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0 Introduction

A. Setup and goals, The theory of perverse sheaves can be said to provide
an interpolation between homology and cohomology (or to mix them in a
self-dual way). Since homology, sheaf-theoretically, can be understood as
cohomology with compact support, interesting operations on perverse sheaves
usually combine the functors of the types fi and f, or, dually, the functors
of the types f' and f* in the classical formalism of Grothendieck.

An important context when this point of view can be pushed quite far, is
that of perverse sheaves F on a complex affine space C" smooth with respect
to the stratification given by an arrangement H of hyperplanes with real
equations [KS1]. Denoting by ig : R" < C" the embedding, we associate to
such an F its hyperbolic stalks

EA(F) = RI(A,i%ipF).

Here 74 : A — R" is the embedding of a face (stratum) of the real arrange-
ment. It is remarkable that the E4(F) reduce to single vector spaces, not
complexes (while the ordinary stalks of F are of course complexes, F being
a complex of sheaves). This type of phenomena was originally observed by
T. Braden in the context of varieties with a C*-action [Br].

It was shown in [KS1] that the vector spaces E4(F) together with nat-
ural linear maps yap,dpa (“generalization and specialization”) connecting
them, determine the perverse sheaf F uniquely. Moreover, the category
Perv(C™,H) of perverse sheaves of the above type is equivalent to the cate-
gory Hyp(H) formed by linear algebra data (F4,vap,0pa) satisfying an ex-
plicit set of conditions. We call such linear algebra data hyperbolic sheaves,
see §1D.

The goal of this paper is to develop the beginnings of a “hyperbolic calcu-
lus”, describing the effect of several standard operations on perverse sheaves
directly in terms of hyperbolic sheaves. These operations include forming
vanishing cycles, specialization and Fourier-Sato transform. To illustrate the
importance of such questions recall [BFS| that the the weight components of
the highest weight modules (e.g. Verma, or their irreducible quotients) over
quantized Kac-Moody algebras have interpretation as the spaces of vanishing
cycles ®¢(F) for appropriate F € Perv(C", H) and f. In this case H is a
so-called discriminantal arrangement, F is an extension of a 1-dimensional



local system on the generic stratum, and f is a linear function. The mon-
odromy of Fourier-Sato transforms of these sheaves is related to the action
of Lusztig symmetries on the corresponding representations [FS].

B. Pattern of the results. To identify the effect of each operation on
perverse sheaves above, we produce a new hyperbolic sheaf out of a given
one. Our constructions and results fall into the following pattern.

(1) Each vector space of the new hyperbolic sheaf is identified with the Oth
cohomology space of an otherwise acyclic complex formed by some of
the vector spaces 4 ®or4 (here ory4 is the orientation space), with the
differential formed out of either the y4p or the dgas. So there are two
versions of the answer: the v-answer and the d-answer, in each case.

(2) The complexes in (1) are subquotients of the two fundamental com-
plexes (Proposition 1.12) calculating RT'.(C", F) and RT'(C", F). These
complexes are sums over all the faces A of the spaces E4 ® ory and
their differentials are formed out of the v45 and d 45 respectively. The
RT'.(C", F) and RI'(C™, F) typically have more than one nonzero co-
homology, but the subquotients we take turn out to be acyclic outside
degree 0.

(3) The choice of subquotient is obtained by taking not all but some sum-
mands F4®ory4. The selection rule, depending on the problem, reflects
the geometry of the problem in some rough (“tropical”) way.

(4) In each case there is also a companion real statement, about com-
plexes of sheaves on R™ constructible w.r.t. the stratification by the
faces. This real statement is proved first, and the statement for perverse
sheaves is deduced from it.

C. Structure of the paper. In §1 we recall the basics of the description
of Perv(C™,H) by hyperbolic sheaves.

§2 is devoted to the calculation of the space of vanishing cycles ®¢(F) in
terms of hyperbolic sheaves. Here f : C* — C is a linear function with real

coefficients. The selection rule for subquotients of RI".(C", F) and RI'(C", F)
consists in taking all faces B < R™ on which f > 0.



§3 describes the specialization of F € Perv(C",H) along a C-vector sub-
space Lc < C™ with real equations. This is a perverse sheaf v (F) on the
normal bundle 77, C™ which is itself a vector space. In this case we have the
real subspace Lg, and the product arrangement vy (#H) in 77,R". We fur-
ther have the specialization at the level of faces which is a monotone map of
posets

v : {faces of H} — {faces of v(H)}.

The selection rule for subquotients of RI'.(C", F) and RI'(C", F) consists
in taking all faces A with v(A) = B being a fixed face B of v (H). This
produces complexes calculating the hyperbolic stalk of v (F) at B.

We also give a description of the specialization for constructible sheaves
of R" as the direct image under an appropriate cellular map ¢ : R" — 77, R".
This allows us to identify (in our particular case) different possible (and, in
general, non-equivalent) definitions of the bispecialization functor [ST] [T]
for a flag of subspaces N ¢ M < V.

In §4 we give a similar description of the Fourier-Sato transform FS(F)
which is a perverse sheaf on the dual space (C")*. It is smooth with respect to
an appropriate arrangement H". Each face AY on ‘H" gives a natural strictly
convex cone V(AY) < R™. The selection rule for subquotients of RI'.(C", F)
and RI'(C", F) consists in taking all faces B < V(AY) for a fixed AV. This
produces complexes calculating the hyperbolic stalk of FS(F) at AV.

Combining the descriptions of the specialization and of the Fourier-Sato
transform at the level of hyperbolic sheaves, one obtains a description of the
microlocalization pr(F) along a linear subspace with real equations. The
final §5 is dedicated to comparison, in our linear case, of several possible
definitions of the second microlocalization of Kashiwara and Laurent, see [L]

[ST] [T

Acknowledgements. We would like to thank P. Schapira for remarks on
a preliminary draft of the paper and for comminicating to us a proof of
Theorem 5.7.

The research of M.F. was supported by the grant RSF-DFG 16-41-01013.

The research of M.K. was supported by the World Premier International
Research Center Initiative (WPI Initiative), MEXT, Japan.

V. S. thanks Kavli IPMU for support of a visit during the preparation of
this paper.



1 Real and complex data associated to per-
verse sheaves

A. The real setup. Let Vg = R" be a finite-dimensional vector space over
R and H be a finite central arrangement of hyperplanes in V. We denote
by Sg = Sgx the poset of faces of H, see, e.g., [KS1], §2A. Faces form a real
stratification of Vi into (a disjoint union of) locally closed polyhedral cones.
The order < on Sg is by inclusion of closures: A < B means A c B. For
an integer p > 0 we use the notation A <, B to signify that A < B and
dim(B) = dim(A) + p, in particular A <o B means A = B. We denote by
14 : A — Vi the embedding of a face A.

Let k be a field and Vecty be the category of finite-dimensional k-vector
spaces. For any poset S we denote by Rep(S) the abelian category of rep-
resentations of S over k, i..e, of covariant functors from S (considered as a
category) to Vecty. By D?(Rep(S)) we denote the bounded derived category
of Rep(S).

For a topological space X we denote by Shy the category of sheaves of
k-vector spaces on X and by D°(X) the derived category of Shy.

We denote by Sh(Vg,Sgr) the abelian category formed by sheaves of k-
vector spaces on Vg which are constructible with respect to the stratification
Sk. Let also D°(Vg,Sg) be the full subcategory in the bounded derived
category of sheaves of k-vector spaces on Vg formed by complexes with all
cohomology sheaves lying in Sh(Vg, Sg). For G € D*(Vg, Sg) and a face A we
denote

(1.1) Ga = RI'(A,G) := RI'(A,i%G) e D"(Vecty)

the stalk of G at A. Thus G4 is a complex which is a single vector space, if
G is a single sheaf. The following is well known.

Proposition 1.2. (a) We have an equivalence of categories

Sh(Vi,Sr) — Rep(Se), G — (Ga,7a8 : Ga — Gp, A< B).

Here yap is the generalization map.

(b) The natural functor D°(Sh(Vg,Sr)) — D°(Vk,Sr) is an equivalence.
In particular:

(¢) We have an equivalence of categories D°(Sh(Vk, Sr)) — D°(Rep(Sg).
O



In view of (b), we can interpret the equivalence in (c) as sending a complex
of sheaves G to the collection of complexes of vector spaces G4 defined by (1.1)
and generalization maps (morphisms of complexes) y4p connecting them.

By a cell we mean a topological space B homeomorphic to R? for some d.
For a cell B we denote by org = He im(B)(B, k) the 1-dimensional orientation
vector k-space of B. For two cells B, C we set org/,c = orc @orp and call it
the relative orientation space of C' and B.

In particular, any face B € Sg is a cell and so we have the space org.
When B, C are two faces such that B <; ', we have a canonical “ncidence
isomorphism”

EBc - Orp — OIcC .
It can be seen as a canonical trivialization of org/p. If B <; C1,Cy <1 D is

a square of codimension 1 inclusion of faces, then the diagram

(1.3) orp EB—’Cl>orcl

EB,CQl lacl,D

Ore, ¢ —> Oorp

is anti-commutative.

Let js : A — Vi be the embedding of a face A. If A <; A’ are two
faces of H, we have a canonical moprhism {44 : jak, — janky[1] in
D*(Vi, Sg). Viewed as an element of Ext'(jak 4, jank ), it represents the
extension given by the subsheaf in (ja/ )« k4 formed by sections which vanish
on all codimension 1 faces of A" except A. The moprhisms £ 44/ anticommute

in squares of codimension 1 embeddings, just like the moprhisms €44/ in
(1.3).

