields in the usual sense. In the first new case
n = 2, after restricting to the non-obstructed smooth part of the moduli
space, on which T is the usual tangent sheaf, the target of this map becomes
the space of deformations of the (part of the) moduli space. Deforming the
moduli space can be understood as changing the cocycle condition defining
G-bundles (Remark 5.3.9).

Further, each invariant polynomial P on g of degree (n + 1) gives rise to
a central extension gy p (the higher Kac-Moody algebra). Note that unlike
the case n = 1, we now have many non-proportional classes, even for g
simple. Intuitively, they correspond to degree n + 1 characteristic classes for
principal G-bundles. As before, let ¢ be a representation of G. We prove
(Theorem 5.5.9) that the determinantal line bundle det® on RBun"8(X, )
is acted upon by g;, p, where Py(z) = tr(¢(z)")/(n + 1)!is the “(n + 1)-th
component of the Chern character” of ¢.

These results suggest that representations of the dg-Lie algebra g? should
produce geometric data on the derived moduli spaces of G-bundles on n-
dimensional manifolds.



(0.3) The stack Bung(X) can be seen as a version of the non-abelian first
cohomology H'(X,G(Ox)). When X is a curve, the above classical results
can be seen as forming a part of the “adelic approach” to the geometry of
curves. This approach consists in using the idealized “Cech covering” of X
formed by 7 and X° = X — {x}, with “intersection” Z°, to calculate the H'.
If X is a curve and G is semi-simple, then G-bundles on X° (and certainly
on 7) are trivial, and we can write Bung(X) = G(2)\G(7°)/G(X°) (stack-
theoretic quotient on the left). We then similarly represent Bung®(X, z) as
the coset space G(2°)/G(X°), with G(Z°) = G(K) being a group ind-scheme
with Lie algebra g,.

A generalization of the adelic formalism to varieties X of dimension n > 1
was proposed by Parshin and Beilinson [Bel] [Hu] [Os]. In this approach the
completed local fields (analogs of K, for curves) are parametrized not by
points, but by flags {z} = Xy < X; < --- < X,,_; © X of irreducible subva-
rieties in X. If all the X;’s are smooth, then the completion is isomorphic to
k((21)) - ((#n)), the iterated Laurent series field. As before, it can be seen
as a version of the Cech formalism for an idealized open covering formed
by certain formal neighborhoods. However, the manipulations with iterated
Laurent series fields are quite complicated: in order to capture all the “adic
topologies”, they should be considered as n-fold iterated ind-pro-objects (n-
Tate spaces) [BGW] and every step involves many levels of technical work.

In a sense, our approach can be seen as a “simplified version” of the
flag adele formalism, in which we keep track only of points = € X (just
like for curves) and package all the combinatorial data involving subvarieties
of dimensions # 0,n, into a “black box” using the cohomological formalism.
This allows us to avoid working with iterated ind-pro-objects and deal instead
with classical Tate spaces (just like for curves) at the small price of having to
pass to the derived category of such spaces, i.e., to study Tate dg-spaces (or
Tate complezes), see §4.1 for details. For example, 2* is a Tate complex for
each n. Our treatment is an adaptation and development of the approaches

of [Dr] [He3].

(0.4) To relate our approach to the idea of Map(X, g), we can use a partic-
ular model A? of the “abstract” commutative dg-algebra 202 = RI'(D;, O).
This model is formed by relative differential forms on the Jouanolou torsor,
see §1.2B. Such torsors have been used in [BD] as a general tool. In our case,
A provides a very precise algebraic analog of Q%*(C" — {0}), the 0-algebra



of Dolbeault forms on C" — {0}. In particular, such features of classical com-
plex analysis as the Martinelli-Bochner form or its “multipole” derivatives,
have direct incarnations in A?, see Proposition 1.4.7. Our algebraic approach
allows us to include these features in the formal setting of Tate (dg-)spaces.
It also lends itself to a representation-theoretic analysis providing the analog
of representing elements of k((z)) as infinite sums of monomials (Theorem

1.4.2).

Restricting from C™ — {0} to the unit sphere S*~! we can see A? as
an algebraic analog of QS”(S 2n=1) " the tangential Cauchy-Riemann complex
(the dy-complex [BeGr][DT]) of the sphere. The degree 0 part of Q)*(S?"~1)
is C*(S?"~1), the algebra of smooth complex functions on S?"~!. This means
that the degree 0 part of g; can be seen as an algebraic version of the current
Lie algebra Map(S5?"~!, g), and the entire g as a natural derived thickening
of this current algebra.

Usually, considering Map(3J, g) with dim(X) > 1, produces Lie algebras
which, instead of interesting central extensions (classes in H?) have interest-
ing higher cohomology classes. These classes are typically given by versions
of the formula

(0.5) Ao fr) = f tx(fo dfs -~ df.).

In our case (Theorem 3.2.1), we still use a version of this formula (with
integration over S?"~!, done algebraically) but the classes we get have total
degree 2 and so give central extensions, regardless of n. This happens because
we take into account the grading on the dg-algebra, In this sense our derived
approach embeds Map(S?"~!, g) into an object whose properties are closer
to those of Map(S?, g).

All this suggests that our higher Kac-Moody algebras should have an
interesting representation theory.

(0.6) Asin the 1-dimensional case, a key intermediate step for us is a local
analog of the Riemann-Roch theorem (Corollary 4.3.10). It has the form of
comparison of two central extensions of g? for g = gl(r): one given by a
version of (0.5), the other induced from the “Tate class” of the the endomor-
phism dg-algebra of the Tate complex (22)®". For r = 1 this statement can
be seen as an analog, in our simplified adelic formalism, of the main result
of Beilinson [Bel|. Since we deal with the current algebras only, we detect
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only the Chern character; the Todd genus will naturally appear, as in [FT2],
after we include the dg-algebra RI'(D;,,T), see (0.8) below.

(0.7) We use three main technical tools. The first one is the general the-
ory of derived stacks [TV]. It is necessary for us to work freely with quite
general derived stacks and even prestacks in order to study, for instance, the
group object corresponding to g®. This is an (infinite dimensional) derived
group G(Dy), see Proposition 5.3.6. In particular, for dealing with various
infinitesimal constructions (even such seemingly simple ones as “passing from
a group to its Lie algebra”) we need to use Lurie’s formalism of formal moduli
problems [Lu3].

The second technical tool is cyclic homology of dg-categories, a concept
of great flexibility and invariance. It includes, in particular cyclic (and de
Rham) homology for schemes and at the same time, is related to the Lie
algebra homology of endomorphism dg-algebras of objects in a dg-category.

Another important tool is the GL,-invariance of our cohomology classes.
In exploiting this invariance, the Jouanolou model for 2A? is more convenient
in that it allows an explicit GL,-action which can be analyzed in detail at
the level of complexes. This level of detail is not available for more abstract
models, e.g., for the flag-adelic one.

(0.8) This paper is related to the idea, mentioned already in [BD] and de-
veloped in [FG], of generalizing the theory of chiral and holomorphic factor-
ization algebras to higher dimensions. In this approach we are dealing with
finite collections (z;) of points moving in an n-dimensional variety X, with
“singularities” developing when z; = z; for some 7 # j. These singularities
are of cohomological nature, representing classes in H"}(X* — {diag}, O).

Note that the standard quantum field theory approach deals with collec-
tions of points in the Minkowski space with singularities developing when
some z; — x; lies on the light cone, see, e.g., [Tam] for a discussion from
the factorization algebra point of view. However, our cohomological formu-
las in the Jouanolou model are, up to “details” involving the cohomological
grading, algebraically similar to this. For example, the role of the standard
“propagator” 1/|z|? is played by the Martinelli-Bochner form Q(z, z*).

The next natural step in this direction would be to study the dg-Lie alge-
bra RI'(D;,T), the analog of the Witt algebra of formal vector fields on the



circle (as well as its central extensions). It should act on the derived moduli
stack of n-dimensional rigidified complex manifolds (X, z, (21, ..., 2,)) where
x € X is a marked point and (z1,..., z,) is a formal coordinate system near
x. There is a natural combined version involving the derived Atiyah algebra
(RT of the semidirect product of matrix functions and vector fields). We plan
to address these issues in a future paper. The additional technical difficulty
here is the need to work with (quite general) derived stacks in the analytic
context, as not all deformations of an algebraic variety are algebraic.

(0.9) We would like to thank A. Beilinson, L. Hesselholt, P. Schapira and
B. Vallette for useful correspondence. B.H. is thankful to P. Safronov and
M.K. to A. Polishchuk for interesting discussions.

The work of M.K. was supported by the World Premier International Re-
search Center Initiative (WPI Initiative), MEXT, Japan. It was also partially
supported by the EPSRC Programme Grant EP/M024830 “Symmetries and
Correspondences”.

1 Derived analogs of functions and series

1.1 Derived adelic formalism

A. Local part. We fix a base field k of characteristic 0. For n > 1 we have
the n-dimensional formal disk D,, = Speck|[[z1,...,2,]] and the punctured
formal disk D5 = D,, — {0}. We consider them as the completion of the
affine space A" = Speck|z1,..., z,] and of the punctured affine space Am =
A" —{0}.

Fundamental for us will be the commutative dg-algebras
(Q[:wg) = RF(D;;O)v (Q[fn]vg) = RF(A“,O)

defined uniquely up to quasi-isomorphism. The cohomology of these dg-
algebras is well known and can be obtained using the covering of D, by n
affine open subsets {z; # 0}.

Proposition 1.1.1. Forn = 1 the scheme D7 s affine with ring of functions



k((2)) and A' is affine with ring of functions k[z,2"']. Forn > 1 we have

k[[z1,- -, 2], i =0;

H'(D;,0) = 27tz k[ h o, 20Y, i=n—1;
0, otherwise.
Here the notation z; ' -z 'k[27%, ...,z '] can be seen as encoding the ac-

tion of the n-dimensional torus G, on H" (D2, O).
The cohomology HZ(A” O) differs from the above by replacing K[[z1, . . ., z,]]
by k[z1, ..., 2]

Thus, although for n > 1, the scheme D, . resp. A”, is not affine and its
global functions are the same as for D,,, resp. A", the missing “polar parts”
are recovered in the higher cohomology of the sheaf O. The dg-algebras 2L,
and 2, are, therefore, correct n-dimensional generalizations of the the rings
of Laurent polynomials and Laurent series in one variable.

We will also use the doubly graded dg-algebras

(A2, 0,0) @Rr (D;, ), (Atw,8,0) = @ RT(A™, QP),

with ¢ being induced bX the de Rham differential on forms (and increasing
the first grading) and ¢ being the differential on RI' (and increasing the
second grading).

B. Global part. Let X be a smooth n-dimensional variety over k and
x € X a k-point. We then have the completed local ring Ox , which is
isomorphic (non-canonically) to k[[z1,...,2,]]. We denote Z = Spec @X’x
the formal disk near = and by z° = Z — {z} the punctured formal disk near
x. We then form the commutative dg-algebras

A = RI(3°,0), A = PRIE
p

In particular, the Grothendieck duality defines a canonical linear functional
(1.1.2) Res, : RT(2°, Q") =% RT(y (2, 0")[1] — k[1 —n].

Let now x = {x1,...,2,} € X be a finite set of disjoint k-points. We denote
X° = X — x the complement of x, and write X = | |Z; and X° = | |7}

9



In particular, we have the commutative dg-algebra RI'(X°, ©). Elements of
this dg-algebra can be seen as n-dimensional analogs of rational functions
on a curve with poles in xy,...,x,. Similarly, if F is a vector bundle on
X, we have the dg-modules A3 (E) = RI'(X°, E) over 2; = RI'(x°,0) and
RT'(X°, E) over RI'(X°, O). We have the canonical morphism of complexes
(commutative dg-algebras for ' = O) given by the restriction:

(1.1.3) §:RO(X°,E)®T(R, E) — A (E) = ém;i(E).

This morphism can be seen as the dg-version of the adelic complex of Beilin-
son [Bel] [Hu] , in which the dependence on schemes of dimensions 1, ..., n—1
has been “integrated away” and hidden in the cohomological formalism. The
proof of the next proposition can be seen as an explicit comparison.

Proposition 1.1.4. The cone of ¢ is identified with RT'(X, E).

Proof: For any Noetherian scheme Y of dimension n over k (proper or not)
and any coherent sheaf F on Y, the construction of [Bel][Hu] provides an
explicit model C*(F) for RI'(Y,F). By definition,

CP(F) = P Ciiy(F),

where 7
CipiyF) = || vy, (F)
Ypc - cYpcY
dim(Yy)=ip
is the appropriate restricted product, over all flags Yy < --- < Y, < YV

.....

[Bel][Hu]. In particular, for p = 0 and iy = 0, the summand Cy(F) is the
usual product of Cy(F) = I'(y, F) over all 0-dimensional points y € Y. We
now take Y = X, F = E and represent

C*(F) = Cone{C’f@C’g—d>C§},

identifying the three summands with the corresponding summands in (1.1.3)
and d with 0. Explicitly, we take Cy to be the direct sum of C,(F) over

.....

over all flags Yy < --- < Y}, such that Y} is any subvariety (of any dimension)
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other than some y € x. Then (73 is the adelic complex for the restriction of £
Y = X —x. Similarly, we take C'3 to be the direct sum of restricted products
of Cy,,....y,(F) over all flags Yy < --- < Y, such that Yj equals some y € x.
Then Cj is the adelic complex for the restriction of E to X. This proves the
statement. [

In particular, for £ = 0%, we have morphisms
Res,, x : RI(X°, Q") - k[l —n], i=1,...,m,
which satisfy the residue theorem:
Proposition 1.1.5. > Res,, x = 0. O

Proof: This is a standard feature of Grothendieck duality, cf. [Con]. By
degree considerations it suffices to look at the behavior on the (n — 1)-st
cohomology only. That is, we consider, for each 7, the map H" !(Res;) :
H™1(77,9Q") — k induced by Res,, on the (n — 1)st cohomology, and prove
that the compositions of these maps with the H"~1(X° Q") — H"1(z9,Q")
sum to zero.

Indeed, H"!(Res;) can be represented as the composition

H" 1 75,Q") ~ Hi (23, Q") = HE L (X,Q7) i, H'(X, Q") 5k,

where tr is the global Serre duality isomorphism. Now the statement follows
from the fact that in the long exact sequence relating cohomology with and
without support in x,

”._)Hn—l(Xo’Qn>_5)HQ(X’Qn) inﬁzi H™"(X, Q") — -

the composition of any two consecutive arrows is zero. ]

1.2 Explicit models
We start with the “polynomial” dg-algebra QLEn]. By considering the fibration

A" — P! we can write

(1.2.1) Ay ~ @RTE,0(1)).

€L
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From here, passing to the completion is easy: it is similar to passing from
Laurent polynomials in one variable to Laurent series. More precisely, for a
graded vector space @,_, V* we denote

b
2, V' = Iy lim PV

i»—00 b i=-a

the vector space formed by Laurent series ) v; with v; € V. Then

3> —00

(1.2.2) A ~ > RT(P",0(i)

> —00

Applying various way of calculating the cohomology of P*~!, we get various
explicit models for 2, and related dg-algebras and modules.

A. The Cech model. Covering P! with open sets {z # 0}, or, what is
the same, covering D; with similar open sets right away, we get a model for 2A?
as the Cech complex of this covering. The Alexander-Whitney multiplication
makes this complex into an associative but not commutative dg-algebra.

We can use Thom-Sullivan forms to replace this by a commutative dg-
algebra model for 2A?.

B. The Jouanolou model. Introduce another set of variables 27, ..., 2"

T n
which we think of as dual to the z,, i.e., as the coordinates in the dual affine
space A". We write

2z* = Zzl,z:, ze A", 2* € A"
We form the corresponding “dual” projective space P = Projk[zf, ..., 2%]
and consider the incidence quadric

Q = {(z,z*)eA”xﬁm‘ 22" =0} < A" x P,

We denote the complement (A" x }f’m) — @ by J and note that the projection
to the first factor gives a morphism

7 J — A"

12



whose fibers are affine spaces of dimension n — 1. We refer to J as the
Jouanolou torsor for A". For further reference let us point out that

(1.23)  J = {(21, 0 7m0 2f, 0, 25) € A" x (A" — {0}) | 22* = 1},

the isomorphism given by the projection An— {0} — P" on the second factor.
For any quasi-coherent sheaf F on A" we then have the global relative de
Rham complex
Al (E) = F(J, Q}/;M ® W*E).
The differential in A} ,(E) (given by the relative de Rham differential) will

be denoted 0.

