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0 Introduction
A. Setup and goals, The theory of perverse sheaves can be said to provide
an interpolation between homology and cohomology (or to mix them in a
self-dual way). Since homology, sheaf-theoretically, can be understood as
cohomology with compact support, interesting operations on perverse sheaves
usually combine the functors of the types f! and f˚ or, dually, the functors
of the types f ! and f˚ in the classical formalism of Grothendieck.

An important context when this point of view can be pushed quite far, is
that of perverse sheaves F on a complex affine space Cn smooth with respect
to the stratification given by an arrangement H of hyperplanes with real
equations [KS1]. Denoting by iR : Rn ãÑ Cn the embedding, we associate to
such an F its hyperbolic stalks

EApFq “ RΓpA, i˚Ai
!
RFq.

Here iA : A ãÑ Rn is the embedding of a face (stratum) of the real arrange-
ment. It is remarkable that the EApFq reduce to single vector spaces, not
complexes (while the ordinary stalks of F are of course complexes, F being
a complex of sheaves). This type of phenomena was originally observed by
T. Braden in the context of varieties with a C˚-action [Br].

It was shown in [KS1] that the vector spaces EApFq together with nat-
ural linear maps γAB, δBA (“generalization and specialization”) connecting
them, determine the perverse sheaf F uniquely. Moreover, the category
PervpCn,Hq of perverse sheaves of the above type is equivalent to the cate-
gory HyppHq formed by linear algebra data pEA, γAB, δBAq satisfying an ex-
plicit set of conditions. We call such linear algebra data hyperbolic sheaves,
see §1D.

The goal of this paper is to develop the beginnings of a “hyperbolic calcu-
lus”, describing the effect of several standard operations on perverse sheaves
directly in terms of hyperbolic sheaves. These operations include forming
vanishing cycles, specialization and Fourier-Sato transform. To illustrate the
importance of such questions recall [BFS] that the the weight components of
the highest weight modules (e.g. Verma, or their irreducible quotients) over
quantized Kac-Moody algebras have interpretation as the spaces of vanishing
cycles Φf pFq for appropriate F P PervpCn,Hq and f . In this case H is a
so-called discriminantal arrangement, F is an extension of a 1-dimensional
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local system on the generic stratum, and f is a linear function. The mon-
odromy of Fourier-Sato transforms of these sheaves is related to the action
of Lusztig symmetries on the corresponding representations [FS].

B. Pattern of the results. To identify the effect of each operation on
perverse sheaves above, we produce a new hyperbolic sheaf out of a given
one. Our constructions and results fall into the following pattern.

(1) Each vector space of the new hyperbolic sheaf is identified with the 0th
cohomology space of an otherwise acyclic complex formed by some of
the vector spaces EAborA (here orA is the orientation space), with the
differential formed out of either the γAB or the δBA. So there are two
versions of the answer: the γ-answer and the δ-answer, in each case.

(2) The complexes in (1) are subquotients of the two fundamental com-
plexes (Proposition 1.12) calculatingRΓcpCn,Fq andRΓpCn,Fq. These
complexes are sums over all the faces A of the spaces EA b orA and
their differentials are formed out of the γAB and δAB respectively. The
RΓcpCn,Fq and RΓpCn,Fq typically have more than one nonzero co-
homology, but the subquotients we take turn out to be acyclic outside
degree 0.

(3) The choice of subquotient is obtained by taking not all but some sum-
mands EAborA. The selection rule, depending on the problem, reflects
the geometry of the problem in some rough (“tropical”) way.

(4) In each case there is also a companion real statement, about com-
plexes of sheaves on Rn constructible w.r.t. the stratification by the
faces. This real statement is proved first, and the statement for perverse
sheaves is deduced from it.

C. Structure of the paper. In §1 we recall the basics of the description
of PervpCn,Hq by hyperbolic sheaves.

§2 is devoted to the calculation of the space of vanishing cycles Φf pFq in
terms of hyperbolic sheaves. Here f : Cn Ñ C is a linear function with real
coefficients. The selection rule for subquotients ofRΓcpCn,Fq andRΓpCn,Fq
consists in taking all faces B Ă Rn on which f ě 0.
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§3 describes the specialization of F P PervpCn,Hq along a C-vector sub-
space LC Ă Cn with real equations. This is a perverse sheaf νLpFq on the
normal bundle TLCn which is itself a vector space. In this case we have the
real subspace LR, and the product arrangement νLpHq in TLRRn. We fur-
ther have the specialization at the level of faces which is a monotone map of
posets

ν :
 

faces of H
(

Ñ
 

faces of νLpHq
(

.

The selection rule for subquotients of RΓcpCn,Fq and RΓpCn,Fq consists
in taking all faces A with νpAq “ B being a fixed face B of νLpHq. This
produces complexes calculating the hyperbolic stalk of νLpFq at B.

We also give a description of the specialization for constructible sheaves
of Rn as the direct image under an appropriate cellular map q : Rn Ñ TLRRn.
This allows us to identify (in our particular case) different possible (and, in
general, non-equivalent) definitions of the bispecialization functor [ST] [T]
for a flag of subspaces N ĂM Ă V .

In §4 we give a similar description of the Fourier-Sato transform FSpFq
which is a perverse sheaf on the dual space pCnq˚. It is smooth with respect to
an appropriate arrangement H_. Each face A_ on H_ gives a natural strictly
convex cone V pA_q Ă Rn. The selection rule for subquotients of RΓcpCn,Fq
and RΓpCn,Fq consists in taking all faces B Ă V pA_q for a fixed A_. This
produces complexes calculating the hyperbolic stalk of FSpFq at A_.

Combining the descriptions of the specialization and of the Fourier-Sato
transform at the level of hyperbolic sheaves, one obtains a description of the
microlocalization µLpFq along a linear subspace with real equations. The
final §5 is dedicated to comparison, in our linear case, of several possible
definitions of the second microlocalization of Kashiwara and Laurent, see [L]
[ST] [T].
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1 Real and complex data associated to per-
verse sheaves

A. The real setup. Let VR “ Rn be a finite-dimensional vector space over
R and H be a finite central arrangement of hyperplanes in VR. We denote
by SR “ SR,H the poset of faces of H, see, e.g., [KS1], §2A. Faces form a real
stratification of VR into (a disjoint union of) locally closed polyhedral cones.
The order ď on SR is by inclusion of closures: A ď B means A Ă B. For
an integer p ě 0 we use the notation A ăp B to signify that A ď B and
dimpBq “ dimpAq ` p, in particular A ă0 B means A “ B. We denote by
iA : AÑ VR the embedding of a face A.

Let k be a field and Vectk be the category of finite-dimensional k-vector
spaces. For any poset S we denote by ReppSq the abelian category of rep-
resentations of S over k, i..e, of covariant functors from S (considered as a
category) to Vectk. By DbpReppSqq we denote the bounded derived category
of ReppSq.

For a topological space X we denote by ShX the category of sheaves of
k-vector spaces on X and by DbpXq the derived category of ShX .

We denote by ShpVR,SRq the abelian category formed by sheaves of k-
vector spaces on VR which are constructible with respect to the stratification
SR. Let also DbpVR,SRq be the full subcategory in the bounded derived
category of sheaves of k-vector spaces on VR formed by complexes with all
cohomology sheaves lying in ShpVR,SRq. For G P DbpVR,SRq and a face A we
denote

(1.1) GA “ RΓpA,Gq :“ RΓpA, i˚AGq P Db
pVectkq

the stalk of G at A. Thus GA is a complex which is a single vector space, if
G is a single sheaf. The following is well known.

Proposition 1.2. (a) We have an equivalence of categories

ShpVR,SRq ÝÑ ReppSRq, G ÞÑ
`

GA, γAB : GA Ñ GB, A ď B
˘

.

Here γAB is the generalization map.

(b) The natural functor DbpShpVR,SRqq Ñ DbpVR,SRq is an equivalence.
In particular:

(c) We have an equivalence of categories DbpShpVR,SRqq Ñ DbpReppSRq.
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In view of (b), we can interpret the equivalence in (c) as sending a complex
of sheaves G to the collection of complexes of vector spaces GA defined by (1.1)
and generalization maps (morphisms of complexes) γAB connecting them.

By a cell we mean a topological space B homeomorphic to Rd for some d.
For a cell B we denote by orB “ H

dimpBq
c pB,kq the 1-dimensional orientation

vector k-space of B. For two cells B,C we set orB{C “ orC b or˚B and call it
the relative orientation space of C and B.

In particular, any face B P SR is a cell and so we have the space orB.
When B,C are two faces such that B ă1 C, we have a canonical “ncidence
isomorphism”

εBC : orB Ñ orC .

It can be seen as a canonical trivialization of orC{B. If B ă1 C1, C2 ă1 D is
a square of codimension 1 inclusion of faces, then the diagram

(1.3) orB
εB,C2

��

εB,C1 // orC1

εC1,D

��
orC2 εC2,D

// orD

is anti-commutative.

Let jA : A Ñ VR be the embedding of a face A. If A ă1 A1 are two
faces of H, we have a canonical moprhism ξAA1 : jA!kA ÝÑ jA1!kA1r1s in
DbpVR,SRq. Viewed as an element of Ext1

pjA!kA, jA1!kA1q, it represents the
extension given by the subsheaf in pjA1q˚ kA1 formed by sections which vanish
on all codimension 1 faces of A1 except A. The moprhisms ξAA1 anticommute
in squares of codimension 1 embeddings, just like the moprhisms εAA1 in
(1.3).

Proposition 1.4. For G P DbpVR,SRq, the following are equivalent;

(i) G corresponds to the data pGA, γABq.
(ii) We have a resolution of G (a complex over DbpShV q with total object

G) of the form
à

dimpAq“0

jA!pGAAq
γbξ
ÝÑ

à

dimpAq“1

jA!pGAAqr1s
γbξ
ÝÑ

à

dimpAq“2

jA!pGAAqr2s
γbξ
ÝÑ ¨ ¨ ¨ ,

the direct sums ranging over all faces of H of given dimension.
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Proof: See, e.g., [KS1] Eq. (1.12).

Corollary 1.5. If G P DbpVR,SRq corresponds to pGA, γABq, then

RΓcpVR,Gq » Tot

"

à

dimpAq“0

GA b orA
γbε
ÝÑ

à

dimpAq“0

GA b orA
γbε
ÝÑ ¨ ¨ ¨

*

(the cohomology with compact supports is calculated by the cellular cochain
complex).

Proof: This follows because RΓcpV, jA!kAq “ orpAqr´ dimpAqs (cohomology
of a cell with compact support).

B. The complex setup. Let VC “ Cn be the complexification of V , and
HC the arrangement of hyperplanes in VC formed by the HC, the complexifi-
cations of the hyperplanes H P H. By a flat of HC we will mean a subspace
of the form L “

Ť

HPJ HC for a subset J Ă H (with J “ H or J “ H
allowed). Flats form a poset FlpHCq ordered by inclusion. Becasue H is as-
sumed central, FlpHCq has 0 as the minimal element and VC as the maximal
element.

For a flat L we denote its generic part by

(1.6) L˝ “ L z
ď

HPH, HCČL

LXHC.

The subsets L˝ form a stratification of VC which we denote by SC “ SC,H.
We view it as a poset, isomorphic to the poset of flats.

Note that faces can be defined as connected components of L˝R “ L˝XVR
for strata L˝ of SC. We therefore have the morphism of posets (“complexifi-
cation")

c : SR ÝÑ SC.

