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Abstract. We study Pandharipande-Thomas’s stable pair theory on
K3 fibrations over curves with possibly nodal fibers. We describe sta-
ble pair invariants of the fiberwise irreducible curve classes in terms of
Kawai-Yoshioka’s formula for the Euler characteristics of moduli spaces
of stable pairs on K3 surfaces and Noether-Lefschetz numbers of the
fibration. Moreover, we investigate the relation of these invariants with
the perverse (non-commutative) stable pair invariants of the K3 fibra-
tion. In the case that the K3 fibration is a projective Calabi-Yau three-
fold, by means of wall-crossing techniques, we write the stable pair in-
variants in terms of the generalized Donaldson-Thomas invariants of
2-dimensional Gieseker semistable sheaves supported on the fibers.
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1. Introduction

1.1. Overview. The Fourier-Mukai transform is an equivalence of derived
categories of coherent sheaves of algebraic varieties, which was first studied
for dual pairs of abelian varieties in the seminal paper of Mukai [Muk81].
When a Calabi-Yau 3-fold admits an elliptic fibration, its relative Fourier-
Mukai transform turned out to be an effective tool to prove the correspon-
dence between one dimensional sheaf theory and two dimensional sheaf the-
ory [ACRY00], [AYCR01]. In particular, it provides a recipe to relate two
kinds of invariants: Pandharipande-Thomas stable pair invariants [PT09]
which count curves in Calabi-Yau 3-folds, and Donaldson-Thomas invari-
ants which count two dimensional semistable sheaves on them [Tho00].

The above correspondence is also important in string theory. The rela-
tive Fourier-Mukai transform is a mathematical interpretation of relative T-
duality in string theory, which was used by physicists [KMW12, MNVW98,
BDF07] to discuss the correspondence between the BPS theory of D2 branes
wrapped on the base and the D4 branes which also wrap the elliptic fibers.
The PT stable pairs and the two dimensional semistable sheaves are the
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mathematical analogues of the D6-D2-D0 branes, and the D4 branes respec-
tively, and the relative T-duality provides a recipe to relate to the BPS state
counting of these D-brane systems.

In a more general setting, without assuming that the threefold admits
an elliptic fibration, we can still ask the question regarding the correspon-
dence of PT stable pair theory and the DT theory of two dimensional
semistable sheaves (i.e. D6-D2-D0 BPS theory and D4 theory in string
theory). This question shapes the main motivation behind the current ar-
ticles. In [Tod13a], the third author derived the formula relating the low
degree terms of the generating series of the latter invariants with those of
the former invariants, using the wall-crossing technique and some ideas from
string theory [DM]. In [GS13], the first and the second authors studied the
generating series of DT invariants counting two dimensional stable sheaves
on K3 fibered threefolds with possibly nodal fibers, and proved their mod-
ularity property.

The purpose of this article is to obtain an analogue of the results in [GS13]
for PT stable pair theory on K3 fibered threefolds. Namely we investigate
the modularity property of the stable pair invariants on K3 fibrations. We
first treat the case of a smooth K3 fibration, and relate the stable pair invari-
ants with the generating series satisfying the modularity property. When
the K3 fibration has possibly nodal fibers, we relate their stable pair invari-
ants with those on smooth K3 fibrations via conifold transition. In a more
general situation, we also prove a formula relating stable pair invariants with
the DT invariants counting two dimensional semistable sheaves, where the
latter invariants are expected to have the modular invariance property.

1.2. Main result I: smooth K3 fibration. Let X be a smooth projective
threefold over C. For β ∈ H2(X,Z) and n ∈ Z, the moduli space of stable
pairs Pn(X,β) and the associated invariants were introduced by Pandhari-
pande and Thomas [PT09]. The moduli space Pn(X,β) parametrizes pairs

s : OX → F(1)

where F is a pure 1-dimensional sheaf on X with [F ] = β and χ(F ) = n,
and the cokernel of s is 0-dimensional. They constructed a perfect obstruc-
tion theory on Pn(X,β) (see Theorem 2.1) by interpreting it as the moduli
space of two term complexes (1) in the derived category. When the virtual
dimension of Pn(X,β) is zero, the stable pair invariant Pn,β is defined by
taking the degree of the virtual cycle obtained from this obstruction theory.

We assume that X admits a morphism

π : X → C(2)

onto a smooth projective curve C, whose generic fiber is a smooth K3 sur-
face. The morphism π is called a K3 fibration. We always take the curve
class β to be in the kernel of π∗ denoted by H2(X,Z)π. The virtual di-
mension of Pn(X,β) is zero for such curve classes1. We define the following

1Note that X is not required to be a Calabi-Yau 3-fold here.
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generating series:

PT(X)β =
∑
n∈Z

Pn,βq
n, PT(X) =

∑
β∈H2(X,Z)π

PT(X)βt
β.(3)

In Section 2, we study the case when π is a smooth morphism. The ma-
jority of this section (Subsections 2.1-2.6) is devoted to the case where β
is an irreducible curve class. In this case, we relate Pn,β with the Euler
characteristics of the moduli space of stable pairs on a nonsingular K3 sur-
face S and the Noether-Lefschetz numbers NLπh,β of the fibration having

modular properties [MP13, Bor99, Bor98, KM90]. We denote by Pn(K3, h)
the moduli space of stable pairs on a K3 surface containing an irreducible
curve class γ satisfying γ2 = 2h − 2. It is known that the topological type
of Pn(K3, h) only depends on (n, h) (cf. [MPT10]).

Theorem 1. (Theorem 2.16) Let π : X → C be a smooth K3 fibration, and
β ∈ H2(X,Z)π be an irreducible curve class. Then we have the following
formula:

PT(X)β =

∞∑
h=0

∞∑
n=1−h

(−1)n−1χ(Pn(K3, h)) ·NLπh,β qn.

The proof of Theorem 1 involves studying the restriction of the obstruc-
tion theory constructed in [PT09] to isolated and non-isolated components
of Pn(X,β). The Euler characteristics χ(Pn(K3, h)) in Theorem 1 can be
read off from Kawai-Yoshioka’s formula having modular properties [KY00,
Theorem 5.80]:

∞∑
h=0

∞∑
n=1−h

(−1)n−1χ(Pn(K3, h))ynqh =

−
(√
−y − 1√

−y

)−2 ∞∏
n=1

1

(1− qn)20(1 + yqn)2(1 + y−1qn)2
.(4)

In Subsection 2.7, we study a special analog of Theorem 1 in which the
class β ∈ H2(X,Z)π is allowed to be reducible.

1.3. Main result II: nodal K3 fibration. We next study the case that
the K3 fibration (2) has a finite number of nodal fibers. In this case, we call
a morphism (2) a nodal K3 fibration. For a nodal K3 fibration, we find a
conifold transition formula, which relate the stable pair invariants on nodal
K3 fibrations with those on smooth K3 fibrations. The following result is
based on assuming some foundation of stable pair theory of algebraic spaces
that has not been established yet (see Remarks 3.3 and 3.4):

Theorem 2. (Theorem 3.11) Let π : X → C be a nodal K3 fibration. Then

there is a smooth K3 fibration2 π̃ : X̃ → C̃ and morphisms

ε̃ : X̃
h→ X0

ε→ X

2Here the situation is a little more general than (2), and we allow X̃ to be a proper
algebraic space.
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where h is a small resolution and ε is a double cover, such that the following
formula holds:

ε̃∗
PT(X̃)

PTh(X̃)
= PT(X)2.(5)

Here ε̃∗ is the variable change tβ 7→ tε̃∗β, and PTh(X̃) is the subseries of

PT(X̃) of stable pair invariants of curve classes β̃ with h∗β̃ = 0.

Let us consider the invariant Pn,β with an irreducible curve class β on a
nodal K3 fibration π : X → C. The above result leads us to working with
the stable pair invariants Pñ,β̃ for possibly reducible classes β̃ on a smooth

K3 fibration X̃ → C̃ lifting β. In Subsection 3.6, we present an approach
to compute the invariants Pñ,β̃ by studying the relationship between the

invariants Pñ,β̃ and the invariants of the moduli spaces of perverse (non-

commutative) stable pairs.

1.4. Main result III: product expansion formula. Finally let X be a
smooth projective Calabi-Yau 3-fold, which admits a K3 fibration π : X →
P1 such that every fiber is an integral scheme. In Section 4, using the wall-
crossing techniques mostly developed by the third author [Tod13b, Tod10a,
Tod10b, Tod12a, Tod12b, Tod], we express the generating series (3) in terms
of the generalized Donaldson-Thomas invariants

J(r, β, n) ∈ Q(6)

which count semistable sheaves E supported on the fibers of π satisfying

ch(E) = (0, r[F ], β, n) ∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).(7)

Here [F ] is the class of a fiber of π in X. The invariants (6) are defined by
the method of Joyce-Song [JS12]. These invariants were studied by the first
and second authors in [GS13] when there are no strictly semistable sheaves
F satisfying (7). The modularity property of the invariants (6) holds in the
situation of [GS13], and we expect such a property in general. The following
result gives a complete answer on describing the relationship between stable
pair invariants and DT type invariants counting two dimensional sheaves:

Theorem 3. (Theorem 4.4) We have the following formula

PT(X) =
∏

r≥0,β>0,n≥0

exp
(

(−1)n−1J(r, β, r + n)qntβ
)n+2r

·
∏

r>0,β>0,n>0

exp
(

(−1)n−1J(r, β, r + n)q−ntβ
)n+2r

.

The above result is proved by generalizing the argument in [Tod12b] show-
ing a similar result when X = S ×C for a K3 surface S. Namely, we apply
Joyce-Song’s wall-crossing formula [JS12] in a certain space of weak stability
conditions. As the arguments are the almost same as in [Tod12b] except a
few modifications, we will just outline its proof in Section 4.
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1.5. Summary. The main purpose of the current article is to find the con-
nection between the vertices of the following triangle:

•

• •
PTX/C DTX/C

Modular forms

1

2

3

Here by PTX/C and DTX/C we mean the fiberwise stable pair and Donald-
son-Thomas theories of the Calabi-Yau K3 fibration X → C discussed
above. As mentioned earlier, the connection 1 ↔ 3 is motivated by T -
duality and we provide a complete answer to it in Section 4. The con-
nection 3 ↔ 2 is motivated by S-duality, and the first two authors have
provided partial results on it in [GS13]. In Section 2 and Section 3 of this
paper, we provide partial results on the connection between 1↔ 2. More re-
cently, Pandharipande-Thomas [PT14] studied the connection 1↔ 2 in more
generality by a different method (degeneration method) and for a different
purpose. A refined (motivic) version of connection 1 ↔ 2 is conjectured
in [KKP]. We hope the combination of the established bridges 1 ↔ 2 and
1 ↔ 3, sheds some lights on the connection 3 ↔ 2 in full generality, which
we hope we can work out in the future.