Let also R R
J = Jxum D, = JxAanLi»DO

n

be the restriction of J to the punctured formal disk. As before, J is an affine
scheme and an A" !-torsor over D°. For any quasi-coherent sheaf £ on DS
we denote

A(B) = I(].95,,. ®@7"E).
Proposition 1.2.4. (a) A} \(E) is a model for RU(A™ E), and A%(E) is a
model for RT'(D;, E).
(b) The functor E — A} (E) (resp. E — A}(E)) is a lax symmetric

monoidal functor from the category of quasi-coherent sheaves on Ar (resp.
on D¢ ) to the category of complexes of k-vector spaces. In particular, if E is
a quasi-coherent commutative O, -algebra (resp. Op, -algebra), then A} (E)
(resp. A%(F)) is a commutative dg-algebra.

Proof: (a) This is a classical argument. We consider the only case of A}, (E).
Because J is affine, we have quasi-isomorphisms

A?4(E) ~ RU(J, Q5 pn @ T°E) ~ RP(A”,RW*(Q3/AH®W*E)).

Because 7 is a Zariski locally trivial fibration with fiber A"~!, the Poincaré
lemma for differential forms on A"~! implies that the embeddings

are quasi-isomorphisms of complexes of sheaves on A", whence the statement.
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(b) Obvious by using the multiplication of differential forms.

By the above, the dg-algebras
(1.25) Ay = A2 1(04), AL = A3(Opy)

are commutative dg-models for Qlfn] and 2> respectively. Their grading is

situated in degrees [0,n — 1]. Let us reformulate their definition closer to
(1.2.1) and (1.2.2). For this, let

J = {(z,2") e P! x P! | 22" # 0} T, pt

be the classical Jouanolou torsor for P*~!. For a quasi-coherent sheaf F on
P! we define

RIV®Y F) = T(7,9% ., @FF).

As before, this is a model of RT'(P"~!, F), depending on F in a way compat-
ible with the symmetric monoidal structures.

Proposition 1.2.6. We have isomorphism of commutative dg-algebras

Ay = @RIVEL03), 4, = Y RIVE,0(3).

>0
C. The Jouanolou model, explicitly. Let

k[z, 2"l = Kk[z1, ..., zn, 27, - 2], K[[2)[2%]]) = Kl[z1,- - - zal[20, - - -, 2]
be the algebras of regular functions on A™ x A" and D, x An respectively.

Proposition 1.2.7. Let m =0,...,n—1. The m-th graded component Aﬁ]
(resp. A?) is identified with the vector space formed by differential forms

w = Z fil 77777 Z'm(Z,Z*)dZ,Z ce dz:m

1I<ip < <im<n

where each f;, . is an element of the localized algebra k|[z, z*][(z2*)7!]

(resp. k[[z]][2*][(z2*)"']) such that:

14



(1) w is homogeneous in the z% dz% of total degree 0, that is, each fi
is homogeneous of degree (—m).

----- im

(2) The contraction ve(w) of w with the Euler vector field & = ) 250/0%}
vanishes.

The differential 0 is given by
— i 0

0 = dzh—.

s

Proof: We prove the statement about A’[”:L]; the statement about A" is proved
in the same way. g N

Consider the product A" x A" and the incidence quadric () inside it given
by the same equation zz* = 0 as Q. Let U = (A" x A") — Q. All forms w
as in the proposition (not necessarily satisfying the conditions (1) and (2))

form the space I'(J, Q’g/&n).

Now, we have a projection p : U — J of Am-schemes with the multiplica-
tive group G,, acting simply transitively on the fibers (i.e., U is a G,,-torsor
over J). The infinitesimal generator of this action is the Euler vector field &.

Therefore relative forms from Q;”‘/ i are identified with sections w of 27 i

which satisfy
Og(w) =0, g(w) =0,

where 0 is the Lie derivative, see, e.g., [GKZ]. These conditions translate
precisely into the conditions (1) and (2) of the proposition. O

Corollary 1.2.8. The dg-algebra Afn] carries a natural filtration “by the
order of poles”

FAT = {w | (z2°) " fi1, im € k[2,27], Vi1, ... i}

.....

compatible with differential and product:

O(F,A®%) c FLA*, (F.A%) - (F.A®) c F,, A"

1.3 Comparison with the Dolbeault and J;-complexes.

A. Comparison with the Dolbeault complex. In this section we as-
sume k = C. The notation ¢ for the differential in Afn] is chosen to suggest
the analogy with the Dolbeault differential in complex analysis. In fact, we
have the following.
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Proposition 1.3.1. Let Q%*(C" — {0}) be the smooth Dolbeault complex of
the complex manifold C" — {0}. We have a (unique, injective) morphism of
commutative dg-algebras € : A7, — QO0*(C™ — {0}) which sends z* to z, and
dz} to dz,, i.e.,

f(z,2%)dz} - -dzf —  f(2,Z)|crq0ydZ;, - - dZ

i1 Tm im
The proof is obvious once we notice that zz* is being sent to 2z = |z|?
which does not vanish on C" — {0}. O

Remark 1.3.2.The morphism ¢ is not a quasi-isomorphism: it identifies
H*(A:) with the “meromorphic part” of H*(Q%*(C" — {0})) = H*(C" —
{O}u Ohol)-

We also notice that A}, is concentrated in degrees [0, n—1] while QO (C"—
{0}) is situated in degrees [0,n]. To exhibit a better analytic fit for Ay, we
recall some constructions from complex analysis.

B. Reminder on the d,-complex. Let X be an n-dimensional complex
manifold and S < X a C'* real hyper surface (of real dimension 2n—1). The
embedding S < X induces on S a differential geometric structure known as
the CR-structure [BeGr|[DT].

More precisely, let z € S. The 2n — 1-dimensional real subspace 7S in
the n-dimensional complex space 7T, X has the maximal complex subspace

TomS = T,8 ~ i(T,S) < T,X

of complex dimension (n — 1). We get a complex vector bundle T5°™ on S
embedded into the real vector bundle Tg. Its complexification splits, in the
standard way, as

(TE™QC = Tg° @ Tg! « TsRC.

So Té’o and T 371 are complex vector sub-bundles in Ts ® C, of complex di-
mension (n — 1). Integrability of the complex structure on X implies that
these sub-bundles are integrable in the sense of Frobenius, i.e., their sections
are closed under the Lie bracket of the sections of T ® C.

Let *Q%? be the sheaf of C®-sections of the complex vector bundle A%(Tg")*.
Integrability of TSO’1 gives, by the standard Cartan formulas, the exterior dif-
ferentials “along” TSO’1

0 0 1
ab . bQS#J bQSH-&-
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making ng" into a sheaf of commutative dg-algebras known as the tangential
Cauchy-Riemann complez (or 5b-complex) of S. It is concentrated in degrees
[0,n—1]. The complex of global C®-sections of *Q%*" is traditionally denoted
by Qp°(S) and is also called the dy-complex.

C. Generalities on real forms. Let Y = Spec R be a smooth irreducible
affine variety over C of dimension m. A real structure on Y is a C-antilinear
involution f — f on R. Such a datum defines an antiholomorphic involution
0 :Y(C) - Y(C) on C-points. The fixed point locus of ¢ is denoted Y (R).
If nonempty, Y (R) has a structure of a C*-manifold of dimension m. In
this case we have an embedding ¢ : R — C®(Y(R)). Moreover, any f €
C*(Y(R)) can be approximated by functions from €(R) on compact subsets
(Weierstrass’ theorem). In particular, if Y/(R) is compact, then €(R) is dense
in C*(Y(R)) in any of the standard metrics of the functional analysis (e.g.,
in the Lo-metric).

If, further, F is a vector bundle on Y (not necessarily equipped with
a real structure), it gives a C*-bundle Ely gy on Y (R) and an embedding
I'(E) — L'ew(E|y®)) with approximation properties similar to the above. A
differential operator D : E — F between vector bundles on Y gives rise to a
C* differential operator Dy ) : Ely®) — F|y®)-

D. The Jouanolou model and the d,-complex for S**~!.  We specialize
part B to X = C” with the standard coordinates z,. We take S to be the
unit sphere S*"~1 with equation |z|? = 1. We have therefore the d,-complex
(bQOSg'n—l 9 ab) .

At the same time, we introduce, on A" x Ar (with coordinates z,,z}),
a real structure by putting zZ, = z¥ and z*¥ = z,. The Jouanolou torsor .J

is realized in A™ x A" as the hypersurface zz* = 1, so it inherits the real
structure.

Proposition 1.3.3. (a) We have J(R) = S*"~'. In other words, A}, = C[J]
is identified with the algebra of (real analytic) polynomial C-valued functions
on S*—1,

(b) The C*-vector bundle Qi/AJJ(R) on J(R) = S is identified with

w1, and the differential induced by in, 1S tdentified wil _b. n other
ngq d the di al ind dde/A s identified with Op. I h
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words, Afn] is identified with the dg-algebra of polynomial (in the same sense
as in (a)) sections of *Q%s, .

Proof: Part (a) is obvious, as zz* = 1 translates to zZ = 1. To prove (b), we
notice that the sub-bundle

TJ/&"‘SQn_l - TJ|5'2n—1 = TSZn—l ® C

is equal to Tg’zi,l. O

Corollary 1.3.4. A, is dense in the Ly-completion of QYI(S*1). In par-
ticular, A?n] is dense in the Ly(S*"71). O

1.4 Representation-theoretic analysis

A. The GL,-spectrum of A;. The Jouanolou model gives commutative
dg-algebras with a natural action of the algebraic group GL,,. We now study
this action.

Let V' be a k-vector space of finite dimension n. Recall [FH| that irre-
ducible representations of GL(V') are labelled by their highest weights which
are sequences of non-increasing integers a = (a; = -+ = a,), possibly
negative (dominant weights). We will denote the underlying space of the
irreducible representation with highest weight a by X%V and regard X* as
a functor (known as the Schur functor) from the category of n-dimensional
k-vector spaces and their isomorphisms, to Vect,. Here are some tie-ins with
more familiar constructions.

Examples 1.4.1.(a) For d > 0 we have 24%-0(V) = S¢V) is the dth
symmetric power of V. For 0 < p <nlet 1, = (1,...,1,0,...,0) (with p
occurrences of 1). Then X!»(V) = AP(V) is the pth exterior power of V.

(b) We have canonical identifications
DT an(v)* ~ N¥L0n (V*) ~ Y On—an (V)
In particular, V* = %0--071(V). Further,

SO0 V)~ sl(V) = {Ae€End(V): tr(A4) = 0}.
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We now denote by V' = k" the space of linear combinations of the coor-
dinate functions z; on A", so A" = Spec S*(V), and let GL,, = GL(V'). The
Jouanolou torsor J — P"~! is acted upon by GL,, and so the dg-algebra Afn]
as well as its completion Ay, inherit the GL,-action. The following fact can
be seen as a higher-dimensional generalization of the representation of ele-
ments of k[z, 27!] as linear combinations of Laurent monomials (irreducible
representations of GLy).

Theorem 1.4.2. (a) As a GL,-module, each Afn] has simple spectrum, that

is, each X*(V') enters into the irreducible decomposition of AI[’n] no more than
once.

(b) More precisely, ¥*(V') enters into Az[’n] if and only if
041202042202--->O>an_p>—1>an_p+12—12'--2—1>Ozn.

Examples 1.4.3. (a) For n = 1 the only possible p is p = 0. In this case
the condition on o = (o) € Z is vacuous and the theorem says that A‘El] =

C—Ban Ea(k) = k[zv Z_l]‘
(b) Let n = 2. In this case the theorem says that we have an identification
of complexes of G Lo-modules

Ay = { @ =) Lo @ mme))

a1=0 a1 =—
a2<0 as<—1

From this we see the identifications

Ker(d) = P (V) = klz1, 22],

a1=0

Coker(0) = @ 7V2(V) = 272 'k[z ', 2571,
1

a2<—
the other irreducible representations, common to A?Q] and A%ﬂ, are cancelled
by the action of 0.

(c) For n = 3 the theorem identifies AE3], as a complex of GG Lz-modules,
with

@Eaho,&s 5; (_B 1,020,038 5; C_B Zal,—l,as'

a1=0 a1=20=>a=>—1>a3 a1=—1
a3<0 az<—1
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One can see, for example, the reason why the complex is exact in the middle:

if ap = 0, then 02293 lies in Im(0), while if ay = —1, then 3*%293 jg
mapped by ¢ isomorphically to its image.

The proof of Theorem 1.4.2 is based on the following observation. We
use the definition of Ay, in terms of the torsor J.

Proposition 1.4.4. As a variety with GL,-action, J ~ GL,/GL,_1. Fur-
ther, Q’}/M is identified with the homogeneous vector bundle on GL,/GL,_1
associated to the representation AP((k"™1)*) of GL, .

Proof: The identification (1.2.3) exhibits J as a homogeneous space under
GL,. The stabilizer of the point (z,z*) where z = (1,0,...,0) and z* =
(1,0,...,0), consists of matrices of the form

10
(0 A) ) Ae GLn—h

whence the first statement of the proposition. To see the second statement,

look at the action of the stabilizer subgroup GL,,_; on the fiber of Q? Jin OVET

the chosen point (z,2*) above. By definition, this fiber is the pth exterior
power of the relative cotangent space at this point. It remains to notice that
the relative tangent space is, as a G L,,_;-module, nothing but k"~ O

We now prove Theorem 1.4.2. By Proposition 1.4.4,

Ay =T ;) =~ Indgym  AP(k"1)*

(induction in the sense of algebraic groups, i.e., via regular sections of the
homogeneous bundle). So we can apply Frobenius reciprocity and obtain:

mult(2°k", Ind%E"  AP(K"1)*) = mult(AP(k"H)*, 2k |qrn. ),
GLn_l n—1

where mult means the multiplicity of an irreducible representation. Now,
AP(k"1)* = 3007 L= (k1) (with p occurrences of (—1)). It remains to
apply the following fact [Wey].

Proposition 1.4.5. For any dominant weight o for GL,, the restriction of
Y(k™) to GL,_1 has simple spectrum, explicitly given by:

Za(kn)|GLn,1 =~ @ 2,81,...,[3",1 (kn—l) D

a1Zf1zae=fo==hp—12an

Theorem 1.4.2 is proved.
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B. The Martinelli-Bochner form and its multipoles. We use the
analogy with the Dolbeault complex as a motivation for the following.

Example 1.4.6. The Martinelli-Bochner form

(=) A A dRE A A d2E

QO = Q(Z, Z*) _ Zu:l (ZZ*)n n

is an element of Aﬁ;]l. For n =1 it reduces to 1/z.

Proposition 1.4.7. Let n > 1. )
(a) The class of Q in H" '(A},) = H* (A", O) is a generator of the 1-

dimensional subspace z;* - - 27 of weight (—1,...,—1) under the coordinate

n
torus, see Proposition 1.1.1.

(b) The top degree part AFR_]I contains precisely one I1-dimensional irre-
ducible representation of GL,, which is X~ 1"YV) = A™(V*). This sub-
space is spanned by the Martinelli-Bochner form Q(z, z*).

(¢) Further, every element of H”_I(Afn]) can be represented as the class
of a “multipole”
P(0.,...,0,,)z2")

for a unique polynomial P(y1,...,Yn)-

Proof: (b) follows from Theorem 1.4.2. To deduce (a) from (b), note that
the class [271 -+ 27! € H™ (A", O) spans a 1-dimensional representation of
GL,, and so does Q(z, z*) (direct calculation). At the same time X~1~1(V)
is not present in AFH_]Q, so [z, 2*)] is a nonzero scalar multiple of [z - - - 21,

To prove (c¢), we notice the following fact which complements Proposition
1.1.1 and is proved using the same standard affine covering {z; # 0}. Note
that the ring k[0.,, ..., 0., ] of differential operators with constant coefficients
acts naturally on O;, and therefore on H LA™ O).

Proposition 1.4.8. As a k[0.,,...,0.,]-module, the space H" (A", 0) is
free of rank 1, with generator § = [z -+ 2.1 € H* (A", O). O

Proposition 1.4.7 is proved.

Remark 1.4.9. The fact that A([)n] has simple spectrum, allows us to define
a canonical G L,-equivariant projection S : A‘[)n] — k[z1,...,2,] along all the
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irreducible representations which do not enter into k[z1, ..., z,]. This is the
algebraic analog of the classical Szego projection from complex Hilbert space
Ly(S?"1) to the Hardy space formed by the boundary values of functions
holomorphic in the ball |z|? < 1. See, e.g., [BAMG].