We denote by DbpVC,SCq the full subcategory in the bounded derived
category of sheaves of k-vector spaces on VC formed by complexes whose
cohomology sheaves are constructible with respect to SC. This category has
a perfect duality given by passing from F to F˚, the Verdier dual complex.
Inside it, we have PervpVC,SCq the abelian subcategory of perverse sheaves.
We normalize the conditions of (middle) perversity so that kVCrns, the con-
stant sheaf put in degree p´nq, is perverse. This normalization agrees with
that of [BBD] and differs by shift from that of [KS1]. The abelian category
PervpVC,SCq is closed under Verdier duality.
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C. Real data: stalks and hyperbolic stalks. Let iR;VR Ñ VC be the
embedding. It induces exact functors of triangulated categories

i˚R, i
!
R : Db

pVC,SCq ÝÑ Db
pVR,SRq.

To every complex F P DbpVC,SCq and every face A P SR we can associate
therefore two complexes of vector spaces, which we call the stalk and the
hyperbolic stalk of F at A:

FA “ pi˚RFqA “ RΓpA, i˚Ai
˚
RFq, EApFq “ pi!RFqA “ RΓpA, i˚Ai

!
RFq.

For any pair of faces A ď B we have the generalization maps (morphisms of
complexes) for i˚RF and i!RF :

(1.7) zAB : FA ÝÑ FB, γAB : EApFq ÝÑ EBpFq.

By the Duality Theorem, see [KS1] Prop. 4.6 or [BFS] Pt. I, Thm. 3.9,
we have natural isomorphisms

(1.8) EApF˚
q » EApFq˚.

which imply the following.

Proposition 1.9. (a) We have a canonical identification EApFq » RΓpA, i!Ai
˚
RFq.

(b) The hyperbolic stalk EApFq is identified with the complex

FěA :“ Tot

"

FA
zbε
ÝÑ

à

Bą1A

FB b orB{A
zbε
ÝÑ

à

Bą2A

FB b orB{A
γbε
ÝÑ ¨ ¨ ¨

*

with the differential zb ε having matrix elements zBC b εBC, B ă1 C.

For a dual statement, expressing ordinary stalks through hyperbolic stalks,
see Corollary 1.14.

Proof: Part (a) follows from (1.8) and the fact that Verdier duality inter-
changes i˚ and i!. Part (b) follows by interpreting i!Ai˚RF as RΓApi

˚
RFq, the

complex of sheaves formed by (derived) global sections with support in A.
The stalk of this complex at any a P A can be seen as

RΓtaupD, i
˚
RFq “ RΓcpD, i

˚
RFq,
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where D Ă VR is a small transverse open ball (of complementary dimension)
to A centered at a. The situation is similar to that of Corollary 1.5 (with a
ball instead of a vector space) and the same argument gives the result.

It was proved in [KS1] Prop. 4.9(a) that for F P PervpVC,SCq the complex
i!RpFq is exact in degrees ‰ 0, and so the functor

(1.10) PervpVC,SCq Ñ ShpVR,SRq, F ÞÑ EpFq :“ H0
pi!RFq “ H0

VR
pFq

is an exact functor of abelian categories. In particular, each EApFq reduces
to a single vector space. Further, (1.8) allows us to define maps of vector
spaces

δBA “ δFBA : EBpFq ÝÑ EApFq, A ď B, δFBA :“ pγF
˚

ABq
˚.

which form an anti-representation of SR, i.e., a contravariant functor
pSR,ďq Ñ Vectk. This leads to the following concept.

D. Hyperbolic sheaves. By a hyperbolic sheaf onH we will mean a datum

Q “
`

EA, γAB : EA Ñ EB, δBA : EB Ñ EA, A ď B
˘

where EA, A P SR, are finite-dimensional k-vector spaces, pγABq form a repre-
sentation of SR, and pδBAq form an anti-representation so that the following
additional conditions hold:

(i) For each B ď A, δABγBA “ IdEB . This allows us to define for arbitrary
A,B P SR, the “flopping operator”

φAB :“ γCBδAC : EA ÝÑ EB.

Here C P SR is any face such that C ď A,B, and the definition does
not depend on the choice of C.

(ii) Let us call a triple of faces pA,B,Cq collinear if there exist points
x P A, y P B, z P C lying on the same straight line, with y P rx, zs.
Then for any such collinear triple we must have

φAC “ φBC φAB.
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(iii) Let A,B be two faces. Let us say that they are neighbors if they have
the same dimension d, and there exists a face C ď A,C ď B, with
dimC “ d ´ 1 (a wall separating A and B). Such a wall is unique
if it exists. For any such pair of neighbors we require that φAB is an
isomorphism.

We denote by HyppHq the abelian category formed by hyperbolic sheaves on
H. This category has a perfect duality

Q “ pEA, γAB, δBAq ÞÑ Q˚
“ pE˚A, δ

˚
BA, γ

˚
ABq.

The main result of [KS1] can be formulated as follows.

Theorem 1.11. The functor

F ÞÑ QpFq “
`

EApFq, γAB : EApFq Ñ EBpFq, δBA : EBpFq Ñ EApFq, A ď B
˘

defines an equivalence PervpVC,SCq Ñ HyppHq. This equivalence commutes
with duality: QpF˚q » QpFq˚.

The goal of this paper is to describe various features of perverse sheaves
explicitly, in terms of the linear algebra data given by the associated hyper-
bolic sheaves.

Let us first note the following.

Proposition 1.12. If F P PervpVC,SCq corresponds to a hyperbolic sheaf
QpEA, γAB, δBAq, then

RΓcpVC,Fq »
"

à

dimpAq“0

EA b orA
γbε
ÝÑ

à

dimpAq“1

EA b orA
γbε
ÝÑ ¨ ¨ ¨

*

,

RΓpVC,Fq »
"

à

codimpAq“0

EA b orA
δbε
ÝÑ

à

codimpAq“1

EA b orA
δbε
ÝÑ ¨ ¨ ¨

*

.

Proof: The first quasi-isomorphism follows from Corollary 1.5 and the lemma
below. The second quasi-isomorphism follows from the first one by applying
the Verdier duality.

Lemma 1.13. For any F P DbpVC,SCq we have

RΓcpVC,Fq » RΓcpVR, i
!
R Fq.
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Proof of the lemma: Let i0,C : t0u Ñ VC and i0,R : t0u Ñ VR be the embedings
of the origin. Any F P DbpVC,SCq is R`-conic, i..e, each cohomology sheaf of
F is locally constant on each orbit of the scaling action of Rą0 on VC. This
implies that

RΓcpVC,Fq » RΓt0upVC,Fq “ RΓpVC, i
!
0,CFq.

Similarly, i!RF is R`-conic on VR and

RΓcpVR, i
!
RFq » RΓt0upVR, i

!
RFq “ RΓpVC, i

!
0,Ri

!
RFq,

which is the same as the above because iRi0,R “ i0,C.

We can now complement Proposition 1.9 by a “Koszul dual” statement.

Corollary 1.14. For F P PervpVC,SCq the ordinary stalk FA, A P SR is
expressed through hyperbolic stalks as follows:

FA »

"

à

BěA
codimpBq“0

EB b orB{A
δbε
ÝÑ

à

BěA
codimpBq“1

EB b orB{A
δbε
ÝÑ ¨ ¨ ¨

*

.

That is, the complex in question is exact everywhere except the leftmost term
where the cohomology (kernel) is identified with FA.

Proof: For A “ 0 this is the second identification of Proposition 1.12, since
F0 “ RΓpU,Fq for a small convex open U Q 0, and this complex is indepen-
dent of U , so is the same for U “ VC.

For an arbitrary A the statement reduces to the above by considering the
quotient arrangement H{LR in VR{LR, where LR is the R-linear span of A.
Faces of H{LR are in bijection with faces B of H such that B ě A.

The arrangement H{LR represents the transversal slice M to A; the re-
striction F |MC to the complexified transversal slice is, by [KS1] Prop. 5.3,
represented by the hyperbolic sheaf QěA formed by EB, B ě A, so the cal-
culation of

FA “ RΓpMC,F |MCq “ pF |MCq0

reduces to the above case.
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2 Vanishing cycles in terms of hyperbolic sheaves
The standard microlocal approach to study of perverse sheaves on any strat-
ification is in terms of the local systems of vanishing cyclies on the generic
parts of conormal bundles to the strata, see [MV] [KS2]. Our first result pro-
vides an explicit description of the fibers of these local systems for perverse
sheaves from PervpVC,SCq.

A. Background on vanishing cycles. We recall that for any (polyno-
mial) function f : VC Ñ C and any perverse sheaf F on VC we have a perverse
sheaf Φf pFq on VC supported on the hypersurface tf “ 0u and known as the
perverse sheaf of vanishing cycles, see [Be][De]. We will use the following
real analytic interpretation of this perverse sheaf [KS2]. This interpretation
reflects the intuitive meaning of the term “vanishing cycles".

Proposition 2.1. We have an isomorphism in the derived category of sheaves
on VC:

Φf pFq » RΓt<pfqě0upFq.

That is, the complex RΓt<pfqě0upFq which is, a priori, supported on the closed
set t<pfq ě 0u, is in fact supported on the subset tf “ 0u and is identified
with Φf pFq.

We will be interested in the case when f is linear. More precisely, let
L˝ P SC be a stratum, i.e., the generic part of a flat L, as in (1.6). The
conormal bundle to L˝ is

T ˚L˝VC “ L˝ ˆ pVC{Lq
˚
Ă VC ˆ V

˚
C “ T ˚VC.

A hyperplane Π Ă VC is said to be transversal to SC at L if L Ă Π, and
L1 P FlpHCq with L1 Ă Π implies L1 Ă L. Let us call a polarization at L a
linear function f : VC Ñ C such that Π :“ Ker f is transversal to SC at L.
Polarizations of L form an open subset PolpLq Ă pVC{Lq

˚, and we define the
generic part of the conormal bundle to L˝ as

pT ˚L˝VCq
˝
“ L˝ ˆ PolpLq.

Proposition 2.2. Let F P PervpVC,SCq. If L P FlpHCq and f P PolpLq,
then Φf pFq is supported on L. In particular, being perverse, it reduces to a
local system in degree p´ dimpLqq on L˝.
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Proof: Let x P tf “ 0u Ă VC and suppose x R L. Since f P PolpLq, the
hyperplane Π “ tf “ 0u cannot contain any flats L1 which are not contained
in L. So x is not contained in any flat other than VC itself, which means that
near x the perverse sheaf F is reduced to a local system in degree p´nq, and
so Φf pFqx “ 0.

We now describe the stalks of the local system Φf pFq at the maximal
faces of LR.

B. The complex result.

Theorem 2.3. Let F P PervpVC,SCq and Q “ pEA, γAB, δBAq be the cor-
responding hyperbolic sheaf as in Theorem 1.11. Suppose further that f P
PolpLq is real, i.e., takes VR to R. Let A be a connected component of L˝R, so
A is a face of H. Consider the complex

E‚f,A “

"

EA
γbε
Ñ

à

Bą1A, f |Bě0

EB b orB{A
γbε
Ñ

à

Bą2A, f |Bě0

EB b orB{A
γbε
Ñ ¨ ¨ ¨

*

with the differential γb ε having matrix elements γBC b εBC, B ą1 C. Then
E‚f,A is exact outside of the leftmost term, and its leftmost cohomology is
identified with the vector space Φf pFqar´ dimpLqs for any a P A.

The theorem implies that the shifted space of vanishing cycles is identified
with the subspace

Ef,A “ H0
pE‚f,Aq “

č

Bą1A, f |Bě0

KerpγABq Ă EA.

It also implies the following.