1.6. Acknowledgment. We would like to thank Jan Manschot and Richard
Thomas for helpful discussions. The first author was partially supported by
NSF grant DMS-1406788. The second author would like to thank MIT and
the Institute for the Physics and Mathematics of the Universe (IPMU) for
hospitality and providing the opportunity to discuss about this project dur-
ing his visits. Special thanks to Max Planck Institut für Mathematik for
hospitality during the second author’s stay in Bonn. The second and third
authors are supported by World Premier International Research Center Ini-
tiative (WPI initiative), MEXT, Japan. The third author is also supported
by Grant-in Aid for Scientific Research grant (No. 26287002) from the Min-
istry of Education, Culture, Sports, Science and Technology, Japan.

1.7. Notation and convention. In this paper, all the varieties or schemes
are defined over C. For a morphism π : X → Y of schemes and coherent
sheaves E, F on X, we write the sheaf π∗HomX(E,F ) as Homπ(E,F ).
Its right derived functor is denoted by RHomπ(E,F ), which coincides with
Rπ∗RHom(E,F ). If π is smooth, we denote by ωπ the relative canonical
line bundle on X. For a scheme X, we denote by L•X the cotangent complex
of X.
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2. Stable pairs on smooth K3 fibrations

2.1. Stable pairs on K3 fibrations. Let X be a smooth projective three-
fold over C. By definition, a K3 fibration is a morphism

π : X → C

onto a smooth projective curve C whose generic fiber is a smooth K3 surface.
If π is a smooth morphism, then it is called a smooth K3 fibration. We set

H2(X,Z)π := {β ∈ H2(X,Z) : π∗β = 0}.

We always take curve classes contained in the above subgroup of H2(X,Z).
An element β ∈ H2(X,Z) is called irreducible if it is not written as a sum
β1 + β2 for non-zero effective curve classes β1, β2.

For β ∈ H2(X,Z)π, we study the moduli space of stable pairs Pn(X,β)
in the sense of [PT09]. It parametrizes the pairs

(8) s : OX → F

where F is a pure 1-dimensional sheaf on X with [F ] = β and χ(F ) = n, and
the cokernel of s is 0-dimensional. Here [F ] is the fundamental homology
class determined by F , which is the Poincare dual of ch2(F ). For simplicity
we set P = Pn(X,β), and denote by

(9) I• = (OX×P → F)

the universal pairs, which we interpret as an object in Db(X × P). Note
that we have the exact triangle on X × P

I• → OX×P → F→ I•[1].(10)

Let

πP : X × P → P, πX : X × P → X

be the natural projections. In [PT09], Pn(X,β) is equipped with a perfect
obstruction theory by studying the deformations of the two term complex
(8) in the derived category:

Theorem 2.1. [PT09] There is a perfect obstruction theory over P given
by the following morphism in the derived category:

E• := RHomπP (I•, I• ⊗ ωπP )0[2]→ L•P .

Here (−)0 means taking the traceless part.

Since ωX · β = 0 for β ∈ H2(X,Z)π, the Riemann-Roch calculation easily
implies that the virtual dimension of P is zero. The stable pair invariants
are then defined by

Pn,β :=

∫
[Pn(X,β)]vir

1.

We define the generating series PT(X)β, PT(X) to be

PT(X)β :=
∑
n∈Z

Pn,βq
n, PT(X) :=

∑
β∈H2(X,Z)π

PT(X)βt
β.(11)
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2.2. Stable pairs on K3 surfaces. Let S be a smooth projective K3
surface over C. For γ ∈ H2(S,Z), we can similarly define the moduli space
of stable pairs Pn(S, γ) on S. We review several results on the moduli space
Pn(S, γ). In [PT10], Pandharipande and Thomas identify Pn(S, γ) by a
relative Hilbert scheme of points:

Proposition 2.2. [PT10, Proposition B.8] The moduli space of stable pairs

Pn(S, γ) on S is isomorphic to the relative Hilbert scheme Hilbn+γ2/2(C/M)
where M is the moduli space of pure one dimensional subschemes of S in
class γ and C denotes the universal curve over S ×M. �

We next consider the case that γ is irreducible. In this case, the following
result is proved in [MPT10]:

Proposition 2.3. [MPT10, Proposition 5] If γ is irreducible, the moduli
space Pn(S, γ) is non-singular of dimension n + γ2 + 1. It depends only
upon (n, γ2) up to deformation equivalence.

By the above proposition, we may write

Pn(S, h) := Pn(S, γ)(12)

for an irreducible curve class γ ∈ H2(S,Z) with γ2 = 2h− 2. We sometimes
write Pn(K3, h) if we do not want to specify a particular K3 surface with
this property. The generating series of χ(Pn(K3, h)) is computed by Kawai-
Yoshioka’s formula (4).

2.3. Stable pairs with irreducible curve classes. In this subsection, we
assume that β ∈ H2(X,Z)π is an irreducible curve class. Let P = Pn(X,β)
be the moduli space of stable pairs, and consider the perfect obstruction
theory E• → L•P in Theorem 2.1. We have the following proposition:

Proposition 2.4. In the above situation, we have the canonical isomor-
phism

H1(E•∨)
∼=→ HomπP (I•,F⊗ ωπP )∨.

Proof. We write ω = ωπP for simplicity. Applying RHomπP (I•,− ⊗ ω) to
the exact triangle (10), we obtain the following exact triangle on P:

RHomπP (I•,F⊗ ω)→ RHomπP (I•, I• ⊗ ω)[1]→ RHomπP (I•, ω)[1].

By the above triangle and the natural morphism

RπP∗ω → RHomπP (I•, I• ⊗ ω)

we can form the following commutative diagram of vertical and horizontal
exact triangles:

RπP∗ω[1]
= //

��

RπP∗ω[1]

��

RHomπP (I•,F⊗ ω) //

id
��

RHomπP (I•, I• ⊗ ω)[1] //

��

RHomπP (I•, ω)[1]

��

RHomπP (I•,F⊗ ω) // RHomπP (I•, I• ⊗ ω)0[1] // RHomπP (F, ω)[2]

(13)
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After dualizing, the bottom row of the diagram gives the exact triangle

RHomπP (O,F)[1]→ RHomπP (I•, I•)0[2]→ RHomπP (F, I•)[3].

The 0-th cohomology of the sequence above gives the exact sequence

Ext2πP (I•, I•)0
g−→ Ext3πP (F, I•)→ Ext2πP (O,F)

Note that the first term in the sequence above is H1(E•∨). Since the fibers
of πP |Supp(F) are one dimensional, we obtain Ext2πP (O,F) = 0 and hence the
map g is surjective. Now we show that the map g is also injective. It is
enough to prove this over any closed point p ∈ P. Here we will use part of
the strategy of the proof of [PT09, Proposition 4.4]. Over the point p and
after dualizing and taking cohomology, the diagram (13) gives the following
diagram of the vertical and horizontal exact sequences

0

��

Ext2(F, I•) //

=
��

H1(F ) //

��

Ext2(I•, I•)0

��

gp

''

Ext2(F, I•) // Ext2(OX , I•) //

��

Ext2(I•, I•) //

tr
��

Ext3(F, I•)

H2(OX)
= //

��

H2(OX)

��

0 0

where the map gp is induced by the map g described above. As in [PT09,

Proposition 4.4], in order to show that Ext2(I•, I•)0
gp−→ Ext3(F, I•) is in-

jective, it is enough to show that the composition

Ext1(F, F )→ Ext2(F, I•)→ H1(F )(14)

is surjective. Here the first map is induced by the exact triangle I• → OX →
F for the stable pair I• = (OX → F ).

Suppose that F is supported on a curve D ⊂ X which is irreducible by
our assumption. We claim the inclusion and the isomorphism

Ext1(F, F ) ⊇ H1(Hom(F, F )) ∼= H1(OD).(15)

The first inclusion follows from the local to global spectral sequence. As for

the second isomorphism, let us consider the trace map Hom(F, F )
tr−→ OD.

The above map is obviously surjective, and the stability of pairs implies
that its kernel is at most zero dimensional. Therefore we have the second
isomorphism in (15). On the other hand, using the fact that the cokernel

of the map OD
s−→ F defining the stable pair is zero dimensional, we can

see that H1(OD)
s−→ H1(F ) is surjective. Hence combined with (15), we

conclude that the map (14) is also surjective.
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Now we have proved that the map g is an isomorphism:

g : H1(E•∨)
∼=→ Ext3πP (F, I•).

The desired result follows from the above isomorphism and the relative du-
ality Ext3πP (F, I•) ∼= HomπP (I•,F⊗ ωπP )∨. �

We next distinguish two kinds of components of P. We use the following
lemma:

Lemma 2.5. Suppose that β is irreducible. Then for any (OX → F ) ∈
Pn(X,β), there exists a unique point p ∈ C such that F is scheme theoreti-
cally supported on π−1(p).

Proof. Since β is irreducible, the sheaf F is set theoretically supported on
π−1(p) for some p ∈ C. Let mp ⊂ OC,p be the maximal ideal, and take
s ∈ mp. Then the sheaf homomorphism ·s : F → F must be a zero map as
β is irreducible and F is pure. Hence F is an Oπ−1(p)-module. �

The map sending (OX → F ) to p ∈ C in Lemma 2.5 defines the morphism

ρ : P → C.

Definition 2.6. We call a connected component Pc of P = Pn(X,β) a type
I component if ρ(Pc) = C. Otherwise we call Pc a type II component.

Below we denote by PI ⊂ P the union of type I connected components,
and PII ⊂ P the union of type II connected components. We set

iS : S := X ×C P ↪→ X × P.
We have the Cartesian square:

S iS //

ρS
��

�

X × P

(π,ρ)
��

C // C × C.

(16)

Here the bottom arrow is the diagonal. The universal one dimensional
sheaves F in (9) is written as iS∗G for a sheaf G on S. We denote by
I•S the universal pairs on S:

I•S := (OS → G).

Also we denote by π′P and π′X the compositions of iS with πP and πX
respectively, i.e. they are projections:

π′P : S → P, π′X : S → X.

By [KT14, Proposition 3.4] and the standard techniques of [HT10], the type I
(resp. II) components can be equipped with a relative (absolute) obstruction
theory:

Theorem 2.7. (i) There exists a ρ-relative perfect obstruction theory over
PI given by

G•I := RHomπ′P
(G, I•S ⊗ ωπ′P )|PI

[2]→ L•PI/C
.

(ii) There exists a perfect obstruction theory over PII given by

G•II := RHomπ′P
(G, I•S ⊗ ωπ′P )|PII

[2]→ L•PII
.
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2.4. Type I component. Now we assume that π : X → C is a smooth K3
fibration and β an irreducible curve class. Here we investigate the contribu-
tions of the type I components to the virtual classes. We have the following
statement:

Proposition 2.8. [PT10, Proposition C.2 and Lemma C.7] The type I com-
ponents PI is non-singular of dimension n + 2g, where g is the arithmetic
genus of the support of a stable pair in PI. Moreover, we have the isomor-
phism of the tangent bundles:

TPI
∼= HomπP (I•,F)|PI

, TPI/C
∼= Homπ′P

(I•S ,G)|PI
.

Let K be the line bundle on C given by

K := π∗ωX/C .