Proposition 1.4. For G € D*(Vi, Sgr), the following are equivalent;

(i) G corresponds to the data (Ga,vag)-

(ii) We have a resolution of G (a complex over D®(Shy ) with total object
G) of the form

D G1) % @ in@a )7 D nlGay)2

dim(A)=0 dim(A)= dim(A)=2

the direct sums ranging over all faces of H of given dimension.



Proof: See, e.g., [KS1] Eq. (1.12). O
Corollary 1.5. If G € D*(Vg,Sg) corresponds to (Ga,vag), then

RT.(Vk,G) ~ Tot{ @ QA®OIAL®€> @ QA®orAL®S>~~-}

dim(A)=0 dim(A)=0

(the cohomology with compact supports is calculated by the cellular cochain
complex).

Proof: This follows because RI.(V,jak,) = or(A)[— dim(A)] (cohomology
of a cell with compact support). m

B. The complex setup. Let Vi = C" be the complexification of V', and
Hc the arrangement of hyperplanes in Vi formed by the H¢, the complexifi-
cations of the hyperplanes H € H. By a flat of H¢ we will mean a subspace
of the form L = |J., Hc for a subset J < H (with J = J or J = H
allowed). Flats form a poset F1(#H¢) ordered by inclusion. Becasue H is as-
sumed central, FI(H¢) has 0 as the minimal element and V¢ as the maximal
element.
For a flat L we denote its generic part by

(1.6) L =1\ |J LnHc
HeH, Hc DL

The subsets L° form a stratification of V¢ which we denote by S¢ = Sc 3.
We view it as a poset, isomorphic to the poset of flats.

Note that faces can be defined as connected components of Ly = L° n Vg
for strata L° of Sc. We therefore have the morphism of posets (‘“complexifi-
cation")

C: SR E— S(c.

We denote by D’(V¢,Sc) the full subcategory in the bounded derived
category of sheaves of k-vector spaces on V¢ formed by complexes whose
cohomology sheaves are constructible with respect to S¢. This category has
a perfect duality given by passing from F to F*, the Verdier dual complex.
Inside it, we have Perv(Vg, S¢) the abelian subcategory of perverse sheaves.
We normalize the conditions of (middle) perversity so that ky, [n], the con-
stant sheaf put in degree (—n), is perverse. This normalization agrees with
that of [BBD| and differs by shift from that of [KS1|. The abelian category
Perv(Vg, Sc) is closed under Verdier duality.
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C. Real data: stalks and hyperbolic stalks. Let ig; Vg — Vi be the
embedding. It induces exact functors of triangulated categories

it ik : D'(Vi, S¢) — D (Vi, Sg).

To every complex F € D(Vg,Sc) and every face A € Sg we can associate
therefore two complexes of vector spaces, which we call the stalk and the
hyperbolic stalk of F at A:

Fa = (igF)a = RU(Ai%igF), Ea(F) = (igF)a = RU(A,i4ipF).

For any pair of faces A < B we have the generalization maps (morphisms of
complexes) for i%F and if, F:

(1.7) Fap:Fa— Fp, vap: Ea(F) — Ep(F).

By the Duality Theorem, see [KS1| Prop. 4.6 or [BFS] Pt. I, Thm. 3.9,

we have natural isomorphisms
(1.8) EA(F*) ~ Es(F)*.
which imply the following.

Proposition 1.9. (a) We have a canonical identification E4(F) ~ RU(A,i'i%F).
(b) The hyperbolic stalk EA(F) is identified with the complex

]:214 = TOt{fA/—GbE) @ ‘FB@OI‘B/A/—(@E) @ FB®OI.B/A’Y—(>§€)"'}
B>1A B>5A

with the differential F ® € having matriz elements F pc ® egc, B <1 C.
O

For a dual statement, expressing ordinary stalks through hyperbolic stalks,
see Corollary 1.14.

Proof: Part (a) follows from (1.8) and the fact that Verdier duality inter-
changes i* and i'. Part (b) follows by interpreting i'yi% F as RL ,(i%F), the
complex of sheaves formed by (derived) global sections with support in A.
The stalk of this complex at any a € A can be seen as

RU((D,igF) = RL(D,igF),
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where D c Vg is a small transverse open ball (of complementary dimension)
to A centered at a. The situation is similar to that of Corollary 1.5 (with a
ball instead of a vector space) and the same argument gives the result. [

It was proved in [KS1| Prop. 4.9(a) that for F € Perv(V¢, Sc) the complex
i (F) is exact in degrees # 0, and so the functor

(1.10) Perv(Ve,Sc) — Sh(Ve, Sg), F — E(F) = HO(itF) = HY, (F)

is an exact functor of abelian categories. In particular, each E4(F) reduces
to a single vector space. Further, (1.8) allows us to define maps of vector
spaces

Spa = 0%, Eg(F) — EaA(F), A< B, 65, := ()"

which form an anti-representation of Sg, i.e., a contravariant functor
(Sr, <) — Vecty. This leads to the following concept.

D. Hyperbolic sheaves. By a hyperbolic sheafon H we will mean a datum
Q = (Ea,vap: Ba— Ep, 6pa: Eg —> Es, A< B)

where F4, A € Sg, are finite-dimensional k-vector spaces, (y4p) form a repre-
sentation of Sg, and (0p4) form an anti-representation so that the following
additional conditions hold:

(i) For each B < A, 0apypa = Idg,. This allows us to define for arbitrary
A, B € Sg, the “flopping operator”

$aB = Yopdac : Ea — Ep.

Here C' € Sy is any face such that C' < A, B, and the definition does
not depend on the choice of C.

(ii) Let us call a triple of faces (A, B,C) collinear if there exist points
x € Ay € B,z € C lying on the same straight line, with y € [z, z].
Then for any such collinear triple we must have

Yac = OBc PAB-



(iii) Let A, B be two faces. Let us say that they are neighbors if they have
the same dimension d, and there exists a face C' < A,C < B, with
dimC = d — 1 (a wall separating A and B). Such a wall is unique
if it exists. For any such pair of neighbors we require that ¢p is an
isomorphism.

We denote by Hyp(H) the abelian category formed by hyperbolic sheaves on
‘H. This category has a perfect duality

Q = (Ea,7aB:084) — Q" = (E},0p4:Van)-
The main result of [KS1| can be formulated as follows.

Theorem 1.11. The functor
F = Q(F) = (Ea(F),vaB : Ea(F) = Ep(F), 6pa : Eg(F) — Ea(F), A< B)

defines an equivalence Perv(Ve, Sc) — Hyp(H). This equivalence commutes
with duality: Q(F*) ~ Q(F)*. O

The goal of this paper is to describe various features of perverse sheaves
explicitly, in terms of the linear algebra data given by the associated hyper-
bolic sheaves.

Let us first note the following.

Proposition 1.12. If F € Perv(Vg,Sc) corresponds to a hyperbolic sheaf
Q(Ea,v4B,0Ba), then

Rl—‘c(V(C7F) ~ { @ EA@OI'A’Y—(@E) @ EA@OI‘A’Y—(@E)"'},

dim(A)=0 dim(A)=1

RF(VC,.F>2{ @ EsQory 225 D EA®orA@>-~-}.

codim(A)=0 codim(A4)=1

Proof: The first quasi-isomorphism follows from Corollary 1.5 and the lemma
below. The second quasi-isomorphism follows from the first one by applying
the Verdier duality. O

Lemma 1.13. For any F € D*(Vi, Sc) we have

RT.(Vg, F) =~ RU.(Vi,ig F).

10



Proof of the lemma: Let iy ¢ : {0} — V¢ and i : {0} — V& be the embedings
of the origin. Any F € D®(V¢, S¢) is Ry -conic, i..e, each cohomology sheaf of
F is locally constant on each orbit of the scaling action of R.g on V. This
implies that

RT.(Vg,F) ~ RLyy(Ve, F) = RT(Ve,ig o F).
Similarly, it F is R -conic on Vg and
RU.(Vi,ixF) ~ RTo)(Vi,ipF) = RU(Ve,igrinF),

which is the same as the above because irigr = 7o c. O

We can now complement Proposition 1.9 by a “Koszul dual” statement.

Corollary 1.14. For F € Perv(Vg,Sc) the ordinary stalk Fa, A € Sg is
expressed through hyperbolic stalks as follows:

fAz{ P Ep®orpa 255 @ EB®OI"B/A§—®€>'“}-

B=A B=A
codim(B)=0 codim(B)=1
That is, the complex in question is exact everywhere except the leftmost term
where the cohomology (kernel) is identified with F .

Proof: For A = 0 this is the second identification of Proposition 1.12, since
Fo = RI'(U, F) for a small convex open U 3 0, and this complex is indepen-
dent of U, so is the same for U = V.

For an arbitrary A the statement reduces to the above by considering the
quotient arrangement H/Lg in Vi/Lg, where Ly is the R-linear span of A.
Faces of H/Lg are in bijection with faces B of H such that B > A.

The arrangement H /Ly represents the transversal slice M to A; the re-
striction F|p. to the complexified transversal slice is, by [KS1| Prop. 5.3,
represented by the hyperbolic sheaf Q>4 formed by Eg, B > A, so the cal-
culation of

Fa = RU(Mc, Flue) = (Flue)o

reduces to the above case.

11



2 Vanishing cycles in terms of hyperbolic sheaves

The standard microlocal approach to study of perverse sheaves on any strat-
ification is in terms of the local systems of vanishing cyclies on the generic
parts of conormal bundles to the strata, see [MV] [KS2|. Our first result pro-
vides an explicit description of the fibers of these local systems for perverse
sheaves from Perv(Vg, Sc).