Corollary 2.4. Consider the complex

qE‚f,A “

"

¨ ¨ ¨
δbε
Ñ

à

Bą2A, f |Bě0

EB b orB{A
δbε
Ñ

à

Bą2A, f |Bě0

EB b orB{A
δbε
Ñ EA

*

with the differential δ b ε having matrix elements δCB b εCB, B ą1 C. Then
E‚f,A is exact outside of the rightmost term, and its righttmost cohomology is
identified with the vector space Φf pFqar´ dimpLqs for any a P A. In other
words,

Ef,A » Coker

ˆ

ÿ

δBA :
à

Bą1A, f |Bě0

EB ÝÑ EA

˙

.
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Proof of the corollary: The vanishing cycle functor commutes with Verdier
duality. Therefore the vector spaces Φf pFqar´ dimpLqs and Φf pF˚qar´ dimpLqs
are canonically dual to each other. On the other hand, the hyperbolic sheaf
corresponding to F˚ is, by Theorem 1.11, identified withQ˚ “ pE˚A, δ

˚
BA, γ

˚
ABq.

Our statement follows by combining this with Theorem 2.3 for F and F˚.

Remark 2.5.Theorem 2.3 and Corollary 2.4 can be interpreted as follows.
The same graded space E‚f,A possesses two differentials going in the opposite
directions: one induced by the maps γ, and the other one induced by the
maps δ. It is natural therefore to form the “Laplacian” ∆ “ δγ ` γδ out of
them.

In the examples we have calculated, ∆ : Ei
f,A Ñ Ei

f,A is an isomorphism
for i ą 0. This of course implies the acyclicity statements above. One may
wonder if this stronger property (Laplacian being an isomorphism for i ą 0)
holds more generally.

C. The real analog. Before proving Theorem 2.3, we establish its real
counterpart.

Let G P DbpVR,SRq and let pGA, γABq be the complex of representations of
SR corresponding to G by Proposition 1.2. That is, GA is the ordinary stalk
of G at A, and γAB is the generalization map.

Given a nonzero f P V ˚R , we have the real hyperplane Π “ tf “ 0u Ă VR.
The arrangement H cuts out an arrangement H X Π in Π. We denote by
SR,Π the stratification of Π into cells of HXΠ. We then have the real version
of the vanishing cycle sheaf. It is the complex of sheaves

RΓfě0pGq P Db
pΠ,SR,Πq.

Proposition 2.6. (a) Let C 1 be a cell of HXΠ and C be the unique cell of
H such that C 1 “ C X Π. The stalk of RΓfě0pGq at C 1 is quasi-isomorphic
to the total complex of the double complex

"

GC
γbε
ÝÑ

à

Dą1C, f |Dě0

GD b orD{C
γbε
ÝÑ

à

Dą2C, f |Dě0

GD b orD{C
γbε
ÝÑ ¨ ¨ ¨

*

(b) Let C 11 ď C 12 be an inclusion of cells of H X Π. The generalization
map

γC11,C12 : RΓfě0pGqC1 ÝÑ RΓfě0pGqC2
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is given by the maps γDD1 for G which induce a moprhism of complexes in
(a).

Proof: Let x P C 1 and U be a small open ball centered at x. By definition,

RΓfě0pGqC1 “ RΓpU,U X tf ă 0u;Gq

The relative cellular cochain complex representing this, is precisely the com-
plex in (a). Part (b) also follows immediately.

D. Proof of Theorem 2.3. Let f be as in the theorem. Considering f
as a complex functional on VC, we have the complex hyperplane ΠC “ tf “
0u Ă V ˚C and the perverse sheaf Φf pFq on ΠC. By Proposition 2.1 we can
express the hyperbolic stalk of Φf pFq at a cell C 1 P SR,Π is as

EC1pΦf pFqq “ pRΓΠR
RΓ<pfqě0pFqqC1 “ pRΓfě0RΓVRpFqqC1 .

Now, the complex (actually a sheaf) G “ RΓVRpFq on VR is given by the stalks
EB and generalization maps γBC from the hyperbolic sheaf Q. So applying
Proposition 2.6 to this G and to the cell C 1 “ A as in the formulation of
theorem, we get the statement.

Remark 2.7. It is worth noticing the following contrast between Proposi-
tion 2.6 and Theorem 2.3. If G is an arbitrary sheaf (not a complex) on
VR, then Proposition 2.6 gives, in general, a complex with several nontriv-
ial cohomology spaces, because RΓfě0pGq need not reduce to a single sheaf.
However, in the case when G has the form G “ RΓVRpFq for a perverse sheaf
F P PervpVC,SCq, this complex is, by Theorem 2.3, quasi-isomorphic to a
single vector space in degree 0.

A more immediate instance of such special behavior of the sheavesRΓVRpFq
can be seen from the property (i) of hyperbolic sheaves in §1D: the condition
δABγBA “ Id implies that each γBA is surjective.
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3 Specialization and hyperbolic sheaves
A. Generalities on specialization. We recall the necessary material from
[KS2] §4.1-4.2. LetX be a C8-manifold,M Ă X a locally closed submanifold
and TMX the normal bundle to M in X. Any subset S Ă X gives rise to its
normal cone with centerM , which is a closed subset CMS Ă TMX depending
only on the closure S. We will need the following example.

Example 3.1.Let X be a finite-dimensional R-vector space and M Ă X is
an R-vector subspace. Then TMX “ M ˆ pX{Mq. If S is also an R-vector
subspace, then, with respect to the above identification,

CMpSq “ pM X Sq ˆ
`

M{pM X Sq
˘

.

For any complex of sheaves G P DbpShXq we have its specialization at M
which is an Rą0-conic complex of sheaves νMpGq P DbpTMXq. We will later
recall its definition in the case we need.

B. The case of sheaves on arrangements. We will study this construc-
tion in two related cases, related to the data of a real arrangement pVR,Hq.
Complex case: X “ VC, M “ LC a complex flat of H and G “ F P

PervpVC,SCq a perverse sheaf smooth with respect to SC.

Real case: X “ VR, M “ LR is a real flat and G P DbpVR,SRq is any complex
smooth with respect to the cell decomposition SR.

In each of these cases the normal bundle is itself a vector space:

(3.2) TLCVC “ LC ˆ pVC{LCq, TLRVR “ LR ˆ pVR{LRq.

The subspace LR carries the induced arrangement H X LR formed by the
hyperplanes H X LR for H P H, H Č LR. The quotient space VR{LR carries
the quotient arrangement H{LR formed by the hyperplanes H{LR for H P H,
H Ą LR. We equip TLRVR with the product arrangement

νLH :“ pH X LRq ‘ pH{LRq “
 

pH X VRq ˆ VR{LR, H Č VR
(

Y
 

LR ˆ pVR{LRq, H Ą VR
(

.

We have a surjective map H Ñ νLpHq between (the sets of hyperplanes
of) the two arrangements. Two hyperplanes H,H 1 of H can give the same
hyperplane of νLpHq, if H X LR “ H 1 X LR is the same hyperplane in LR.
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We denote by

(3.3) SνR “ S1,R ˆ S2,R, SνC “ S1,C ˆ S2,C

the stratification of TLRVR by the faces of νLpHq, and the stratification of
TLCVC by the generic parts of the complex flats of νLpHq. Here S1,R is the
stratification of LR by the faces of H X L, while S2,R is the stratification of
VR{LR by the faces of H{L, and similarly for Si,C.

Proposition 3.4. (a) If F P DbpVC,SCq, then νLCF P DbpTLCVC,SνCq.
(b) If G P DbpVR,SRq, then νLRG P DbpTLRVR,SνRq.

Proof: We treat only the real case (b), the complex case (a) being identical.
In the proof we simply write V for the ambient vector space VR, as well as L
for a real flat and so on. We denote by SSpGq Ă T ˚V the microsupport of the
complex G, and similarly for complexes of sheaves on other spaces, see [KS2]
Ch. VI. The statement that G P DbpV,Sq, resp. that νLpGq P DbpTLV,Sνq,
is equivalent to

SSpGq Ă
ď

PPFlpHq

T ˚PV, resp. SSpνLpGqq Ă
ď

QPFlpνLpHqq

T ˚QpLˆ pV {Lqq.

So we deduce the second inclusion from the first. By Theorem 6.4.1 of [KS2],
for any manifold X, a submanifold M and a complex of sheaves G on X we
have

SSpνMpGqq Ă CT˚MXpSSpGqq Ă TT˚MXT
˚X

p!q
» T ˚pTMXq.

Here CT˚MXpSSpGqq is the normal cone to SSpGq Ă T ˚X, and the identification
(!) looks, in our concrete case, as follows.

We have T ˚V “ V ˆ V ˚, and T ˚LV “ Lˆ LK. Therefore

TT˚LV T
˚V “ TLˆLKpV ˆ V

˚
q “ pLˆ LKq ˆ

`

pV {Lq ˆ L˚
˘

,

T ˚pTLV q “ T ˚
`

Lˆ pV {Lq
˘

“
`

Lˆ pV {Lq
˘

ˆ pL˚ ˆ LKq,

and (!) identifies factors number 1,2,3,4 of the first product with factors
number 1,4,2,3 of the second one.

With this understanding, we need to prove that for any flat P of H the
normal cone CT˚LV pT

˚
PV q is contained in the union of T ˚Q

`

L ˆ pV {Lqq over
flats Q of the product arrangement in Lˆ pV {Lq. In fact, it is contained in
a single T ˚Q

`

Lˆ pV {Lqq, where Q is the product flat pP XLq ˆ
`

P {pP XLq
˘

,
as follows from Example 3.1. This finishes the proof of Proposition 3.4.
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C. Specialization of faces as a continuous map. Given a face A of
H, the intersection AXLR is the closure of a unique face of the arrangement
H X LR which we denote by ν 1LpAq. Further, the image of A in VR{LR is a
face of the quotient arrangement H{LR which we denote by ν2LpAq. The pair
νLpAq “ pν 1LpAq, ν

2
LpAqq is then a face of the product arrangement νLpHq

which we call the specialization of A.

Proposition 3.5. The closure of νLpAq is identified with the normal cone
CLRpAq. Thus νLpAq is the interior (complement of the boundary) of CLRpAq.

Proof: This is similar to Example 3.1.

Example 3.6.The concept of specialization is illustrated in Fig. 1, where
H consists of 5 lines in the plane, LR is the horizontal line, and H{LR is the
coordinate arrangement of two lines in R2. The three open sectors (colored
red) on top, together with the open half-lines bounding them, specialize to
the upward half-line (also colored red) in R2. The open sector (colored blue)
with one side being the positive part of LR, specializes to the first quadrant
in R2 (also colored blue).

LR

H

q´1pUq „ dtpD0q
q
ÝÑ

νLpHq

‚U

Figure 1: Specialization of faces.

The following is obvious.

Proposition 3.7. The correspondence A ÞÑ νLpAq defines a surjective mono-
tone map νL : SR Ñ SνR between the posets of faces of H and νLpHq such that
dim νLpAq ď dimA.
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We now form the “geometric realization” of the morphism of posets νL to
construct a continuous map q : VR Ñ LR ˆ pVR{LRq from VR to the normal
bundle. That is, choose a point xA in each face A of H. Then we have the
barycentric subdivision of V into based simplicial convex cones

CA1,¨¨¨ ,Ap “ Rą0 ¨ xA1 ` ¨ ¨ ¨ ` Rą0 ¨ xAp

corresponding to all increasing chains A1 ă ¨ ¨ ¨ ă Ap in SR. In particular
each A is the union of the CpA1, ¨ ¨ ¨ , Apq with Ap “ A. Similarly, choose a
point yB in each face B of νLpHq. Then we have the barycentric subdivision of
LˆpV {Lq into similarly defined based simplicial convex cones CpB1, ¨ ¨ ¨ , Bpq

for all chains B1 ă ¨ ¨ ¨ ă Bp in SνR. For each chain A1 ă ¨ ¨ ¨ ă Ap we define

pA1,¨¨¨ ,Ap : CpA1, ¨ ¨ ¨ , Apq ÝÑ CpνLpA1q, ¨ ¨ ¨ , νLpApqq

to be the unique R-linear map taking xAi to yνLpAiq.