Proposition 2.9. We have the exact sequence of vector bundles on PI:

0→ ρ∗K∨ →HomπP (I•,F⊗ ωπP )∨|PI

→ Homπ′P
(I•S ,G⊗ ωπ′P )∨|PI

⊗ ρ∗TC → 0.

Proof. Since F = iS∗G, we have the exact triangle

G(−S)→ Li∗SI• → I•S .(17)

We apply RHomπ′P
(−,G ⊗ i∗SωπP ) to the above exact triangle. By taking

the cohomologies and restricting to PI, we get the exact sequence

0→ Homπ′P
(I•S ,G⊗ i∗SωπP )|PI

→ HomπP (I•,F⊗ ωπP )|PI

→ Homπ′P
(G(−S),G⊗ i∗SωπP )|PI

.

By Proposition 2.8, all the sheaves in the above sequences are vector bundles.
We investigate the fibers of the vector bundles in the sequence above. By
the fiberwise stability of G, the bundle Homπ′P

(G(−S),G ⊗ i∗SωπP )|PI
is a

line bundle on PI. Therefore by Proposition 2.8 and the definition of type
I component, the above sequence must be a short exact sequence. After
dualizing, we obtain the short exact sequence

0→ Ext2π′P (G,G)|PI
→ HomπP (I•,F⊗ ωπP )∨|PI

→ Homπ′P
(I•S ,G⊗ i∗SωπP )∨|PI

→ 0.

Here the first term is obtained by applying the Grothendieck duality and
the adjunction formula ωπ′P

∼= i∗SωπP ⊗OS(S). Now we have

Ext2π′P (G,G)|PI
∼= R2Homπ′P

(G,G)|PI

which is identified with R2π′P∗OS |PI
via the trace map using the fiberwise

stability of G again. By the Grothendieck duality and the adjunction for-
mula again and noting that ωπ′P = π

′∗
XωX/C , we obtain

R2π′P∗OS |PI
∼= (R0π′P∗ωπ′P )∨|PI

∼= ρ∗K∨.

Finally, again using the adjunction and noting OS(S) ∼= ρ∗TC by the dia-
gram (16), we have the isomorphism

Homπ′P
(I•S ,G⊗ i∗SωπP )∨|PI

∼= Homπ′P
(I•S ,G⊗ ωπ′P )∨|PI

⊗ ρ∗TC .
Therefore we obtain the desired exact sequence. �
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Using the above proposition, we have the following statement:

Proposition 2.10. The restriction of the virtual class of the obstruction
theory E• in Theorem 2.1 to the type I components PI is given by

[PI, E•]vir = [PI] ∩
(
c1(ρ∗K∨) ∪ ctop(ΩPI/C)

)
.

Proof. By Propositions 2.4 and 2.8, PI is smooth with the obstruction sheaf
HomπP (I•,F⊗ωπP )∨|PI

. Using the short exact sequence in Proposition 2.9,
we can write

ctop(HomπP (I•,F⊗ ωπP )∨|PI
)(18)

= c1(ρ∗K∨) ∪ ctop(Homπ′P
(I•S ,G⊗ ωπ′P )∨|PI

⊗ ρ∗TC).

By the following lemma and using the fact that the intersection product of
any two classes on A1

Q(C) is zero, we can see that only

c1(ρ∗K∨) ∪ ctop(Homπ′P
(I•S ,G)∨|PI

) = c1(ρ∗K∨) ∪ ctop(ΩPI/C)

contributes to the formula (18). Here the above identity is due to Propo-
sition 2.8. Therefore, the desired equality follows from [BF97, Proposition
5.6]. �

Lemma 2.11. Suppose that P0 ⊂ PI is a type I component of dimension l.
Then, we have the following relation in A∗Q(P0):

ctop(HomπP0
(I•S ,G⊗ ωπ′P0 )∨) = cl(Homπ′P0

(I•S ,G)∨) +A · ρ∗(B)

for some A ∈ Al−1
Q (P0) and B ∈ A1

Q(C).

Proof. Since ωX/C is fiberwise trivial, it must be the pullback of a line bundle
M on C. So we can write ωπ′P0

= π′∗XωX/C = π∗P0
◦ρ∗M . The Grothendieck-

Riemann-Roch formula gives:

ch

( 1∑
j=0

(−1)jExtj
π′P0

(I•S ,G⊗ ωπ′P0 )∨
)

= π′P∗

(
ch(I•S) · ch(G)∨ · ch(ωπ′P0

)∨ · td(Xπ ×ρ P0)

)
= (1− ρ∗c1(M)) · ch

( 1∑
j=0

(−1)jExtj
π′P0

(I•S ,G))∨
)
.

By (C.6) in the proof of [PT10, Proposition C.2], the fibers of the sheaves

Ext1π′P0
(I•S ,G⊗ ωπ′P0 )∨ and Ext1π′P0

(I•S ,G)∨

at any closed point I•S = (OS → G) ∈ P0 is naturally identified with

Ext1(I•S , G) ∼= H2(OS)

for a K3 fiber S ⊂ X. Therefore, both sheaves are line bundles pulled back
from the base curve C, thus their Chern characters are the pull backs of the
classes from A∗Q(C). The lemma is then proven by an inductive argument
on n. �
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2.5. Type II component. Let Pc ⊂ PII be a type II component. Then
there exists a point p ∈ C such that ρ(Pc) = p. Let us set S = π−1(p)
and i : S ↪→ X is the inclusion. Then there exists unique γ ∈ H2(S,Z) with
i∗γ = β and a closed embedding

(19) Pn(S, γ) ⊂ Pc.

Definition 2.12. A type II component Pc is called isolated if the embedding
(19) is an isomorphism.

Remark 2.13. Since Pn(S, γ) is non-singular by Proposition 2.3, the em-
bedding (19) is an isomorphism if and only if (19) induces isomorphisms of
tangent spaces at every points in Pn(S, γ).

We have the following lemma:

Lemma 2.14. Suppose that any component of PII is isolated. Then we have
the isomorphism of vector bundles:

ΩPII

∼=→ HomπP (I,F⊗ ωπP )∨|PII
.

Proof. By the definition of type II components and Remark 2.13, the fol-
lowing morphism is an isomorphism

TPII
∼= Homπ′P

(IS ,G)|PII

∼=→ HomπP (I,F)|PII
.

Here the first isomorphism is due to Theorem 2.7 (ii). Since ωX restricted to
any K3 fiber is trivial, and for any component Pc ⊂ PII, F|Pc×X is supported
on Pc × S for some K3 fiber S ⊂ X, we have the isomorphism

F⊗ ωπP |PII×X
∼= F|PII×X .

Therefore we obtain the lemma. �

By the above lemma and Proposition 2.4, the contributions to virtual
classes from the isolated type II components are given as follows:

Corollary 2.15. In the situation of Lemma 2.14, the restriction of the
virtual class of the obstruction theory E• in Theorem 2.1 to the type II com-
ponents PII is given by

[PII, E•]vir = [PII] ∩ ctop(ΩPII
).

2.6. Generating series of stable pair invariants. Following [MP13], let

V = R2π∗(Z)→ C(20)

be the rank 22 local system determined by the K3 fibration π. We denote
by Vc the fiber of (20) at c ∈ C. Let HV denote the π-relative moduli space
of Hodge structures as in [MP13, Section 1.4] 3, i.e. there is a map

HV → C

such that each fiber HVc at c ∈ C is the moduli space of weight two Hodge
structures on Vc⊗C = H2(S,C) for S = π−1(c). There exists a section map

(21) σ : C → HV

3In [MP13, Section 1.4] this is denoted by MV .
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which is determined by the Hodge structures of the fibers of π:

(22) σ(c) = [H2,0(S) ⊂ H2(S,C)] ∈ HVc , S = π−1(c).

For c ∈ C, an irreducible class β ∈ H2(X,Z)π and h ∈ Z, we define

Vc(h, β) = {0 6= γ ∈ Vc | γ2 = 2h− 2, i∗γ = β}.
Also let Bc(h, β) ⊆ Vc(h, β) be the subset of γ ∈ Vc(h, β) where γ is a (1, 1)
class on S = π−1(c). Then Bc(h, β) is finite by [MP13, Proposition 1]. The
subset

B(h, β) :=
⋃
c∈C

Bc(h, β) ⊂ V

can be decomposed into

B(h, β) = BI(h, β)
∐

BII(h, β)

where the first component defines a finite local system ε : BI(h, β) → C,
and the second component is an isolated set. Let Pε be the connected
component of the stable pair moduli space P = Pn(X,β) corresponding to
the local system ε, and let

Pn,ε =

∫
[Pε,E•]vir

1

be the contribution of this component to Pn,β. Note that Pε is a type I
component of Pn(X,β) in the sense of Definition 2.6. By Proposition 2.10,
we have

(23) [Pε, E•]vir = [Pε] ∩
(
c1(ρ∗K∨) ∪ ctop(ΩPε/C )

)
.

On the other hand, suppose that α ∈ BII(h, β) supported on the fiber S is
a result of a transversal intersection (i.e. with intersection multiplicity 1) of
σ(C) with a Noether-Lefschetz divisor. Then the corresponding connected
component Pα of Pn(X,β) is an isolated type II component in the sense of
Definition 2.6, and it is isomorphic to Pn(S, h) given in (12). By Corollary
2.15, we have

(24) [Pα, E•]vir = [Pα] ∩ ctop(ΩPα).

We define

Pn,α =

∫
[Pα,E•]vir

1

to be the contribution to Pn,β of this component. For any integer h ∈ Z,
the Noether-Lefschetz number

NLπh,β ∈ Z

was defined in [MP13] by intersecting σ(C) with the π-relative Noether-
Lefschetz divisor in HV associated to h and β. Informally, NLπh,β is the

number of the fibers S of π for which there exists a (1, 1) class γ ∈ H2(S,Z)
such that

γ2 = 2h− 2 and i∗γ = β.

The following theorem expresses the stable pair invariants of X in terms
of the Euler characteristics of of the moduli spaces of stable pairs on the
fibers and the Noether-Lefschetz numbers:
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Theorem 2.16. For a smooth K3 fibration π : X → C and an irreducible
class β ∈ H2(X,Z)π, we have

PT(X)β =
∞∑
h=0

∞∑
n=1−h

(−1)n−1χ(Pn(K3, h)) ·NLπh,β qn.

Here, the Euler characteristics χ(Pn(K3, h)) are determined by Kawai-Yoshioka’s
formula (4).

Proof. The proof follows the same ideas as the proof of [MP13, Theorem 1].
We compare the contributions of BI and BII to Pn,β and the Noether-
Lefschetz numbers. Suppose that ε is a local system giving rise to BI(h, β)
as above. Then, we can write

Pn,ε =

∫
Pε
ctop(ΩPε/C ) · c1(ρ∗K∨)

= (−1)n−1χ(Pn(K3, h)) ·
∫
BI(h,β)

c1(ε∗K∨).