A. Background on vanishing cycles. We recall that for any (polyno-
mial) function f : Vz — C and any perverse sheaf F on V¢ we have a perverse
sheaf ®¢(F) on V¢ supported on the hypersurface {f = 0} and known as the
perverse sheaf of vanishing cycles, see [Be]|De]. We will use the following
real analytic interpretation of this perverse sheaf [KS2|. This interpretation
reflects the intuitive meaning of the term “vanishing cycles".

Proposition 2.1. We have an isomorphism in the derived category of sheaves
on Ve:
Dp(F) ~ RLp(ps0y(F)-

That is, the complex ﬂ{éﬁ(f)%}(]:) which 1s, a priori, supported on the closed
set {R(f) = 0}, is in fact supported on the subset {f = 0} and is identified
with @ ¢(F). [

We will be interested in the case when f is linear. More precisely, let
L° € Sc¢ be a stratum, i.e., the generic part of a flat L, as in (1.6). The
conormal bundle to L° is

T;joV(C = [° x (Vc/L)* c V(C X V(C* = T*VC.

A hyperplane II < V¢ is said to be transversal to Sc at L if L < II, and
L' € Fl(Hc) with L' < II implies ' < L. Let us call a polarization at L a
linear function f : Vo — C such that Il := Ker f is transversal to S¢ at L.
Polarizations of L form an open subset Pol(L) < (V¢/L)*, and we define the
generic part of the conormal bundle to L° as

(T} Ve)® = L° x Pol(L).

Proposition 2.2. Let F € Perv(Ve,Sc). If L € Fl(Hc) and f € Pol(L),
then ®(F) is supported on L. In particular, being perverse, it reduces to a
local system in degree (—dim(L)) on L°.

12



Proof: Let x € {f = 0} < V¢ and suppose = ¢ L. Since f € Pol(L), the
hyperplane II = {f = 0} cannot contain any flats L’ which are not contained
in L. So x is not contained in any flat other than V¢ itself, which means that

near « the perverse sheaf F is reduced to a local system in degree (—n), and
so ©¢(F), = 0. O

We now describe the stalks of the local system ®;(F) at the maximal
faces of Lp.

B. The complex result.

Theorem 2.3. Let F € Perv(Ve,Sc) and Q = (Ea,vap,0pa) be the cor-
responding hyperbolic sheaf as in Theorem 1.11. Suppose further that f €
Pol(L) is real, i.e., takes Vg to R. Let A be a connected component of Ly, so
A is a face of H. Consider the complex

Fra = {EA = @D Es®orpn = @ Es®orpa L= }

B>14, f|lp=0 B>3A, f|p=0

with the differential v ® € having matrix elements ypc Q@ epc, B >1 C. Then
E3 4 1s exact outside of the leftmost term, and its leftmost cohomology is
identified with the vector space O ¢(F),[—dim(L)] for any a € A.

The theorem implies that the shifted space of vanishing cycles is identified
with the subspace

Eja = H'(E},) = (] Ker(as) < Ea.
B>1A7 f|B>0

It also implies the following.

Corollary 2.4. Consider the complex

E},A = {6@5 P Ej_f;CVDOlﬁEs’/Aé@’E @ Ep®orpa % EA}

B>32A, f|p=0 B>2A, f|lp=0

with the differential 6 ® ¢ having matrix elements dcp ®ccp, B >1 C. Then
E3 4 is exact outside of the rightmost term, and its righttmost cohomology is
identified with the vector space ®¢(F),[—dim(L)] for any a € A. In other
words,

Ef,A >~ COkGl‘(Z (53,4 : @ EB —— EA>.

B>1A, f|l=0

13



Proof of the corollary: The vanishing cycle functor commutes with Verdier
duality. Therefore the vector spaces @ ¢(F),[— dim(L)] and & ¢(F*),[— dim(L)]
are canonically dual to each other. On the other hand, the hyperbolic sheaf
corresponding to F* is, by Theorem 1.11, identified with Q* = (E*%, 5.4, Vig)-
Our statement follows by combining this with Theorem 2.3 for 7 and F*. [

Remark 2.5.Theorem 2.3 and Corollary 2.4 can be interpreted as follows.
The same graded space L7} 4 possesses two differentials going in the opposite
directions: one induced by the maps 7, and the other one induced by the
maps J. It is natural therefore to form the “Laplacian” A = dv + ~d out of
them.

In the examples we have calculated, A : E} , — Ej , is an isomorphism
for ¢+ > 0. This of course implies the acyclicity statements above. One may
wonder if this stronger property (Laplacian being an isomorphism for i > 0)
holds more generally.

C. The real analog. Before proving Theorem 2.3, we establish its real
counterpart.

Let G € D°(Vg, Sg) and let (G4, v4p) be the complex of representations of
Sr corresponding to G by Proposition 1.2. That is, G4 is the ordinary stalk
of G at A, and y4p is the generalization map.

Given a nonzero f € V¥, we have the real hyperplane Il = {f = 0} < Vi.
The arrangement H cuts out an arrangement H n I in II. We denote by
S the stratification of II into cells of H nII. We then have the real version
of the vanishing cycle sheaf. It is the complex of sheaves

RT;0(G) € D(I1, Sg.n).

Proposition 2.6. (a) Let C" be a cell of H n 11 and C' be the unique cell of
H such that C" = C n1I. The stalk of RL';-,(G) at C" is quasi-isomorphic
to the total complex of the double complex

{QCV—®E> ) gD®0rD/CL®€’ P gD®OTD/CL&>"'}

D>1C, f|lp=0 D>2C, f|p=0

(b) Let C7 < C4 be an inclusion of cells of H nII. The generalization
map
Yopcp B p2o(G)ey — Bl 20(G) e,

14



1s given by the maps ypp: for G which induce a moprhism of complexes in
(a).

Proof: Let x € C’ and U be a small open ball centered at x. By definition,
RU; o(G)cr = RU(UUn{f <0}G)

The relative cellular cochain complex representing this, is precisely the com-
plex in (a). Part (b) also follows immediately. O

D. Proof of Theorem 2.3. Let f be as in the theorem. Considering f
as a complex functional on Vi, we have the complex hyperplane Il¢c = {f =
0} < V¢ and the perverse sheaf ®;(F) on Ilc. By Proposition 2.1 we can
express the hyperbolic stalk of ®;(F) at a cell C" € Sg 1 is as

Ec/(®4(F)) = (B, By p)20(F))er = (BL o BLy, (F))or

Now, the complex (actually a sheaf) G = RI'y. (F) on Vg is given by the stalks
E'p and generalization maps yp¢ from the hyperbolic sheaf Q. So applying
Proposition 2.6 to this G and to the cell " = A as in the formulation of
theorem, we get the statement. ]

Remark 2.7.1t is worth noticing the following contrast between Proposi-
tion 2.6 and Theorem 2.3. If G is an arbitrary sheaf (not a complex) on
Vk, then Proposition 2.6 gives, in general, a complex with several nontriv-
ial cohomology spaces, because RL';_,(G) need not reduce to a single sheaf.
However, in the case when G has the form G = RI'y, (F) for a perverse sheaf
F € Perv(Vg, Sc), this complex is, by Theorem 2.3, quasi-isomorphic to a
single vector space in degree 0.

A more immediate instance of such special behavior of the sheaves RL'y. (F)
can be seen from the property (i) of hyperbolic sheaves in §1D: the condition
0apYBa = Id implies that each vyp4 is surjective.
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3 Specialization and hyperbolic sheaves

A. Generalities on specialization. We recall the necessary material from
[KS2]| §4.1-4.2. Let X be a C*-manifold, M < X alocally closed submanifold
and T3, X the normal bundle to M in X. Any subset S < X gives rise to its
normal cone with center M, which is a closed subset C'y;S < Ty, X depending
only on the closure S. We will need the following example.

Example 3.1.Let X be a finite-dimensional R-vector space and M < X is
an R-vector subspace. Then T)y X = M x (X/M). If S is also an R-vector
subspace, then, with respect to the above identification,

Cu(S) = (M nS)x (M/(MnS)).

For any complex of sheaves G € D°(Shx) we have its specialization at M
which is an R.g-conic complex of sheaves vy (G) € D?(TpX). We will later
recall its definition in the case we need.

B. The case of sheaves on arrangements. We will study this construc-
tion in two related cases, related to the data of a real arrangement (Vg, H).

Complex case: X = Vg, M = L¢ a complex flat of H and G = F €
Perv(Ve, Sc) a perverse sheaf smooth with respect to Sc.

Real case: X = Vg, M = Lg is a real flat and G € D°(Vg, Sg) is any complex
smooth with respect to the cell decomposition Sg.

In each of these cases the normal bundle is itself a vector space:
(32) TLCV(C = L(C X (Vc/L(C), TLRVR = LR X (VR/LR)

The subspace Ly carries the induced arrangement H n Lr formed by the
hyperplanes H n Lg for H € H, H  Lg. The quotient space Vg /Ly carries
the quotient arrangement H/Lg formed by the hyperplanes H/Lg for H € H,
H > Lg. We equip T, Vg with the product arrangement

VLH = (H M LR) @ (H/LR) =
{(Hﬁ VR> X VR/LR, H :ID VR} U {LR X (VR/LR>, H > VR}

We have a surjective map H — v(H) between (the sets of hyperplanes
of) the two arrangements. Two hyperplanes H, H' of H can give the same
hyperplane of v, (H), if H n Lg = H' n Lg is the same hyperplane in Lg.
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We denote by
(33) S[E = SI,R X SQ’R, Sé = 31’((: X 827(C

the stratification of 77, Vg by the faces of v (H), and the stratification of
T1.. Ve by the generic parts of the complex flats of v (H). Here S is the
stratification of Lr by the faces of H n L, while Sy is the stratification of
Vr/Lg by the faces of H/L, and similarly for S;c.