Proposition 3.8. q is a continuous, proper, piecewise linear surjective map.
Further, each face A of H is mapped by q to νLpAq in a surjective, piecewise-
linear way.

Proof: Clear from construction.

D. The real result. In this subsection we deal only with the real situation
so we write V for VR etc. Let G P DbpVR,SRq be a constructible complex.

Theorem 3.9. The specialization νLpGq is identifed with the topological di-
rect image Rq˚G where q is the map from Proposition 3.8.

Proof: We first recall the definition ([KS2] §4.1-2) of νLpGq in terms of the
normal deformation rVL which, in our linear case, reduces to a single chart.

Choose a linear complement L1 to L in V so V “ L ‘ L1. Then L1 is
identified with V {L and TLV is also identified with L‘ L1, i.e., with V . We
write a general vector of V as v “ pl, l1q with l P L and l1 P L1. Then we
define the commutative diagram with Cartesian squares:

(3.10) TLV “ V ˆ t0u

��

s // rVL :“ V ˆ R

p

$$

τ

��

Ω
joo rp //

rτ

��

V

0 // R Rą0.oo
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where

p : pl, l1, tq “ pl, t ¨ l1q, τpl, l1, tq “ t, l P L, l1 P L1, t P R.

The space Ω is defined as τ´1pRą0q “ V ˆ Rą0, and rp is the restriction of p
to Ω.

After that the specialization is defined by

νLpGq “ s˚Rj˚rp
˚
pGq P Db

pShTMXq.

Let now ξ “ pl, l1q be a point of L ‘ L1 “ TLV “ τ´1p0q. By definition, the
stalk of νLpGq at ξ is

νLpGqξ “ RΓpD X Ω, p˚Gq

where D Ă V ˆ R is a small pn ` 1q-dimensional open ball around pξ, 0q “
pl, l1, 0q. Now, Ω “ V ˆ Rą0. For each t ą 0 consider the slice Dt “

D X pV ˆ ttuq. The restriction of p to Dt is the dilation dt : pl, l1q ÞÑ pl, t ¨ l1q
in the direction of L1.

Since D is a ball, the intersections DtXΩ are nonempty for t lying in an
open interval of the form p0, εq for some ε ą 0 (the radius of D). For such t
we have that Dt X Ω “ Dt is the slice over t. Since D is a small ball, these
nonempty slices together with the complexes d˚t G form a topologically trivial
family over p0, εq. This means that we can replace the cohomology of DXΩ
(the union of all slices Dt, t P p0, εq) by the cohomology of any single slice,
i.e.,

νLpGqξ » RΓpDt, d
˚
t Gq

for any suffuciently small t ą 0. We can further replace Dt for such t with
0th slice D0 “ D X pV ˆ t0uq. This slice is just a small n-dimensional open
ball in L‘ L1 “ V around pl, l1q. This gives

νLpGqξ » RΓpD0, d
˚
t Gq “ RΓpdtpD0q,Gq, 0 ă t ! 1.

When t Ñ 0, the open sets dtpD0q become more and more flattened. We
compare them with open sets of the form q´1pUq where U is a small ball in
TLV “ L‘L1 around dtpξq “ pl, t ¨ l1q. More precisely, we notice that dtpD0q

and q´1pUq become homotopy equivalent relatively to the stratification by
the faces, see Fig. 1. This means that we have identifications (the last one
expressing the conic nature of Rq˚pGq:

νLpGqξ » RΓpq´1
pUq,Gq “ Rq˚pGqdtpξq » Rq˚pGqξ.
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This identifies the stalks. The same considerations show that the generaliza-
tion maps between the stalks match as well. The theorem is proved.

Assume now that G is given by a complex of representationsG “ pGA, γAA1q
of SR. So the complexes GA are the stalks of G and the γAA1 are the general-
ization maps. For any face B P SνR of νLpHq define a complex
(3.11)

GL,B “ Tot

"

à

νLpAq“B

dimpAq“dimpBq

GA b orA{B
γbε
ÝÑ

à

νLpAq“B

dimpAq“dimpBq`1

GA b orA{B
γbε
ÝÑ ¨ ¨ ¨

*

.

Let B ăd B1 be two faces of νLpHq. We define a morphism of complexes

γLB,B1 : GL,B Ñ GL,B1

as follows. Let A P SR be such that νLpAq “ B and dimpAq “ dimpBq`p, so
that GA b orA{B is a summand in the pth term of GL,B. Similarly let A1 P SR
be such that νLpA1q “ B1 and dimpA1q “ dimpB1q ` p, so that G 1A b orA1{B1
is a summand in the pth term of GL,B1 . If A ď A1, then A ăd A

1 and the
identification of the quotient spaces

LinRpA
1
q{LinRpAq

»
ÝÑ LinRpB

1
q{LinRpBq

gives, passing to the determinants and transposing, an isomorphism

σ˚AA1 : orA{B ÝÑ orA1{B1 .

We define the matrix element

pγLB,B1q
A1

A : GA b orA{B ÝÑ GA1 b orA1{B

to be equal to γAA1 b σ˚AA1 if A ă A1 and to 0 otherwise.

Corollary 3.12. Each γLBB1 is indeed a morphism of complexes, and the
data pGL,B, γLBB1q is a complex of representations of Sν,R, the poset of faces
of the arrangement νLpHq. This complex of representations describes the
constructible complex νLpGq.

Proof: Choose any point b P B. Since q is a proper map, the stalk of
Rq˚pGq at b is identified with RΓpq´1pbq,Gq. Now GL,B is nothing but the
cellular cochain complex calculating RΓpq´1pbq,Gq. We similarly identify the
generalization maps.
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Remark 3.13.At the formal algebraic level, the property that γLBB1 is indeed
a morphism of complexes, simply reflects the fact that the differential in
RΓpV,Gq, the cellular cochain complex, satisfies d2 “ 0. More precisely, we
have an identification (isomorphism, not just a quasi-isomorpism) of cellular
cochain complexes

RΓpV,Gq » RΓpLˆ pV {Lq, Rq˚pGqq » RΓpLˆ pV {Lq, νLpGqq.

The RHS of this identification represents the same complex in a “block” form,
with blocks (stalks of νLpGq) parametrized by faces B of νLpHq. The fact that
the maps γLBB1 between the blocks are morphisms of complexes is implied by
the fact that the total differential squares to 0.

E. Bispecialization. We first consider the general situation studied in
[ST] [T]. Let N Ă M Ă X be a flag of C8 submanifolds in a C8 manifold
X. In the normal bundle TNX we have the submanifold (subbundle) TNM .
In the normal bundle TMX we have the submanifold N , emdedded into M
(the zero section of TMX). It turns out that the normal bundles of these
new submanifolds are identified.

Proposition 3.14. We have identifications

TTNMpTNXq
p1q
» TNM ‘ pTMXq|N

p2q
» TNpTMXq.

Proof: The statement is a part of Prop. 2.1 of [T]. For convenience of the
reader we give a sketch of the proof. The identification (1) is a particular case
of the well known fact which generalizes, to vector bundles, the identification
(3.2) for vector spaces: If L Ă V is a C8 vector subbundle in a C8 vector
bundle over a C8-manifold B, then TLV » L ‘ pV {Lq. To see (2), we
recognize, inside TNpTMXq two subbundles: first, TNM (the normal bundle
to N inside the zero section of TMX), and, second pTMXq|N (the restriction
to N of the normal bundle). Inspection in local coordinates shows that these
two subbundles form a direct sum decomposition.

In this context Schapira and Takeuchi [ST] [T] defined a functor

νNM : Db
pXq ÝÑ Db

pTN ‘ pTXMq|Nq

called bispecialization. It is defined, similarly to the usual specialization,
through the binormal deformation rXNM , recalled below. On the other hand,
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we can iterate the specialization functors, getting a diagram of functors be-
tween derived categories of sheaves on the manifolds in question:

(3.15) DbpXq

νM
��

νN //

νNM

))

DbpTNXq

νTNM

��
DbpTMXq νN

// DbpTNM ‘ pTMXq|Nq.

This diagram is not (2-)commutative, i.e., the two composite functors (iter-
ated specializations) are not isomorphic.

Example 3.16.Let X “ R2 with coordinates x, y, let M be the line y “ 0
and N be the origin p0, 0q. Let P Ă X be the parabola y “ x2 and G “ kP
be the constant sheaf on P . We identify all three manifolds TNX, TMX and
TNM ‘ pTMXq|N back with R2 with the same coordinates. Then νNpGq is
the constant sheaf on the horizontal line y “ 0 (the tangent line to P ), and
νTNMpνNpGqq is again the constant sheaf on the line y “ 0. On the other
hand, νMpGq is supported on the vertical half-line x “ 0, y ě 0 (since P is
contained in the upper half plane y ě 0 and does not meet M except for
x “ 0). So νNpνMpGqq will be again supported on this half-line.

Nevertheless, in the linear case all three possible functors are identified.

Theorem 3.17. Let X “ V be an R-vector space and N Ă M Ă V be a
flag of R-linear subspaces. Let H be an arrangement of hyperplanes in V and
SR the corresponding stratification by faces. Then for G P DbpV,SRq we have
canonical quasi-isomorphisms

νNpνMpGqq » νTNMpνNpGqq » νNMpFq.

In other words, the diagram (3.15) becomes 2-commutative if the top left
corner is replaced by DbpV,SRq.

Proof: Enlarging H if necessary, we can assume that N and M are flats
of H. The space TNM ‘ pTMXq|N is identified with vector space V 2 “
N ‘ pM{Nq ‘ pV {Mq which carries the triple product arrangement

νNMpHq :“ pH XNq ‘ ppH XMq{Nq ‘ pH{Mq.

Denote by SνNMR the stratification given by the faces of this arrangement.
Also denote SνNR and SνMR the stratifications given by the faces of the ar-
rangements νNpHq and νMpHq. Now notice that specialization of faces gives
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a commutative diagram of morphisms of posets which we then use to con-
struct a commutative diagram of proper piecewise linear maps:

SR

νM
��

νN // SνNR
νTNM

��
SνMR ν1N

// SνNMR

V
qN //

qM

��

TNV

qTNM

��
TMV

q1N // TNM ‘ pTMV q|N .

The direct images in this second diagram correspond, by Theorem 3.9, to the
specialization functors on the outer edges of the diagram (3.15). This shows
that the outer rim of (3.15) is 2-commutative.

We now show that the composite functor given by the outer rim of (3.15),
is isomorphic to νNM . (This will also give another proof of the commuta-
tivity of the outer rim.) For this we recall the explicit form of the binormal
deformation diagram, see [T] Eq. (2.20). We choose a complement L1 to
N in M and a complement L2 to M in V , thus identifying V , as well as
TNM ‘ pTMV q|N , with N ‘ L1 ‘ L2. So we write elements of either of this
spaces as pn, l1, l2q. Then the “bi”-analog of the diagram (3.10) has the form

TNM ‘ pTMV q|N “ V ˆ tp0, 0qu

��

s // rVNM “ V ˆ R2

p

$$

τ

��

Ω
joo rp //

rτ
��

V

0 // R2 R2
ą0,oo

with

pppn, l1, l2q, pt1, t2qq “ pn, t1l1, t1t2l2q, τppn, l1, l2q, pt1, t2qq “ pt1, t2q,

so the restriction of p to V ˆ tpt1, t2qu is the map

ppt1,t2q : pn, l1, l2q ÞÑ pn, t1l1, t1t2l2q.