1.5 Residues and duality

A. Jouanolou model for forms. We denote

|
—

n n

(151) Ap’q - A([In](QZn)7 AE;L] - Ap,q.

[n] [n]
p=0g¢

Il
=]

Elements of A’[;’ﬁ can be viewed as differential forms on A" x P with poles

on the quadric @) given by zz* = 0. Let @ = {z2* = 0} be the hypersurface
in A" x A" lifting ). By pulling back from P" to A" — {0}, we can view
elements of AP as differential forms on (A" x A") — @ of the form

(1.5.2) w = f;ll '''''''''' ; Pz, 2%)dziy Ao A dziy, NS A A dz

which have total degree 0 in the 2, dz) and are annihilated by contraction
with the vector field )] 250/0z%.

It follows that the bigraded vector space Afﬁ] is a graded commutative
algebra, with respect to multiplication of forms, with grading situated in
degrees [0,n] x [0,n—1]. It is equipped with two anticommuting differentials:
0 = Y1dz*vd/0z* of degree (0,1) and 0 = Y. dz,0/0z, of degree (1,0) which
correspond to exterior differentiation along the two factors in A™ x P". One
can say that ¢ is induced by the relative de Rham differential in J/kn Qm*OP
and 0 corresponds to the de Rham differential d : Qf  — Qgtl. Part (a) of
Proposition 1.2.4 implies:

Proposition 1.5.3. The bigraded dg-algebra AET'L] 15 a commutative dg-model
for Qlf;] ]

Example 1.5.4.Let k = C. Then we have an embedding of commutative
bigraded bidifferential algebras

e AT (T - {0)),
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where on the right we have the algebra of C* Dolbeault forms on C" — {0}
with its standard differentials ¢ and ¢. The value of € on a form w given by
(1.5.2), is

e(w) = Zfél """ ?:(z,z)]@n_{o}dzil A Ndz, NdZj A A dE,

NARTIRIV]

B. The residue map. Since an is identified, as a G'L,-equivariant coher-

ent sheaf on A™, with O in @k A" (k™), we have a G L,-invariant identification

An,o

= Ay @ A(K").

We define the residue map
(1.5.5) Res : A?n"]l_l —k
as the composition
AR = AR @ A" (K") — A"(K")* @ A" (k") =k,

where Aﬁl—]l — A™(k™)* is the unique GL,-invariant projection which takes
the Martinelli-Bochner form €(z,2*) to dzf A --- A dz}, see Proposition
1.4.7(b). Thus, by definition,

(1.5.6) Res(Q(z, 2%)dz1 A -+ A dz,) = 1.
Note that Agﬁ_l is the last graded component of A} ,(€27,) which is a dg-
model for RT(A™, Q™).
Proposition 1.5.7. For any f(z) € k[z, ..., z,] we have
Res(f(2)Qz, 2%)dz1 A - Adz,) = f(0)
(the algebraic Martinelli-Bochner formula).

Proof: Note that both sides of the proposed equality are G L,-invariant func-
tionals of f € k[z1,...,2,] = @yseSU V). For d > 0 the space S%(V)
does not admit any G L,-equivariant functionals, so the LHS factors through
the projection to d = 0 which is nothing but the evaluation at 0. So our
statement reduces to (1.5.6). 0.
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Proposition 1.5.8. Let k = C. Then for any w € Agﬁ_l we have

Res(w) = (?2;2)12' § e(w)

S2n—1

where the integral is taken over any sphere ||z| = R in C" — {0}.

Proof: Each ¢(w), w € A%l_lv is a closed (n,n — 1)-form on C" — {0}, so
its integrals over all spheres as above are equal. We see that the RHS of
the proposed equality is a G L, (C)-invariant functional on Aﬁ?*l, and any
such functional, by Theorem 1.4.2, should factor through the projection to
A"(k™)* ® A™(k™), i.e., through the residue map. This means the statement
holds up to a universal constant depending only on n. To see that this
constant is 1, we invoke the classical Martinelli-Bochner formula [GH], which

gives

Qz,2)dzy - dz, =
SQn—l

]

Proposition 1.5.9. Fach irreducible representation of GL, enters into Aﬁ’ﬁ
with at most finite multiplicity.

Proof: As a GL,-module, A7t = AP(V) ® Ay ;. By the Pieri formula [GH],
the irreducible components Y°(V) of AP(V) ® $(V) all satisfy 8 = a +
€, + -+ e, for some 1 < ¢y < .-+ <4, < n. Here ¢; is the ith basis
vector. So the allowed [ situated in some fixed radius neighborhood of « in
Z"™ < R™. This means that tensoring a simple spectrum representation with
AP(V') gives a representation with finite multiplicities. So our statement
follows from Theorem 1.4.2. O

Let £~ @, Co®3%(V) be a representation of GL(V') with finite multi-
plicities (so C,, are finite-dimensional vector spaces). We define the restricted
dual of E to be

E* = PCEEH(V)"

Proposition 1.5.10. The (GLy-invariant) residue pairing
(O[, 5) = ReS(Oz . B) : A][Drﬁ ®k A’Fn—]p,n—l—q Lk

gives an isomorphism A’En_]p mol-q _, ( Apﬁ)*.
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Proof: We first prove a weaker statement: (A’[)T’ﬁ)* is isomorphic, as a G L,,-

module, to Af.” 179 Because of the non-degenerate pairing AP(V) ®
A" P(V) — A™(V), the statement reduces to the isomorphism

This isomorphism follows at once from inspecting the irreducible components
of A‘[]n] and Aﬁf]lfq given by Theorem 1.4.2. They are in bijection ¢ <> %7,
so that

(1.5.11) Bi=—1—an, i=1,....n,
which means that X°(V) ~ A"(V)* ® (Z%(V))*.

We now prove that the residue pairing is actually an isomorphism as
claimed. As before, we reduce to considering the pairing

n—1— n—1 n *
Al @ AT AT ATV

Only the summands X%(V) < Ap, and YAV < AFn_]l_q where «a, § corre-
spond to each other as in (1.5.11), can pair in a non-trivial way. It remains
to show that they indeed pair non-trivially. If they pair trivially, then the
subspace X*(V) < A‘[In] is orthogonal to the entire A?n_]l_q. The easiest way to
see why this is impossible, is to reduce (by the Lefschetz principle) to k = C.
In this case we can use the fact that AFn_]l_q is Ly-dense in Q"1 ~9(§2—1),

see Corollary 1.3.4, and the non-degeneracy of the Ly-pairing on Qp* (52"~ 1).
]

Proposition 1.5.12 (Algebraic Stokes formula). The residue functional Res :
A’[Z?fl — k vanishes on 5(143;]1’"71) + (7(14?7;7]7’72).

Proof: As before, the easiest proof is to reduce to k = C and to embed
AE;L] into Q**(C™ — {0}). Then we can use the classical Stokes formula for
d = 0 + 0, noticing that elements of A?n_]l’”_l are annihilated by @, while
elements of A’[ZTQ are annihilated by 0.

A purely algebraic proof, by inspection of the possible relevant irreducible
components, is left to the reader. In this inspection we find that AFT’L?_2 does
not contain the trivial representation, while AFH_]l’"_l does contain it but the
corresponding subspace is annihilated by @ (it represents H"~!(P"~1 Qn~1)).

[
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2 The residue class in cyclic cohomology

2.1 Cyclic homology of dg-algebras and categories

In this subsection we compare various definitions of cyclic homology of asso-
ciative dg-algebras without any restriction on the grading. Care is needed,
since existing treatments of some issues apply only to Z,-graded algebras
and rely on spectral sequences which may not converge in the general case.

For general background on cyclic homology (ungraded and Z,-graded
cases), see [Lo].

A. General definitions. Our basic approach is that of Keller [Kel]. That
is, let (A, d) be any associative dg-algebra over k, possibly without unit. The
Hochschild and the cyclic complexes of A, denoted CHo®(A) and CC.(A),
are defined similarly to what is described in [Lo| 5.2.2 for the Z<-graded
case. That is, we form the total complex of the double or triple complex
obtained when we take into account the grading and differential on A. For
example,

CHoh(A) = Tot{--- > A% 2 A@ A 2 A}

The total complex here and elsewhere is always understood in the sense of
direct sums. The new phenomenon compared to the Z<g-graded case is that
direct sums can be infinite.

The definition of CC,(A) is similar. More precisely, let V' be a cochain
complex of k-vector spaces with a Z/(n + 1)-action, the generator of the
action denoted by t. We denote

1-t 1—t

Vo = Tot{- —)Vlu’tn‘/—q/},

(the horizontal grading situated in degrees < 0). Then
CC.(A) = Tot{--- 2> A 2 (A® A)¢ > Ao}

where the Z/(n + 1)-action on A®("*1) is given as in [Lo] (2.1.0), understood
via the Koszul sign rule.

The homology of CHoh(A) and CC,(A) will be denoted HH,(A) and
HC.(A). Each of these complexes has an exhaustive increasing filtration by
the number of tensor factors. This gives a convergent spectral sequence

By = HC.(H3(A)) = HC.(A),
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and similarly for HH,(A). It follows that the functors HC, and HH, take
quasi-isomorphisms of dg-algebras to isomorphisms and so descend to func-
tors on the homotopy category of associative dg-algebras.

Lemma 2.1.1. Let V be a cochain complex of k-vector spaces with a Z/(n +
1)-action. Then morphism Vo — Vz/tm+1) from the last term to the cokernel
of (1 —1t), is a quasi-isomorphism.

Proof: This is well known if V' in ungraded (Tate resolution). When V
is Z<o-graded, it follows from a spectral sequence argument, as V- has an
increasing exhaustive filtration with quotients V. To prove the general case,
it suffices to consider the case when k is algebraically closed. Assuming this,
we consider the abelian category dgVecth/ "+ formed by cochain complexes
with Z/(n + 1)-action.

Lemma 2.1.2. Fach object of dgVecth/(”H) 15 isomorphic to a direct sum
of (possibly infinitely many copies) of the following indecomposable objects:

(1) A 1-term complex k (situated in some degree) on which Z/(n + 1) acts
via some character.

(2) A 2-term complex k Bk (situated in a pair of adjacent degrees) on
which Z/(n + 1) acts via the same character.

Lemma 2.1.2 implies Lemma 2.1.1 because the indecomposable objects
are bounded and so 2.1.1 holds for them.

Proof of Lemma 2.1.2: This is well known if n = 0 (i.e., if we consider
just cochain complexes with no group action). Now, given V' with action of
Z/(n+ 1), we first split it (as a complex) into a direct sum of eigencomplexes
V,, corresponding to the characters x of Z/(n + 1). Then we decompose each
complex V, into indecomposables. O

Corollary 2.1.3. The complex CC,(A) is quasi-isomorphic to the Connes’
complex

CNA) = Tot{--- A%, 2 (A® A)gyy — A}
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B. Morita invariance. For unital dg-algebras, Keller [Kel] proved that
cyclic homology is Morita-invariant. To formulate the results compactly, it is
convenient to extend the definition of Hochschild and cyclic complexes and
cohomology to small dg-categories A (a unital dg-algebra is the same as a
dg-category with one object). That is, we define CI°(A) to be the total
complex of the double complex

n
b b
> (—D ®Hom:4(ai,ai+1) — ® Hom® (ag, ao),
a0,...,an€Ob(A) i=0 a0cOb(A)

(here we put a1 := ag) and similarly for CC,(A).

We recall [Tod] that a functor f : A — B is called a Morita equivalence,
if f. : Perf4 — Perfg is a quasi-equivalence. Recall further that Perf 4
is essentially small, if A4 is small, and the canonical (Yoneda) embedding
v : A — Perf 4 is a Morita equivalence.

Proposition 2.1.4 (Keller, [Ke2]). (a) If f : A — B is a Morita equiva-
lence of small dg-categories, then HC,(f) : HC.(A) — HC.(B) is an
1somorphism.

(b) In particular, if A is an essentially small dg-category, then HC.(A")
where A" < A is an equivalent small dg-subcategory, are canonically
identified, and denoted HC,(A).

(¢) It follows that v induces an isomorphism HC.(A) — HC,(Perf 4).

(d) Therefore any dg-functor ¢ : Perf, — Perfg induces a morphism
¢« + HC((A) — HC.(B) which is an isomorphism, if ¢ is a quasi-
equivalence.

Let us note a more elementary instance of this proposition, cf. [Lo] 1.2.4
and 2.2.9.

Proposition 2.1.5. Let A be a unital dg-algebra and r = 1. The collection
of the trace maps

Mat, (A)®" D) ~ (Mat, (k) @, A)5" T3 g80n)
tran (uoao R ® unan) = tr(uo . Un)ao R @ ay,

defines quasi-isomorphisms of complezes

Gt (Mat, (4)) == CM(A),  CO.(Mat, (4)) = CC.(A).
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The morphisms on CH°N and CC,, induced by the embedding A — Mat,.(A),
are quasi-inverse to tr. [

C. Localization sequence.

Definition 2.1.6. A localization sequence of perfect dg-categories is a an
homotopy cofiber sequence

A— B—C

in the Morita model category of dg-categories (see Appendix), such that the
functor A — B is (quasi-)fully faithful.

Remark 2.1.7. Given such a localization sequence, the homotopy category
[A] is a thick subcategory of the triangulated category [B] and [C] is equiv-
alent to the Verdier quotient [B]/[A].

Theorem 2.1.8 (Keller, [Ke2]). A localization sequence of perfect dg-categories
A — B — C induces a cofiber sequence

CC(A) — CC(B) — CC(C)
in the category of complexes. In particular we get a long exact sequence

- — HCy(A) — HCW(B) — HCW(C) — HCp1(A) — -+

2.2 Cyclic homology of schemes

A. Sheaf-theoretic definition and Hodge decomposition. We recall
the basic constructions and results of Weibel.

Definition 2.2.1 [W1].Let X be a k-scheme. Denote by CJ§™" the com-
plex of sheaves on the Zariski topology of X obtained by sheafifying (term
by term) the complex of presheaves U — CIHoh(O(U)). We define the
Hochschild homology of X as the hypercohomology of this complex:

HH(X) = H*(X, CH(X)).

We also define the bicomplex of sheaves CC, x as the sheafification of the
complex of presheaves U — C'C,(O(U)), and the cyclic homology of X as

HC(X) = H*(X, Tot(CC. x)).
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So HH and HC fit into Mayer-Vietoris sequences by definition. Weibel
proved that for an affine scheme X = Spec(A), one has

HH(X) = HH(A), HC(X) = HC(A).

Let us also recall here that the cyclic homology of a commutative algebra
has a Hodge decomposition (also called A-decomposition, see [Lo]):

HH.(A) = P HHY(A) and HC.(A) = P HCY(A)
Weibel extends this decomposition to the case of schemes and describes it in
term of HKR~isomorphism in the smooth case.

Theorem 2.2.2 ([W2]). Let X be a qegs (quasi-compact and quasi-separated)
k-scheme. There are Hodge decompositions

HH.(X) = P HHY(X) and HC.(X) = @HCY(X).

Moreover, if X is smooth, then we have for any v and k
HH(X) = H7*(X, Q%)  and  HC(X) = H**(X,QF).
B. Relation to HC of dg-algebras and categories. We first recall the

following result of Keller.

Theorem 2.2.3 ([Ke3]). For any qcgs scheme X we have
HH,(X) ~ HH,(Perf(X)) and HC.(X) ~ HC,(Perf(X)),
where Perf denotes the dg-category of perfect complexes.

Next, we use this result to relate cyclic homlogy of schemes with that of
dg-algebras of derived functions.

Definition 2.2.4. A scheme U is called quasi-affine if it is isomorphic to a
qcqgs open subscheme of an affine scheme.

Theorem 2.2.5. For any quasi-affine scheme U, we have

HC.(U) ~ HC.(RT(U,0)).
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Proof: By Theorem 2.2.3 and Proposition 2.1.4, it is enough to show that
Perf(X) is equivalent to Perfgzp,0). Because perfect complexes (resp. dg-
modules) are intrinsically characterized as compact objects in the derived
category of all quasicoherent sheaves (resp. all dg-modules), we reduce to:

Proposition 2.2.6. Let U be a quasi-affine scheme. The derived category
of quasi-coherent sheaves on U 1is equivalent to the derived category of dg-
modules on the cdga RI'(U, O).

Note that this statement is not true for more general schemes (e.g., for
U =P").
Proof of the proposition: Let us denote by A any model for the cdga RT'(U, O).