By virtue of (22), it is shown in [MP13, Theorem 1] that the integration∫
BI(h,β)

c1(ε∗K∨)

gives the contribution of BI(h, β) to NLπh,β.
Using the deformation invariance of the stable pair invariants, we may

assume that any α ∈ BII(h, β) is a result of a transversal intersection of
σ(C) with a Noether-Lefschetz divisor4. As a result, the contribution of α
to NLπh,β is exactly 1, and moreover, the corresponding component Pα is an
isolated type II component. Therefore by Corollary 2.15, we have

Pn,α =

∫
Pα
ctop(ΩPα) = (−1)n−1χ(Pn(K3, h)).

The above arguments prove the desired identity. �

2.7. Reducible curve classes. In this section we study a special analog of
Theorem 2.16 in which the class β ∈ H2(X,Z)π is allowed to be reducible.

Let Pc be an isolated type II component of Pn(X,β). This means that
we have an isomorphism Pc ∼= Pn(S, γ) where β = i∗γ and i : S ↪→ X is a
K3 fiber of X. Here, γ is no longer needed to be irreducible, but we always
assume that5

(25) H1(L) = 0 for any line bundle on S with c1(L) = γ.

4Here as in [MP13, pg. 23], one may need to make a local holomorphic perturbation of
the section σ to make it transversal to the Noether-Lefschetz divisor (i.e. with the local
intersection multiplicity 1). The K3 fibration after perturbation will be over an analytic
curve, but the stable pairs under consideration will remain on the K3 fibers, which are
algebraic. The corresponding type II component of the moduli space of stable pairs is
always algebraic and compact and lies over the interior of a small (analytic) open set in
the curve that is being perturbed. So the usual deformation invariance of the intersection
numbers gives the deformation invariance of the contribution of the stable pair invariants
of this type II component.

5This is the case for example if γ is big and nef (see [Huy16, Proposition 3.1]).



STABLE PAIRS ON NODAL K3 FIBRATIONS 15

As γ is not an irreducible class, the moduli space Pn(S, γ) may be singular
and have several irreducible components. However we have the following
lemma:

Lemma 2.17. Suppose that γ satisfies (25), then the dimension of each
irreducible component of Pn(S, γ) does not exceed v := n+ γ2 + 1.

Proof. In the notation of Proposition 2.2, the dimension of M is γ2/2 + 1,
and for a fixed curve D in class γ the dimension of the components of the
Hilbert scheme are at most n + γ2/2. These two claims prove the lemma.
The first claim follows because in this caseM is the linear system of curves
in class γ on S satisfying (25). The second claim can be verified by analyzing
the fibers of the Hilbert to Chow morphism from the Hilbert scheme of k
points on D

HC : Hilbk(D)→ Symk(D).

We know that the dimension of the punctual Hilbert scheme of a points
supported on a fixed point of S is equal to a− 1 (see [Bri77]). Since D ⊂ S
the dimension of the punctual Hilbert scheme of a points supported on a
fixed point of D does not exceed a− 1. Now given a d-dimensional diagonal
∆d ⊂ Symk(D) corresponding to the partition k = a1 + · · ·+ ad and a point
p ∈ ∆d, by what we said above, the dimension of HC−1(p) does not exceed∑

i(ai − 1) = k − d. From this the claim follows. �

By [KT14, Proposition 3.4] (also see Theorem 2.7 (ii)), the component
Pc = Pn(S, γ) is equipped with a perfect obstruction theory

G• := RHomπ′P
(G, I•S ⊗ ωπ′P )|Pc [2]→ L•Pc .

Note that the obstruction sheaf H1(G•∨) of G• admits a surjection to the
trivial vector bundle OPc , given by the natural surjection

Hom(I•S , G[1]) � Ext2
S(G,G) � C(26)

at the fiber of I•S = (OS → G) ∈ Pc. The second morphism of (26) is dual to
C·id ⊂ Hom(G,G). By removing the trivial factor OPc from the obstruction
theory G•, Kool-Thomas [KT14] constructs a v-dimensional reduced virtual
cycle

[Pn(S, γ)]red ∈ Av(Pn(S, γ)).

Here v is given in Lemma 2.17. Let E• be the obstruction theory in Theo-
rem 2.1 restricted to Pc. We define the following element in the K-group

V = −E•∨ + G•∨ +OPc ∈ K(Pc).
Then V is of constant rank v.

Proposition 2.18. Suppose that γ satisfies (25) and v is as in Lemma 2.17,
then we have the following identity:

[Pc, E•]vir = cv(V) ∩ [Pn(S, γ)]red.(27)

Proof. The obstruction theories E• and G• are related by the following two
natural exact triangles:

RHomπP (I•,F)→ RHomπP (I•, I•)0[1]→ RHomπP (F,OX×P)[2],(28)
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and

RHomπ′P
(I•S ,G)→ RHomπP (I•,F)→ RHomπ′P

(G(−S),G).(29)

Here the triangle (28) is obtained similarly to the bottom triangle of the
diagram (13), replacing ω by OX×P . The triangle (29) follows from applying
RHomπ′P

(−,G) to the triangle (17). The complexes E•∨ and G•∨ can be

identified in the derived category with 2-term complexes

E0 → E1 and G0 → G1

of vector bundles. Their K-group classes are then respectively E0 − E1 and
G0 − G1. We define the element V ′ of the K-group by

V ′ = E1 − E0 − (G1 − G0).

Then we have V = V ′ + OPc . By the exact triangles (28), (29) above,
the fiber of V ′ over a closed point (OS → G) ∈ Pc is naturally given by
χ(G)− χ(G,G).

Using these facts and noting that the summation of OPc does not affect
the total Chern class, the result of [Sie04, Theorem 4.6] implies

[Pc, E•]vir = {c(E1 − E0) ∩ cF (Pc)}0(30)

= {(c(V) ∪ c(G1 − G0)) ∩ cF (Pn(S, γ))}0.

Here {−}r means the r-dimensional part, and cF denotes Fulton’s canonical
class. Similarly, we have

[Pn(S, γ)]red = {c(G1 − G0) ∩ cF (Pn(S, γ))}v.

By the discussion in [Sie04, Section 4.1], we know that

{c(G1 − G0) ∩ cF (Pn(S, γ))}r = 0(31)

for r < v − 1. It is also 0 for r = v − 1 because as mentioned earlier the
obstruction theory G• contains a trivial factor, hence [Pc,G•]vir = 0. The
vanishing (31) also holds for r > v because dimPn(S, γ) ≤ v by Lemma 2.17.
Therefore by the dimension reason, we obtain the desired identity (27). �

Corollary 2.19. In the situation of Proposition 2.18, if γ is irreducible then

[Pn(S, γ)] = [Pn(S, γ)]red,

cv(V) ∩ [Pn(S, γ)]red = cv(ΩPn(S,γ)) ∩ [Pn(S, γ)].

Proof. In this case by Proposition 2.3, Pn(S, γ) is smooth of dimension v,
which is the same as the virtual dimension of [Pn(S, γ)]red. This proves the
first equality. The second equality follows by noting that both sides give
[Pc, E•]vir by Proposition 2.18 and Corollary 2.15. �

Corollary 2.20. In the situation of Proposition 2.18, suppose that there is
a smooth deformation of S to a K3 surface in which γ becomes irreducible.
Then ∫

[Pn(S,γ)]red
cv(V) = (−1)vχ(Pn(K3, h)),

where h = γ2/2 + 1.
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Proof. Since we are working with an isolated type II component, the virtual
bundle V depends on S only. To see this first note that by Verdier duality
applied to the closed immersion S×Pc → X×Pc and that ωS = OS ∼= ωX |S ,
we have

RHomπP (F,OX×P) ∼= RHomπ′P
(G,OS×P)[−1].

Using this and the exact triangles (28) and (29), it is clear that the K-group
class [RHomπP (I•, I•)0] only depends on the data on S, and hence the same
is true for V. The corollary now follows from Corollary 2.19 and deformation
invariance of the reduced virtual cycle for (1, 1) classes. �

In the following special situation we can prove an analog of Theorem 2.16
for possibly reducible classes β:

Theorem 2.21. For a smooth K3 fibration π : X → C suppose that the
class β ∈ H2(X,Z)π is such that Pn(X,β) consists of only isolated type II
components. For any such component Pn(S, γ) as above, suppose that γ
satisfies the condition (25). Then,

Pn,β =
∞∑
h=0

(−1)n−1χ(Pn(K3, h)) ·NLπh,β.(32)

Proof. Since all the components of Pn(X,β) are isolated type II, for any
such component Pn(S, γ), we necessarily have γ = γ1 + · · · + γr where γi’s
are distinct irreducible classes6. In particular, γ is a primitive class and
hence one can find a deformation of S as in Corollary 2.20. This together
with similar argument as in the proof of Theorem 2.16 give the result. �

Remark 2.22. The right hand side of the formula (32) can be obtained by
Kawai-Yoshioka’s formula (4).

3. Stable pairs on nodal K3 fibrations

3.1. Nodal K3 fibrations. In this section, we aim to prove the compati-
bility condition for stable pair invariants via conifold transitions. Let X be
a smooth projective 3-fold, and π be a K3 fibration

π : X → C

onto a smooth projective curve C. A K3 fibration π is called a nodal K3
fibration if the singularities of the fibers of π are at worst ordinary double
point (ODP) singularities.

Example 3.1. Let X ⊂ P3× P1 be a generic hyperplane section of bidegree
(4, 2), and π the composition

π : X ⊂ P3 × P1 → P1

where the second morphism is the projection. Then π is a nodal K3 fibration.

6If any of γi’s is not reduced then one could have a stable pair whose support infinites-
imally thickens outside of the supporting K3 fiber S contradicting the assumption that
all the components of Pn(X,β) are isolated type II.
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For any β ∈ H2(X,Z)π, the stable pair invariants Pn,β are defined as
before by

Pn,β =

∫
[Pn(X,β)]vir

1,

where [Pn(X,β)]vir is the 0-dimensional virtual cycle associated to the ob-
struction theory in Theorem 2.1. We will study the generating series PT(X)β,
PT(X) given by (11).

Remark 3.2. When the singularities of fibers of π are more general type of
rational double points (RDP), then the study of stable pair invariants may
be reduced to the nodal case by using the deformation invariance of stable
pair invariants.

3.2. Conifold transition. Let

s1, . . . , sk ∈ X, c1, · · · , ck′ ∈ C
are the singular points of the fibers of π : X → C, the points in C over which
the fibers have singularities, respectively. By our assumption, each si ∈ X
is an ordinary double point (nodal) singularity for any i in the fiber of π. If
k′ is even, define c0 = c1 and if k′ is odd, define c0 to be an arbitrary point
of C distinct from c1, . . . , ck′ . Let

ε : C̃ → C

be the double cover of C branched over the points c0, c1, . . . , ck′ . It can
be seen that X0 := ε∗(X) is a threefold with the conifold singularities. Let

h : X̃ → X0 be its small resolution with the exceptional nonsingular rational
curves

e1, · · · , ek ⊂ X̃, h(ei) = si(33)

and π̃ : X̃ → C̃ the induced morphism. In general, the small resolution

X̃ may not be a projective variety, but is realized as an algebraic space
by [Art74]. As a summary, we have the commutative diagram

X̃
h //

π̃
��

ε̃

$$

X0

��

//

�

X

π

��

C̃
ε // C.