The bispecialization is defined as νNMpGq “ s˚Rj˚rp
˚G with respect to this

diagram, so its stalk at pn, l1, l2q is RΓpD X Ω, p˚Gq where D is a small
open pn ` 2q-dimensional ball around ppn, l1, l2q, p0, 0qq. We slice D into n-
dimensional balls Dpt1,t2q “ D X τ´1pt1, t2q.
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Lemma 3.18. For sufficiently small ε ą 0, the slices Dpt1,t2q together with
the restrictions p˚G|Dpt1,t2q “ p˚

pt1,t2qG, form a topologically trivial family over
the product of open intervals p0, εq ˆ p0, εq.

Proof of the lemma: For u1, u2 ą 0 let

dpu1,u2q : V Ñ V, pn, l1, l2q ÞÑ pn, u1l1, u2l2q

be the bi-dilation in the last two variables. Then ppt1,t2q “ dcpt1,t2q, where
c : R2 Ñ R2 is the map

pt1, t2q ÞÑ pu1, u2q “ pt1, t1t2q.

Now, c maps the open square p0, εq2 homeomorphically onto the open trian-
gular wedge ∇ε of slope ε, see Fig. 2.

c
ÝÑ

‚

‚ ‚

ε

pε, ε2qε2

‚

‚‚

ε

ε
pε, εq

t1

t2

u1

u2

∇ε

Figure 2: The wedge ∇ε.

For small t1, t2 ą 0 we can identify the slices Dpt1,t2q with Dp0,0q (alterna-
tively, we could have taken D to be the product of balls in V and in R2 so
that the slices would not change at all).

We recall that G is smooth with respect to a hyperplane arrangement H
(so the slopes of the hyperplanes are fixed). On the other hand, the slope of
the wedge ∇ε is shrinking as εÑ 0. Therefore, for sufficiently small ε we will
have that for all pu1, u2q P ∇ε the topological structure of d˚

pu1,u2qG on Dp0,0q
will stabilize. This proves the lemma.

The lemma implies that the stalk of νNMpGq at pn, l1, l2q can be written
as

RΓpD0,0, p
˚
pt1,t2qGq “ RΓpppt1,t2qpD0,0q,Gq

for any sufficiently small positive t1, t2.

25



It remains to similarly analyze the two outer composite functors (iterated
specializations) in (3.15) and to find that they correspond to the choice of
0 ă t1 ! t2 ! 1, resp. 0 ă t2 ! t1 ! 1. Because of the topological triviality of
the family over all pt1, t2q P p0, εq ˆ p0, εq, all three results are the same.

F. The complex result. We now consider the complex situation: that
of a perverse sheaf F P PervpVC,SCq and the corresponding hyperbolic sheaf
Q “ pEA, γAA1 , δA1Aq. Let Qν “ pEν

B, γ
ν
BB1 , δ

ν
B1Bq be the hyperbolic sheaf

corresponding to νLCpFq P PervpTLCVC,Sν,Cq. Here B,B1 are faces of the
product arrangement νLpHq.

Theorem 3.19. (a) The hyperbolic stalk Eν
B is identified as

Eν
B »

"

à

νLpAq“B

dimpAq“dimpBq

EA b orA{B
γbε
ÝÑ

à

νLpAq“B

dimpAq“dimpBq`1

EA b orA{B
γbε
ÝÑ ¨ ¨ ¨

*

That is, the complex in the RHS is exact everywhere except the leftmost term,
where the kernel is identified with Eν

B.

(a’) We also have an identification

Eν
B »

"

¨ ¨ ¨
δbε
ÝÑ

à

νLpAq“B

dimpAq“dimpBq`1

EA b orA{B
δbε
ÝÑ

à

νLpAq“B

dimpAq“dimpBq`1

EA b orA{B

*

.

That is, the complex in the RHS is exact everywhere except the rightmost
term, where the cokernel is identified with Eν

B.

(b) The maps γνBB1 are induced by the maps γAA1 which induce morphisms
of complexes in (a), similarly to Corollary 3.12.

(b’) The maps δνB1B are induced by the map δA1A which induce morphisms
of complexes in (a’).

Proof: We first prove parts (a) and (b). Let iR : VR Ñ VC and iR,ν : TLRVR Ñ
TLCVC be the embeddings of the real parts. Put

G “ i!RF , Gν “ i!R,ν νLCpFq.

These are ordinary sheaves (not just complexes) on VR and TLRVR, smooth
with respect to SR and SνR respectively. Their stalks are given by the EA and
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Eν
B and their generalization maps are given by the γAA1 and γνBB1 respectively.

Note that we have a canonical morphism

νLRpGq “ νLRpi
!
RFq

β
ÝÑ i!R,ννLCpFq “ Gν ,

see [KS2] Prop. 4.2.5. So our statements will follow from Corollary 3.12 if
we establish the following.

Proposition 3.20. For any F P DbpVC,SCq, the morphism β : νLRpi
!
RFq Ñ

i!R,ννLCpFq is a quasi-isomorphism.

Proof of Proposition 3.20: Since νLR and νLC commute with Verdier duality,
it is enough to show that for any F P DbpVC,SCq, the dual morphism α :
i˚R,ννLCpFq Ñ νLRpi

˚
RFq is a quasi-isomorphism. Such a morphism is defined

for any F P DbpShVCq whatsoever, see [KS2] Prop. 4.2.5. So we show that
it is a quasi-isomorphism for a more general class of complexes. Namely,
VC has the product stratification SR ˆ SR formed by the cells of the form
A1 ` iA2 Ă VC “ VR ` iVR, where A1 and A2 are arbitrary faces of H and
i “

?
´1. This stratification refines SC, so DbpVC,SCq Ă DbpVC,SR ˆ SRq.

Therefore it suffices to prove:

Lemma 3.21. For any F P DbpVC,SRˆSRq, the morphism α : i˚R,ννLCpFq Ñ
νLRpi

˚
RFq is a quasi-isomorphism.

Proof of Lemma 3.21: The stratification on VR induced by iR from SR ˆ SR,
is SR. This means that the specializations maps of the posets of of faces are
compatible, and therefore we have a commutative diagram

VR
qR //

iR
��

LR ˆ pVR{LRq

iR,ν
��

VC qC
// LC ˆ pVC{LCq,

where qR and qC are the proper maps constructed in Proposition 3.8. So our
statement follows from Theorem 3.9 by proper base change.

This finishes the proof of Proposition 3.20 and of parts (a) and (b) of
Theorem 3.19.

Now, parts (a’) and (b’) of Theorem 3.19 follow from (a) and (b) be-
cause νLC commutes with Verdier duality whose effect on hyperbolic sheaves
exchanges γ and δ, see Theorem 1.11. Theorem 3.19 is proved.
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4 Fourier transform and hyperbolic sheaves
A. Generalities on the Fourier-Sato transform. Let W be a finite-
dimensional R-vector space andW ˚ the dual space. We denote by Db

conpEq Ă
DbpEq the full subcategory formed by complexes G which are conic, i.e., such
that each sheaf Hj

pGq is locally constant on any orbit of the scaling action
of Rą0 on W .

Set
P “

 

px, fq P W ˆW ˚
ˇ

ˇ fpxq ě 0
( iP

ãÑ W ˆW ˚

and denote by p1, p2 the projections of P to W and W ˚ respectively. The
Fourier-Sato transform is an equivalence of categories

FS : Db
conpW q ÝÑ Db

conpW
˚
q, FSpGq “ Rp2!pp

˚
1Gq,

see [KS2] Def. 3.7.8. The base change theorem implies at once the following.

Proposition 4.1. Let f P W ˚. The stalk of FSpGq at f is found as

FSpGqf » RΓcpPf ,Gq,

where Pf “ p´1
2 pfq “ tx P W |fpxq ě 0u. (Thus Pf is a closed half-space for

f ‰ 0 and Pf “ W for f “ 0.)

B. The dual arrangement. We specialize the above to the two situations
related to an arrangement of hyperplanes H in VR. We denote n “ dimR VR.

(1) W “ VR and G P DbpVR,SRq. In this case we would like to find the
stalks of FSpGq.

(2) W “ VC and G P PervpVC,SCq. We identify W ˚ “ HomCpV,Cq with
the real dual HomRpVC,Rq by means of the form

px, fq ÞÑ <pfpxqq, x P VC, f P V
˚
C .

In this case it is known, see [KS2] Ch. X, that FSpGqr´ns is a perverse
sheaf on V ˚C with respect to some stratification. We would like to
relate this stratification to an arrangement of hyperplanes and to find
the hyperbolic stalks of FSpGq.
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This leads to the following definition.

Definition 4.2.The dual arrangement H_ of hyperplanes in V ˚R consists of
orthogonals lK where l is a 1-dimensional flat of H. We denote by S_R the
stratification of V ˚R into faces of H_ and by S_C the stratification of V ˚C into
generic parts of the complex flats of H_.

Proposition 4.3. We have an inclusion H Ă H__ (as sets of hyperplanes
in VR).

Proof: 1-dimensional flats of H_ are the orthogonalsMK, whereM runs over
hyperplanes in V which are sums of 1-dimensional flats of H. Such M are
therefore, precisely the hyperplanes of H__. Now the statement means that
each hyperplane H P H can be obtained as a sum of 1-dimensional flats of
H. This is indeed the case, since we have assumed from the outset that H is
central, i.e., the intersection of all H P H is 0.

Examples 4.4. (a) Call an arrangement H reflexive, if H__ “ H. A suffi-
cient condition for this is that the set of flats of H is closed not only under
intersections but also under sums, i.e., it forms a lattice. This follows from
the proof of Proposition 4.3. Examples of reflexive arrangements include any
arrangement with dimpV q ď 2, as well as any direct sum of such arrange-
ments.

(b) In general, forming the union of the arrangements

H Ă H__
Ă H____

Ă ¨ ¨ ¨

amounts to closing H under the operations of sum and intersection, i.e.,
to forming the lattice of subspaces generated by H and taking all pn ´ 1q-
dimensional elements of it. Such a lattice (and therefore the above union) is
typically infinite. For instance, for n “ 3 we start with a finite set of lines
in RP 2, form all their intersection points, then draw new lines through these
points and so on.

(c) Let VR “ Rn with coordinates x1, ¨ ¨ ¨ , xn. Take H to be the arrange-
ment of the following hyperplanes:

txi “ 0u, i “ 1, ¨ ¨ ¨ , n, txi “ xi`1u, i “ 1, ¨ ¨ ¨ , n´ 1.

There are
`

n`1
2

˘

one-dimensional flats of H, they have the form

Lri,js “
 

x
ˇ

ˇxi “ xi`1 “ ¨ ¨ ¨ “ xj; xk “ 0, k R ri, js
(

, 1 ď i ď j ď n.
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On the other hand, consider Rn`1 with coordinates y0, ¨ ¨ ¨ , yn and let WR “

Rn`1{R ¨ p1, ¨ ¨ ¨ , 1q. Thus WR “ h˚ is the space of weights for the Lie algebra
sln`1pRq. We have an isomorphism VR Ñ W ˚

R which takes the ith basis vector
ei P VR, i “ 1, ¨ ¨ ¨ , n, to the functional y ÞÑ yi´1 ´ yi (simple co-root). This
isomorphism takes Lri,js to the co-root hyperplane tyi´1 “ yju. Therefore the
dual arrangement H_ is the co-root arrangement in h˚.

Next, flats of H_ are in bijection with equivalence relations R on the set
t0, 1, ¨ ¨ ¨ , nu. The flat corresponding to R has the form

MR “
 

y
ˇ

ˇ yi “ yj whenever i ”R j.
(

.