Let u: U — X = Spec B be an open immersion. In particular, we get a map
of cdgas p: B — A. It induces an adjunction of co-categories

p*: dgModg < dgMod 4 : p.

We will prove the functor p, to be fully faithful and its essential image to
coincide with that of wu,.

The element A is a compact generator of dgMod, and both p, and p*
preserve small colimits. To show that p, is fully faithful, we consider the
adjunction map p*p,A — A. This map is equivalent to the multiplication
map A ®% A — A.

Lemma 2.2.7. The multiplication map AQL A — A is a quasi-isomorphism.

Proof of the lemma: Let (f;);c; denote a finite family of elements of B such
that U = | J X}, = X, where X}, = Spec(B[f;"']). For any non-empty subset
J < I, let B denote the (derived) tensor product

e

By =" B[f ]

By definition, the cdga A is equivalent to the homotopy limit holim Bj.

g#Jcl
The derived tensor product A ®% A — A is then equivalent to

ARY A ~ holim B;®%holim B, ~ holim holim (B;®4 By) ~
B —7 B «——=—p ——je——

~ hohthohmJ,B JoJ hohthohmJCJNB g~ hohmJB g ~ A
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Lemma 2.2.7 is proved.

To continue with Proposition 2.2.6, we can now identify dgMod 4, with the
full stable and presentable co-subcategory of dgMody generated by A. We
remark that the derived category of quasi-coherent sheaves on U identifies,
through the functor u,, with a full stable and presentable co-subcategory of
dgModp containing u, Oy ~ RI'(U, O) ~ A. We hence get an adjunction

F = p*u*: choh(U) = dgMOdA G = U*p*

where the functor G is fully faithful. It therefore suffices to prove that F'is
conservative. Let then £ € Dyeon(U) such that F'(E) = 0. For any ¢, if we
denote by v;: Spec(B;) — U the Zariski embedding, we get

vH(E) = F(E)®4 B, = 0

As {Spec(B;)}icr is a cover of U, we deduce that E is acyclic and hence that
the functor I is conservative. Proposition 2.2.6 and therefore Theorem 2.2.5,
is proved.

2.3 The residue class pe HC'(A?)

A. Definition via a cyclic cocycle. Let (A%, 7) ~ RI(A", O) be the
commutative dg-algebra from (1.2.5). We recall that A? is included into
the doubly graded differential algebra (A%*,0,0) ~ RI(A" Q°): we have
Ar = A%e.

Consider the (n + 1)-linear functional

(2.3.1) P (A ko r(fo, . fa) = Res(fodfy - 0f).

Here 0f; € AL*, and Res : A" — k is the residue map from (1.5.5). By

definition r(fo, ..., f,) is assumed to be equal to 0 unless fodf; - - 0f, lies in
A=l

Proposition 2.3.2. The functional r is a degree 1 cocycle in the Connes
cochain complex C3(A2) = Homy (C2(A2), k).

Proof: Degree 1: The expression fodf;---df, always lies in A7»*. For it to
lie in A"~ we must have Y deg(f;) = n — 1. The horizontal grading of
(A2)®+1D in the Hochschild chain complex of A, is (—n). So r, as an element
of the dual complex, has degree +1.
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Cyclic symmetry: With the Koszul sign rule taken into account, the condition
for r to lie in C}(Ay) is

T(fo, o 7fn) _ (_1)n+deg(fo)(deg(f1)+-~+deg(fn))T(fl, B -af’me)-

This follows at once from the Leibniz rule for ¢ and the fact that Res vanishes
on the image of 0.

r_is a cocycle: As Cy(A?) is a subcomplex in Cf,,,(A?r), we need to show
that 7 is closed under the differential in Cf,,,. This differential is the sum
b+ 5*, where (3 is the Hochschild cochain differential, and 7" is induced by
the differential 0 in A%. We claim that both S(r) and ¢ (r) vanish. These
statements follow from the Leibniz rule for ¢ and 0 respectively and the fact
that Res vanishes on the images of both ¢ and 0. O

We denote by p € HC'(A?) the class of r and call it the residue class.
By construction, p is GL,-invariant.

B. Definition via the Hodge decomposition. By Theorems 2.2.5 and
2.2.2, we have the Hodge decomposition

i=1
We consider the projection to the summand

(2.3.4) HCW(A") = H*'(A", Q") = H* (A", Q) = k,
which is the (2n — 1)st de Rham cohomology of A" (e.g., for k = C, the
(2n — 1)-st topological cohomology of C™\{0} ~ S?*~1).

Theorem 2.3.5. The class in HC'(A?) given by the projection of (2.3.3)
to (2.3.4), is the unique, up to scalar, G Ly-invariant element in HC'(A?).
In particular, it is proportional to the residue class p.

Proof: We analyze the G L,-module structure of the H2-L(A", Q<P). Ap-
plying the spectral sequence starting from HP(A™ Q%) and converging to
H2 (A" Q<"), we reduce to the following statement.

Proposition 2.3.6. The vector space HP(A",Q‘J) has no GL,-invariants
unlessp=q =0 orp=n—1, ¢ =n, in which case the space of invariants
18 1-dimensional.
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3 Higher current algebras and their central
extensions

3.1 Cyclic homology and Lie algebra homology

A. Reminder on the dg-Lie algebra (co)homology. Let [* be a dg-Lie
algebra with differential 0 and bracket ¢ : A2l — [. The Chevalley-FEilenberg
cochain complex of [* is the symmetric algebra CE* () = (S*(I*[1]))* equipped
with the algebra differential dy;, + D, where:

e D is the algebra differential on the symmetric algebra which extends

(0[1])* by the Leibniz rule.

o dr;. is the algebra differential given on the generators by the map (s o
c[2])* : (I*[1])* — (S%(1*[1]))* (i.e., extended from the generators by
the Leibniz rule). Here we suppressed the notation for decy from (A.2).

The cohomology of CE*(I) (equipped with the total grading) will be de-
noted Hy, (I).

In fact, CE*(I) is dual to the Chevalley-Filenberg chain complez CE,(l) =
S*(I*[1]) whose differential is defined by obvious “undualizing” of the for-
mulas above. In other words, it can be described in terms of the coalgebra
structure on CE,(I). We have an increasing exhaustive filtration of CE,([)
by the number of tensor factors which gives a convergent spectral sequence
Hye(Hs (1)) = Hy**(l). This implies that H*, and therefore Hy,,, are quasi-
isomorphism invariant, in particular, descend to functors on the homotopy
category [dgLie,]. The following is then standard.

Proposition 3.1.1. We have a canonical identification
Hom[dgLiek]([, k[n]) = Hﬁzl([) O

In particular, H, (I) classifies central extensions of [.

B. Loday’s homomorphism 6. Let A be an associative dg-algebra (pos-
sibly without unit). The graded commutator

[CL, b] = ab— (_1)deg(a)-deg(b)ba
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makes A into a dg-Lie algebra which we denote Ap;.. If A is ungraded, then
HU(Ape) = HCo(A) = AJ[A, A],

Extending [Lo] (10.2.3) straightforwardly from the ungraded case, we include
this in the following.

Proposition 3.1.2. For any associative dg-algebra A there is a natural mor-
phism of complezes
04 1 CEup1(ALie) — Co(A),
o A+ A a, — Z sen(o)[(Id,0)*(ay ® - @ ay)].

o€ES,

Here, for o € S, we denote by (Id,o) € Sp11 the permutation of {0,1,... ,n}
fizing 0 and acting on 1,2, ...,n as o. The notation [x| means the class of =
in the coinvariant space of Z/(n + 1). In particular, this gives natural maps

04 = 07 HHMS (ALie) — HCi(A).

3.2 Higher current algebras and their central exten-
sions
Let g be a finite-dimensional reductive Lie algebra over k. We consider the
dg-Lie algebra )
g, = 0@ A4, ~ RI(A",g®x O).
We call g7 the nth derived current algebra associated to g. For n = 1 we get

the Laurent polynomial algebra g, = g[z,271].

Let P € S""(g*)? be an invariant polynomial on g, homogeneous of
degree (n + 1). We will also consider P as a symmetric (n + 1)-linear form
(o, ..., 2Tpn) — P(xo,...,x,) on g.

Theorem 3.2.1. (a) Consider the functional vp : (gi[1])2" V) — k given
by

7P ((20®fo)®(22@1)® - ®(2,®fn)) = P(x0, ..., n)Res(fo-0fin---ndfy).

Here x, € g, f, € A%, 0 is the degree (1,0) differential in A3® > Ap, and
we consider Res as a functional on the entire A?® vanishing on all AP? with
(p,q) # (n,n—1).
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This functional is of total degree 2, is symmetric and is annihilated by both
differentials di. and D. Therefore it is a cocycle in CE*(g?) and defines a

class [vp] € Hi;.(g7).
(b) Assume g semisimple. The correspondence P — [yp| given an em-
bedding S"*(g*)* = Hi,(g7,).

Example 3.2.2.1et g = gl and P, (z) = tr(z"™!) or, in the polarized form,

Z tr(xs(o) .- ~xs(n)).

s€Sn+1

1
ptr(l'o, Ce ,.Z'n) = m

In this case yp, is the image of the residue cocycle p € C}(Ar) under the
composite map

CLA®) % Ol (gL (A*)) 2% CE2(ql (A
MAY) — Ci(gl(45)) — (al:(45)),

where tr* is dual to the trace map trys ,, from Proposition 2.1.5, and 4. is
dual to the map 6% from Proposition 3.1.2. In particular, we see that vp,_
is a Chevalley-Eilenberg cocycle satisfying all the conditions of part (a) of
Theorem 3.2.1.

Proof of Theorem 3.2.1: (a) Let ¢ : g — gl be a representation of g. Take
Py(x) = tr(¢(z)"*"). In this case yp, is induced from vp, € CE*(gl,(A}))
by ¢ and therefore satisfies the conditions of (a). Further, notice that ~vp
depends on P in a linear way. Now, the statement follows from the next
lemma, to be proved further below.

Lemma 3.2.3. Fizm > 0. Any P € S™(g*)? is a linear combination of
polynomials of the form Py, : © — tr(é(x)™).

(b) Note that CE®(g?) is the total complex of a bicomplex CE**(g?) with
CEP(g3) — Hom}(Ag?, k),

and with differentials dp;. and D. We consider the corresponding spectral
sequence

(3.2.4)  EY = HZ'(CE*(g)) = Hom{ (AH2(g)) k) = HIL(g?).
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Since g* has -cohomology only in degrees 0 and (n—1), the spectral sequence
is supported in the fourth quadrant, on the horizontal lines

¢q=20,p=1I11-n),1>0.

Since yp is annihilated by both differentials, it gives a permanent cycle in
E;7" L denote it (yp). For the class [vp] in HZ, (g°) to be zero, (yp) must
be killed by some differential of the spectral sequence. From the shape of it,
the only possible such differential is d,, : E>! — E-"+*1Ln+1 But, denoting
glz] = g[z1, .., 2n], we have

EY' = HL (HYgy) = Hi(al2]) = (al2]/[slz], al2]])"

and this vanishes for a semi-simple g. Therefore E%' = 0 and (yp) cannot
be killed. Theorem 3.2.1 is proved.

Proof of the lemma 3.2.3: Consider the completion g'(g*), i.e., the ring of
formal power series on g near 0, with its natural adic topology. To any
representation ¢ of g we associate the invariant series

Qu(z) = tr(e”™) i i' e S*(g)e.

m=0

By separating the series into homogeneous components, the lemma is equiv-
alent to the following statement.

Lemma 3.2.5. The k-linear space spanned by series Qy(x) for finite dimen-
sional representations ¢ of g, is dense in S*(g*)?.

Proof of Lemma 3.2.5: Let GG be a reductive algebraic group with Lie algebra
g. The exponential map exp : g — G identifies S’( *) with OGJ, the com-
pleted local ring of GG at 1, in a way compatible with the adjoint g-action on
both spaces. Now, k[G], the coordinate algebra of G, is dense in Og ;. Let
® : G — GL, be an algebraic representation of G. Then the character tr(®)
is a g-invariant element in k[G19, and such elements span k[G]®. Therefore
the space spanned by the tr(®), is dense in @?}’1. If now ¢ is the representa-
tion of g tangent to ®, then the image of tr(®) under the above identification

* @QGJ — §‘(g*)g, is precisely the series Q4(x). So the space of such

series is dense in S*(g*), as claimed. O
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Example 3.2.6 (Heisenberg dg-Lie algebra). Let g = gl; (abelian) and
P(x) = 2™*1. In this case the (2-)cocycle

Y(for o fn) = Res(fodfi---0fn)

defines a central extension #,, of the abelian dg-Lie algebra g? = A®. The
dg-Lie algebra H,, is the n-dimensional analog of the Heisenberg Lie algebra
associated to the vector space k((z)) equipped with the skew-symmetric form

[an fl] = ReS(foleﬁ-

4 The Tate extension and local Riemann-Roch

4.1 Background on Tate complexes

A. The quasi-abelian category of linearly topological spaces. We
will use the concept of a quasi-abelian category [Sch], a weakening of that of an
abelian category. In particular, in a quasi-abelian category A any morphism
a: V — W has categorical kernel Ker(u), cokernel, image Im(a) = Ker{WW —
Coker(a)} and the coimage Coim(a) = Coker{Ker(a) — V'} but the canonical
morphism Coim(a) — Im(a) need not be an isomorphism. If it is, a is called
strict.

As pointed out in [Sch], any quasi-abelian category .4 has an intrinsic
structure of exact category in the sense of Quillen.

Example 4.1.1. Let TopVect, be the category of Hausdorff linearly topo-
logical k-vector spaces with a countable base of neighborhoods of 0. Here k
is considered with discrete topology. See [Le], Ch. 2 for background; in this
paper we additionally impose the countable base assumption.

For a morphism a : V' — W, the kernel Ker(a) = V is the usual kernel
with induced topology, Im(a) is the closure of the set-theoretic image, and
Coim(a) is the set-theoretical quotient of V' by Ker(a) with the quotient
topology.

The category TopVect, is analogous to several categories treated in the
literature [Prol] [ProS] [Pro2]. In particular, arguments similar to [Pro2]
Cor. 3.1.5 and Prop. 3.1.8, give:

Proposition 4.1.2. (a) The category TopVect, is quasi-abelian.

(b) A morphism a : V. — W in TopVect, is strict, if its set-theoretical
image s closed and a is quasi-open. That is, for any open subspace U < 'V
there is an open subspace U' < W such that a(U) > a(V) n U’. O
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Every quasi-abelian category A gives rise to the (bounded) derived cat-
egory D®(A) equipped with a canonical t-structure whose heart ¥ A (called
left heart in [Sch]), is a natural abelian envelope of A. It is equipped with a
fully faithful left exact embedding h : A — YA (so h preserves kernels but
not cokernels).

Objects of Y A can be thought of as formal “true cokernels” of monomor-
phisms @ in A and in fact have the form Cokero 4(a) (actual cokernels in © A).
See [Sch] Cor. 1.2.21 or, in the more general framework of exact categories,
[La], Def. 1.5.7.

Example 4.1.3. The formal quotient k[[¢]]/k[t] represents an object of the
abelian category “TopVect,. The short exact sequence

0 — k[t] — K[[t]] — K[[¢]]/k[t] = 0
represents a nontrivial extension in “TopVect,.

One can identify D°(A) with the localization
(4.1.4) DY(A) ~ K°(A)[qis™!]

of K®(A), the homotopy category of bounded complexes over A, with respect
to quasi-isomorphisms (understood in the sense of complexes over “A), see
[La] [Sch]. Further, the natural functor D°(A) — D’(YA) into the usual
bounded derived category of A, is an equivalence ([Sch] Prop. 1.2.32).

Remarks 4.1.5. (a) We note that K°(A) has a natural dg-enhancement: it
is the H%category of the dg-category of bounded complexes over A. There-
fore (4.1.4) can be used to represent D’(A) as the HY-category of a dg-
category, by using the Gabriel-Zisman localization for dg-categories ([To5],
§2.1) which is the dg-analog of the Dwyer-Kan simplicial localization for
categories [DK1][DK2].

(b) The concept of a quasi-abelian category is self-dual. Therefore there
exist another abelian envelope AY = (Y(A°))°P (the right heart) whose
objects can be thought as formal “true kernels” of epimorphisms in A, and
a right exact embedding A — Y A. In our example A = TopVect,, the
categorical kernels coincide with set-theoretical ones so it is natural to use
the left heart to keep the kernels unchanged.
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Proposition 4.1.6. Let A be quasi-abelian. A bounded complex V* over A
has all H'(V*) € A < A, if and only if all the differentials are strict. In
particular, for a monomorphism a : V- — W in A, the cokernel Cokero 4(a)
lies in A if and only if a is strict.