Proposition 3.4. (a) If F € D*(V¢, Sc), then vy F € D*(T1. Ve, SE).
(b) ]fg € Db(VR,SR), then I/LRg € D%TLRVR,Sﬁ).

Proof: We treat only the real case (b), the complex case (a) being identical.
In the proof we simply write V' for the ambient vector space Vg, as well as L
for a real flat and so on. We denote by SS(G) < T*V the microsupport of the
complex G, and similarly for complexes of sheaves on other spaces, see [KS2|
Ch. VI. The statement that G € D*(V,S), resp. that v1(G) € D*(TLV,S,),
is equivalent to

$S(G) = | J TEV, resp. SS(mi(9) = (] TH(Lx(V/L)).
PeFI(H) QeF(vL(H))

So we deduce the second inclusion from the first. By Theorem 6.4.1 of [KS2],
for any manifold X, a submanifold M and a complex of sheaves G on X we

have
vy O
SS((G)) < Cryx(SS(G)) < TraxT*X L TH(Ty X).
Here Crx x(SS(G)) is the normal cone to SS(G) = T* X, and the identification
() looks, in our concrete case, as follows.

We have T*V =V x V* and T}V = L x L*. Therefore
TrsyT*V = Tpreps(V x V*) = (L x L) x ((V/L) x L*),
T*(TLV) = T*(L x (V/L)) = (L x (V/L)) x (L* x LY,
and (!) identifies factors number 1,2,3,4 of the first product with factors
number 1,4,2 3 of the second one.

With this understanding, we need to prove that for any flat P of H the
normal cone Cpxy (TEV) is contained in the union of 77 (L x (V/L)) over
flats @ of the product arrangement in L x (V/L). In fact, it is contained in
a single T (L x (V/L)), where @ is the product flat (P n L) x (P/(P n L)),
as follows from Example 3.1. This finishes the proof of Proposition 3.4.
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C. Specialization of faces as a continuous map. Given a face A of
H, the intersection A N Lg is the closure of a unique face of the arrangement
H N Lg which we denote by v} (A). Further, the image of A in Vg/Lg is a
face of the quotient arrangement H/Lg which we denote by v/ (A). The pair
vi(A) = (Vi (A), ] (A)) is then a face of the product arrangement v (H)
which we call the specialization of A.

Proposition 3.5. The closure of vy (A) is identified with the normal cone
Cr.(A). Thusv(A) is the interior (complement of the boundary) of Cr, (A).

Proof: This is similar to Example 3.1. n

Example 3.6. The concept of specialization is illustrated in Fig. 1, where
H consists of 5 lines in the plane, Lg is the horizontal line, and H/Lg is the
coordinate arrangement of two lines in R?. The three open sectors (colored
red) on top, together with the open half-lines bounding them, specialize to
the upward half-line (also colored red) in R?. The open sector (colored blue)
with one side being the positive part of Lg, specializes to the first quadrant
in R? (also colored blue).

¢ (U) ~ di(Do) [ 3

VL(H)

L

Figure 1: Specialization of faces.

The following is obvious.

Proposition 3.7. The correspondence A — v (A) defines a surjective mono-
tone map vy, : Sg — S between the posets of faces of H and vi(H) such that
dimvy(A) < dim A. N
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We now form the “geometric realization” of the morphism of posets v, to
construct a continuous map ¢q : Vg — Lg x (Vg/Lg) from Vg to the normal
bundle. That is, choose a point x4 in each face A of H. Then we have the
barycentric subdivision of V' into based simplicial convex cones

Ciayooty = Rogma, + o+ +Rog- 24,

corresponding to all increasing chains A; < --- < A, in Sg. In particular
each A is the union of the C'(4y,---,A,) with A, = A. Similarly, choose a
point yp in each face B of v, (H). Then we have the barycentric subdivision of
L x (V/L) into similarly defined based simplicial convex cones C(By, - - , B,)
for all chains B; < --- < B, in Sg. For each chain A; < --- < A, we define

Pay,- A, - C(A17 e 7AP> - C(VL(A1)7 T JVL(AP))
to be the unique R-linear map taking x4, to y,, (a,)-

Proposition 3.8. g is a continuous, proper, piecewise linear surjective map.
Further, each face A of H is mapped by q to vy (A) in a surjective, piecewise-
linear way.

Proof: Clear from construction. O

D. The real result. In this subsection we deal only with the real situation
so we write V for Vg etc. Let G € Db(VR, Sr) be a constructible complex.

Theorem 3.9. The specialization vy (G) is identifed with the topological di-
rect image Rq.G where q is the map from Proposition 3.8.

Proof: We first recall the definition ([KS2| §4.1-2) of v.(G) in terms of the
normal deformation Vi, which, in our linear case, reduces to a single chart.
Choose a linear complement L' to L in V so V. = L@ L. Then L’ is
identified with V' /L and T,V is also identified with L@ L/, i.e., with V. We
write a general vector of V as v = (I,I') with [ € L and I’ € L’. Then we
define the commutative diagram with Cartesian squares:
/7\
(3.10) TV =V x {0} ==V, =V xR < T !

0 R R.o.
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where
p: (LU )= ), 7,It)=t, leL l'el teR.

The space € is defined as 771(R=g) = V x Ry, and p is the restriction of p
to €.
After that the specialization is defined by

vi(G) = s*Rjip*(G) € D"(Shry,x).

Let now & = (I,1') be a point of L® L' = TV = 771(0). By definition, the
stalk of v, (G) at & is

vi(G)e = RI(DnQ,p*G)

where D < V' x R is a small (n + 1)-dimensional open ball around (£,0) =
(1,I',0). Now, Q@ = V x R.y. For each ¢ > 0 consider the slice D; =
D n (V x {t}). The restriction of p to D; is the dilation d; : (I,1") — (I,t-1")
in the direction of L'.

Since D is a ball, the intersections D, n ) are nonempty for ¢ lying in an
open interval of the form (0,¢) for some ¢ > 0 (the radius of D). For such ¢
we have that D; n Q) = D, is the slice over t. Since D is a small ball, these
nonempty slices together with the complexes d;G form a topologically trivial
family over (0,¢). This means that we can replace the cohomology of D n
(the union of all slices Dy, t € (0,¢)) by the cohomology of any single slice,
ie.,

vi(G)e ~ RU(Dy,d{G)

for any suffuciently small £ > 0. We can further replace D, for such ¢ with
Oth slice Dy = D n (V x {0}). This slice is just a small n-dimensional open
ball in L& L' =V around ([,1’). This gives

vr(G)e ~ RT(Dy,d’G) = RU(dy(Dy).G), 0<t<« 1.

When t — 0, the open sets d;(Dg) become more and more flattened. We
compare them with open sets of the form ¢='(U) where U is a small ball in
T,V = L@ L' around di(§) = (I,t-1"). More precisely, we notice that d;(D,)
and ¢~ !(U) become homotopy equivalent relatively to the stratification by
the faces, see Fig. 1. This means that we have identifications (the last one
expressing the conic nature of Rq.(G):

vi(G)e = RO(¢ ' (U),G) = Rgu(G)ae) = Rau(G)e.
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This identifies the stalks. The same considerations show that the generaliza-
tion maps between the stalks match as well. The theorem is proved. O]

Assume now that G is given by a complex of representations G = (G4, yaar)
of Sg. So the complexes G4 are the stalks of G and the y44 are the general-
ization maps. For any face B € S of v (H) define a complex
(3.11)

Qe Y®e
Gr.p = Tot P Ga®oruyp— @ Ga®oryp — - }
vy (A)=B vy (A)=B
dim(A)=dim(B) dim(A)=dim(B)+1

Let B <4 B’ be two faces of v (H). We define a morphism of complexes

L
VBB - gL,B - gL,B/

as follows. Let A € Sg be such that v, (A) = B and dim(A) = dim(B) +p, so
that G4 ®or,,p is a summand in the pth term of Gy p. Similarly let A" € Sg
be such that v, (A") = B’ and dim(A’) = dim(B’) + p, so that G/; ® ora//p
is a summand in the pth term of G, p. If A < A, then A <; A’ and the
identification of the quotient spaces

Ling(A")/ Ling (A) — Ling(B’)/ Ling(B)
gives, passing to the determinants and transposing, an isomorphism
Ohar i OTa/p — OT 4/ .
We define the matrix element
(Vé,B')ﬁ, :Ga®oryp —> Ga ®orap
to be equal to y4a4 ® 0% 4 if A < A" and to 0 otherwise.

Corollary 3.12. Each ~kp is indeed a morphism of complexes, and the
data (Gr.B,V5p) is a complex of representations of S,r, the poset of faces
of the arrangement v (H). This complex of representations describes the
constructible complex vi,(G).

Proof: Choose any point b € B. Since ¢ is a proper map, the stalk of
Rq.(G) at b is identified with RT'(¢~'(b),G). Now Gy, 5 is nothing but the
cellular cochain complex calculating RT'(¢~*(b),G). We similarly identify the
generalization maps. O
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Remark 3.13. At the formal algebraic level, the property that v%, is indeed
a morphism of complexes, simply reflects the fact that the differential in
RT(V,G), the cellular cochain complex, satisfies d> = 0. More precisely, we
have an identification (isomorphism, not just a quasi-isomorpism) of cellular
cochain complexes

RU(V,G) ~ RU(L x (V/L),Rqs(G)) ~ RU(L x (V/L),v(G)).

The RHS of this identification represents the same complex in a “block” form,
with blocks (stalks of v1,(G)) parametrized by faces B of v (H). The fact that
the maps 755, between the blocks are morphisms of complexes is implied by
the fact that the total differential squares to 0.