It is one-dimensional if and only if R has only 2 equivalence classes, both
non-empty. Thus there are 2n´1 ´ 1 one-dimensional flats of H_ and so the
double dual arrangement H__ consists of 2n´1 ´ 1 hyperplanes and is much
bigger than H.

Proposition 4.5. (a) If G P DbpVR,SRq, then FSpGq P DbpV ˚R ,S_R q.
(b) If F P PervpVC,SCq, then FSpFqr´ns P PervpV ˚C ,S_C q.

Proof: As in the proof of Proposition 3.4, the real and complex case are
completely parallel, so we treat the real case, dropping the subscript R. The
microsupport of G is contained in the union of the T ˚LV “ L ˆ LK over
L P FlpHq. Now, the effect of FS on microsupports is via the identification
(“Legendre transform”)

T ˚V “ V ˆ V ˚ ÝÑ V ˚ ˆ V “ T ˚V ˚.

This identification takes T ˚LV to T ˚LKV
˚. This means that FSpGq is smooth

with respect to the stratification S˚ formed by the generic parts

LK˝ “ LK z
ď

LK1 ČL
K

LK1 , L P FlpHq.

Now, S_ refines S˚, so FSpGq is smooth with respect to S_.

C. Big and small dual cones. Let A_ P S_R be a face. Its big dual cone
is defined as

(4.6) UpA_q “
 

x P V
ˇ

ˇfpxq ě 0, @f P A_
(

Ă VR.
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It is a closed polyhedral cone in V with nonempty interior, the union of the
closures of (in general, several) chambers of H.

The small dual cone of A_ is defined as

(4.7) V pA_q “
č

B_ěA_ chamber

UpB_q.

It is a strictly convex (not containing R-linear subspaces) closed polyhedral
cone in VR. Note that UpA_q “ V pA_q if A_ is a chamber but UpA_q can
be strictly larger than V pA_q in general. For example, if A_ is a half-line
(1-dimensional face) of H_, then UpA_q is a closed half-space in VR, while
VA is strictly convex, cf. Fig. 3.

pA_qK

pC_qK

V pA_q

V pB_q

A_

C_

B_

Figure 3: Small dual cones.

The next statement is clear from the definitions.

Proposition 4.8. If A_1 ď A_2 , then UpA_1 q Ą UpA_2 q and V pA_1 q Ă V pA_2 q.

Proposition 4.9. Let f P A_ be arbitrary. Then:

(a) UpA_q is the union of all faces B of H such that f |B ě 0 (non-strict
inequality).

(b) V pA_q is the union of 0 and all the faces B of H such that f |B ą 0
(strict inequality everywhere).

Proof: (a) Since A_ is a face of H_, for each f P A_ the pattern of signs
(positive, negative or zero) of f on faces of H is the same. So the requirement
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that f |B ě 0 for each f P A_ (appearing in the definition of UpA_q) is
equivalent to the requirement that f |B ě 0 for any partiular choice of f P A_
(appearing in the statement of the proposition).

(b) Let V 1 be the union of the faces in question. If B ‰ 0 is a face of
H such that B Ă V 1, i.e., that f |B ą 0, then g|B ą 0 for any g P A_, by
definition of the dual arrangement. This means that for any B_ ě A_ and
any g P B_ sufficiently close to A_ we still have g|B ą 0. This, further
implies (again, by the definition of the dual arrangement) that for any B_ ě
A_ and any g P B_ whatsoever we still have g|B ą 0. This means that
B Ă V pB_q for any B_ ě A_, in other words, that B Ă V pA_q. We proved
that V 1 Ă V pA_q.

Conversely, suppose B Ă V pA_q. For any chamber B_ Ă A_ and any
g P B_ the restriction g|B cannot vanish, since that would mean that g is
not inside a chamber of a dual arrangement. Therefore g|B ą 0 everywhere.
Now, if f P A_ and A_ is not a chamber, then looking at g varying in a
small transverse ball to A_ near f in V ˚R , we see that all such g|B must be
positive and therefore f |B must be positive. In other words, we proved that
V pA_q Ă V 1.

Corollary 4.10. We have

UpA_q “
ď

B_ěA_

UpB_q “
ď

B_ěA_

V pB_q.

We now analyze the nature of the covering of UpA_q by the UpB_q, B_ ě
A_. All B_ ě A_ are in bijection with faces of the quotient arrangement
H_{A_ in the quotient space V ˚R {LinRpA

_q, cf. [KS1] §2B. We denote by
B_{A_ the face of H_{A_ corresponding to B_ ě A_.

Proposition 4.11. Let A_ P S_R and B P SR. Then:

(a) There is a closed convex polyhedral cone KpA_, Bq Ă V ˚R {LinRpA
_q,

a union of faces of H_{A_, which has the following property:

For B_ ě A_ we have B Ă UpB_q if and only B_{A_ Ă KpA_, Bq.

(b) The cone KpA_, Bq coincides with the whole V ˚R {LinRpA
_q if and only

if B Ă V pA_q.
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Proof: (a) Let UpBq Ă V ˚R be the dual cone to B, i.e., the set of f P V ˚R such
that f |B ě 0. It is a convex, closed polyhedral cone in V ˚R which is a union of
faces of H_. In fact, the condition B_ Ă UpBq is equivalent to B Ă UpB_q,
both meaning that pb_, bq ě 0 for each b_ P B_ and b P B.

Let also pV ˚R qěA
_

Ă V ˚R be the union of all faces B_ of H_ such that
B_ ě A_. It is a convex, open polyhedral cone in V ˚R . The intersection
UpBqXpV ˚R q

ěA_ is then a convex polyhedral cone which is closed in pV ˚R qěA
_ .

Since this cone is a union of faces B_ ě A_, it projects to a convex closed
polyhedral cone in V ˚R {LinRpA

_q which we denote KpA_, Bq. By construc-
tion, KpA_, Bq satisfies the required property.

(b) This is a reformulation of the formula (4.7) defining V pA_q.

Note an appealing numerical corollary of Proposition 4.11. For any subset
Z Ă V we denote by 1Z : V Ñ R its characteristic function, equal to 1 on Z
and to 0 elsewhere.

Corollary 4.12. (inclusion - exclusion formulas) We have the identities

paq 1UpA_q “
ÿ

B_ĄA_

p´1qdimpB_q´dimpA_q1V pA_q,

pbq 1V pA_q “
ÿ

B_ĄA_

p´1qdimpB_q´dimpA_q1UpA_q.

Identities of this general nature (representing the characteristic function
of a convex polytope as an alternating sum of characteristic functions of
simplices or cones) are familiar in the theory of convex polytopes [V] [FL]
and the theory of automorphic forms, see, e.g., [Ar], §11.

We note the similarity of the identities (a) and (b) with Proposition 1.9(b)
and Corollary 1.14 relating the usual stalks and hyperbolic stalks of a perverse
sheaf. In fact, we will use a “categorified” version of these identities to relate
the usual and hyperbolic stalks of the Fourier-Sato transform.

Proof of Corollary 4.12 : (b) Write the RHS of the proposed identity as
ř

B cB1B with B running over faces of H. Part (a) of Proposition 4.11
implies that

cB “
ÿ

B_ěA_

B_{A_ĂKpA_,Bq

p´1qdimpB_q´dimpA_q
“ p´1qn´dimpA_qχ

`

H‚
c pKpA

_, Bq,k
˘
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is the signed (calculated from the top) Euler characteristic of the cohomology
with compact support of the coneKpA_, Bq. This signed Euler characteristic
is equal to 0 unless KpA_, Bq is the entire vector space, in which case it is
1. By Part (b) of Proposition 4.11 this happens precisely when B Ă V pA_q,
so the identify is proved.

(a) is a formal consequence of (b) in virtue of the identity
ÿ

B_ěA_

p´1qdimpB_q´dimpA_q
“ 1

(the Euler characteristic of the link of A_).

D. The real result.

Theorem 4.13. Let G P DbpVR,SRq be represented by a complex pGA, γABq
of representations of pSR,ďq.

(a) The stalk FSpGqA_ of FSpGq at a face A_ P S_R is identified with the
complex

UA_ :“ Tot

"

à

dimpBq“0,
BĂUpA_q

GB b orpBq
γbε
ÝÑ

à

dimpBq“1,
BĂUpA_q

GB b orpBq
γbε
ÝÑ ¨ ¨ ¨

*

.

(b) Let A_1 ď A_2 be two faces of H_. Then the inclusion UpA_1 q Ą UpA_2 q
(Proposition 4.8) exhibits UpA_2 q as a quotient complex of UpA_1 q, and the
the generalization map γA_1 ,A_2 : FSpGqA_1 Ñ FSpGqA_2 of FSpGq is identified
with the quotient map UA_1 Ñ UA_2 .

Proof: (a) Let f P A_. By Proposition 4.1 we have

FSpGqA_ » FSpGqf » RΓcpPf ,Gq.
We now use the resolution of G given by Proposition 1.4(ii). The pth term
of this resolution is the direct sum of jB! GBBrps where B runs over p-
dimensional faces of H.

Lemma 4.14. Let B be a face of H and E be any k-vector space. We have
natural quasi-isomorphisms

RΓcpPf , jB!EBqrdimBs »

#

E b orpBq, if B Ă Pf ,

0, if B Ć Pf .
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Proof of the lemma: The case B Ă Pf follows from the canonical identifica-
tion RΓcpB,kq » orpBqr´ dimpBqs (compactly supported cohomology of a
cell with constant coefficients). Suppose B Ć Pf . If B does not meet Pf at
all, then the statement is obvious. If B does meet Pf , then the intersection
BXPf is homeomorphic to a closed half-space in a Euclidean space, i.e., to a
Cartesian product of several open intervals p0, 1q and one half-open interval
r0, 1q. So our statement follows from the fact that H‚

c pr0, 1q,kq “ 0.

Applying this lemma to the resolution of G given by Proposition 1.4(ii),
we obtain a complex representing RΓcpPf ,Gq whose pth term is the sum of the
GB b orB for B running over p-dimensional faces B Ă Pf and the differential
is formed by the maps γ b ε. By Proposition 4.10 (a), the conditon B Ă Pf
is equivalent to B Ă UpA_q. This proves part (a) of Theorem 4.13.

We now prove part (b). Let f1 P A
_
1 and f2 P A

_
2 be a small deformation

of f1. As in the proof of (a), we can write our generalization map as

γA_1 ,A_2 : RΓcpPf1 ,Gq ÝÑ RΓcpPf2 ,Gq.

As before, consider first the case G “ jB!EB for some face B and some k-
vector space E. In this case we find that γA_1 ,A_2 is equal to the identity map,
if B is contained in Pf2 (and therefore in Pf1), and it is equal to 0 otherwise
(since the target is the zero vector space). That is, claim (b) obviously holds
in this case. The case of general G is now obtained from this by considering
the resolution of G given by Proposition 1.4(ii). Theorem 4.13 is proved.

E. The complex result. Let F P PervpVC,SCq correspond to a hyper-
bolic sheaf Q “ pEA, γAB, δBAq. By Proposition 4.5, FSpFqr´ns lies in
PervpV ˚C ,S_C q and so is described by a hyperbolic sheaf which we denote
Q_ “ pE_A_ , γA_,1A_ , δ1A_,A_q. Here A_ ď 1A_ are faces of the arrangement
H_.

It turns out that the hyperbolic stalks E_A_ are governed by the small
dual cones V pA_q.

Theorem 4.15. (a) The space E_A_ is quasi-isomorphic to the complex

VA_ “
"

à

dimpBq“0,
BĂV pA_q

EB b orV {B
γbε
ÝÑ

à

dimpBq“1,
BĂV pA_q

EB b orV {B
γbε
ÝÑ ¨ ¨ ¨

*

.