Proof: See [Prol], Cor. 1.13. O

B. Tate spaces and Tate complexes. For V e TopVect, we have the
topological dual V¥ = Hom, (V, k) (continuous linear functionals, with weak
topology). The functor V' +— V'V is not a perfect duality on TopVect,; how-
ever, the canonical morphism V' — V¥V is an isomorphism on the following
full subcategories in TopVect,:

(1) The category Vecty of discrete (at most countably dimensional) vector
spaces V ~ @, k.

(2) The category LCy of linearly compact spaces V' ~ [ [..; k.

(3) The category Tay of locally linearly compact spaces ([Le], Ch. 2, §6)
which we will call Tate spaces. Each Tate space V' can be represented
as V ~ Vi@ Ve with V¥ e Vecty and V¢ e LCy.

Thus, the topological dual identifies
Vecty? ~ LCx, LCY” ~ Vecty, Ta)” ~ Tay.

In particular, since Vecty is abelian, so is LCy, while Tay is a self-dual quasi-
abelian (in particular, exact) category, cf. [Be2] [BGW]. Let us add two
more examples to the above list:

(4) The quasi-abelian category ILCy formed by inductive limits of linearly
compact spaces.

(5) The quasi-abelian category PVecty formed by projective limits of dis-
crete vector spaces or, what is the same, objects in TopVect which,
considered as topological vector spaces, are complete.

Example 4.1.7. The space of Laurent series k((z)) = k[[z]][27"] is an object
of Tay. The localized ring k[[21, z2]][(2122) '] is an object of ILCy but not of
Tay. Similarly, the ring k[[z]][2*][(22*) 7], see §1.2 C, is an object of ILCl.
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Proposition 4.1.8. We have
ILC}? ~ PVecty, PVecty” ~ILCy, Tay, = ILCx n PVecty,

the first two identifications given by forming the topological dual.

Proof: Let us prove the third statement. It is clear that Tay, < ILCy,nPVecty.
Let us prove the inverse inclusion. Suppose

Vo= lim {5 V-5V, 55V} e PVecty

is represented as the projective limit of a diagram (V;) of discrete vector
spaces and surjections ¢;. Then V is Tate, if and only if Ker(g;) is finite-
dimensional for all but finitely many i. Suppose this is not so. Then we can,
without loss of generality, assume that all Ker(g;) are inifinite-dimensional,
by composing finite strings of the arrows in (V;) and getting a diagram with
the same projective limit.

With this assumption, suppose that V' = h_r)nj L; where (L;)j>o is an
increasing chain of linearly compact subspaces. Then, for each j,

where Vi(j ) is the image of L; in V;, a finite-dimensional subspace in V;. We
now construct an element v € V', i.e., a compatible system (v; € V;), by a
version of the Cantor diagonal process. That is, we take vy = 0, then take
vy from Ker(q;) (an infinite-dimensional space) not lying in Vl(l) (a finite-
dimensional space). Then take vy € Vo with ¢a(v2) = v in such a way that
vy ¢ V2(2) (this is possible since Ker(gs) is infinite-dimensional), and so on.
We get an element (v;) of the projective limit with v; ¢ Vi(i) for all 7. Such
an element cannot lie in the union of the L;. O

Definition 4.1.9. (a) A Tate complex over k is a bounded complex V'* over
ILCy whose cohomology groups H'(V*) € YILCy belong to ¥Tay. We denote
by Tatey the full dg-subcategory in C®(ILCy) formed by Tate complexes.

(b) A Tate complex V* is called strict, if all the H'(V*) belong to Tay <
“Tay or, what is the same, if its differentials are strict (Prop. 4.1.6).

Note that Tatey is a perfect dg-subcategory, i.e., [Tatey], the correspond-
ing cohomology category, is triangulated and closed under direct summands.
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Example 4.1.10. The Jouanolou complex A? is a strict Tate complex. More
precisely, the topology on each AP is given by the convergence of series. An
explicit representation of AP as an inductive limit of linearly compact spaces
is given by the filtration of Corollary 1.2.8. Thus A} is a complex over ILC.
As we have seen, its cohomology groups are Tate vector spaces. For n > 0, we
have only two cohomology spaces: HY, linearly compact and H"™!, discrete.

More generally, for any finite dimensional vector bundle E on D;, the
complex A*(F) is naturally made into a strict Tate complex.

C. Tate complexes, algebraically. For a category C we denote by Ind(C)
and Pro(C) the category of countable ind- and pro-objects in C, see [AM], [KS]
for general background. In particular, we will use the notation “li_r)n” ie1Ci
for an object of Ind(C) represented by a filtering inductive system (C;)er
over C. Similarly for “lim” C;, an object of Pro(C).

Assume C is abelian. Then so are Ind(C) and Pro(C). In this case we
denote by Ind*(C),Pro*(C) the full subcategories formed by ind- and pro-
objects which are essentially strict i.e., isomorphic to objects “lim”;e;Cj,
resp. “lim” C; where (C;) is an filtering inductive (resp. projective) system
formed by monomorphisms (resp. epimorphisms). These are quasi-abelian
but not, in general, abelian categories.

Let Vecti be the category of finite-dimensional k-vector spaces.

Proposition 4.1.11. (a) We have
Ind®(Vect{) = Ind(Vect{) ~ Vect, Pro®(Vect!) = Pro(Vect{) ~ LCy.

(b) Further, the taking of inductive or projective limits in TopVect, gives
identifications

Ind*(LCy) ~ ILCk, Pro®*(Vecty) ~ PVecty.

(c) The abelian envelopes of the semi-abelian categories in (b) are identi-
fied as
“ILCy ~ Ind(LCy), YPVecty ~ Pro(Vecty)

(the categories of all, not necessarily strict, ind- and pro-objects).

Proof: (a) This is well known. For instance, because of the Noetherian
and Artinian property of Vectﬁ, and ind- or pro-object in this category is
essentially strict. Part (b) is also clear.
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(c) Let us prove the first statement, the second one is dual. Consider the
abelian category A of arbitrary chains of morphisms (inductive systems)

(4.1.12) V= {Vo— Vi —Vy— -}

in LCy, i.e., of graded k[t]-modules in LCy. Let A° < A be the semi-
abelian subcategory formed by chains of monomorphisms, i.e., torsion-free
k[¢]-mod-ules. Every object V' of A can be represented as the cokernel of a
monomorphism ¢ in A®. More precisely, we have a short exact sequence

(4.1.13) 0— K —>Veuk[t] <V —0.

Here V®yk|[t] is the free k[t]-module generated by V' as a graded vector space,
¢ is the canonical map given by the k[t]-module structure and K = Ker(c).

This implies that any object in Ind(LCy) is the cokernel of a monomorphism
in Ind®(LCy). O

Proposition 4.1.14. (a) The objects of ILCy = VILC) = Ind(LC}) are
projective. In particular, Tate spaces are projective objects in the abelian
category ¥ Tay.

(b) The abelian categories Ind(LCy), Pro(Vecty) have homological dimen-
sion 1.

Proof: We start with three lemmas. As in the proof of Proposition 4.1.11(c),
let A be the category of diagrams as in (4.1.12). We have a functor

“lim” : A —> Ind(LCx), V> “lim”V;.

Lemma 4.1.15. “lim ” s an ezact, essentially surjective functor. Further-
more, any epimorphism in Ind(LCy) is isomorphic (in the category of arrows)
to an image of an epimorphism in A.

Proof of the lemma: Exactness of “lim” and the statement about epimor-
phisms are general properties of ind-categories of abelian categories, see [KS],
Lemmas 8.6.4 and 8.6.7. Next, any countable filtering category admits a co-
final map from the poset Z, = {0,1,2,...}. This means that any countably
indexed ind-object is isomorphic to the object of the image of “lim” as
above. O]

Lemma 4.1.16. Objects of A® are projective in A.
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Proof of the lemma: A diagram V as in (4.1.12) formed by embeddings, is a
free graded k[t]-module in LCy. Indeed, since LCy = Vect,” is a semisimple
abelian category, the embedding V;_; — V; admits a direct sum complement
W;. Considering W = (W;) as a Z -graded object in LCy, we see that
V ~ W ®x k[t] is free. This, and semisimplicity of LCy, implies projectivity
of V.

O
Let us call an object V' € A essentially strict, if “lim” (V') is an essentially
strict object of Ind(LCy), i.e., is isomorphic to “lim” (M) where M € A*.

—

Lemma 4.1.17. If V € A is essentially strict, then there is M € A° and
an epimorphism q : V. — M in A such that “lim ”(q) is an isomorphism in
Ind(LCy).

Proof of the lemma: For each i consider the diagram of epimorphisms
Vi — In{V; = Viga) — In{V; = Viga} — -

If V is essentially strict, these epimorphisms eventually become isomor-
phisms, so the terms of the diagram stabilize to some M; € LCy, and we
get the diagram of monomorphisms

M == {M0—>M1—>}

We see that M € A° equipped with a natural epimorphism ¢ : V' — M in A
which induces an isomorphism on the “lim”. ]

We now prove part (a) of Proposition 4.1.14. Let f : A — B be an
epimorphism in Ind(LCy) with B essentially strict. We prove that f splits.
By Lemma 4.1.15, f is isomorphic to f' = “lim”(g) where g : N — V
is a surjection in A. It is enough to prove that f’ splits. Now, V € A is
essentially strict, so by Lemma 4.1.17, there is a surjection ¢ : V — M in
A with M e A® and such that “lim”(q) is an isomorphism. It is enough
therefore to prove that the epimorphism f” = “lim” (gg) splits in Ind(LCy).
But qg : N — M is a surjection in 4 with M projective. So qg splits in A
and therefore f” splits in Ind(LCy). This proves part (a).

Part (b), follows by considering the 2-term resolution (4.1.13). Proposi-
tion 4.1.14 is proved.

44



Corollary 4.1.18. (a) Every object of D*(ILCy) ~ D*(“ILCy) is quasi-
isomorphic to its graded object of cohomology equipped with zero differential.
(b) The triangulated category Tatey is equivalent to the bounded derived
category of the abelian category © Tay.
(c) Any strict Tate complex V'* can be split into a direct sum of complezes
(over ILCy) V* = H* @ E*, where E* is exact and H* has zero differential
(and is thus a graded Tate space isomorphic to H*(V*).) O

Inside Tate, we have the full dg-subcategories: Perfy, complexes with finite-
dimensional cohomology; Dy, complexes with discrete cohomology; Cy, com-
plexes with linearly compact cohomology. Thus Perfy = Cyx n Dy and the
associated cohomology categories are identified as

[Perfy ] ~ Db(Vect]), [Dy]~ D°(Vecty), [Ck]~ D*(LCy).

Proposition 4.1.19. [Tateg|is the smallest strictly full triangulated sub-
category in DP(ILCy) which contains [Dy],[Ck] and is closed under direct
summands.

Proof: Let T be the smallest subcategory in question. Then [Tatex]| < T,
because any object of the quasi-abelian category Tay is a direct sum of an
object from Cy and an object from Dy. Conversely, ¥ Ta, = YILCy is closed
under extensions. Therefore forming cones and direct summands, starting
with Ob(Cx) uOb(Dy) will always give complexes whose cohomology objects
lie in “Tay. O

4.2 Tate objects in dg-categories

A. Ind- and pro-objects in dg-categories. For background on ind-
and pro-objects in a (stable) co-category C we refer to [Lu7], §5.3. In this
paper we consider only ind- and pro-objects represented by countable filtering
diagrams. Such objects form new oo-categories Ind(C), Pro(C). Thus, objects
of Ind(C) can be represented by symbols “holimjc; z; where I is a countable
filtering oo-category and (x;);es is an co-functor I — C. Similarly, objects of
Pro(C) can be represented by symbol “holimjc; y;, where I is as before and
(yi)ier is an oo-functor 1°? — C.

We apply these concepts to dg-categories by converting them to k-linear
oo-categories by using the dg-nerve construction [C][Fao]. The resulting
(countable) ind- and pro-categories associated to a dg-category A will be
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denoted Ind(A) and Pro(A). They are still k-linear oo-categories that we
can and will see as dg-categories. We note that, with this understanding,
Ind(A) and Pro(.A) are perfect, whenever A is perfect. Let us point out the
following more explicit description.

Proposition 4.2.1. Let A be a dg-category. Then:

(10) Ind(A) is quasi-equivalent to its full dg-subcategory whose objects are
“holim” z;, where

() = xo&,xlﬂ,@&...}

is a diagram consisting of objects x; € A, © = 0 and closed degree 0
morphisms fi;41 1 T — Tiy1.

(11) We have quasi-isomorphisms (“e-0 formula”):
Homg, g A)(“holim”xi, “holim”y;) =~ holim, h_)olimj Hom? (,y;),

where the homotopy limits on the right are taken in the model category
dgVect, of complexes.

Remarks 4.2.2. (a) The holimj in (I1) is the same as the naive inductive

limit in dgVect,, see Proposition A.3(a).

(b) By duality we get a description of Pro(A) = Ind(.A°?)° in terms of
symbols “holim”z; where (z;) is a diagram of objects and closed degree 0
morphisms in the order opposite to that of (10).

Proof of Proposition 4.2.1: By definition, objects of Ind(.A4) are represented
by oo-functors I — A where [ is a filtering co-category. In our setting we
assume that Ob([/) is at most countable. As in the classical case, any filtering
I admits a cofinal co-functor from a filtering poset ([Lu7], Prop. 5.3.1.16),
and in the countable case we can take this poset to be Z,. Now, the category
corresponding to the poset Z,, is freely generated by the elementary arrows
i — 1+ 1. Therefore any oo-functor =z : Z, — A can be replaced by an
honest functor obtained by extending x from these elementary arrows. Such
functors are precisely the data in (I0). Finally, the appearance of the “e-0
formula” in (I1) from conceptual properties of Ind(A) is explained in [Lu7],
p.378. O
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B. Tate A-modules. Let A be a Z<p-graded commutative dg-algebra. For
any m € Z we then have the full dg-category Perf$™ < Perf 4 formed by those
perfect dg-modules over A which, as complexes, are situated in degrees < m.
Recall that the duality functor M — MY = RHom4(M, A) identified Perf 4
with its dual. We define the full subcategories in Perf 4:

Perf3' = (Perf$™)Y, Perf%’m] = Perf3' n Perf§™, 1< m.
We define then the oo (or dg-) categories

D,y = UInd(Peer'm]) c Ind(Perfy), Ca = UPro(Perf%’m]) < Pro(Perfy)
lm lm

formed by ind- or pro-diagrams of which all terms belong to Perf[j"m] for some

[,m (depending on the diagram). These categories are dual to each other.

The category Dy is tensored over the category Vecty of all (possibly
infinite-dimensional) k-vector spaces. In particular, with each object M it
contains k[2|@ M = @]~ , M, the direct sum of infinitely many copies of M.
The category C 4 is tensored over the category of linearly compact topological
k-vector spaces. In particular, with each object M it contains k[[2]|®M =
[1,2, M, the direct product of infinitely many copies of M.

We define the dg-category Tatey of Tate A-modules as the perfect enve-
lope of the full dg-subcategory in Ind(Pro(Perf4)) whose class of objects is
Ob(C4) U Ob(Dy,). Since Ind(Pro(Perf,)) is a perfect dg-category, we can
view Tates as the minimal dg-subcategory in Ind(Pro(Perf4)) containing
C4,D4 and closed under forming shifts, cones and homotopy direct sum-
mands.

Remark 4.2.3. This is a slight modification of the definition in [He3] in that,
besides restricting to countable ind- or pro-diagrams, we force all objects to
be “bounded complexes”. In particular, an infinite resolution of a non-perfect
A-module M (and thus such an M itself) would be an object in Ind(Perf4)
but not in D 4. In particular, it is, a priori, not an object of Tate4.

Proposition 4.2.4. Let A = k. Then, in comparison with the constructions

from §4.1:
(a) Dy is quasi-equivalent to Dy ~ C®(Vecty) and Cy to Cy ~ C*(LCy);
(b) Tateq (for A = k) is quasi-equivalent to the category of Tate com-
plexes from §4.1.
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Proof: (a) Let us show the first identification, the second one follows by
duality. It is known that Ind(Perfy) = dgVect,. (Both homotopy limits in
the RHS of (I1) can be replaced by the ordinary projective resp. inductive
limits because of Proposition A.3(b1).) Then Dy and C°(Vecty) are full
subcategories of dgVect, and have the same objects.