E. Bispecialization. We first consider the general situation studied in
[ST] [T]. Let N € M < X be a flag of C* submanifolds in a C* manifold
X. In the normal bundle Ty X we have the submanifold (subbundle) T M.
In the normal bundle T3, X we have the submanifold N, emdedded into M
(the zero section of Ty, X). It turns out that the normal bundles of these
new submanifolds are identified.

Proposition 3.14. We have identifications

Tront(TwX) ¥ TyM ® (T X) |y 2 Tn(Tar X).
Proof: The statement is a part of Prop. 2.1 of [T]|. For convenience of the
reader we give a sketch of the proof. The identification (1) is a particular case
of the well known fact which generalizes, to vector bundles, the identification
(3.2) for vector spaces: If L < V' is a C® vector subbundle in a C* vector
bundle over a C*-manifold B, then T,V ~ L& (V/L). To see (2), we
recognize, inside Ty (73X ) two subbundles: first, Tx M (the normal bundle
to N inside the zero section of T, X), and, second (73X )|n (the restriction
to N of the normal bundle). Inspection in local coordinates shows that these
two subbundles form a direct sum decomposition. O

In this context Schapira and Takeuchi [ST| [T] defined a functor
v - DY(X) — DY(Tn @ (Tx M)|n)

called bispecialization. It is defined, similarly to the usual specialization,
through the binormal deformation Xy, recalled below. On the other hand,
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we can iterate the specialization functors, getting a diagram of functors be-
tween derived categories of sheaves on the manifolds in question:

(3.15) Db(X) - DY Ty X)

VNM v
Un TnM

This diagram is not (2-)commutative, i.e., the two composite functors (iter-
ated specializations) are not isomorphic.

Example 3.16.Let X = R? with coordinates x,y, let M be the line y = 0
and N be the origin (0,0). Let P = X be the parabola y = 2% and G = k,
be the constant sheaf on P. We identify all three manifolds Ty X, Th; X and
TnM @ (TyX)|y back with R? with the same coordinates. Then vy (G) is
the constant sheaf on the horizontal line y = 0 (the tangent line to P), and
vrym(Vn(G)) is again the constant sheaf on the line y = 0. On the other
hand, vy;(G) is supported on the vertical half-line x = 0,y > 0 (since P is
contained in the upper half plane y > 0 and does not meet M except for
x =0). So vn(va(G)) will be again supported on this half-line.

Nevertheless, in the linear case all three possible functors are identified.

Theorem 3.17. Let X =V be an R-vector space and N < M < V be a
flag of R-linear subspaces. Let H be an arrangement of hyperplanes in V' and
Sk the corresponding stratification by faces. Then for G € D*(V,Sg) we have
canonical quasi-isomorphisms

vn(vm(G)) =~ vrym(wn(9)) =~ vvm(F).

In other words, the diagram (3.15) becomes 2-commutative if the top left
corner is replaced by D°(V, Sg).

Proof: Enlarging H if necessary, we can assume that N and M are flats
of H. The space TyM @ (Ty X)|n is identified with vector space V" =
N@& (M/N)@® (V/M) which carries the triple product arrangement

vnn(H) == (H o N)® (1~ M)/N) @ (H/M).

Denote by Sp¥* the stratification given by the faces of this arrangement.
Also denote Sg and SgM the stratifications given by the faces of the ar-
rangements vy (H) and vy (H). Now notice that specialization of faces gives
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a commutative diagram of morphisms of posets which we then use to con-
struct a commutative diagram of proper piecewise linear maps:

Sp — 2> SEN 1% w TNV
VML LVTNM qu jQTNM
S — Sym ToV —2 Ty M & (Tos V)| v
VN

The direct images in this second diagram correspond, by Theorem 3.9, to the
specialization functors on the outer edges of the diagram (3.15). This shows
that the outer rim of (3.15) is 2-commutative.

We now show that the composite functor given by the outer rim of (3.15),
is isomorphic to vyy. (This will also give another proof of the commuta-
tivity of the outer rim.) For this we recall the explicit form of the binormal
deformation diagram, see |T] Eq. (2.20). We choose a complement L’ to
N in M and a complement L” to M in V, thus identifying V', as well as
TyM @ (TyV)|n, with N@® L' @ L". So we write elements of either of this
spaces as (n,[’,1”). Then the “bi”™-analog of the diagram (3.10) has the form

with
p((n’ l/, l”), (t/,t”)) _ (n, t/l/, t/t”l”), T((TL, l/, l”), (t/, t”)) _ (t/, t”),
so the restriction of p to V' x {(#/,¢")} is the map
pe oy (n, U 17) — (n, EU, E"T").

The bispecialization is defined as vy (G) = s*Rj.p*G with respect to this
diagram, so its stalk at (n,l;!”) is RI'(D n Q,p*G) where D is a small
open (n + 2)-dimensional ball around ((n,’,1”),(0,0)). We slice D into n-
dimensional balls Dy = D 771t t").
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Lemma 3.18. For sufficiently small € > 0, the slices Dy together with
the restrictions p*Q\D(t,yt,,) = pz‘t,i,,)g, form a topologically trivial family over
the product of open intervals (0,¢) x (0,¢).

Proof of the lemma: For u',u” > 0 let
dw oy : V=V, (n,01") — (n, T, u"1")

be the bi-dilation in the last two variables. Then pg vy = dey ), Where
c:R? - R? is the map

(t/7t”) —s (ul7u//) — (t/, t/t”).

Now, ¢ maps the open square (0, ¢)? homeomorphically onto the open trian-
gular wedge V. of slope ¢, see Fig. 2.

t// "

u
(,¢)
IS .
. 2 (g,€?%)
................... .
Ve
e v £ v

Figure 2: The wedge V..

For small ¢',t" > 0 we can identify the slices D ) with Do) (alterna-
tively, we could have taken D to be the product of balls in V and in R? so
that the slices would not change at all).

We recall that G is smooth with respect to a hyperplane arrangement
(so the slopes of the hyperplanes are fixed). On the other hand, the slope of
the wedge V. is shrinking as ¢ — 0. Therefore, for sufficiently small £ we will
have that for all (v/,u") € V. the topological structure of d;‘u,’u,,)g on Do)
will stabilize. This proves the lemma. O

The lemma implies that the stalk of vy (G) at (n,l’,1”) can be written
as

RF(D(),o,pz‘t,,t,,)g) = Rr(p(t’,t”)(Do,o),g)

for any sufficiently small positive ¢/, ¢”.
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It remains to similarly analyze the two outer composite functors (iterated
specializations) in (3.15) and to find that they correspond to the choice of
0<t «t"<«1,resp. 0 <t” «t « 1. Because of the topological triviality of
the family over all (¢,t") € (0,¢) x (0,¢), all three results are the same. [J

F. The complex result. We now consider the complex situation: that
of a perverse sheaf F € Perv(V¢, S¢) and the corresponding hyperbolic sheaf
Q = (Ea,vaa,0a4). Let Q" = (E%,v%g,0%5) be the hyperbolic sheaf
corresponding to vi.(F) € Perv(TL V¢, Syc). Here B, B’ are faces of the
product arrangement v, (H).

Theorem 3.19. (a) The hyperbolic stalk EY, is identified as

Ep ~ { P EA®OTA/BL(>§6’ @ EA®OI'A/BW—®€""}

vy (A)=B vy (A)=B
dim(A)=dim(B) dim(A)=dim(B)+1

That s, the complex in the RHS is exact everywhere except the leftmost term,
where the kernel is identified with EY.

(a’) We also have an identification

EY ~ {5_®€, (.D EA@OTA/B&’ (—D EA®01"A/B}-

vy (A)=B vy (A)=B
dim(A)=dim(B)+1 dim(A)=dim(B)+1

That is, the complex in the RHS is exact everywhere except the rightmost
term, where the cokernel is identified with EY,.

(b) The maps V% are induced by the maps yaa which induce morphisms
of complexes in (a), similarly to Corollary 3.12.

(b’) The maps 0%, 5 are induced by the map 044 which induce morphisms
of complexes in (a’).

Proof: We first prove parts (a) and (b). Let ig : Vg — Ve and ig, : Tp, Ve —
Tr.Ve be the embeddings of the real parts. Put

G=ixF, G, =ip,vi.(F).

These are ordinary sheaves (not just complexes) on Vi and T, Vg, smooth
with respect to Sg and Sg respectively. Their stalks are given by the £4 and
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EY and their generalization maps are given by the y4.4 and %5, respectively.
Note that we have a canonical morphism

Vi (G) = vig(ihF) - i i (F) = G,

see |[KS2| Prop. 4.2.5. So our statements will follow from Corollary 3.12 if
we establish the following.

Proposition 3.20. For any F € D*(Vg, Sc), the morphism (3 : v, (ixF) —
ik Vi (F) is a quasi-isomorphism.

Proof of Proposition 3.20: Since vy, and vz, commute with Verdier duality,
it is enough to show that for any F € DV, Sc), the dual morphism o :
i Ve (F) — vig (igF) is a quasi-isomorphism. Such a morphism is defined
for any F € D(Shy,) whatsoever, see [KS2] Prop. 4.2.5. So we show that
it is a quasi-isomorphism for a more general class of complexes. Namely,
Ve has the product stratification Sg x Sg formed by the cells of the form
A"+ iA" < Vo = Vg + iVk, where A" and A” are arbitrary faces of H and
i = 4/—1. This stratification refines Sc¢, so D*(V¢, Sc) = D*(Ve, Sg x Sg).

Therefore it suffices to prove:

Lemma 3.21. For any F € D*(Vg, Sg x Sr), the morphism o : ify ,vp (F) —
v, (1R F) s a quasi-isomorphism.