(34)

The normal bundle of ei in X̃ is isomorphic to OP1(−1)⊕OP1(−1) [Ati58].

Moreover, let εt : C̃t → C be a double cover of C branched at k + 2{k/2}
generic points7 of C when t 6= 0, and set C̃0 = C̃. Define Xt = ε∗t (X), so we
have the Cartesian square

Xt

��

//

�

X

π

��

C̃t
εt // C.

7{k/2} = 0 if k is even, and {k/2} = 1/2 if k is odd.
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Our plan is to relate stable pair invariants of X̃ and Xt which differ by the
conifold transitions. As in GW theory [LY06], [LR01], this can be done
using degeneration techniques.

Remark 3.3. We will not pursue the foundation of moduli theory of stable

pair invariants on the algebraic space X̃. The Hilbert schemes of curves on
algebraic spaces are realized as algebraic spaces [Art69, Corollary 6.2], and
the similar argument may be applied to construct the moduli spaces of stable

pairs on X̃ as algebraic spaces. Also in the situation that any stable pair on

X̃ is scheme theoretically supported on a K3 fiber, then by Proposition 2.2,
the moduli space of stable pairs can alternatively be constructed as a rela-
tive Hilbert scheme of points over the universal curve of the relative linear
system. Hence it is an algebraic space by [Art69, Corollary 6.2].

Remark 3.4. If the moduli space of stable pairs on X̃ is an algebraic space,
then the arguments in [BF97] show the existence of the zero dimensional
virtual fundamental class. Below we will also assume that Li-Wu’s degen-
eration formula [LW15] works for stable pair invariants on algebraic spaces.
Of course, we don’t have to address the foundational matters in Remark 3.3

and this remark if we can choose the small resolution X̃ to be projective.

3.3. Relative stable pair invariants. In order to apply the degeneration
technique, we will use the notion of relative stable pair theory given by
Li-Wu [LW15].

Definition 3.5. Let W be a smooth projective threefold and D ⊂ W a
smooth divisor. For β ∈ H2(W,Z) and n ∈ Z, we denote by Pn(W/D, β)
the moduli stack of relative stable pairs (OW → F ) on W satisfying [F ] = β
and χ(F ) = n, in the sense of [LW15].

There is an open substack of Pn(W/D, β) whose C-points correspond
to pairs (OW → F ) such that F is supported on W and normal to D, i.e.

T orOX1 (F,OD) = 0. A C-point of the boundary corresponds to an admissible
stable pair (cf. [LW15, Definition 4.8]) supported on an n-step degeneration
of (W [n], D[n]). By the relativity of stable pairs, the restriction map defines
the morphism

ev : Pn(W/D, β)→ Hilb(D, |η|).

Given a cohomology weighted partition η with respect to a basis ofH∗(D,Q),
we can associate a cohomology class

Cη ∈ H∗(Hilb(D, |η|),Q)

which forms a basis ofH∗(Hilb(D, |η|),Q) called Nakajima basis (cf. [Nak99]).
If we choose a basis of H∗(D,Q) which is self-dual with respect to the
Poincaré pairing, then for each cohomology weighted partition η, there is a
dual partition η∨ such that∫

Hilb(D,|η|)
Cη ∪ Cν =

(−1)|η|−l(η)

a(η)
δν,η∨
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for any cohomology weighted partition ν with |ν| = |η|. Here l(η) is the
length of the partition η and a(η) is defined by

a(η) =
∏
i

ηi|Aut(η)|.

Definition 3.6. The relative stable pair invariant (without insertions) is
defined by

Pn,β(W/D)η :=

∫
[Pn(W/D,β)]vir

ev∗Cη.

The virtual dimension of Pn(W/D, β) is given by c1(W ) · β. Therefore
the above invariant is zero unless

c1(W ) · β = degCη ≥ 0.

We define the following generating series

PT(W/D)β,η =
∑
n

Pn,β(W/D)ηq
n

PT(W/D)η =
∑
β

PT(W/D)β,ηt
β.

We drop η or D from the notation if respectively |η| = 0 or D = ∅.

3.4. Degeneration formula. Let Y be the threefold obtained by blowing
up X0 at all the conifold points, with the exceptional divisors

D := D1 t · · · tDk, Di = P1 × P1.

Note that we have the factorization

f : Y
g→ X̃

h→ X0

such that g is the blowing up at all the exceptional loci (33) of h. We use

degenerations of the threefolds X̃ and Xt to respectively

Y
⋃

D1,...,Dk

k∐
i=1

P1 and Y
⋃

D1,...,Dk

k∐
i=1

P2.(35)

Here P1 is given by

P1
∼= P(OP1 ⊕OP1(−1)⊕OP1(−1))

and P2 is a smooth quadric hypersurface in P4.
The first degeneration in (35) is the degeneration to the normal cone

[Ful98] in whichDi ⊂ Y is attached to the divisor at infinityH1 = P(OP1(−1)2)
in the i-th copy of P1. The second degeneration is called the semi-stable
reduction of a conifold degeneration [LY06] in which Di ⊂ Y is attached to
a smooth hyperplane section H2 in the i-th copy of P2. We denote by

X1 → A1, X2 → A1

the total spaces of the first and second degenerations above. Let L be an
ample line bundle on X. We define line bundles Lt on Xt to be

Lt = ε∗t (L)

where we set ε0 := ε.
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Now we apply the degeneration formula of stable pair invariants with
respect to the above degenerations. Suppose for simplicity that there is only
one critical locus for the fibration X → C, i.e. k = 1. By the degeneration

formula, we obtain the following identities for β ∈ H2(X̃,Z)π̃

PT(X̃)β =(36) ∑
η,β1+β2=β

PT(Y/D1)β1,η
(−1)|η|−l(η)a(η)

q|η|
PT(P1/H1)β2,η∨

and

PT(Xt)β =(37) ∑
η,β1+β2=β

PT(Y/D1)β1,η
(−1)|η|−l(η)a(η)

q|η|
PT(P2/H2)β2,η∨ .

Here the sum β1 +β2 = β is an equality in H2(X1) and H2(X2) respectively.

Proposition 3.7. The degeneration formula (36) implies that

PT(X̃)β =
∑

β1∈H2(X0), β2∈H2(X̃)

h!β1+β2=β, h∗β2=0

PT(Y/D)f !β1 · PT(X̃)β2 .

Proof. The degeneration formula of relative rank one DT invariants for the
blow-up at (−1,−1)-curves is worked out by Hu-Li [HL12], and we apply
the same argument. By the agreement of the virtual dimensions, it is proved
in [HL12, Theorem 4.2] that a non-zero term of the RHS of (36) satisfies

0 = |η| = β1 ·D1 = β2 ·H1.

This implies that β1 is written as h!β′1 for some β′1 ∈ H2(X0), and β2 is a
multiple of the class of the curve e ⊂ P1 given by the embedding

OP1 ⊂ OP1 ⊕OP1(−1)⊕OP1(−1)

into the first factor. The curve e is a (−1,−1)-curve which does not intersect
with H1. The contributions of the relative stable pairs on P1 with curve

class m[e] is identified with the stable pair invariants on X̃ with curve class
m[e1]8. Hence we obtain the desired result for k = 1. The case of k > 1 is
similarly discussed. �

Proposition 3.8. For any d ∈ Z>0, the degeneration formula (37) implies
that ∑

β∈H2(Xt)
Lt·β=d

PT(Xt)β =
∑

β′∈H2(X0)
L0·β′=d

PT(Y/D)f !β′ .

Proof. By the agreement of the virtual dimensions, a non-zero term of the
RHS of (37) satisfies

c1(Y ) · β1 = −D1 · β1 = degCη ≥ 0.

8This follows by a parallel argument as (4.4) in the proof of [HL12, Theorem 4.2].
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We also have the following compatibility condition

D1 · β1 = H2 · β2 = |η| ≥ 0.

The above inequalities imply that D1 · β1 = |η| = 0 and H2 · β2 = 0. The
first equality implies that β1 is written as f !β′ for some β′ ∈ H2(X0). The
second equality implies that β2 = 0, since H2 is an ample divisor in P2. By
rearranging the sum, we obtain the desired formula for k = 1. The case of
k > 1 is similarly discussed. �

3.5. Relation between PT(X) and PT(X̃). Now we choose k′ generic
fibers S1, . . . , Sk′ of X → C. By our assumption Si is a K3 surface. Let
Xi = Si × P1. Then Xi is a smooth K3-fibration over P1. We identify the
surface Si with the divisor Si × {0} in Xi.

Lemma 3.9. For any curve class β contained in fibers of Xi → P1, we have
Pn,β(Xi/Si) = 0.

Proof. By (21) in [MPT10] the cup product map, ∪β : H1(TSi)→ H2(OSi)
is surjective, and hence by the proof of [KT14, Theorem 2.7] the obstruction
theory of Pn(Xi/Si, β) contains a trivial factor which implies the vanishing
of the invariants9. �

We set S to be the disjoint union of Si for 1 ≤ i ≤ k′.

Lemma 3.10. Pn,β(X/S) = Pn,β(X).

Proof. Use the degeneration formula for the degeneration of X into

X
⋃

S1,...,Sr

∐
i

Xi.

The vanishing of Pn,β(Xi/Si) from Lemma 3.9 proves the claim. �

We use Lemma 3.10 to relate the PT invariants of X to Xt. To achieve
this we use the degeneration of Xt obtained by degenerating its base C̃
to two copies of C by attaching two copies of X along the generic fibers
S1, . . . , Sk′ . The degeneration formula then implies that∑

Lt·β=d

PT(Xt)β =
∑

d1+d2=d

∑
L·β1=d1

PT(X/S)β1
∑

L·β2=d2

PT(X/S)β2(38)

for each d ∈ Z>0. Let PTh(X̃) be the generating series defined by

PTh(X̃) :=
∑
h∗β=0

Pn,β(X̃)qntβ(39)

=
∏

1≤i≤k,n≥1

(1− (−q)nt[ei])n.

Here the second identity follows from the computation of stable pair invari-

ants on a (−1,−1)-curve [NN11]. Let ε̃ : X̃ → X be the natural morphism
given in the diagram (34). Combined with the results in the previous sub-
section, we obtain the following result:

9The proof of [KT14, Theorem 2.7] is given for absolute geometries but a parallel
argument applies to the relative geometry here.
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Theorem 3.11. We have the formula

ε̃∗
PT(X̃)

PTh(X̃)
= PT(X)2.(40)

Here ε̃∗ is the variable change tβ 7→ tε̃∗β.

Proof. For each d ∈ Z>0, Proposition 3.8, Lemma 3.10 and (38) imply∑
β∈H2(X0)
L·ε∗β=d

PT(Y/D)f !β =
∑

β1,β2∈H2(X)
L·β1+L·β2=d

PT(X)β1 · PT(X)β2 .

Since the above formula holds for any L, we have

ε̃∗
∑

β∈H2(X0)

PT(Y/D)f !βt
h!β = PT(X)2.(41)

On the other hand, the LHS of (41) coincides with the LHS of (40) by
Proposition 3.7. Therefore we obtain the result. �

Remark 3.12. The variable change tβ 7→ tε̃∗β only makes sense after taking
the quotient series in the LHS of (40). Otherwise there are infinite numbers
of contributions to the coefficients.