We now prove part (b). Let us denote temporarily by Tates—j the dg-
category obtained by specializing the above definition of Tates to A =k, as
distinguished from the dg-category Tatey defined in §4.1. Let

[P = | JInd(Pro(Perfi™)) = Ind(Cy).
lym

Then Tates—x is the perfect envelope of CDy, the full dg-subcategory in I Py
on the class of objects Ob(Cy) U Ob(Dy). Similarly, since C*(ILCy) is a
perfect dg-category, Proposition 4.1.19 implies that Tatey is identified with
the perfect envelope of CDy, the full subcategory in C®(ILCy) on the class
of objects Ob(Cx) u Ob(Dy). Let us denote both identifications Dy, — Dy
and Cyx — Cx from part (a) by the same letter A (taking the limit). Then it
is enough to prove the following,

Lemma 4.2.5. Let V = “holim” V;* be an object of Dy and W = “holim” W?
be an object of Cy, with V.*, resp. WS being an inductive resp. projective
system over Perf][(l’m]. Then the natural morphisms of complexes

Homjp (V,W) — Homéb(ILCk)()‘(v)a AW)),
Homjp (W, V) — Hom&’b(ILCk)()‘(W)v AV))

are quasi-isomorphisms.

Proof of the lemma: We can assume that (V,*) consists of injective morphisms
and (W) consists of surjective morphisms of perfect complexes. Then, apply-
ing the formula (I1) from Proposition 4.2.1 twice, we realize Homjp, (V, W)
as double holim of a diagram of perfect complexes and surjective maps. Ap-
plying Proposition A.3(b) once, we replace the first holim by lim and get a
holim of a diagram of complexes and surjective maps. Applying Proposition
A.3(b) once again, we replace the second holim by lim. After this the result
reduces to the set of continuous morphisms of complexes A(V') — A(WV).
Similarly, we realize Homjp (W, V') as double holim of a diagram of per-
fect complexes and injective maps. Applying Proposition A.3(a), we reduce
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it to double lim which again gives the space of continuous morphisms of
complexes A(W) — A(V'). This proves the lemma and Proposition 4.2.4.
O

Proposition 4.2.6. The construction E — A%(E) = T'(J, Q}/DO ® T*E)

defines an exact functor
RT': Perfps — Tatey.

This statement, as well as the stronger Proposition 5.5.1 later, can be
seen as analogs, in our setting, of Theorem 7.2 of [Dr].

Proof. The functor F(j ;25 pe ® —) is naturally made into a (strict) functor
Modpg — Ind Pro Perfy,

where B is the ring of function of the affine scheme J. Deriving this functor,
we get an exact dg-functor

Dieon(-J) = dgModz — Ind Pro Perfy,
which restricts along 7* to the announced functor
RI': Perfp. — Tatey.
O

4.3 The Tate class, the residue class and the local
Riemann—Roch

A. The Tate class in cyclic cohomology. We start with a delooping
result.

Theorem 4.3.1. There is a canonical isomorphism
HC\(Tatey) ~ HC,_1(Perfy) ~ HC, (k).

Proof. Let us consider the morphism of localization sequences (of perfect
dg-categories):

Perfy Cx Ck/ Perfy
Dy Tatey Tatey /Dy
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It follows from [He3, Proposition 4.2] that the functor « is an equivalence.
We will deduce the result from the following lemma.

Lemma 4.3.2. If A is a perfect dg-category with infinite direct sums, then
the cyclic complex CC(A) is acyclic. In particular HC,(A) ~ 0.

Let us postpone the proof of the lemma for now. The categories Cy and
Dy both admit infinite sums, and therefore have vanishing cyclic homology.
Using the localization invariance of HC' (see Theorem 2.1.8), we get quasi-
isomorphisms

CC(Tatek) - C’C(Tatek/Dk) — OC(Ck/ Perfk) - C’C’(Perfk)[l]

This concludes the proof of Theorem 4.3.1. O]

Proof (of Lemma 4.3.2): We use the following fact (see [Ke2]): if f, g are
two functors from A to B and B is perfect (in particular, has direct sums),
then the action of f ® g on HC is the sum of the action of f and of g.
Specifying to the case f = @;io Id and g = Id, then f ® g ~ f and we get
HC(g) = HC(1d) = 0. O

Definition 4.3.3. Let us denote by 7 the class 7 € HC!(Tatey) given by the
image of the trace class through the isomorphism HC?(k) ~ HC'(Tatey).
For any object V € Tatey we have a class 7y € HC'(End(V)) induced by 7.

Remark 4.3.4. The class 7y vanishes (by construction) as soon as V' belongs
to either Cy or Dy.

B. Comparison with the residue class and local Riemann-Roch.
The Tate complex A is, as the same time, a commutative dg-algebra . We
note that (left) action of A? on itself gives rise to a morphism of associative
dg-algebras which we call the reqular representation

[ A} — Endrate, (A;).

In other words, for each p and each a € AP, the multiplication operator
l(a) : Ay — A2 [p], is a continuous morphism of graded objects of ILCy. This
follows from the fact that the filtration on A? from Corollary 1.2.8 which, by
Example 4.1.10, gives the inductive limit representation of A?, is compatible
with multiplication.
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Theorem 4.3.5. There exists a non-zero constant A € k with the following
property. The pullback I*Tgaa(as) of the Tate class Tgnacas) with respect to
is a class in HC(A?) equal to X - p, where p is the residue class, see §2.3.
Proof: For any associative dg-algebra R* let us denote by BR*® the corre-
sponding dg-category with one object. The global section functor

RI': Perf 4o ~ Perfp. — Tatey

from Proposition 4.2.6 is compatible with the map /. In other words, we have
a commutative diagram of dg-categories

BA; Perf 4o
Lz jRF
B(End(A?)) — Tatey

where the horizontal functors map the one object onto A?. In particular we

have
*Tena(as) = RU*1 € HC'(Perf(A)) ~ HC'(A}).

Recall that the dg-category Perf,. ~ Perfp. is the dg-quotient of Perfp,
by the full subcategory Perfp, 1oy spanned by perfect complexes supported
at 0. The global section functor I'p : Perfp — Cy hence induces a functor
G and a commutative diagram

Perf gy (D) — Perf(D) —L - Perf(D°)

jr{o} Lan ja

Perfk Ck Ck/ Perfk
| .
Dk Tatek e Tatek/Dk.

Lemma 4.3.6. The composite functor () o RI' is equivalent to the composite

ao(.

Proof: From the universal property of Perf(D5) as a quotient of Perf(D,,),
it suffices to compare () o RI'o P and a o Go P ~ () oi 0 g. The inclusion
HO(A?) — A® induces a canonical natural transformation a o g — RI' o P.
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In turn, it induces the required equivalence (as the pointwise kernel of the
natural transformation is killed by the projection Q). n

It follows from this lemma that RI'™7 equals the composite

r
HC,y (Perf(DS)) = HCy(Perfp, 1)) —= HCo(Perfy).

Let us write z, for the coordinate system z,--- , 2, on D, and denote, as in

§1.4, by V' = @ kz; the space spanned by the z;. In what follows we will pay

attention to the GL,-action on various spaces arising.

The dg-category Perfp, (oy is compactly generated by k (considered as a
trivial k[[z.]]-module), and we have a GL,-equivariant identification

(4.3.7) REndyq..y(k) =~ Exty,.(kk) =~ S*(V*[-1])

with the exterior algebra of V' graded by its degree. Using [SS], we get a
Morita equivalence between Perfp, (0 and R Endy.,jj(k) (a version of the
classical S—A duality [GM]). Under this Morita equivalence, the functor I'yg
amounts to the augmentation morphism S*(V*[—1]) — k. The induced map
HCy(Perfp, (0y) — HCy(Perfy) is thus non-trivial. It is also G'L,-invariant.

Lemma 4.3.8. HCy(Perfp, (o)) admits a unique G L, -coinvariant class.

Proof: Consider the Hodge decomposition of HC,(S*V*). The part of weight
p is computed by the complex S*(V*[—1]) ® ASP(V*[—1])[2p] with the de
Rham differential. The de Rham differential is G L,,-equivariant. Therefore,
to compute the GL,-coinvariant elements in the cyclic homology at hand, it
suffices to understand the action on each degree of the graded vector space

S (V*[-1) @ AP (V¥ [-1])[2p] ~ DD NV @ SV*[2p — (20 — j)]
§=0 i=0
The G L,-representation A/V*® S*V* has simple spectrum and admits coin-
variants if and only if i = j = 0. We get
k ifm=2p

0 else.

HCP(S*(V*[-1]))aL, = {

In particular HCy(S*(V*[—1])) has exactly one invariant 1-dimensional sub-
space.
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O

We now finish the proof of Theorem 4.3.5. The residue HCy(A,) —
HCy(k) is GL,-invariant and vanishes when restricted to HC) (k[[z.]]). The
long exact sequence

- — HCy(K[[2]]) — HCy(A,) =5 HCy(S*(VF[-1])) — -

implies that 6 maps isomorphically the unique invariant line of HC;(A,,) onto
the unique invariant line of HC,(S*(V*[—1])). This concludes the proof of
Theorem 4.3.5.

Remark 4.3.9. Since k is allowed to be an arbitrary field of characteristic 0,
we have A € Q*. We expect A = +1. This can be possibly proved either by
direct calculation or by upgrading some of the considerations of this paper
to fields of arbitrary characteristic.

Recall (Proposition 3.1.2) that the class 7y € HC'(End(V)), V € Tatey
gives a Lie algebra cohomology class 6*7y in HZ, (End(V)). We will also call
0*7, the Tate class. Let us consider the following particular case.

Let r = 1and V = (A2)®". As before, we have then the regular represen-
tation (morphism of dg-algebras) [, : Mat,(A?) — Endrage, ((A2)®") which
we can also see as a morphism of dg-Lie algebras.

Corollary 4.3.10 (Local Riemann-Roch). The pullback I} (6*7(as)er) is equal
to the class of the cocycle A-yp., where X is the same as in Theorem 4.3.5 and
vp, 18 the special case, for P(x) = P.(z) = tr(x™™)/(n + 1)!, of the cocycle
defined in Theorem 3.2.1. O

We note that P,(z) is the degree (n+ 1) component of tr(e”), the “Chern
character” of x. Corollary 4.3.10 can be therefore seen as a simplified version
of a local Riemann-Roch-type theorem where we take into account the in-
finitesimal symmetries of a vector bundle but not of the underlying manifold.

5 Action on derived moduli spaces
In the rest of the paper we will relate the dg-Lie algebra g7 and its central

extensions, with derived moduli spaces of principal bundles on n-dimensional
manifolds. We start with recalling the general setup.
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5.1 Background on derived geometry

A. General conventions. We will work in the framework of derived al-
gebraic geometry. For general results on the subject, we refer to [TV]. For a
comprehensive survey, the reader may look at [To2].

Derived algebraic geometry can be though as algebraic geometry, where
rings are being replaced by “homological rings”. Namely, the category of
k-algebras will be replaced the category Cdgay" formed by Z<p-graded com-
mutative dg-algebras over k (up to quasi-isomorphisms). It is naturally made
into a model category. Moreover, the usual notions of Zariski open or closed
immersions, flat, smooth or étale morphisms extend to morphisms in Cdgalfo.
In particular, one can form an étale Grothendieck topology.

Given any commutative algebra, one can consider it as an object in
Cdgay® concentrated in degree 0. On the other hand, for any object A €
Cdgalfo, the cohomology space H°A is a commutative algebra. We also get
a canonical morphism A — HYA.

Let also sSet be the category of simplicial sets. Given two objects A, B €
Cdgay’, we get a simplicial set of morphisms Map(A, B). In particular, we get
a Yoneda functor mapping A to a covariant functor Spec A: Cdgay’ — sSet.

A derived prestack is a covariant functor Cdgag” — sSet. A derived stack
is a derived prestack satisfying the natural homotopy étale descent condition.
A derived stack representable by a cdga is called a derived affine scheme. We
will denote by dAffy the category of derived affine schemes. It is equivalent
to the opposite category of Cdgay".

B. Derived stacks and derived categories. The category of derived
stacks will be denoted by St. It will be considered either as a model category,
or as an co-category. Given A € Cdgay’, the category of A-dg-modules is
endowed with a standard model structure. We denote by dgMod, the (k-
linear) dg-category of fibrant-cofibrant A-dg-modules. Given a derived stack
Y, we define, following [To3]

Dyeon(Y) = holimS dgMod 4

pec A—>Y

(homotopy limit in the model category of dg-categories). An object in
Dgcon(Y') can be informally described as the data of a A-dg-module M4 4
for any A € Cdgag® and any map ¢ : Spec A — Y, together with natu-
ral homotopy glueing data. We also define the Zg-graded derived category
DS2 (V) € Dyeon(Y) formed by (M4 4) consisting of Zg-graded dg-modules.

qcoh
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Example 5.1.1. Any M € DjC%h(Y) gives rise to the dual number stackY [ M|

defined by gluing Spec(A @ M, ,) (the trivial square zero extension).

Note that for any map f: Y — Z, one gets an adjunction
Lf*: choh<Z) = choh(Y) : Rf*

For example, for ¢ : Spec(A) — Y and M € Dyeon(Y'), the object Lo*M is
just the structure datum M, , (we identify Dycon(Spec A) with dgMod ).

Another example: if Z = Speck and f is the canonical projection, then
Rfi: Dgeon(Y) — dgMod,, computes the cohomology of Y with values in a
given object in Dgeon(Y).

We will also need not necessarily quasi-coherent sheaves. The functor
A — dgMod, lands in dg-categories, hence in (k-linear) oco-categories. Let
¢: §dgMod — dAffy denote the associated Cartesian Grothendieck construc-
tion (see [Lu7, Chap. 3]).

Definition 5.1.2.Let Y be a derived stack. We define its derived category
of Oy-complexes D(Y") as the co-category of sections dAffy /Y — {dgMod of
& over Y.

Note that by [Lu7, 3.3.3.2], the oco-category Dgcon(Y') is the full sub-
category of D(Y') spanned by Cartesian sections. Informally, an object in
M e D(Y) is the data of A-dg-modules M4, for any map ¢: Spec A —
Y, together with coherence maps (;: My s ®4 B — Mp 4oy for any map
f: Spec B — Spec A and higher coherence data. The module M is then
quasi-coherent if and only if all the maps (; are quasi-isomorphisms.

The category D(Y') admits internal homs that we will denote by R Home,, .

C. Geometric objects and tangent complexes. For the definition of
geometric derived stacks (or, what is the same, derived Artin stacks) we refer
to [TV].

This class includes, first all derived schemes, that is, derived stacks that
are Zariski locally equivalent to derived affine schemes. Following [Lul],
one can represent derived schemes in terms of "homotopically” ring spaces.
Namely, a derived scheme X is a topological space together with a sheaf (up
to homotopy) of Z<-graded cdga’s Ox such that (X, H(Ox)) is a scheme.

In fact, a derived Artin stack is a derived stack that can be obtained from
derived affine schemes by a finite number of smooth quotients.
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The cotangent complex Ly of a derived stack Y is an object of Dycon(Y)
defined (when it exists) by the universal property

Mapp,__, vy (Ly, M) ~ Mapy,s,(Y[M],Y), M €D

qcoh

(¥).

Here Y/St is the comma category of derived stacks under Y. The object Ly
is known to exist [TV] when Y is geometric (no smoothness assumption).
The tangent complex Ty is defined as the dual

Ty = RHOHIOY(Ly,Oy) € D(Y)

If Y is locally of finite presentation [TV], then Ly is a perfect complex and
hence so is Ty. In particular Ty is an object of Dgeon(Y).
For a k-point 7, : y — Y we will write

Tyyy = L’ZZ (Ty) = RHOI’H()Y (Ly, Oy)

for the tangent complex of Y at y. This is a complex of k-vector spaces.

D. Derived intersection: Given a diagram X — Z < Y, we have the
derived (or homotopy) fiber product X x% Y. If X,Y,Z are affine, so our
diagram is represented by a diagram A — C — B in Cdgalfo, then

X x%Y = Spec(A®¢ B).

We will be particularly interested in the following situation. Let f: X — Y
be a morphism of derived stacks, and y € Y be a k-point. Then we have the
derived stack (a derived (affine) scheme, if both X and Y are derived (affine)
schemes)

Rf7'y) = X x¥ {y}.

It will be called the derived preimage of y. It is the analog of the homotopy
fiber of a map between spaces in topology.