Proof of Lemma 3.21: The stratification on Vg induced by ig from Sg x Sg,
is Sg. This means that the specializations maps of the posets of of faces are
compatible, and therefore we have a commutative diagram

V]R & L]R X (VR/LR)

z‘RL lz’R,u

V(C T L(C X (V((j/L([;>,

where qgr and ¢ are the proper maps constructed in Proposition 3.8. So our
statement follows from Theorem 3.9 by proper base change. [

This finishes the proof of Proposition 3.20 and of parts (a) and (b) of
Theorem 3.19.

Now, parts (a’) and (b’) of Theorem 3.19 follow from (a) and (b) be-
cause vy, commutes with Verdier duality whose effect on hyperbolic sheaves
exchanges 7 and 4, see Theorem 1.11. Theorem 3.19 is proved.
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4 Fourier transform and hyperbolic sheaves

A. Generalities on the Fourier-Sato transform. Let W be a finite-
dimensional R-vector space and W* the dual space. We denote by D% (FE) <
DP(E) the full subcategory formed by complexes G which are conic, i.e., such
that each sheaf H’(G) is locally constant on any orbit of the scaling action

of Rog on W.

Set
P = {(z,f)eW x W*| f(z) =0} & W x W*

and denote by pi,ps the projections of P to W and W* respectively. The
Fourier-Sato transform is an equivalence of categories

FS : Doy (W) — Deo(W¥), FS(G) = Rpa(piG),
see |KS2| Def. 3.7.8. The base change theorem implies at once the following.

Proposition 4.1. Let f € W*. The stalk of FS(G) at f is found as
FS(G)y =~ RI.(Pf,G),

where Py = py ' (f) = {x € W|f(z) = 0}. (Thus P is a closed half-space for
f#0and Py =W for f=0.)
[

B. The dual arrangement. We specialize the above to the two situations
related to an arrangement of hyperplanes H in Vg. We denote n = dimg V.

(1) W = Vg and G € D°(Vg,Sr). In this case we would like to find the
stalks of FS(G).

(2) W = V¢ and G € Perv(Vg,Sc). We identify W* = Home(V, C) with
the real dual Homg(V¢, R) by means of the form

(@, f) = R(f(2)), weVe,feVe.

In this case it is known, see [KS2] Ch. X, that FS(G)[—n] is a perverse
sheaf on V& with respect to some stratification. We would like to
relate this stratification to an arrangement of hyperplanes and to find

the hyperbolic stalks of FS(G).
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This leads to the following definition.

Definition 4.2. The dual arrangement H" of hyperplanes in Vg consists of
orthogonals [+ where [ is a 1-dimensional flat of #. We denote by Sy the
stratification of Vg into faces of H" and by S the stratification of V{¥ into
generic parts of the complex flats of HV.

Proposition 4.3. We have an inclusion H < HYY (as sets of hyperplanes
m VR)

Proof: 1-dimensional flats of " are the orthogonals M~ where M runs over
hyperplanes in V' which are sums of 1-dimensional flats of H. Such M are
therefore, precisely the hyperplanes of HYY. Now the statement means that
each hyperplane H € H can be obtained as a sum of 1-dimensional flats of
‘H. This is indeed the case, since we have assumed from the outset that H is
central, i.e., the intersection of all H € H is 0. O

Examples 4.4. (a) Call an arrangement H reflexive, if HVY = H. A suffi-
cient condition for this is that the set of flats of H is closed not only under
intersections but also under sums, i.e., it forms a lattice. This follows from
the proof of Proposition 4.3. Examples of reflexive arrangements include any
arrangement with dim(V) < 2, as well as any direct sum of such arrange-
ments.

(b) In general, forming the union of the arrangements
HC%VV CH\/VVV c ...

amounts to closing H under the operations of sum and intersection, i.e.,
to forming the lattice of subspaces generated by H and taking all (n — 1)-
dimensional elements of it. Such a lattice (and therefore the above union) is
typically infinite. For instance, for n = 3 we start with a finite set of lines
in RP?, form all their intersection points, then draw new lines through these
points and so on.

(c) Let Vg = R™ with coordinates xy,--- ,z,. Take H to be the arrange-
ment of the following hyperplanes:

{z; =0}, i=1,---,n, {xi=x41}, i=1,---,n—1
There are (”H) one-dimensional flats of H, they have the form

2

Ly = {z‘ivi:ﬂfiﬂ:'“:%; $k:O7k¢[iaj]}a Il<i<js<sn
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On the other hand, consider R"*! with coordinates 1, - - - , ¥, and let Wg =
R /R-(1,---,1). Thus Wg = h* is the space of weights for the Lie algebra
sl,11(R). We have an isomorphism Vg — W} which takes the ith basis vector
e; € Vg, i=1,---,n, to the functional y — y;_1 — y; (simple co-root). This
isomorphism takes Ly; ;) to the co-root hyperplane {y;_1 = y;}. Therefore the
dual arrangement H" is the co-root arrangement in h*.

Next, flats of H Y are in bijection with equivalence relations R on the set
{0,1,--- ,n}. The flat corresponding to R has the form
Mp = {y ‘ y; = y; whenever ¢ =p ]}

It is one-dimensional if and only if R has only 2 equivalence classes, both
non-empty. Thus there are 2"~! — 1 one-dimensional flats of H" and so the
double dual arrangement H " consists of 2"~! — 1 hyperplanes and is much
bigger than H.

Proposition 4.5. (a) If G € D*(Vg, Sg), then FS(G) € D*(Vg, SY).

(b) If F € Perv(Vg, Sc), then FS(F)[—n] € Perv(VE, SY).

Proof: As in the proof of Proposition 3.4, the real and complex case are
completely parallel, so we treat the real case, dropping the subscript R. The
microsupport of G is contained in the union of the T}V = L x Lt over

L € FI(H). Now, the effect of F'S on microsupports is via the identification
(“Legendre transform”)

TV = VxV* —=V*xV =TV*

This identification takes T}V to T7. V*. This means that FS(G) is smooth
with respect to the stratification S* formed by the generic parts

Ly = L*\ |J Li, LeFI(H).

LipL+

Now, §Y refines §*, so FS(G) is smooth with respect to S¥. ]

C. Big and small dual cones. Let AY € S be a face. Its big dual cone
is defined as

(4.6) UAY) = {zeV|f(z)=0, Vfe A"} < Vg

30



It is a closed polyhedral cone in V' with nonempty interior, the union of the
closures of (in general, several) chambers of H.
The small dual cone of AV is defined as

(4.7) V(AY) = N um).

BY =AY chamber

It is a strictly convex (not containing R-linear subspaces) closed polyhedral
cone in Vg. Note that U(AY) = V(AY) if AY is a chamber but U(A") can
be strictly larger than V' (AY) in general. For example, if AY is a half-line
(1-dimensional face) of HY, then U(AY) is a closed half-space in Vg, while
V) is strictly convex, cf. Fig. 3.

(Av)*

Z
V(B
A

5550507

)

//////

(Cv)*

Figure 3: Small dual cones.

The next statement is clear from the definitions.
Proposition 4.8. If AY < Ay, then U(AY) 2 U(AY) and V(AY) < V(4Y).
O
Proposition 4.9. Let f € AY be arbitrary. Then:

(a) U(AY) is the union of all faces B of H such that f|g = 0 (non-strict
inequality).

(b) V(AY) is the union of 0 and all the faces B of H such that f|g > 0

(strict inequality everywhere).

Proof: (a) Since A is a face of HY, for each f € AY the pattern of signs
(positive, negative or zero) of f on faces of H is the same. So the requirement
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that f|p = 0 for each f € AV (appearing in the definition of U(AY)) is
equivalent to the requirement that f|p > 0 for any partiular choice of f € AY
(appearing in the statement of the proposition).

(b) Let V' be the union of the faces in question. If B # 0 is a face of
‘H such that B < V', ie., that f|g > 0, then g|g > 0 for any g € AY, by
definition of the dual arrangement. This means that for any BY > A" and
any g € B sufficiently close to AY we still have g|g > 0. This, further
implies (again, by the definition of the dual arrangement) that for any BY >
AY and any g € BY whatsoever we still have g|p > 0. This means that
B c V(BY) for any BY > A", in other words, that B < V(A"). We proved
that V' < V(AY).
Conversely, suppose B < V(AY). For any chamber BY < AY and any
g € BY the restriction g|p cannot vanish, since that would mean that g is
not inside a chamber of a dual arrangement. Therefore g|g > 0 everywhere.
Now, if f € AY and AV is not a chamber, then looking at g varying in a
small transverse ball to AY near f in Vg, we see that all such g|p must be
positive and therefore f|p must be positive. In other words, we proved that
V(AY) c V.
[

Corollary 4.10. We have
v = |J uvm) = (J ve.
BY>AY BY>AY

]

We now analyze the nature of the covering of U(AY) by the U(B"), BY >
AY. All BY > AY are in bijection with faces of the quotient arrangement
HY/AY in the quotient space Vi /Ling(AY), cf. |[KS1| §2B. We denote by
BY/AY the face of HY /A" corresponding to BY > AY.

Proposition 4.11. Let AY € S and B € Sg. Then:

(a) There is a closed convex polyhedral cone K(AY,B) < Vg /Ling(AY),
a union of faces of HY /AY, which has the following property:

For BY = AY we have B c U(B") if and only BY/AY < K(A", B).

(b) The cone K(AY, B) coincides with the whole Vg / Ling (AY) if and only
if Bc V(AY).
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Proof: (a) Let U(B) < Vi be the dual cone to B, i.e., the set of f € Vg such
that f|p = 0. It is a convex, closed polyhedral cone in Vi which is a union of
faces of H". In fact, the condition BY < U(B) is equivalent to B < U(B"),
both meaning that (b,b) = 0 for each b¥ € BY and b e B.