Remark 3.13. The LHS of (40) is known to be independent of a choice of
a small resolution [HL12], [Tod13b], [Cal]. The formula (40) is consistent
with this fact.

In an irreducible curve class case, we have the following corollary:

Corollary 3.14. For an irreducible curve class β ∈ H2(X,Z)π, we have the
following formula:∑

ε̃∗β̃=β

ε̃∗

∑
h∗e=0 PT(X̃)

β̃+e

PTh(X̃)
= 2 PT(X)β.(42)

Here β̃ ∈ H2(X̃,Z) are irreducible curve classes, giving lifts of β.

3.6. Conjectural relation to perverse (non-commutative) stable pair
theory. In this subsection, we introduce perverse (or non-commutative) sta-
ble pair theory, and propose a conjectural relationship between the quotient

series PT(X̃)/PTh(X̃) in Theorem 3.11 and the generating series of the
perverse (non-commutative) stable pair invariants. We first recall the heart

of the perverse t-structure on Db Coh(X̃) associated to the small resolution

h : X̃ → X0, introduced by Bridgeland [Bri02]. Let C ⊂ Db Coh(X̃) be the
full subcategory defined by

C = {E ∈ Db Coh(X̃) : Rh∗E = 0}.

By [Bri02], the standard t-structure on Db Coh(X̃) induces a t-structure

(C≤0, C≥0) on C. We define Per(X̃/X0) to be

Per(X̃/X0) =

{
E ∈ Db Coh(X̃) :

Rh∗E ∈ Coh(X0),
Hom(C<0, E) = Hom(E, C>0) = 0

}
.
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The category Per(X̃/X0) is the heart of a bounded t-structure onDb Coh(X̃),

hence it is an abelian category. Note that OX ∈ Per(X̃/X0) by definition.

Let Per≤1(X̃/X0), Per0(X̃/X0) be the subcategories of Per(X̃/X0), defined
by

Per≤1(X̃/X0) = {E ∈ Per(X̃/X0) : dimh(Supp(E)) ≤ 1},

Per0(X̃/X0) = {E ∈ Per(X̃/X0) : dimh(Supp(E)) = 0}.

It is easy to see that Per≤1(X̃/X0) and Per0(X̃/X0) are closed under quo-

tients and subobjects in Per(X̃/X0). In particular, they are abelian subcat-

egories of Per(X̃/X0).

Definition 3.15. A perverse stable pair for h : X̃ → X0 consists of data
(F, s)

F ∈ Per≤1(X̃/X0), s : O
X̃
→ F(43)

satisfying the following conditions:

• Hom(Per0(X̃/X0), F ) = 0.

• The cokernel of s in Per(X̃/X0) is an object in Per0(X̃/X0).

The above definition coincides with the usual definition of stable pairs if

h : X̃ → X0 is an isomorphism (i.e. there is no nodal fiber for π : X → C).
Also the above perverse stable pairs are related to the non-commutative

version of stable pairs as follows. Suppose that X̃ were a projective variety.

Then, Van den Bergh [dB04] shows that there is a vector bundle E0 on X̃
such that E = O

X̃
⊕ E0 gives a derived equivalence

Φ = Rh∗RHom(E , ∗) : Db Coh(X̃)
∼→ Db Coh(AX0)

whereAX0 = h∗End(E) is the sheaf of non-commutative algebras onX0. The

equivalence Φ restricts to an equivalence between Per(X̃/X0) and Coh(AX0).
Let U = Φ(O

X̃
) ∈ Coh(AX0) be the local projective generator of AX0 . Let

Coh≤1(AX0), Coh0(AX0)

be the subcategories of Coh(AX0), consisting of E ∈ Coh(AX0) whose sup-
port as OX0-module has dimension ≤ 1, 0 respectively. It is easy to see
that

Φ(Per≤1(X̃/X0)) = Coh≤1(AX0),

Φ(Per0(X̃/X0)) = Coh0(AX0).

Under the equivalence Φ, the data (43) is equivalent to the data (F ′, s′)

F ′ ∈ Coh≤1(AX0), s′ : U → F ′(44)

such that Hom(Coh0(AX0), F ′) = 0 and the cokernel of s in Coh(AX0) is an
object in Coh0(AX0).

The pair (44) is a non-commutative analogue of stable pairs. However

unfortunately, our 3-fold X̃ may not be projective, and the sheaf of non-
commutative algebras AX0 only exists at formal neighborhoods at each point
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in X0. Because of the absence of the global sheaf of non-commutative alge-
bras AX0 , we formulate our non-commutative stable pairs as a morphism in
the perverse heart as in (43).

For β ∈ H2(X̃,Z)π̃ and n ∈ Z, let

Pper
n (X̃, β)(45)

be the moduli space of perverse stable pairs (O
X̃
→ F ) with [F ] = β and

χ(F ) = n. We expect that (see Remark 3.16) the moduli space (45) exists
as a proper algebraic space, with a perfect obstruction theory with virtual
dimension zero given by

E•per := RHomπP (I•per, I•per ⊗ ωπ)0[2]→ L•Pper
n (X̃,β)

.(46)

Here I•per is the total complex associated to the universal morphism

s : O
X̃×Pper

n (X̃,β)
→ Fper.

Remark 3.16. Here we assumed that (45) is a proper algebraic space with
perfect obstruction theory (46). We have not checked all the details but we
believe that they should all follow from the similar arguments in the existing
literatures. First the argument in [Tod13b, Section 6.4, Step 2] should show
that (45) is an algebraic space of finite type. The properness should follow
from the arguments in [Lo13]. Also the existence of the perfect obstruction
theory (46) should follow from the argument in [HT10] by noting that the
complexes associated to perverse stable pairs in Definition 3.15 are simple
objects of the derived category as they are stable with respect to some weak
stability condition (see Remark 3.18).

By taking the integration, we obtain the invariant

P per
n,β =

∫
[Pper
n (X̃,β)]vir

1.

We define the generating series PTper(X̃)β and PTper(X̃) to be

PTper(X̃)β =
∑
n∈Z

P per
n,β q

n, PTper(X̃) =
∑

β∈H2(X̃,Z)π̃

PT(X̃)βt
β.

Conjecture 3.17. We have the equality

PT(X̃)

PTh(X̃)
= PTper(X̃).(47)

Remark 3.18. The conjectural equality (47) is motivated by the third au-
thor’s work [Tod13b]. Indeed the equality (47) holds true for the Euler char-
acteristic version, i.e. replace all the invariants by the topological Euler
characteristic of the moduli spaces. This follows immediately from the proof
of [Tod13b, Theorem 5.8], and the fact that σξ(0)-semistable objects in the
notation of [Tod13b, Theorem 5.8] consist of total complexes associated to
perverse stable pairs in Definition 3.15. (The latter fact can be easily proved
using the same argument of [Tod13b, Proposition 5.5]). Moreover, if our 3-

fold X̃ were projective Calabi-Yau 3-fold, then the equality (47) follows from

the results of [Tod13b], [Cal]. However, since our 3-fold X̃ is no longer
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Calabi-Yau, we need a new technique of wall-crossing to show the inequality
(47).

Remark 3.19. If Conjecture 3.17 is true, then Theorem 3.11 implies that

ε̃∗ PTper(X̃) = PT(X)2.(48)

Hence we can reduce the computation of PT(X) for a nodal K3 fibration

X → C to the computation of PTper(X̃) for a smooth K3 fibration X̃ → C̃.

3.7. Computation of perverse stable pair invariants. Finally in this
section, we aim at computing perverse stable pair invariants. We prove the
following lemma:

Lemma 3.20. Let (O
X̃
→ F ) be a perverse stable pair for X̃ → X0 such

that h∗[F ] is an irreducible curve class in X0. Then we have

(1) Hom(F, F ) = C.

(2) Supp(F ) ⊂ S where i : S ↪→ X̃ is a K3 fiber and Supp(F ) is the
scheme theoretic support of the complex F .

Proof. (1) It is enough to show that any non-zero morphism u : F → F in

Per(X̃/X0) is an isomorphism. Let us take a factorization in Per(X̃/X0)

F � Imu ↪→ F.

Let U = X̃ \ Ex(h). Suppose first that u|U = 0. Then imu is a non-zero

object in Per0(X̃/X0), which contradicts to Definition 3.15. Hence we have
u|U 6= 0. Since the object F |U is a pure one dimensional sheaf whose scheme
theoretic support is irreducible, the morphism u|U is an injective morphism

in Coh(U). This implies that, if Ker(u) ∈ Per(X̃/X0) is non-zero, then

it is an object in Per0(X̃/X0). This contradicts to Definition 3.15, hence
Ker(u) = 0.

Now we have proved that u is injective in Per(X̃/X0). It remains to

show that Cok(u) ∈ Per(X̃/X0) vanishes. Since Rh∗ takes Per(X̃/X0) to
Coh(X0), we have the exact sequence in Coh(X0)

0→ Rh∗F → Rh∗F → Rh∗Cok(u)→ 0.

The above sequence implies that Rh∗Cok(u) = 0, hence Cok(u) ∈ C. It
follows that, by [dB04, Proposition 3.5.8], the object Cok(u) is isomorphic to
the direct sum of the sheaves Oei(−1). Therefore by taking the cohomology
long exact sequence associated to 0 → F → F → Cok(u) → 0, and noting

that Hi(F ) = 0 for i 6= 0,−1 (because F ∈ Per(X̃/X0)), we obtain the exact
sequence of sheaves

0→ H0(F )→ H0(F )→ Cok(u)→ 0.

Therefore we have Cok(u) = 0.
(2) By part (1), F is necessarily supported (set theoretically) on only

one fiber S. Tensoring the natural short exact sequence 0 → O
X̃

(−S) →
O
X̃
→ i∗OS → 0 by F , and noting that F ⊗O

X̃
(−S) ∼= F , we get the exact

triangle F → F → i∗Li
∗F . Since Li∗F 6∼= 0, the first map in the exact

triangle cannot be an isomorphism, and hence it must be zero map by part
(1) of the lemma. The exact triangle then implies that i∗Li

∗F ∼= F ⊕ F [1],
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and so in particular Supp(F ) = Supp(Li∗F ). Part (2) now follows from
[Huy06, Lemma 3.29]. �

For the smooth K3 fibration π̃ : X̃ → C̃, let us take a curve class

β = β̃ +mei ∈ H2(X̃,Z)π̃,(49)

for some irreducible curve class β̃ ∈ H2(X̃,Z) and m ∈ Z≥0. Since β̃ is an
irreducible class Lemma 3.20 applies for the perverse stable pairs (O

X̃
→ F )

such that [F ] = β. Motivated by the result of this lemma we assume the
following conjecture:10

Conjecture 3.21. Let (O
X̃
→ F ) be a perverse stable pair for X̃ → X0

such that [F ] = β. Using the notation of Lemma 3.20 Part (2), there exists
a complex G on S such that F = i∗G.

Assuming Conjecture 3.21, there is a natural morphism

ρ : Pper
n (X̃, β)→ C̃.