5.2 The Kodaira—Spencer homomorphism

A. Group objects and actions. By a group stack we will mean a stack G
together with simplicial stack G, such that Gg ~ Speck, G; ~ G and which
satisfies the Kan condition: the morphisms corresponding to the inclusions
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of horns are equivalences. Intuitively, GG, is the nerve of the group structure
on G, see [Lu6, §4.2.2] for more details.

Similarly, an action of a group stack G (given by G,) on a stack Y is a sim-
plicial stack Y, together with a morphism ¢ : Y, — G, with an identification
Yy ~ Y such that, for any m, the morphism

(me a{777,}<—>{0,1,...,m}) : Ym - Gm X YE)

is an equivalence. In this case Y, satisfies the Kan condition. Intuitively,
Y, is the nerve of the “action groupoid”. The “realization” of Y, i.e., the
derived stack associated to the prestack A — |Y,(A)], is the quotient derived
stack [Y/G]. In particular, we have the stack BG = [+/G], the classifying
stack of G.

Examples 5.2.1. (a) Let Y be a derived stack and y € Y be a k-point. The
pointed loop stack

QY = {y} x5 {y}: A QY (A),y)

is a group stack. The corresponding simplicial stack (£,Y"), is the (homo-
topy) nerve of the morphism {y} — Y, i.e.,

(Q,Y)m = {y} >y {y} <y =y {y} =~ (QY)"
((m + 1)-fold product).
(b) Let Y be any derived stack. Its automorphism stack is the group stack
RAut(Y): A— Mapg%/specA(Y x Spec A, Y x Spec A)

Here the superscript “eq” means the union of connected components of the
mapping space formed by vertices which are equivalences. Alternatively, we
can describe it as the functor

A Q(St/Spec A, Y x Spec A),

the based loop space of the nerve of the category of derived stacks over Spec A
with the base point being the object Y x Spec A. By construction, we have
an action of RAut(Y) on Y; an action of a group stack G on Y gives a
morphism of group stacks G — RAut(Y).
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Proposition 5.2.2. Let f: X — Y be a map of derived stacks and y € Y
be a k-point. Then the group stack 2,Y has a natural action on the derived
preimage Rf~(y).

Proof: We define the simplicial stack Rf~*(y), as the nerve of the morphism
Rf 1 (y) - Y, ie,

RITYW)m = RF'(y) x5 RF'y) <k - x§X RfF ' (y) =~
~ {yb oy {y) <y oxp X~ (Q,Y)" x RFTH(y).
All the required data and properties come from contemplating the commu-

tative diagram
Rf7H(y) — X

|

{y} Y.

]

Example 5.2.3 (Eilenberg-MacLane stacks). Let II be a commutative
algebraic group (in our applications IT = G,,,). For each r = 0 we then have
group stack EM(II, n), known as the Eilenberg-MacLane stack. Tt is defined
in the standard way using the Eilenberg-MacLane spaces for abelian groups
II(A) for commutative k-algebras A.

Thus EM(IL,0) = II as a group stack, i.e., the corresponding simplicial
stack EM(II, 0), = II, is the simplicial classifying space of II. Similarly (the
underlying stack of the group stack) EM(II, 1) is identified with BII. In
general, if we denote EM(II, n), the simplicial stack describing the group
structure on EM(TT, n), then [EM(IT, n)| = EM(II,n + 1).

Definition 5.2.4.Let GG be a group stack and Il a commutative algebraic
group. A central extension of G by II is a morphism of group stacks ¢ : G —
BII or, what is the same, a morphism of stacks BG — EM(II, 2).

A central extension ¢ gives, in a standard way, a fiber and cofiber sequence

of group stacks N
1-10I—G—G—-1,

where G is the fiber of 0.
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B. Formal moduli problems.  We recall Lurie’s work [Lu3] on formal
moduli problems which serve as infinitesimal analogs of derived stacks.

Definition 5.2.5. A cdga A € Cdgag’ is called Artinian, if:

e The cohomology of A is finite dimensional (over k);

e The ring H°A is local and the unit induces an isomorphism between k
and the residue field of H°A.

In particular, any Artinian cdga admits a canonical augmentation (the
unique point of Spec A). Artinian cdga’s form an co-category which we will
denote by dgArt,.

Definition 5.2.6. A formal moduli problem is a functor (of co-categories)
F: dgArt, — sSet
such that:
(1) F(k) ~ = is contractible.
(2) (Schlessinger condition): For any diagram A — B « C in dgArt,

with both maps surjective on H°, the canonical map F(A x% C) —
F(A) <}y F(C) is an equivalence.

We denote by Fun,(dgArt,, sSet) the (co-)category of functors from dgArt,
to simplicial sets satisfying the condition (1) of Definition 5.2.6, and by FMP
the full subcategory of formal moduli problems. General criteria for repre-
sentability of functors imply (see [Lu3], 1.1.17) that we have a left adjoint
(the “formal moduli envelope”)

(5.2.7) L : Fun,(dgArt,, sSet) — FMP
to the embedding functor.

For a formal moduli problem F' we define its tangent complex Tr (at the
only point = of F'). This is a complex of k-vector spaces defined as follows.
First, we define

TP = F(k[e,]/e2), deg(e,) = —p, p>0.

These simplicial sets are actually simplicial vector spaces, forming a spectrum
in the sense of homotopy theory, that is, connected by morphisms (in fact,
by equivalences) 7}(,13 ) Q’Egp . We define the complex Tr to correspond
to the spectrum (7;90 )) by the Dold-Kan equivalence.
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Theorem 5.2.8 (Lurie). For any formal moduli problem F, the complex
Tr[—1] has a homotopy Lie structure. Moreover, the data of F is equivalent
(up to homotopy) to the data of a complex T = Tg[—1] and of a dg-Lie
structure on this complex.

For future reference we recall from [Lu3] §2, the characterization of the
Lie algebra structure on Tr[—1]. For a graded k-vector space M* let FL(M*)
be the free graded Lie algebra (with zero differential) generated by M®. De-
note by FLieg! be the full (co-) subcategory in dgLie, whose objects are
FL(M*®) where M* is finite-dimensional and situated in degrees > 1. For
any L € FLieg! the Chevalley-Eilenberg cochain algebra CE*(L) is an object
of dgArt,. In fact, CE*(L) is quasi-isomorphic to the dual number algebra
k@ (M*)*[—1], see [Lu3] (2.2.15). We then have

(5.2.9) Mapg,pie, (L, Tr[-1]) = F(CE*(L)), L e FLieg!

(identification of functors on FLieg'). Note that this defines the dg-Lie al-
gebra structure uniquely.

We will also need the following global analog of the Schlessinger condition,
see [TV, Def. 1.4.2.1].

Definition 5.2.10. A derived stack Y is infinitesimally cartesian if the fol-
lowing condition holds. Let A € Cdgag’, M € dgMod5 ™" and

M — B— A-% M[1]

be a square zero extension of A by M. Then the square

F(B) F(A)
lF(1+6)
F(A)—= F(A® M[1])

F(1)
1S cartesian.

It is known that any derived Artin stack is infinitesimally cartesian [TV,
Prop. 1.4.2.5].

60



Example 5.2.11. Any infinitesimally cartesian stack Y and any k-point y €
Y defines a formal moduli problem

Yy A Y (A) x50y}

Its tangent complex ’]Tf,y is identified with Ty, = Hom(Ly, k,), if Ly exists
(e.g., if Y is geometric). In other cases it can be considered as the definition of
Ty,. By Theorem 5.2.8, the shifted complex Ty, [—1] carries a homotopy Lie
structure. It is an analog of the fundamental group 7 (Y, y) of a topological
space Y at a point y.

For any derived stacks Y and X we define the mapping stack
RMap(Y, X) : A — Mapg;/gpec a(Y x Spec A, X x Spec A).

Notice that RAut(Y") is an open substack in RMap(Y, YY), that is, the pull-
back of it under any morphism U — RMap(Y,Y) from an affine derived
scheme U, is an open subscheme in U.

Proposition 5.2.12. (a) If Y is an infinitesimally cartesian derived stack,
then so is RMap(X,Y) for any X. Moreover, suppose Y is geometric and
f+ X — Y is any morphism, representing a k-point |f] of RMap(X,Y).
Then the tangent compler Tryap(x,v),[f] (defined as the tangent complex of
the associated formal moduli problem) is identified with RT'(X, f*Ty).

(b) Further, if Y is infinitesimally cartesian, then so is RAut(Y). In this
case T]RAut(X),Id 18 RF(X, Tx)

Proof. (a) Consider the full subcategory C of St spanned by those X € St
such that RMap(X,Y') is infinitesimally cartesian. Since Y is infinitesimally
cartesian, C contains all derived affine schemes. The category C is moreover
stable by (homotopy) colimits. We get C = St. The identification of the
tangent complex is the standard argument using the universal property of
Ly and the appropriate adjunctions.

(b) Follows from (a) because RAut(X) is a open in RMap(X, X) and so
their completions are identified. O

C. The Lie dg-algebra of a group stack. Let G be a group stack (rep-
resented by a simplicial stack G,, as in part A). Assume that the completion
@1 is a formal moduli problem (this is true, for example, if G is infinitesi-
mally cartesian). In this case we have the tangent complex Lie(G) = Tq 1,
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naturally made into a dg-Lie algebra. Explicitly, we form the “classifying
formal moduli problem” B(G) as the formal moduli envelope (5.2.7) of the
functor

A — holim (G,); (A), dgArt, — sSet.

Then Lie(G) is, as a dg-Lie algebra, identified with Ty 4 [—1].
Examples 5.2.13.(a) This construction extends the classical correspon-
dence between group schemes and Lie algebras. Further, if Il is a com-

mutative algebraic group, then Lie(EM(II,n)) ~ Lie(II)[n], an abelian Lie
algebra Lie(II) put in degree n.

(b) For the group stack Qy,, of loop spaces, we have Lie(2,Y) = Ty, [—1],
because B((Qy,,);) is identified with Y,.

(c) Let G be a group stack such that G, is a formal moduli problem,
and g = Lie(G). A central extension of G by G,,, i.e., a morphism of group
stacks ¢ : G — B(G,,) gives, after passing to Lie dg-algebras, a morphism
Lie(¢) : g — k[1], since Lie(G,,) = k. By Proposition 3.1.1, Lie(¢) gives rise
to a cohomology class v, € Hi (g, 7).

D. The Kodaira-Spencer morphism. Let f: X — Y be a morphism
of derived stacks and y € Y be a k-point. Assume that Y}, is a formal moduli
problem and the homotopy fiber Rf™!(y) is geometric. In particular, we
have the cotangent complex Lgs-1(,).

Definition 5.2.14. The Kodaira-Spencer morphism of f is the morphism of
homotopy Lie algebras

ki Tyy[=1] — RU(Rf™(y), Trs-1y)
obtained as the differential, at the identity element, of the action
(5.2.15) a:Q,Y — RAut(Rf '(y))

from Proposition 5.2.2. Here we use Proposition 5.2.12(c) to identify the
tangent to RAut.

Proposition 5.2.16. Assume X is geometric, so we have the normal fiber
sequence in D(Rf~(y))

Tri-1) — Tx @6y Orp-1(y) — Tyvy Ok Ors1(y)-
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Let 0 be the coboundary map of this triangle. Then k is identified, as a
morphism of complexes, with the composite of 6|—1] with the adjunction map

TY,y — RF(Rf_l(y), TY,y X ORf—l(y)).

Proof: We deduce the claim from a more general local statement. Let 7 :
F — X be any morphism of geometric stacks. We then have the relative
tangent complex Tr/x on X fitting into the exact triangle

Let us form the “groupoid stack” Z, with Z, = F x% ... x% F ((n + 1)
factors). Thus Zy = F (the objects), Z; = Z := F x’% F (the morphisms)
and so on. The second projection py, : Z — F defines an action of the
groupoid Z, on F' which we write as

QZXFF—>F

The tangent, at the identities of the groupoid (which are represented by the
diagonal embedding e : F' — Z) of a is a map

d@ . 6*(Tz/p) — TF

of which the source is identified, via the projection p; : Z — F, with Tp/x.
The following is then obvious.

Lemma 5.2.18. In the above situation, da is identified with the canonical
morphism ¢ : Tp/x — Tp. ]
We now deduce Proposition 5.2.16 from the lemma. Let F' = Rf~!(y) -
X be the inclusion of the homotopy fiber. By definition, the action a from
(5.2.15) comes from the action a, while §[—1] class from the normal sequence,
as in the proposition. We now note that the normal sequence is canonically
identified with the shift of the triangle (5.2.17), that is, Ty, ® Op (the
“normal bundle” to F') is the same as Tp/x[1]. This finishes the proof.

5.3 Derived current groups and moduli of G-bundles

A. Derived moduli spaces. Let G be a reductive algebraic group over
k with Lie algebra g. Let X be a smooth irreducible algebraic variety over

63



k and z € X be a k-point. Recall the notations ¥ = SpecOx, ~ D,, and
2° =7 — {x} ~ D, for the (punctured) formal neighborhood of = in X.

Recall that principal G-bundles are classified by the 1-stack BG = [+/G]:
for any scheme Y, the (nerve of the) groupoid of principal G-bundles on
Y is equivalent to the simplicial set of maps ¥ — BG. This allows us to
define the notion of principal G-bundles over a derived scheme Y: first, we
denote by RBung(Y') the simplicial set of morphisms Y — BG. A vertex in
that simplicial set is called a principal G-bundle on Y. We then define the
derived moduli stack of principal G-bundles over Y as the following functor
from Cdgay" to simplicial sets:

RBung(Y) = RMap(Y, BG): A — RBung(Y x Spec A).
Fundamental for us will be the derived stack RBung(X).

Proposition 5.3.1. Let P be a principal G-bundle on X and [P] € RBung(X)
be the corresponding k-point. Then

Tpy RBung(X) ~ RI(X,Ad(P))[1].

Proof: Follows from Proposition 5.2.12 with Y = BG.

We then define RBung () as the functor
A — RBung(Spec(A R @ny)), A &y @X,z = holim(A ®x Ox/I"). <
Here 7 is the ideal of x.

Remark 5.3.2. Note that the definition of RBung(Z) is not the result of
applying the construction RBung(Y') to the scheme Y = Z. More precisely,
for any integer n, denote by 2™ = Spec(Ox/Z"), the n' infinitesimal neigh-
borhood of z in X. Then

RBung(%) ~ holim RBung(z™) = RBung(Spf Ox.,)
is a particular case of RBun construction but for a formal scheme.

We have the restriction map

A : RBung(X) — RBung(2).
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Definition 5.3.3. The derived stack of G-bundles on X rigidified at z is
defined to be

RBung?(X, z) = RBung(X) xfpung @ {Trivy = RA™(Triv),

z

where Triv = X x G denotes the trivial bundle. For any cdga A, the simplicial
set of A-points of RBung (X, x) is

RBung (X x Spec A) x” 9 {Triv}.

RBung (Spec(A®@X,z

In other words, this is the groupoid formed by G-bundles on X x Spec A
endowed with a trivialization on Spec(A ® 0 Xa)-

Proposition 5.3.4. (a) The derived stack RBunp#(X, x) is represented by
a derived Artin stack.

(b) If X is projective, then RBungg(X, x) is represented by a derived
scheme of amplitude [0,n — 1].

Proof: We first deduce from [Hel, Lemma 4.2.4] that the inclusion of the
trivial bundle {Triv} — RBung(Z) is a smooth atlas. In particular, we get
that the derived stack ]RBungg(X ,x) is representable by a derived Artin
stack.

Using Lurie’s representability criterion for derived schemes (see [Lub,
Theorem 3.1.1]), we can hence reduce to the non-derived moduli problem. It
is known that Bung(X) is a geometric stack of amplitude [—1,n — 1], which
locally is represented as the quotient of a scheme of finite type by an algebraic
group. When we introduce the rigidification, we kill the stack structure. [

We next define the derived stack RBung(2°) as the functor
A — RBung (Spec(A e @XI) — (Spec(A) X {x})) .

Let us fix the notations X° = X — {z}.

Proposition 5.3.5. The natural morphisms
RBunl¥(X,z) — RBung(X°) X%Bunc(io) {Triv}
s an equivalence

This is proved in [HPV, Theorem 6.20].

65



B. Derived current groups and their action. We define G(z°) as the
functor

A — Map <Spec(A®(’A)X7z) — (Spec(A) x {x}), G).
This is group object in derived stacks.