Let also (Vg)>4" < Vi be the union of all faces B of H" such that
BY = AY. It is a convex, open polyhedral cone in Vi. The intersection
U(B)n (Vg)>A" is then a convex polyhedral cone which is closed in (V3)>4".
Since this cone is a union of faces BY > AV, it projects to a convex closed
polyhedral cone in Vg/Ling(AY) which we denote K(AY, B). By construc-
tion, K (AY, B) satisfies the required property.

(b) This is a reformulation of the formula (4.7) defining V(AY). O

Note an appealing numerical corollary of Proposition 4.11. For any subset
Z <V we denote by 17 : V — R its characteristic function, equal to 1 on Z
and to 0 elsewhere.

Corollary 4.12. (inclusion - exclusion formulas) We have the identities

(CL) ]-U(AV) _ Z (_1)dim(Bv)7dim(Av)1v(Av)’
BYDAY

(b) 1V(AV) _ Z (_Udim(Bv)—dim(AV)lU(Av)'
BY DAY

Identities of this general nature (representing the characteristic function
of a convex polytope as an alternating sum of characteristic functions of
simplices or cones) are familiar in the theory of convex polytopes [V] [FL]
and the theory of automorphic forms, see, e.g., [Ar|, §11.

We note the similarity of the identities (a) and (b) with Proposition 1.9(b)
and Corollary 1.14 relating the usual stalks and hyperbolic stalks of a perverse
sheaf. In fact, we will use a “categorified” version of these identities to relate
the usual and hyperbolic stalks of the Fourier-Sato transform.

Proof of Corollary 4.12 : (b) Write the RHS of the proposed identity as
Y. pcplp with B running over faces of H. Part (a) of Proposition 4.11
implies that

cp = Z (_1>dim(BV)—dim(Av) _ (—1)n_dim(Av)X(Hc.(K(Av,B),k)

BV AV
BY/AYCK(AV,B)
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is the signed (calculated from the top) Euler characteristic of the cohomology
with compact support of the cone K (A", B). This signed Euler characteristic
is equal to 0 unless K(AY, B) is the entire vector space, in which case it is
1. By Part (b) of Proposition 4.11 this happens precisely when B < V(AY),
so the identify is proved.

(a) is a formal consequence of (b) in virtue of the identity
Z (—1)dim(B)—dim(4) _ 4
Bv>Av

(the Euler characteristic of the link of AY). O

D. The real result.

Theorem 4.13. Let G € D°(Vg, Sg) be represented by a complex (Ga,VaB)
of representations of (Sg, <).

(a) The stalk FS(G)av of FS(G) at a face AV € Sy is identified with the

complex

Uy = Tot{ P QB®or(B)”—®€> ) QB®or(B)7—®€>---}.
dim(B)=0, dim(B)=1,
BcU(AVY) BcU(AV)

(b) Let Ay < AY be two faces of HY . Then the inclusion U(AY) 2 U(AY)
(Proposition 4.8) exhibits U(AY) as a quotient complex of U(AY), and the
the generalization map Yay ay : FS(G)ay — FS(G)ay of FS(G) is identified
with the quotient map Uay — Uay .

Proof: (a) Let f € AV. By Proposition 4.1 we have

FS(G)av ~ FS(G); ~ RI.(P}.G).

We now use the resolution of G given by Proposition 1.4(ii). The pth term
of this resolution is the direct sum of jp Ggp B[p] where B runs over p-
dimensional faces of H.

Lemma 4.14. Let B be a face of H and E be any k-vector space. We have
natural quasi-isomorphisms
E B fBc P
RE(Py. 2y [dim B] ~ ®or(B), i B <Py,
0, if B4 Py.
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Proof of the lemma: The case B < Py follows from the canonical identifica-
tion RI'.(B,k) ~ or(B)[—dim(B)] (compactly supported cohomology of a
cell with constant coefficients). Suppose B ¢ Py. If B does not meet Py at
all, then the statement is obvious. If B does meet Py, then the intersection
B n Py is homeomorphic to a closed half-space in a Euclidean space, i.e., to a
Cartesian product of several open intervals (0, 1) and one half-open interval
[0,1). So our statement follows from the fact that H2([0,1),k) = 0. O

Applying this lemma to the resolution of G given by Proposition 1.4(ii),
we obtain a complex representing RI'.(Pf, G) whose pth term is the sum of the
Gp ®orp for B running over p-dimensional faces B < Py and the differential
is formed by the maps v ® ¢. By Proposition 4.10 (a), the conditon B < P
is equivalent to B < U(A"). This proves part (a) of Theorem 4.13.

We now prove part (b). Let f; € AY and fs € AJ be a small deformation
of fi. As in the proof of (a), we can write our generalization map as

Yay.ay : RUe(Pp,G) — RUc(Pp,, G).

As before, consider first the case G = jp E 5 for some face B and some k-
vector space E. In this case we find that y4v 4y is equal to the identity map,
if B is contained in Py, (and therefore in Py, ), and it is equal to 0 otherwise
(since the target is the zero vector space). That is, claim (b) obviously holds
in this case. The case of general G is now obtained from this by considering
the resolution of G given by Proposition 1.4(ii). Theorem 4.13 is proved.

E. The complex result. Let F € Perv(Vg,Sc) correspond to a hyper-
bolic sheaf Q = (Ea,vap,054). By Proposition 4.5, FS(F)[—n] lies in
Perv(VZF, S¢) and so is described by a hyperbolic sheaf which we denote
QY = (EX.,vavuv,0nv av). Here AY < 'AY are faces of the arrangement
HY.

It turns out that the hyperbolic stalks £, are governed by the small
dual cones V(AY).

Theorem 4.15. (a) The space EY., is quasi-isomorphic to the complex

VAV:{ @ EB®OYV/BL®5’ @ EB®OYV/BL®5’"‘}'

dim(B)=0, dim(B)=1,
BCV(AV) BCV(AV)

In other words, Vav is exact everywhere except the leftmost term, where the
cohomology (kernel) is identified with EY. .
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(a’) The space EY., is also quasi-isomorphic to the complex

Vi, = {6—®8> @ EB®01"V/B§—®8’ & EB@OI"\//B}-

dim(B)=1, dim(B)=0,
BCV(AV) BCV(AV)

In other words, Vllv 15 exact everywhere except the rightmost term, where the
cohomology (cokernel) is identified with EY. .

(b) Let Ay < Ay be two faces of HY. Then the embedding V(AY) <
V(AS) realizes Vav as a quotient complex of Vay, and the map day av
E}y — EXy is wdentified with the quotient map Vay — Vay.

(b’) In the situation of (b), the embedding V (AY) < V(Ay) realizes VI&{
as a subcomplex of VLQV , and the map yay ay s identified with the embedding
RV

Remarks 4.16. (a) Note that for AY = 0, the cone V(AY) is equal to {0},
therefore E is identified with Ej.

(b) Let AY # 0. Then, by Proposition 4.9(b) one can re-write the complex
V4o as

Ey®ory %5 P EB®OTV/BL®E’ @D EB®01"V/B’Y—®E”",

dim(B)=1 dim(B)=2
flp>0 flp>0

where f € AV is an arbitrary element. Similarly for VLV.

The proof of Theorem 4.15 is based on the following preliminary result
which shows that the big dual cones U(A"Y) govern the ordinary stalks, not
hyperbolic stalks of FS(F),

Proposition 4.17. (a) If AY € Sk is any face, then the ordinary stalk

FS(F)av is quasi-isomorphic to the complex

FS(.F)AV ~ { @ EB@OI'\//B’Y—@@&; 6—) EB®OI'V/B’Y—®€)"'}-

dim(B)=0, dim(B)=1,
BcU(AVY) BcU(AVY)

(b) The generalization maps for the FS(F)av are induced by the projec-
tions of the complezes in (a), similarly to Theorem 4.13(b).
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Proof of Proposition 4.17: Our statement will follow from Theorem 4.13, if
we establish the following.

Proposition 4.18. For any F € Perv(Vg, Sc) we have an identification
FS(ipF) ~ ixFS(F),
where ig on the right means the embedding Vg — V.

Proof of Proposition 4.18: We first recall the behavior of the Fourier-Sato
transform with respect to an arbitrary R-linear map ¢ : W; — W5 of R-
vector spaces. Denoting ‘¢ : W5 — W} the transposed map, we have, for
any conic complex G on Ws:

FS(¢'G) ~ R('$).FS(G)

see |[KS2| Prop. 3.7.14.
We specialize this to ¢ = ig : Vg — Ve and G = F. In this case

= R:VE—VE

is the real part map. So after replacing V* by V and FS(F) by F, Proposition
4.18 reduces to the following.

Lemma 4.19. For any F € D°(Ve,Sc) we have an identification i F ~
RR.(F), where R : Vo — Vi is the real part map for V.

Proof of Lemma 4.19: We consider R : Vz — Vg as a real vector bundle over

Vk. The complex F, being constructible with respect to the complexification

of a real hyperplane arrangement, is conic with respect to this vector bundle

structure. Therefore the stalk at « € Vg of iz F which is RI'(U, F) for a small

open U © V¢ containing z, is equal to RT'(R™(U n Vi), F) which is the stalk

of RR.(F) at x. O
This finishes the proof of Propositions 4.18 and 4.17.

Proof of Theorem 4.15: We prove (a’) and (b’). Parts (a) and (b) follow by
Verdier duality.