Also similarly to Definition 2.6, we can define the type I and type II com-

ponents Pper
I ,Pper

II of Pper
n (X̃, β). For a point p ∈ C̃, suppose that S :=

π̃−1(p)
i
↪−→ X̃ and γ is a curve class on S with i∗γ = β, then we denote the

fiber ρ−1(p) of ρ restricted to a type I or an isolated type II component by
Pper
n (S, h) where h := γ2/2 + 1. Note that by the choice of β one can find

a smooth deformation S′ of S in which γ becomes irreducible, and hence a
perverse stable pair on S′ in this class is the same as a usual stable pair.
From this and Proposition 3.22, one can see that Pper

n (S, h) is deformation
equivalent to Pn(K3, h). We have the analogs of Propositions 2.4, 2.8, 2.10
and Corollary 2.15 that can be summarized as follows:

Proposition 3.22. The type I components and isolated type II components

of the moduli space of perverse stable pairs Pper(X̃, β) are smooth.

Proof. We first prove the proposition for isolated type II components. The
proof is along the lines of the proof of [PT10, Proposition C.2]. We show
that the obstruction space vanishes for any given perverse stable pair I•per =

(O
X̃

s−→ F ) with F = i∗G is supported on a K3 fiber i : S ↪→ X̃. We will
slightly abuse the notation and use the same symbol I•per for the perverse

stable pair on S and its pushforward on X̃. As in the proof of [ibid], the
obstruction space is the kernel of v in the following natural exact sequence:

Hom(I•per, G)→ Ext1(G,G)
u−→ Ext1(O, G)

→ Ext1(I•per, G)
v−→ Ext2(G,G)0 → 0.

Lemma 3.20, and Serre duality implies that Ext2(G,G)0 = 0, so to prove
the claim we need to show that the map u is surjective. Let S0 := h(S),
p : S0 → SpecC be the structure morphism, and

G0 := Rh∗G ∈ Coh(S0), D0 := Supp(G0).

10This is an analog of Lemma 2.5.
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We can write RΓ(G) = Rp∗G0 and hence

Ext1(O, G) ∼= H1(G0).

On the other hand, applying Rh∗ to RHom(G,G)
tr−→ OS

s−→ G, we get the
chain of maps

Rh∗RHom(G,G)→ RHom(G0, G0)
tr−→ OS0

s0−→ G0.

Clearly, s0 has a zero dimensional cokernel, and the trace map

Hom(G0, G0)→ OD0

is surjective with at most a zero dimensional kernel, and therefore s0 ◦ tr
induces the surjection H1(Hom(G0, G0))→ H1(G0). By the local to global
spectral sequence

H1(H0(Rh∗RHom(G,G))) ⊆ Ext1(G,G),

and hence u is surjective as desired.
The proof of proposition for the type I components essentially follows the

same analysis as above but this time carried out relative to the base curve
C. �

Proposition 3.23. Suppose that any component of Pper
II is isolated. Then

we have

[Pper
II , E•per]

vir = [Pper
II ] ∩ ctop(ΩPper

II
),

[Pper
I , E•per]

vir = [Pper
I ] ∩

(
c1(ρ∗K̃∨) ∪ ctop(ΩPper

I /C̃
)
)
,

where K̃ = π̃∗ωX̃/C̃ .

Proof. The same as the proofs of Proposition 2.4 and Corollary 2.15 in which

the stable pair I• is replaced with the perverse stable pair I•per = (O
X̃

s−→ F ).

The surjectivity Ext1(F ,F) → Ext1(O
X̃
, F ) = H1(F ) which is one of the

important requirements can be obtained as the proof of surjectivity of the
map u in Proposition 3.22. �

Now we provide an analog of Theorem 2.16 for perverse stable pair in-
variants:

Theorem 3.24. For the smooth K3 fibration π̃ : X̃ → C̃, suppose that β is
given as in (49), and assume Conjecture 3.21. Then we have

PTper(X̃)β =

∞∑
h=0

∞∑
n=1−h

(−1)n−1χ(Pper
n (S, h)) ·NLπ̃

h,β
qn,

where S is a K3 fiber of X̃. �

Remark 3.25. By the discussion before Proposition 3.22, we can see that
the Euler characteristics χ(Pper

n (S, h)) = χ(Pn(K3, h)) in Theorem 3.24 can
be read off from Kawai-Yoshioka’s formula (4).

Remark 3.26. If the conjectural relation (48) holds, then by Theorem 3.24,
it enables us to compute stable pair invariants for the nodal K3 fibration
X → C with irreducible curve classes.
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4. Wall-crossing formula for K3 fibrations

In this section, we study the stable pair invariants on K3 fibrations from
a different approach. We first relate the stable pair invariants on a K3
fibration (with possibly singular fibers) to the generalized DT invariants
counting torsion sheaves supported on fibers of the K3 fibration. This is
achieved by an argument similar to [Tod12b], where a similar problem was
studied for the trivial K3 fibration S × C → C for a K3 surface S. The
key ingredient was the wall-crossing formula of DT type invariants in the
derived category [JS12], [KS]. The latter invariants are calculated in [GS13]
for nodal K3 fibrations, and we apply its result to calculate the stable pair
invariants on nodal K3 fibrations with irreducible curve classes. For a non-
irreducible curve classes, the two approaches give different descriptions of
the stable pair invariants on nodal K3 fibrations. This gives a non-trivial
relationship between the generalized DT invariants on nodal K3 fibrations
and the stable pair invariants on smooth K3 fibrations, which may have
some applications to the study of the generalized DT invariants.

4.1. Stability conditions for K3 fibrations. Let X be a smooth projec-
tive Calabi-Yau 3-fold over C, i.e.

KX = 0, H1(X,OX) = 0.

We assume that there is a morphism

π : X → P1

such that every scheme-theoretic fiber is an integral scheme. Note that a
generic fiber of π is a smooth algebraic K3 surface. An example is given in
Example 3.1. Let Cohπ(X) be the subcategory of E ∈ Coh(X) such that
Supp(E) is contained in the fibers of π. We consider its bounded derived
category

D0 := Db Cohπ(X).

Note that for any object E ∈ D0, we have

ch(E)
√

tdX = (0, r[F ], β, n)

∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).(50)

Here [F ] is a fiber class of π, and r, n ∈ Z. Under the Poincaré duality, the
element β is regarded as an element in H2(X,Z)π. By setting

Γ0 := Z⊕H2(X,Z)π ⊕ Z

the expression (50) gives a group homomorphism

cl0 : K(D0)→ Γ0, E 7→ (r, β, n).(51)

Let ω be an ample divisor on X. Using the map (51), we define the slope
function µω on Cohπ(X) by

µω(E) =

∫
X
ω · β/r ∈ Q ∪ {∞}.
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Here cl0(E) = (r, β, n) and µω(E) =∞ if r = 0, i.e. E is one or zero dimen-
sional sheaf. The slope function µω defines the µω-stability on Cohπ(X) in
an obvious way. We define the following full subcategories in Cohπ(X):

Tω := 〈F : µω-semistable with µω(F ) > 0〉ex

Fω := 〈F : µω-semistable with µω(F ) ≤ 0〉ex.

Here 〈∗〉ex is the extension closure of ∗, i.e. the smallest extension closed
subcategory which contains ∗. The above pair (Tω,Fω) determines a torsion
pair (cf. [HRS96]) on Cohπ(X). We have the associated tilting

Bω := 〈Fω, Tω[−1]〉ex ⊂ Db Cohπ(X).

The subcategory Bω is the heart of a bounded t-structure of Db Cohπ(X),
hence in particular it is an abelian category. Let Zω,0 : Γ0 → C be the group
homomorphism defined by

Zω,0(v) :=

∫
X
e−iωv

= n− r

2
(ω|Xp)2 − (ω · β)

√
−1.(52)

Here we have written v = (r, β, n), and Xp = π−1(p) for a closed point p ∈ C.
Below we assume the familiarity of Bridgeland stability conditions [Bri07]
on triangulated categories.

Lemma 4.1. The pairs

σtω,0 := (Ztω,0,Bω), t > 0

determine Bridgeland stability conditions on D0.

Proof. The proof is almost the same as in the K3 surface case in [Bri08,
Proposition 7.1]. However, we need to take a little care since there may be
possible singular fibers of π. For non-zero E ∈ Bω, let us show the following
property

Ztω,0(E) ∈ {r exp(iπφ) : r > 0, φ ∈ (0, 1]}.(53)

By our construction of Bω, we have ImZtω,0(E) ≥ 0. If ImZtω,0(E) = 0,
then H1(E) is zero dimensional and H0(E) is a µω-semistable sheaf with
µω(H0(E)) = 0. Therefore by (52), it is enough to show that for any µω-
stable sheaf F ∈ Cohπ(X) with cl0(F ) = (r, β, n) and ω · β = 0, we have
n ≤ 0. Since F is µω-stable, it is an OXp-module for some p ∈ P1. If Xp

is smooth, then the inequality n ≤ 0 this is a consequence of Bogomolov-
Gieseker inequality. In general, since Xp is an integral scheme, the structure
sheaf OXp is a µω-stable sheaf with µω(OXp) = 0. By the µω-stability of F ,
if r ≥ 2, we have Hom(OXp , F ) = Hom(F,OXp) = 0. By the Serre duality
and the Riemann-Roch theorem, we obtain

χ(F ) = r + n ≤ 0.(54)

If r = 1, we may assume that Hom(F,OXp) = 0. Indeed if otherwise, then
F is a ideal sheaf of OXp , hence the inequality n ≤ 0. Then we also have
Hom(OXp , F ) = 0. Indeed if there is a non-zero morphism OXp → F , then
it must be injective and the cokernel must be a zero dimensional sheaf. But
as Ext1

Xp(Ox,OXp) = 0 for any x ∈ Xp, the sheaf F must contain a zero
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dimensional sheaf, which contradicts to the µω-stability of F . Therefore
Hom(F,OXp) = Hom(OXp , F ) = 0, and the Riemann-Roch computation
(54) shows n ≤ 0.

We finally check the Harder-Narasimhan property. By following the argu-
ments as in [Bri08, Proposition 7.1], we finally arrive at the exact sequences
of sheaves for i ≥ 1

0→ Q→ H−1(Ei)→ H0(Li)→ 0.

Here we have used the same notation of [Bri08, Proposition 7.1]. The sheaf
Q is a pure two dimensional sheaf and H0(Li) is a zero dimensional sheaf.
A difference from [Bri08, Proposition 7.1] is that our sheaf Q is no longer a
torsion free sheaf. However by pushing forward the above sequence by the
generic projection Supp(Q)→ P2, we arrive at the same situation in [Bri08,
Proposition 7.1]. Therefore the Harder-Narasimhan property also holds. �

4.2. Weak stability conditions on D. Let D be the triangulated subcat-
egory of Db Coh(X) defined by

D := 〈π∗ Pic(P1),Cohπ(X)〉tr ⊂ Db Coh(X).