Proposition 5.3.6. (a) G(Z°) is a derived affine ind-scheme, identified with
the group of automorphisms of the point Triv in the derived stack RBung(Z°).

(b) The Lie algebra of G(Z°) is identified with
Lie(G(2°)) = T.G(Z°) = g®RI(2°,0) ~ g; ~ g,
studied earlier.

Proof:
(a) The first claim follows from [Hel]. The second is obvious.

(b) We use (a) and compare RBung(Zz°) with the mapping stack
RMap (z°, BG) : A — Map (z° x Spec A, BG) .

The group of automorphisms of Triv in RMap (z°, BG) has Lie algebra iden-
tified with g ® RI'(z°, O) by Proposition 5.2.12(a).

We now consider the morphism of derived stacks
f : RMap (z°, BG) — RBung(z°)
induced by the canonical maps
(5.3.7) A@k Ox, — A®k Ox,.

We note that (5.3.7) is a quasi-isomorphism whenever A has finite dimen-
sional cohomology. This implies that f is formally étale at the point Triv
and therefore the induced morphism of tangent Lie algebras at Triv is a
quasi-isomorphism.

]

Consider the projection of derived stacks
g : RBung(X°) — RBung(7°).

Proposition 5.3.5 identifies RBunf# (X, ) with the homotopy fiber Rg—"(Triv).
Therefore Propositions 5.3.6 and 5.2.2 imply:
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Theorem 5.3.8. (a) The derived group stack G(2°) acts on RBunp#(X, x)
by changing the trivialization.

(b) The Kodaira-Spencer map of g gives rise to a morphism of dg-Lie
algebras ‘
p: g, — RT(RBung®(X,z),T).
O

Remark 5.3.9.In particular, # induces a morphism on the (n — 1)-st coho-
mology of the dg-Lie algebra g:

HZ ' (g}) — H" ' (RBung?(X, ), T).

Consider the first non-classical case n = 2, when X is a surface. In this case
we are dealing with H' of the tangent complex which has the meaning of the
space of deformation of ]RBungg (X, z). Theorem 5.3.8 produces therefore a
class of deformations of the rigidified derived moduli space labelled by the
space of “polar parts” H1(gs) = H{Qm}(g ® Ox).

A natural way of deforming the moduli space would be to “twist” the
cocycle condition gi_klgjkgij = 1 defining G-bundles by replacing it with
gi_klgjkgij = \ijr with some “curvature data” A\ = (\;x). Considering such
twisted bundles is standard when G = GGL, and X consists of scalar functions
(we then get modules over an Azumaya algebra). In our case, elements of
H{ZZ}(g ® Ox) can be seen as providing infinitesimal germs of more general
(non-abelian) twistings and thus deformations of the rigidified moduli space.

5.4 Central extensions associated to Tate complexes

A. The group stack GL(V) and its Lie algebra. The categories of Tate
modules assemble into two prestacks

Tate : A+ Tate,, Tate:A— Tatei?uiv

where “equiv” means the maximal co-groupoid in the co-categorical envelope
(nerve) of the dg-category.

In particular, for any object V' of Tatex we have a group prestack of
automorphisms GL(V') = Qy Tate.

Example 5.4.1.If V is the Tate space k((z)) in degree 0, then GL(V) is the
non-derived group ind-scheme GL(o0) studied in [Ka]. For a general V', we
get a derived analog of GL().
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Proposition 5.4.2. (a) Fach prestack GL(V') is an infinitesimally cartesian
stack.
(b) The Lie algebra Lie(GL(V)) is identified with End(V'), the algebra of

endomorphism of V' in Tatex made into a Lie algebra.

Proof: (a) let A — B be a homotopy étale cover in Cdgaz’. Denote B, =
B%", so that B, = (B,) is a cosimplicial object in Cdgas’. The natural
functor F' : Tateyq — holim Tatepg, is fully faithful by embedding into the

functor
Ind(Pro(Perf,)) — holim Ind(Pro(Perfg, )).

Fully faithfulness of this last functor follows from étale descent for the cate-
gories of dg-modules. Now, fully faithfulness of F' implies that each GL(V)
is a stack.

Next, we show that GL(V) is infinitesimally cartesian. This goes in the
similar way, using that the stack of right bounded dg-modules is infinitesi-
mally cartesian [Lu2, Theorem 7.2].

(b) We construct a morphism of dg-Lie algebras
(5.4.3) ¢ : Lie(GL(V)) — End(V).

For this we construct a natural transformation ® of the functors represented
by both Lie algebras on L € FLief ! For such L we have

Map(L, Lie(GL(V)) = L(Tatey)(CE*(L)),

where £ is the formal moduli envelope functor (5.2.7). We will construct,
first, a natural morphism of simplicial sets

Uy, : Tate, (CE*(L)) — Mapgys, (L, End(V)).

By definition, an object of Tate, (CE*(L)) is a Tate complex W over CE*(L)
together with an identification k ®éE.(L) W — V. Note that we have a
canonical identification (Koszul duality)

Therefore, for any such W, the associative dg-algebra U(L), and therefore,
the dg-Lie algebra L, acts on V, giving a morphism L — End(V). This
defines Wy, on vertices, and the standard arguments of Morita theory extend
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it to a morphism of simplicial sets, in fact to a natural transformation ¥ of
functors FLie®! — sSet.

Let ™) be the formal moduli problem corresponding to the dg-Lie
algebra End (V') by Theorem 5.2.8. We then can write each ¥y, as a morphism

Uy, : Tate, (CE*(L)) — ™ V)(CE*(L)).

Next, we notice that each W, descends to a natural morphism of simplicial
sets
®; : L(Tate,)(CE*(L)) — eEV)(CE*(L)).

This is just because e®4(V) is a formal moduli problem. Now, the collection

of the @ extends, in a canonical way, to the natural transformation ¢ and
therefore to a morphism ¢ of dg-Lie algebras as claimed in (5.4.3).

We now prove that ¢ is an equivalence or, what this the same, that ¥ is
an equivalence whenever L is free on one generator of degree d > 1. In this
case CE®(L) = k[e] is the algebra of dual numbers with generator € = €;_;
of degree 1 — d.

Applying the Morita theory associated with (5.4.4), we include ¥y, into
an adjunction

Yr, : Ind(Pro(Perfyq)) < {Representations of L in Ind(Pro(Perfy))} : nr
DL (W) =k®iqg W, n(V, f:V — V[d]) = CE*(L, V) ~ Cone(f)[-1].

Here f is the action of (the generator of) L on V. We note that Cone(f)[—1]
can be written as V[e] = V ®y kle] (free k[e]-module) with an additional
differential given by f.

Note that 1y, is fully faithful. This is a formal consequence of the fact
that

LPerf : Perfyp <> Representations of L in Perfy

is fully faithful. In fact, ¥t is an equivalence (Koszul duality).

Therefore ¥y, is fully faithful. Let us prove that it is essentially surjective.

Lemma 5.4.5. Let (V, f) be a representation of L in Tatex. Then ni(V, f) €
Tatek[d.

Proof: We can assume that V is a graded Tate space with a zero differential,
and so f is a morphism of graded Tate spaces. So V" has two lattices V}* < V¢
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so that f induces a morphism of pro-finite-dimensional spaces f¢ : V| —
Vs [d]. We make Cone(f¢)[—1] into a (pro-perfect) k[e] module by making e
acts by the embedding V¢ — V5.

Similarly, f induces a morphism of ind-finite-dimensional spaces f? :
Ve — Vi where V4 = V /VE¢. Note that we have the quotient map V¢ — V;
and so Cone(f?)[—1] is made into an (ind-perfect) k[e]-module. Now we
have a short exact sequence

0 — Cone(f¢)[~1] — Cone(f)[-1] — Cone(f*)[-1] — 0

which implies that 7z (V, f) = Cone(f)[—1] € Tateyq. ]

We now prove that the canonical map ¢ : ¢p(n(V,f)) — (V,f) is a
quasi-isomorphism in the category of representations of L. i.e., that C' =
(Cone(c), g) is contractible. By the above, iy (c) is a quasi-isomorphism, i.e.,
n.(C,g) = Cone(g) is contractible. So g is a degree d quasi-isomorphism of
C to itself. But C'is bounded by our assumption. So C' is contractible. This
finishes the proof of Proposition 5.4.2. O]

B. K-theoretic extensions. Recall the stack of categories Perf defined
by
Perf(A) = Perf,

for any A € Cdgag’.

For a perfect dg-category A we denote by K(A) the space of K-theory
of A, so that mK(A) = K;(A). Explicitly, we can define K(A) = Q|S,(A)|
as the loop space of the Waldhausen S-construction (in which all S, (A) are
understood as oo-groupoids).

We now make K-theory into a prestack

K = K o Perf : A — K(Perf(A)).
By composing K with Tate we get the prestack
KTate : A — K(Tatey).
We have the morphism of prestacks

Tate — KTate
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induced by the identification
Tate®” — Si(Tate,).

The following is proven in [He3].

Theorem 5.4.6. KTate is identified with B(K) = |S.(Perf)| (after stack-
ification on Nisnevich topology).

Remark 5.4.7. Theorem 5.4.6 is a geometric analog of Theorem 4.3.1. In
particular, as Theorem 4.3.1 allows us to build central Lie algebra extensions,
Theorem 5.4.6 gives us group central extensions. The construction goes as
follows.

We have the determinantal G,,-torsor Det — K or, equivalently, a group
morphism K — BG,,. Applying the classifying stack on both ends, we get
the determinantal gerbe

(5.4.8) Det® : KTate — EM(G,,, 2).
This gerbe gives, for any V' € Tatey, a central extension of group prestacks
1 G, — Aut(V) — Aut(V) — 1.

Recall that using Theorem 4.3.1, we built in Definition 4.3.3 a cyclic class
v € HCY(End(V)) for each V € Tate,. With Loday’s map from Proposition
3.1.2, we get Lie algebra cohomology classes 0(1y) € Hf, (End(V)). Those
classes give central extensions of Lie algebras

0 —» k — End(V) — End(V) — 0.

Theorem 5.4.9. Let V be a strict Tate complex. The Lie algebra of&(‘/)
is identified with End(V).

Remark 5.4.10. It is very natural to expect that the cyclic homology of a
dg-category A can be recovered from its K-theory by some functorial pro-
cedure (“taking the tangent space”) so that, in particular, the trace class
tr € HC%(k) corresponds to the determinantal character (the identification
det : Kj(k) — k*). Then one could argue that the Tate class (the delooping
of tr) is similarly “tangent” to the determinantal gerbe (the delooping of
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det), thus obtaining a very natural proof of Theorem 5.4.9. This would also
justify the name “additive K-theory” for cyclic homology.

However, such a direct construction seems to be unknown. The clos-
est statement in this direction is the recovery (due to L. Hesselholt) of the
Hochschild homology of a (dg-)algebra R in terms of the rational K-theory
of the ring of dual numbers R[e]/€?, see [DGM].

We therefore dedicate the rest of this section to a proof of Theorem 5.4.9
by a series of reductions.

C. Primitivity of the Lie cohomology classes. For V e Tatex we
denote by vy € HZ, (End(V)) the class corresponding to the Lie algebra of
Aut(V). We need to prove the equality

(5.4.11) W =60"(1v)

where 7, € HC*(End(V)) is induced by the Tate class 7 € HC!(Tatey) and
6 is the Loday homomorphism, see §3.1B.

Note that the statement is known (and classical) in the case when V =
k((z)) is the most standard example of a Tate space. We will now reduce
to this case by showing that the system of classes vy satisfies compatibilities
that hold for the system of 6* (7).

Definition 5.4.12.Let 7y € HE, (End(V)), V € Tatex be a system of Lie
algebra cohomology classes. We say that (ny) is a primitive system if, for
any direct sum decomposition V' ~ V; @ V, in the abelian category of strict
Tate complexes we have

nV’End(Vl)(—BEnd(Vg) = pikﬁvl +p§?7V2-
Here p, : End(V}) @ End(V2) — End(V,) is the projection.

We note that direct sum decompositions with V5, = 0 are given by iso-
morphisms ¢ : V — Vj, so a primitive system satisfies, in particular, the
compatibility condition: Ad}(ny,) = ny. Here

Ady : End(V) — End(V}), u+> ¢gouog™ .

Lemma 5.4.13. The classes vy form a primitive system.
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Proof: This is because the determinantal gerbe, being a K-theory datum, is
“group-like”, i.e., gives a local system on the Waldhausen space of Tate, for
any A. That is, for any triangle (simplest cell on the Waldhausen space)

Vi->V -V
in Tates we have an isomorphism of G,,-gerbes over Spec(k)
Det® (V1) ® Det® (V) — Det® (V)

satisfying coherent compatibilties. In particular, for V ~ V; @ V5, a direct
sum decomposition in Tatey, we have

Aut(Vi © Va) auovysam(vy =~ Aut(V7) % Aut(Va)

(Baer sum). This, by differentiation (passing to the Lie algebras of group
stacks), implies that the system (7y) is primitive. .

Lemma 5.4.14. The classes 0* 1y form a primitive system as well.

Proof: This is a general property of cyclic homology. Let A = End(V') and
A; = End(V;). We then have the enbedding of dg-algebras A; @ Ay — A.
It is enough to prove that the restriction of the Loday homomorphism 64
to HY°(A; @ Ajy) is equal to the sum of the restrictions on HZ, (A4;) and
H?. (Ay). This restriction is the left path in the commutative diagram

gA1D A

HEYe(A; @ Ay) —="HC,_1 (A1 @ A)

| |

HYe(A) — ~ HC,_y(A).

Looking at the right path we see that HC;(A; @ As) being identified with
HCY(Ay) @ HC (As), the composition splits into the direct sum of the two
restrictions, as claimed. O]

D. Comparison of Lie cohomology classes. It remains now to prove
the following statement.

Proposition 5.4.15. Let n and n' be two primitive system of classes in
H},(End(V)), V € Tatex. Suppose that mi()) = A - The((z)) for some X € k.
Then ny = X -y, for any strict Tate complex V.
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We notice first:

Proposition 5.4.16. Let (ny) be a primitive system. If V ~ V; @ Vy as
before, then the pullback of ny to End(Vy) < End(V), is equal to ny,. O

Let now V* be a strict Tate complex. Decomposing it as V* = H* @ E*
as in Corollary 4.1.18(c), we have an isomorphism of associative dg-algebras
(and hence of dg-Lie algebras) End(H*) — End(V*). It implies an iso-
morphism Hf, (End(V*)) ~ H;,.(End(H*)). Since H® has no differential,
End(H*) is a graded Lie algebra without differential.

Proposition 5.4.17. Let H be a graded Tate space (situated in finitely
many degrees) which is neither discrete nor linearly compact. Assume the

graded components of H are of dimension either O or oco. Then we have
H?,(End(H)) ~ k.

Proof: This is a modification of the result of [FT1] which can be considered
as corresponding to V being k((z)) in degree 0. We first relate HC' (End(H))
with HC'(Tatey) ~ k. More precisely, we note:

Lemma 5.4.18. Let H be as above.
(a) The functor

p = RHom(H,—) : Tatex — dgMody,q(s) -

takes values in perfect dg-modules over End(H ).

(b) This functor gives a quasi-equivalence between Tatey and Perfgnacm) -
In particular, HC,(End(H)) ~ HC,(Tatex) is spanned by generators in de-
grees 1,3,5,. ...

Proof: (a) Since H is neither linearly compact nor discrete, it decomposes as
CP®D, where C' € C and D € Dy have at least one graded component infinite-
dimensional. That is, D admits a shift of P, k as a direct summand, while
C' admits a shift of [, k as a direct summand. It follows that any Tate
complex W can be obtained, up to a quasi-isomorphism, by a finite number
of extensions and retracts from H. This means that R Hom(H, W) can be
obtained by a finite number of extensions and retracts from R Hom(H, H) =
End(H), so it is perfect.

(b) Denote A = End(H). We first prove that p is fully faithful in the dg-
sense, i.e., induces quasi-isomorphisms on Hom-complexes. This is certainly
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true for the complex Hom(H, H) which is sent by p to Homa(A, A) = A.
Further, p is exact and takes direct summands (retracts) to direct summands.
So p induces a quasi-isomorphism on Hom(W;, Ws), where Wy and W, are
any Tate complexes obtained from H by a finite number of extensions and
retracts. But by the above, all Tate complex are obtained in such a way.
Next, we show that p is essentially surjective. This is immediate since
Perf 4 is generated, under extensions and retracts by A = p(H) itself. O

We now prove Proposition 5.4.17 by the same argume