In other words, VA_ is exact everywhere except the leftmost term, where the
cohomology (kernel) is identified with E_A_.
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(a’) The space E_A_ is also quasi-isomorphic to the complex

V:A_ “
"

¨ ¨ ¨
δbε
ÝÑ

à

dimpBq“1,
BĂV pA_q

EB b orV {B
δbε
ÝÑ

à

dimpBq“0,
BĂV pA_q

EB b orV {B

*

.

In other words, V:A_ is exact everywhere except the rightmost term, where the
cohomology (cokernel) is identified with E_A_.

(b) Let A_1 ď A_2 be two faces of H_. Then the embedding V pA_1 q Ă
V pA_2 q realizes VA_1 as a quotient complex of VA_2 , and the map δA_2 ,A_1 :
E_A_2 Ñ E_A_1 is identified with the quotient map VA_2 Ñ VA_1 .

(b’) In the situation of (b), the embedding V pA_1 q Ă V pA_2 q realizes V:A_1
as a subcomplex of V:A_2 , and the map γA_1 ,A_2 is identified with the embedding
V:A_1 Ñ V:A_2 .

Remarks 4.16. (a) Note that for A_ “ 0, the cone V pA_q is equal to t0u,
therefore E_0 is identified with E0.

(b) Let A_ ‰ 0. Then, by Proposition 4.9(b) one can re-write the complex
VA_ as

E0 b orV
γbε
ÝÑ

à

dimpBq“1
f |Bą0

EB b orV {B
γbε
ÝÑ

à

dimpBq“2
f |Bą0

EB b orV {B
γbε
ÝÑ ¨ ¨ ¨ ,

where f P A_ is an arbitrary element. Similarly for V:A_ .

The proof of Theorem 4.15 is based on the following preliminary result
which shows that the big dual cones UpA_q govern the ordinary stalks, not
hyperbolic stalks of FSpFq,

Proposition 4.17. (a) If A_ P SR is any face, then the ordinary stalk
FSpFqA_ is quasi-isomorphic to the complex

FSpFqA_ »

"

à

dimpBq“0,
BĂUpA_q

EB b orV {B
γbε
ÝÑ

à

dimpBq“1,
BĂUpA_q

EB b orV {B
γbε
ÝÑ ¨ ¨ ¨

*

.

(b) The generalization maps for the FSpFqA_ are induced by the projec-
tions of the complexes in (a), similarly to Theorem 4.13(b).
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Proof of Proposition 4.17: Our statement will follow from Theorem 4.13, if
we establish the following.

Proposition 4.18. For any F P PervpVC,SCq we have an identification

FSpi!RFq » i˚R FSpFq,

where iR on the right means the embedding V ˚R Ñ V ˚C .

Proof of Proposition 4.18: We first recall the behavior of the Fourier-Sato
transform with respect to an arbitrary R-linear map φ : W1 Ñ W2 of R-
vector spaces. Denoting tφ : W ˚

2 Ñ W ˚
1 the transposed map, we have, for

any conic complex G on W2:

FSpφ!Gq » Rptφq˚ FSpGq

see [KS2] Prop. 3.7.14.
We specialize this to φ “ iR : VR Ñ VC and G “ F . In this case

tφ “ < : V ˚C ÝÑ V ˚R

is the real part map. So after replacing V ˚ by V and FSpFq by F , Proposition
4.18 reduces to the following.

Lemma 4.19. For any F P DbpVC,SCq we have an identification i˚RF »

R<˚pFq, where < : VC Ñ VR is the real part map for V .

Proof of Lemma 4.19: We consider < : VC Ñ VR as a real vector bundle over
VR. The complex F , being constructible with respect to the complexification
of a real hyperplane arrangement, is conic with respect to this vector bundle
structure. Therefore the stalk at x P VR of i˚RF which is RΓpU,Fq for a small
open U Ă VC containing x, is equal to RΓp<´1pUXVRq,Fq which is the stalk
of R<˚pFq at x.

This finishes the proof of Propositions 4.18 and 4.17.

Proof of Theorem 4.15: We prove (a’) and (b’). Parts (a) and (b) follow by
Verdier duality.

We denote K “ FSpFq, and let L “ K˚ “ FSpF˚q be the Verdier dual
perverse sheaf. By definition, E_A_ is the stalk at A_ of

i!RK » pi˚RLq˚ »
`

i˚RFSpF˚
q
˘˚
.
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First, we recall that F˚ is represented by the hyperbolic sheaf pE˚A, δ˚BA, γ˚ABq.
Applying Proposition 4.17 to F˚ we write the stalk of i˚RL at A_ as

(4.20) LA_ »

"

à

dimpBq“0
BĂUpA_q

E˚B b orV {B
δ˚bε
ÝÑ

à

dimpBq“1
BĂUpA_q

E˚B b orV {B
δ˚bε
ÝÑ ¨ ¨ ¨

*

.

Further, for A_1 ď A_2 we have UpA_1 q Ą UpA_2 q and Proposition 4.17 implies
that the generalization map zA_1 ,A

_
2

: LA_1 Ñ LA_2 is given by the projection
of the corresponding complexes in (4.20).

We now recall the following general procedure on finding the stalks and
generalization maps of the Verdier dual complex. See, e.g., [KS1] Prop. 1.11.
We formulate it here for complexes on V ˚R constructible with respect to S_R .

Lemma 4.21. Let M P DbpV ˚R ,S_R q correspond to a complex pMA_ ,zA_1 ,A
_
2
q

of representations of S_R . Then:

(a) The stalk of M˚ at A_ is identified with the complex

DA_ “ Tot

"

¨ ¨ ¨
z˚bε˚
ÝÑ

à

C_ą1A_
pMC_q

˚
b orC_

z˚bε˚
ÝÑ pMA_q

˚
b orA_

*

,

with the horizontal grading associating to the summand pMA_q
˚borA_ degree

´ dimpA_q. The horizontal differential z˚ b ε˚ has, as the matrix element
corresponding to C_2 ą1 C

_
1 ě A_, the tensor product of the dual maps to

zC_1 ,C
_
2
and to εC_1 ,C_2 .

(b) For two faces A_1 ď A_2 the generalization map pM˚qA_1 Ñ pM˚qA_2
of M˚, is identified with the projection of the complexes DA_1

Ñ DA_2
.

Applying part (a) of the lemma to M “ L and substituting, instead of
each LC_ , its expansion (4.20), we identify (quasi-isomorphically) E_A_ with
the total complex of the following double complex. We denote this total
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complex EA_ .

¨ ¨ ¨
embbε //

À

C_ą1A_

À

dimpBq“0
BĂUpC_q

EB b orV {B b orC_
embbε //

À

dimpBq“0
BĂUpC_q

EB b orV {B b orA_

¨ ¨ ¨
embbε //

À

C_ą1A_

À

dimpBq“1
BĂUpC_q

EB b orV {B b orC_

δbεbId

OO

embbε //
À

dimpBq“1
BĂUpC_q

EB b orV {B b orA_

δbεbId

OO

¨ ¨ ¨
embbε //

À

C_ą1A_

À

dimpBq“2
BĂUpC_q

EB b orV {B b orC_

δbεbId

OO

embbε //
À

dimpBq“2
BĂUpC_q

EB b orV {B b orA_

δbεbId

OO

...

δbεbId

OO

...

δbεbId

OO

Here the vertical differentials are dual to those in LC_ , i.e., given by the δ
maps. Matrix elements of the horizontal differential are dual to the z maps
for L, and those zmaps are given by the projections. So each matrix element
in question is in fact the product of an embedding of δ-complexes and the ε
map of orientation torsors.

For two faces A_1 ď A_2 the generalization map γA_1 ,A_2 : E_A_1 Ñ E_A_2 is
identified, by part (b) of Lemma 4.21, with the projection EA_1 Ñ EA_2 .

We now compare EA_ with the complex V:A_ from the formulation of
Theorem 4.15(a’). Let B be a face of H. The summand corresponding to
B in V:A_ , is either EB b orV {B or 0 depending on whether B Ă V pA_q or
not. On the other hand, EA_ has many summands associated to B, they
are labelled by C_ ą A_ such that B Ă UpC_q. By Proposition 4.11, such
C_ are in bijection with faces of the closed polyhedral cone KpA_, Bq. So
in the double complex above the summand EB b orV {B is multiplied by a
combinatorial complex which is easily found to calculate the cohomology
with compact support H‚

c pKpA
_, Bq,kq. If B Ć V pA_q, then, by the same

Proposition 4.11, KpA_, Bq is a proper closed cone with nonempty interior
in V ˚R {LinRpA

_q and so its cohomology with compact support vanishes en-
tirely. If B Ă V pA_q, then KpA_, Bq “ V ˚R {LinRpA

_q so it has the top
cohomology with compact support identified with orV {A_ , so the part of EA_
corresponding to B is quasi-isomorphic to EBborV {B. Moreover, we see that
these quasi-isomorphisms combine into a quasi-isomorphism between EA_ and
V:A_ . This shows part (a’) of Theorem 4.17. Part (b’) follows by noticing
that the projection EA_1 Ñ EA_2 corresponds, under our quasi-isomorphism,
to the embedding V:A_1 Ñ V:A_2 . Theorem 4.17 is proved.
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5 Applications to second microlocalization
A. Microlocalization. IfM Ă X is a C8 submanifold of a C8 manifold,
as in §§3A, then for any G P DbpXq the microlocalization of G along M is
defined as

µMpGq “ FSMpνMpGqq P Db
pT ˚MXq,

see [KS2] Ch. 4. Here FSM is the relative Fourier-Sato transform on the
vector bundle TMX ÑM .

If X “ V is a real vector space with an arrangement H, if G P DbpV,SRq

and M is a vector subspace, then our descriptions of the Fourier-Sato trans-
form and the specialization functors can be combined to obtain a combina-
torial description of µMpGq. We leave this to the reader, establishing instead
some compatibility properties of various approaches to “second microlocal-
ization" of Kashiwara and Laurent, see [L] and references therein. For con-
venience we give a brief general introduction.

B. Iterated microlocalization.

Lemma 5.1. Let pW,ωq be a symplectic R-vector space, and L1, L2 Ă W are
Lagrangian vector subspaces. Then the restriction of ω gives an identification

ˆ

L1

L1 X L2

˙˚

»

ˆ

L2

L1 X L2

˙

.

Proof: Consider the restriction of ω to the subspace L1 ` L2. Its kernel on
this subspace is

pL1 ` L2q
K
“ LK1 X L

K
2 “ L1 X L2.

Therefore the restriction of ω makes

L1 ` L2

L1 X L2

“
L1

L1 X L2

‘
L2

L1 X L2

into a symplectic vector space decomposed into the direct sum of two La-
grangian subspaces, So these Lagrangan subspaces become dual to each
other.

Let now pS, ωq be a C8 symplectic manifold and Λ1,Λ2 Ă S be two
(smooth) Lagrangian submanifolds. We say that Λ1 and Λ2 intersect cleanly
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(in the symplectic sense), if, locally near each x P Λ1 X Λ2, there is a sym-
plectomorphism of a neighborhood of x in S to a neighborhood of 0 in a
symplectic vector space W , sending Λi to linear Lagrangian subspaces Li as
above. This implies that Λ1 X Λ2 is smooth.

Corollary 5.2. If Λ1,Λ2 intersect cleanly, then the restriction of ω gives an
identification

T ˚Λ1XΛ2
Λ1 » TΛ1XΛ2Λ2.