Here 〈∗〉tr is the triangulated closure, i.e. the smallest triangulated subcat-
egory which contains ∗. We construct weak stability conditions on D in the
sense of [Tod10a], following the same argument of [Tod12b, Subsection 3.3].
We refer to [Tod10a, Section 2] for details on the space of weak stability con-
ditions on triangulated categories. Let Aω be the subcategory of D defined
by

Aω := 〈π∗ Pic(P1),Bω〉ex ⊂ D.

One can check that, using the same argument of [Tod12b, Proposition 2.9],
the subcategory Aω is the heart of a bounded t-structure on D. In particular
it is an abelian category. We define the group homomorphism

cl : K(D)→ Γ := Z⊕ Γ0

by cl |K(D0) = (0, cl0) and

cl(π∗L) = (1, degL, 0, 0)

for L ∈ Pic(P1). We take a filtration Γ• of Γ by

0 = Γ−1 ⊂ Γ0 ⊂ Γ1 := Γ

where the second inclusion is given by v 7→ (0, v). We define the element

Zω ∈
1∏
i=0

Hom(Γi/Γi−1,C)

to be the following:

Zω,1(R) := R
√
−1, R ∈ Γ1/Γ0 = Z

Zω,0(v) :=

∫
X
e−iωv, v ∈ Γ0.
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Lemma 4.2. The pairs

σtω := (Ztω,Aω), t ∈ R>0

determine weak stability conditions on D with respect to the filtration Γ• on
Γ.

Proof. Using Lemma 4.1 instead of [Tod12b, Lemma 3.3], the same argument
of [Tod12b, Lemma 3.4] is applied without any major modification. �

4.3. Donaldson-Thomas type invariants. Let M be a C-scheme. In the
paper [Beh09], Behrend associated a canonical constructible function ν on
it, called Behrend function. The ν-weighted Euler characteristic∫

M
ν dχ :=

∑
m∈Z

m · χ(ν−1(m))(55)

is called the DT-type invariants. This is due to the fact by Behrend [Beh09]
that, if M is proper and admits a symmetric perfect obstruction theory, we
have the identity ∫

[M ]vir
1 =

∫
M
ν dχ.

On the other hand, the naive Euler characteristic χ(M) is called the Euler
characteristic version of the invariant (55).

Since we assumed that X is a smooth projective Calabi-Yau 3-fold, the
perfect obstruction theory in Theorem 2.1 is symmetric, hence we have

Pn,β =

∫
Pn(X,β)

ν dχ.

We can similarly define DT type invariants on X using the Behrend func-
tion. For (r, β, n) ∈ Γ0, let Mω(r, β, n) be the moduli stack of ω-Gieseker
stable sheaves E ∈ Cohπ(X) with cl0(E) = (r, β, n). If any closed point of
Mω(r, β, n) is stable, then it is a C∗-gerbe over a projective scheme, hence
the following integration makes sense:

J(r, β, n) =

∫
Mω(r,β,n)

ν dχ.(56)

In general, there may be a closed point of Mω(r, β, n) corresponding to
a strictly semistable sheaf. In such a case, the invariant (56) is defined
in [JS12], [KS], as the generalized DT invariant, and takes its value in Q. It
is defined as the weighted Euler number of the ‘logarithm’ ofMω(r, β, n) in
the motivic Hall algebra of Cohπ(X). An Euler characteristic version of the
invariant (56) for the trivial K3 fibration S × C→ C for a K3 surface S is
available in [Tod12b, Definition 4.23].

Lemma 4.3. The invariant (56) is independent of a choice of ω.

Proof. Since the Euler pairing onD0 is trivial, the same argument of [Tod12b,
Lemma 4.16] is applied. �
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4.4. Wall-crossing formula. The following is the main result in this sec-
tion:

Theorem 4.4. We have the following formula

PT(X) =
∏

r≥0,β>0,n≥0

exp
(

(−1)n−1J(r, β, r + n)qntβ
)n+2r

·
∏

r>0,β>0,n>0

exp
(

(−1)n−1J(r, β, r + n)q−ntβ
)n+2r

.(57)

Proof. The Euler characteristic version of the above result is proved when
X is a trivial fibration in [Tod12b]. The proof proceeds along with the
same argument of [Tod12b] without any major modification, using the de-
rived category version of [JS12, Theorem 5.18] proved in [Tod, Theorem 2.8]
instead of [Joy08, Theorem 6.28]. We only give an outline of the proof.

Step 1. First wall-crossing.

By the result of [Bri11], [Tod] (also see [Tod10b, Theorem 1.3], [Tod12a,
Theorem 3.11]), we have the following formula

PT(X) =(58)

∏
β>0,n>0

exp
(

(−1)n−1J(0, β, n)qntβ
)n∑

β,n

L(β, n)qntβ

 .

The above formula is obtained by applying the wall-crossing formula of DT
type invariants in the category of perverse coherent sheaves on Db Coh(X),
which are certain two term complexes of coherent sheaves. The invari-
ant L(β, n) counts perverse coherent sheaves E ∈ Db Coh(X), which are
semistable with respect to a certain self dual weak stability condition on
the perverse heart. (It was denoted by µiω-limit stability in [Tod10b, Sec-
tion 3], and Zω,1/2-stability in [Tod12a, Section 5].) The object E satisfies
the numerical condition

ch(E) = (1, 0,−β,−n) ∈ H∗(X,Q).

The precise definition of the invariant L(β, n) is available in [Tod12a, Defi-
nition 5.5], where it is denoted by Ln,β. When X = S×P1 for a K3 surface
S, its Euler characteristic version is available in [Tod12b, Subsection 4.6].

Step 2. Generating series of DT type invariants.

For (r, β, n) ∈ Γ0, let Mtω(r, β, n) be the moduli stack of σtω-semistable
objects E ∈ Aω satisfying

cl(E) = (1,−r,−β,−n) ∈ Γ.

Similarly to [Tod12b, Lemma 4.13], the above moduli stack is realized as
a constructible subset of an Artin stack M locally of finite type. Simi-
larly to the previous subsection and [Tod12b, Definition 4.10], it defines the
(generalized) DT type invariant

DTtω(r, β, n) :=

∫
Mtω(r,β,n)

ν dχ ∈ Q.
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We form the following generating series

DTtω(X) :=
∑

(r,β,n)∈Γ0

DTtω(r, β, n)qntβsr.

We consider the behavior of the above generating series for t � 0 and
0 < t� 1. We have the following proposition:

Proposition 4.5. We have the following formulas

lim
t→∞

DTtω(X) =
∑
r,β,n

L(β, n)qntβsr

lim
t→+0

DTtω(X) = lim
t→+0

∑
r,β

DTtω(r, β, 0)tβsr.

Proof. The same proof of [Tod12b, Proposition 4.16] is applied without any
major modification. �

Step 3. Wall-crossing in Aω.

We investigate the difference of the generating series DTtω(X) for t =
t0 + 0 and t = t0 − 0 for a fixed t0 ∈ R>0. We have the following result:

Proposition 4.6. We have the following formula

lim
t→t0+0

DTtω(X) = lim
t→t0−0

DTtω(X)

·
∏
β>0,

n= 1
2
rt20ω|2Xp

exp
(

(−1)n−1J(r, β, r + n)qntβsr
)ε(r)(n+2r)

.

Here ε(r) = 1 if r > 0, ε(r) = −1 if r < 0 and ε(r) = 0 if r = 0.

Proof. The same proof of [Tod12b, Theorem 5.1] is applied by using the
results of [JS12], [Tod] instead of [Joy08]. We just give an outline of the
proof. For v ∈ Γ0, let Mtω,0(v) be the moduli stack of σtω,0-semistable
objects E ∈ Bω satisfying cl0(E) = v. Similarly to the invariant J(v), we
have the generalized DT type invariant

Jtω(v) :=

∫
Mtω,0(v)

ν dχ ∈ Q

which counts σtω,0-semistable objects E ∈ Bω with cl0(E) = v. The wall-
crossing formula [JS12] describes the difference of the two limiting series
DTtω±0(X) in terms of the invariants Jtω(v), where v ∈ Γ0 satisfies Ztω,0(v) ∈
R>0

√
−1. If we write v = (r, β, n), the latter condition implies that

n =
1

2
rt20ω|2Xp .

On the other hand, the proof of [Tod12b, Corollary 4.27] shows that the in-
variant Jtω(v) is independent of t, and coincides with J(v). Now by applying
the wall-crossing formula in [JS12], and computing the relevant combinato-
rial coefficients as in [Tod10b], [Tod10a], we obtain the result. �

By combining the above result with Proposition 4.5, we have the following
corollary (cf. [Tod12b, Corollary 5.2]):
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Corollary 4.7. We have the following formula:∑
(r,β,n)∈Γ0

L(β, n)qntβsr

=
∏

β>0,rn>0

exp
(

(−1)n−1J(r, β, r + n)qntβsr
)ε(r)(n+2r)

· D̂T(X)

where D̂T(X) is defined to be

D̂T(X) := lim
t→+0

∑
(r,β,n)∈Γ0

DTtω(r, β, 0)tβsr

Step 4. Further wall-crossing.

The final step is to decompose the series D̂T(X) into a product which
involves the invariants J(v). Following [Tod12b, Subsection 3.6], let

Aω(1/2) ⊂ Aω
be the subcategory given as the extension closure of Ztω-semistable objects
E ∈ Aω for 0 < t� 1, satisfying

lim
t→+0

argZtω(E) =
π

2
.

Note that any object E ∈ Aω which contributes to the invariant DTtω(r, β, 0)
is an object in Aω(1/2). Similarly to [Tod12b, Subsection 3.7], we are able
to construct a one parameter family of weak stability conditions

(Ẑω,θ,Aω(1/2)), θ ∈ (0, 1)

onAω(1/2). Moreover by [Tod12b, Proposition 3.17], an object E ∈ Aω(1/2)

contributes to the invariant DTtω(r, β, 0) if and only if it is Ẑω,1/2-semistable,

and an object E ∈ Aω(1/2) with rank(E) = 1 is Ẑtω,θ-semistable for
0 < θ � 1 if and only if it is an object in π∗ Pic(P1). Applying the wall-
crossing formula, we obtain

D̂T(X) =
∏

r>0,β>0

exp
(
−J(r, β, r)tβsr

)2r
·
∑
r∈Z

sr.

The above formula is obtained by the same argument of [Tod12b, Propo-
sition 5.3] without any major modification. Combined with (58), Corol-
lary 4.7, and taking the s0-term, we obtain the desired identity (57). �

4.5. Irreducible curve class case. When the curve class β is irreducible,
we have the following corollary of Theorem 4.4:

Corollary 4.8. Suppose that β ∈ H2(X,Z)π is irreducible. Then for n ≥ 0,
we have

Pn,β =
∑
r≥0

(−1)n−1(n+ 2r)J(r, β, r + n)

P−n,β =
∑
r>0

(−1)n−1(n+ 2r)J(r, β, r + n).(59)
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Remark 4.9. Note that when the data (r, β, n) is chosen so that there does
not exist any strictly semistable sheaf, then the invariants J(r, β, n) appear-
ing on the right hand side of (59) coincide with the invariants computed in
[GS13, Section 2].
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