Now let X be a C8 manifolds and M,N Ă X be two smooth submani-
folds. We assume that they intersect cleanly in the sense that they can locally
be brought by a diffeomorphism to two vector subspaces in a vector space.
Take S “ T ˚X has two Lagrangian submanifolds Λ1 “ T ˚MX, Λ2 “ T ˚NX
which intersect cleanly in the symplectic sense. Given a complex of sheaves
G P DbpXq, we have microlocalizations

µMpGq P Db
pΛ1q, µNpGq P Db

pΛ2q

and we can specialize and microlocalize further, getting two complexes of
sheaves

µΛ1XΛ2µMpGq P Db
pT ˚Λ1XΛ2

Λ1q, νΛ1XΛ2µNpGq P Db
pTΛ1XΛ2Λ2q

on two spaces which are identified by Corollary 5.2, so we can consider them
as living on the same space. One can then formulate

Second Microlocalization Problem 5.3.Under which conditions onM,N
and G can we guarantee that

µΛ1XΛ2 µMpGq » νΛ1XΛ2 µNpGq ?

C. Bi-microlocalization. Let us restrict to the case N ĂM . In this case
we have

Proposition 5.4. We have identifications

T ˚Λ1XΛ2
Λ1 “ TΛ1XΛ2Λ2 » T ˚NM ‘ pT ˚MXq|N .
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Proof: Obviously, Λ1 X Λ2 projects, under T ˚X Ñ X, to N . Looking at the
fibers of this projection, we find that Λ1 X Λ2 “ pT

˚
MXq|N . Looking at the

Cartesian square
Λ1 X Λ2

//

ρ

��

T ˚MX “ Λ1

π
��

N //M

with π being a smooth fibration (projection of a vector bundle), we find that

T ˚Λ1XΛ2
Λ1 » ρ˚T ˚NM » T ˚NM ‘ pT ˚MXq|N .

We already considered the situation of a flagN ĂM Ă X in discussing bi-
specialization νNMpGq in §3E. Further, in this context Schapira and Takeuchi
[ST] [T] have defined the bimicrolocalization

µNMpGq “ FSNpνNMpGqq P Db
pT ˚NM ‘ pT ˚MXq|Nq.

Here FSN is the relative Fourier-Sato transform on the vector bundle TNM‘

pTMXq|N Ñ N . So we have the following specialization-microlocalization
diagram:
(5.5)

DbpXq
µM //

µN
��

µNM

,,

DbpT ˚MX “ Λ1q

µΛ1XΛ2

��
DbpT ˚NX “ Λ2q νΛ1XΛ2

// Db
`

pT ˚NX ‘ pT ˚MXq|Nqq “ T ˚Λ1XΛ2
Λ1 “ TΛ1XΛ2Λ2

˘

which gives three possible “second microlocaliizations”.

D. Comparisons in the linear case.

Theorem 5.6. Let X “ V be an R-vector space, N Ă M Ă V be vector
subspaces and H an arrangement of hyperplanes in V with the corresponding
face stratification SR. Then the diagram (5.5) is canonically 2-commutative
if we replace DbpV q with DbpV,SRq.

In the complex situation, when V “ VC is a C-vector space, N Ă M Ă VC
are C-subspaces and DbpV,SRq is replaced by PervpVC,SCq, the commuta-
tivity of the outer square of (5.5) was proved in [FS] using the D-module
techiques.

We will deduce Theorem 5.6 from the following result.
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Theorem 5.7 (P. Schapira). Let B be a C8-manifold and V be a smooth
R-vector bundle on B. Let M Ă V be a vector subbundle. Then, the Fourier-
Sato transforms on V and TMpV q “ M ‘ pV {Mq are compatible with spe-
cializations. In other words, the following diagram of functors is canonically
2-commutative:

Db
conpV q

FSV //

νM
��

DbpV ˚q

ν
MK

��
DbpM ‘ pV {Mqq

P12˝FSM‘pV {Mq

// DbpMK ‘M˚q.

Here P12 is the permutation of the two direct summands in M˚ ‘MK.

The notation ‘ here and below means direct sum of vector bundles, i.e.,
fiber product over B.

We note that the diagram in Theorem 5.7 can be seen as a particular
case of the outer rim of the diagram (5.5) for the case when X “ V , when
M Ă V is our subbundle and N “ B is the zero section of V . In other
words, Theorem 5.7 can be seen as a parametrized version (with arbitrary
base B instead of B “ pt) of a particular case of Theorem 5.6 corresponding
to N “ 0.

E. Proof of Theorem 5.7. The following proof is an adaptation of the
argument communicated to us by P. Schapira.

We consider three pairs

MK
Ă V ˚, M ‘MK

Ă V ‘ V ˚, M Ă V,

and the corresponding normal deformations which are related by the natural
projections:

(5.8) rV ˚MK ÐÝ ČV ‘ V ˚M‘MK ÝÑ rVM .

Each of the three normal deformations fits into its own diagram of the form
(3.10) whose spaces and maps will be decorated by the subscripts MK, M ‘

MK and M . In particular, the projections of the three spaces in (5.8) to the
line R will be denoted τMK , τMˆMK and τM . These projections commute with
the maps in (5.8). The coordinate in R will be denoted t.
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Now, the Fourier-Sato transform on any vector bundleW is defined using
the region

P “ PW “
 

px, fq P W ‘W ˚
ˇ

ˇ pfpxq ě 0
(

,

cf. §4A. We apply this to W “ V and W “ M ‘ pV {Mq and denote the
corresponding regions

PV Ă V ‘ V ˚, PM‘pV {Mq Ă M ‘ pV {Mq ‘M˚
‘ pV {Mq˚.

We want to lift PV into a region P Ă ČV ‘ V ˚M‘MK which specializes, for
t ą 0, to PV and for t “ 0, to PM‘pV {Mq.

For this we consider the region ΩM‘MK Ă ČV ‘ V ˚M‘MK , defined as the
preimage τ´1

M‘MKpRą0q, cf. (3.10). It is identified with V ‘ V ˚ ˆ Rą0. Let
P Ă Ω be the image of PV ˆ Rą0.

Proposition 5.9. The closure P of P in ČV ‘ V ˚M‘MK is the union of P
and PM‘pV {Mq Ă τ´1

M‘MKp0q.

Proof: The statement is local in B. So we can assume that there exists a
complement M 1 to M and to write V “ M ‘M 1. We then identify, as in
(3.10),

ČV ‘ V ˚M‘MK “ M ‘M 1
‘M˚

‘M 1˚
ˆ R

and the projection pM‘MK : ČV ‘ V ˚M‘MK Ñ V ‘ V ˚ can be written as

(5.10)
pM‘MK : M ‘M 1

‘M˚
‘M 1˚

ˆ R ÝÑM ‘M 1
‘M˚

‘M 1˚,
`

m,m1, φ, φ1, t
˘

ÞÑ
`

m, tm1, tφ, φ1
˘

.

Recall that the identification ΩM‘MK Ñ V ‘ V ˚ ˆ Rą0 is given by the map
ppM‘MK , τM‘MKq, the second component being projection to t. It follows
from (5.10) that for any t ą 0 the image, under pM‘MK , of PV ˆ ttu is PV .
Therefore the inverse of pM‘MK , τM‘MKq identifies PV ˆRě0 with PV ˆRě0,
where for t “ 0 our choice of complement has identified PV with PM‘M 1 “

PM‘pV {Mq.
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We now consider the following diagram:

V ˚ PV
p2,Voo

p1,V // V

ΩMK

rp
MK

OO

j
MK
��

Pρ2oo

OO

ρ1 //

��

ΩM

rpM

OO

jM
��

rV ˚MK
rPπ2oo π1 // rVM

MK ‘M˚

s
MK

OO

PM‘pV {Mqp2,M‘pV {Mq

oo
p1,M‘pV {Mq

//

OO

M ‘ pV {Mq

sM

OO

Given G P Db
conpV q, we have that

νMKFSV pGq “ s˚MKRpjMKq˚ rp
˚
MK pp2,V q! p

´1
1,V pGq,

FSM‘pV {MqνMpGq “ pp2,M‘pV {Mqq! p
˚
1,M‘pV {Mq s

˚
M RpjMq˚ rp

˚
MpGq

are given by moving along the two boundary paths of this diagram from the
northeast to the southwest corner. We identify these functors using the base
change theorem for the Cartesian squares forming this diagram.

F. Proof of Theorem 5.6. We write the diagram (5.5) in our case as
follows:

(5.11) DbpV,SRq
µM //

µN
��

µNM

++

Db
conpM ˆ pV {Mq˚q

µNˆpV {Mq˚

��
Db

conpN ˆ pV {Nq
˚q νNˆpV {Mq˚

// Db
biconpN ˆ pM{Nq

˚ ˆ pV {Mq˚q.

Here and below the subscript “con” means complexes which are Rą0-conic
with to the second argument, and “bico” means cmplexes which are pRą0q

2-
biconic with respect to the second and third arguments.

We recall that µNM is the composition

Db
pV,SRq

νNM
ÝÑ Db

biconpNˆpM{NqˆpV {Mqq
FSpM{NqˆpV {Mq

ÝÑ Db
biconpNˆpM{Nq

˚
ˆpV {Mq˚q.

We now prove the 2-commutativity of each of the two triangles in (5.11).
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Upper triangle. We write each µ as the composition of the corresponding FS
and ν and apply Theorem 3.17 to decompose νNM as the composition of two
specializations. After this we represent the two paths in the triangle as the
two boundary paths in the following diagram:

DbpV,SRq

νM
��

µM

++
Db

conpM ˆ pV {Mqq
FSV {M //

νN
��

Db
conpM ˆ pV {Mq˚q

νN
��

Db
biconpN ˆ pM{Nq ˆ pV {Mqq

FSV {M//

FSpM{NqˆpV {Mq ++

Db
biconpN ˆ pM{Nq ˆ pV {Mq

˚qq

FSM{N
��

Db
biconpN ˆ pM{Nq

˚ ˆ pV {Mq˚q.

In this diagram, the top triangle commutes by definition of µM and the
commutativity of the bottom triangle expresses the fact that the Fourier-
Sato transform of biconic sheaves on the direct sum of vector bundles can
be done in stages, cf. [KS2] Prop. 3.7.15. The commutativity of the middle
square follows because specialization along N and the Fourier-Sato transform
along V {M operate in different factors so they are independent of each other
and can be permuted.

Lower triangle. As before, by unravelling the definitions of various µ and
applying Theorem 3.17, we represent the two paths in the triangle as the two
boundary paths in the following diagram:

DbpV,SRq

νN
��

µN

rr
Db

conpN ˆ pV {Nq
˚q

νNˆpV {Mq˚

��

Db
conpN ˆ pV {Nqq

FSV {Noo

νNˆpM{Nq
��

Db
biconpN ˆ pM{Nq ˆ pV {Mqq Db

biconpN ˆ pM{Nq ˆ pV {MqqFSpM{NqˆpV {Mq

oo

The commutativity of the top triangle in this diagram is the definition of µN .
The commutativity of the lower square is an instance of Theorem 5.7 for the
trivial vector bundle over B “ N with fiber V {N and the trivial subbundle
with fiber M{N . Theorem 5.6 is proved.

46



References
[Ar] J. Arthur. An introduction to the trace formula. In: “Harmonic Analy-

sis, Trace Formula and Schimura Varieties” (J. Arthur, D. Ellwood, R.
Kottwitz Eds.) Clayt Math. Proceedings 4 p. 3-263, Amer. Math. Soc.
2005.

[Be] A. Beilinson. How to glue perverse sheaves. In: K-theory, arithmetic
and geometry (Moscow, 1984), Lecture Notes in Math. 1289, Springer-
Verlag, 1987, 42-51.

[BBD] A. Beilinson, J. Bernstein, P. Deligne. Faisceaux pervers. Astérisque
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