We denote K = FS(F), and let £ = K£* = FS(F*) be the Verdier dual
perverse sheaf. By definition, F, is the stalk at A of

WK~ (i5L)* ~ (isFS(F*))".
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First, we recall that F* is represented by the hyperbolic sheaf (E%, 6% 4, Vig)-
Applying Proposition 4.17 to F* we write the stalk of iz L at AY as

(420) EAV ~ { (—D EE®OI.V/B§*—®§ @ Ezi@orV/Bé*—@E"'}-

dim(B)=0 dim(B)=1

BcU(AV) BcU(AV)
Further, for AY < Ay we have U(AY) o U(Ay) and Proposition 4.17 implies
that the generalization map F ay ay : L4y — Lay is given by the projection

of the corresponding complexes in (4.20).

We now recall the following general procedure on finding the stalks and
generalization maps of the Verdier dual complex. See, e.g., [KS1]| Prop. 1.11.
We formulate it here for complexes on V' constructible with respect to Sy.

Lemma 4.21. Let M € D*(Vi, Sy) correspond to a complex (M-, F ay.ay)
of representations of Sg. Then:

(a) The stalk of M* at AV is identified with the complex

Dyv = Tot{'--F*—@’* (‘B (Mcev)* ®@orev iy (MAV)*®OI'Av}7

CVv>1Av

with the horizontal grading associating to the summand (M v )*®orav degree
—dim(AY). The horizontal differential F* ® €* has, as the matriz element
corresponding to Cy >; CY = AY, the tensor product of the dual maps to
Fclv Cy and to Eclv Cy -

(b) For two faces AY < Ay the generalization map (M*) v — (M*)ay

2

of M*, is identified with the projection of the complezes Dy — Day . ]

Applying part (a) of the lemma to M = L and substituting, instead of
each Lo, its expansion (4.20), we identify (quasi-isomorphically) EY, with
the total complex of the following double complex. We denote this total
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b®6

complex E4v.
emb®5
@cv>1Av (—Bdlm ()0 Eg®oryp ®Oorcy —> (—Bglg.é?) o Ep®oryp®orav

Re®Id OR®e®Id
emb®5 mb®e
@CV>1Av @D dim(m)=1 EB®orV/B®oer @ amm=1 Eg ® ory g @orav

BcU(CV) BcU(CV)

Re®Id OR®e®Id

mb®6

emb®e
s @CV>1AV @dlm B) 2 Ep ®01"V/B ®Oer (—Dglénéj(sévz Ep ®ory/p&@orsv

T&@s@ld T(S@s@ld

Here the vertical differentials are dual to those in Lov, i.e., given by the ¢
maps. Matrix elements of the horizontal differential are dual to the F maps
for £, and those F maps are given by the projections. So each matrix element
in question is in fact the product of an embedding of d-complexes and the &
map of orientation torsors.

For two faces A < Ay the generalization map vay ay : EX, — EJ; is
identified, by part (b) of Lemma 4.21, with the projection £4v — Eay.

We now compare £4v with the complex VLV from the formulation of
Theorem 4.15(a’). Let B be a face of H. The summand corresponding to
B in Vi, is either Bz ® ory,p or 0 depending on whether B < V(AY) or
not. On the other hand, £4+ has many summands associated to B, they
are labelled by C'v > A" such that B < U(C"). By Proposition 4.11, such
C" are in bijection with faces of the closed polyhedral cone K(AY, B). So
in the double complex above the summand Ep ® ory s is multiplied by a
combinatorial complex which is easily found to calculate the cohomology
with compact support H? (K (A", B),k). If B ¢ V(AY), then, by the same
Proposition 4.11, K (A", B) is a proper closed cone with nonempty interior
in V/Ling(AY) and so its cohomology with compact support vanishes en-
tirely. If B < V(AY), then K(AY,B) = Vg/Ling(A) so it has the top
cohomology with compact support identified with ory 4+, so the part of £4v
corresponding to B is quasi-isomorphic to Ep®ory . Moreover, we see that
these quasi-isomorphisms combine into a quasi-isomorphism between €4+ and
Vi.. This shows part (a’) of Theorem 4.17. Part (b’) follows by noticing
that the projection £4v — Eay corresponds, under our quasi-isomorphism,

to the embedding VLIV — VLQV. Theorem 4.17 is proved.
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5 Applications to second microlocalization

A. Microlocalization. If M < X is a C'° submanifold of a C'® manifold,
as in §§3A, then for any G € D°(X) the microlocalization of G along M is
defined as

par(G) = FSu(v(9)) € D*(T3X),

see [KS2] Ch. 4. Here FSy is the relative Fourier-Sato transform on the
vector bundle Ty X — M.

If X =V is a real vector space with an arrangement H, if G € D*(V, Sg)
and M is a vector subspace, then our descriptions of the Fourier-Sato trans-
form and the specialization functors can be combined to obtain a combina-
torial description of pp(G). We leave this to the reader, establishing instead
some compatibility properties of various approaches to “second microlocal-
ization" of Kashiwara and Laurent, see |L| and references therein. For con-
venience we give a brief general introduction.

B. Iterated microlocalization.

Lemma 5.1. Let (W,w) be a symplectic R-vector space, and Ly, Lo = W are
Lagrangian vector subspaces. Then the restriction of w gives an identification

L, * Ly
Ll M LQ N Ll M LQ )

Proof: Consider the restriction of w to the subspace L; + L,. Its kernel on

this subspace is
(Li+ Lo)t = Li n Ly = Ly N L.

Therefore the restriction of w makes

L+ Ly Ly L,

LinLy Ly~ Ly @leL2

into a symplectic vector space decomposed into the direct sum of two La-
grangian subspaces, So these Lagrangan subspaces become dual to each
other. ]

Let now (S,w) be a C* symplectic manifold and A;, Ay < S be two
(smooth) Lagrangian submanifolds. We say that A; and Ay intersect cleanly
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(in the symplectic sense), if, locally near each x € A; n Ay, there is a sym-
plectomorphism of a neighborhood of z in S to a neighborhood of 0 in a
symplectic vector space W, sending A; to linear Lagrangian subspaces L; as
above. This implies that A; N Ay is smooth.

Corollary 5.2. If Ay, Ay intersect cleanly, then the restriction of w gives an
identification
Tj\klmAgAl ~ TAlﬁAQAQ. D

Now let X be a C* manifolds and M, N < X be two smooth submani-
folds. We assume that they intersect cleanly in the sense that they can locally
be brought by a diffeomorphism to two vector subspaces in a vector space.
Take S = T*X has two Lagrangian submanifolds Ay = Ty X, Ay = THX
which intersect cleanly in the symplectic sense. Given a complex of sheaves
G € D*(X), we have microlocalizations

par(G) € D'(A1),  un(G) € D*(As)

and we can specialize and microlocalize further, getting two complexes of
sheaves

:U/AlﬁAzluM(g> € Db(TxlmAgAl)ﬂ VAlﬁAzluN(g> € Db(TA10A2A2)

on two spaces which are identified by Corollary 5.2, so we can consider them
as living on the same space. One can then formulate

Second Microlocalization Problem 5.3. Under which conditions on M, N
and G can we guarantee that

Py ~ns ar(G) >~ vaian, n(G) 7

C. Bi-microlocalization. Let us restrict to the case N < M. In this case
we have

Proposition 5.4. We have identifications

TRimnht = TaonsBo =~ TyM @ (T3 X)|w-
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Proof: Obviously, A; n Ay projects, under T*X — X, to N. Looking at the
fibers of this projection, we find that Ay n Ay = (T, X)|n. Looking at the
Cartesian square

A1 M Agﬁ'TR}X = A1

(S

with 7 being a smooth fibration (projection of a vector bundle), we find that

Ti o = P TEM > TEM @ (T5X)|y. O

We already considered the situation of a flag N < M < X in discussing bi-
specialization vy (G) in §3E. Further, in this context Schapira and Takeuchi
[ST] [T] have defined the bimicrolocalization

pva(G) = FSn(vwu(G)) € D' (TRM & (T3 X)|w).

Here FSy is the relative Fourier-Sato transform on the vector bundle T M @
(T X)|n — N. So we have the following specialization-microlocalization
diagram:
(5.5)

DY(X) al DY TEX = Ay)

MNL L L/”‘Alml\g

D* (TR X @ (13, X)|v)) = T§, aa, A1 = ThynngAo)

VA1nAg

which gives three possible “second microlocaliizations”.

D. Comparisons in the linear case.

Theorem 5.6. Let X =V be an R-vector space, N < M < V be vector
subspaces and H an arrangement of hyperplanes in V' with the corresponding
face stratification Sg. Then the diagram (5.5) is canonically 2-commutative

if we replace D*(V') with D°(V, Sg).

In the complex situation, when V' = V¢ is a C-vector space, N ¢ M < V¢
are C-subspaces and D°(V,Sg) is replaced by Perv(Ve, Sc), the commuta-
tivity of the outer square of (5.5) was proved in [FS| using the D-module
techiques.

We will deduce Theorem 5.6 from the following result.
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Theorem 5.7 (P. Schapira). Let B be a C*-manifold and V' be a smooth
R-vector bundle on B. Let M < V' be a vector subbundle. Then, the Fourier-
Sato transforms on V and Ty (V) = M @ (V/M) are compatible with spe-
cializations. In other words, the following diagram of functors is canonically
2-commutative:

FSy

D, (V) DA(V™)
D*(M @ (V/M)) D*(M*+ @ M*).

P12oFS pgvym)

Here Py is the permutation of the two direct summands in M* @ M.

The notation @ here and below means direct sum of vector bundles, i.e.,
fiber product over B.

We note that the diagram in Theorem 5.7 can be seen as a particular
case of the outer rim of the diagram (5.5) for the case when X = V| when
M < V is our subbundle and N = B is the zero section of V. In other
words, Theorem 5.7 can be seen as a parametrized version (with arbitrary
base B instead of B = pt) of a particular case of Theorem 5.6 corresponding
to N = 0.

E. Proof of Theorem 5.7. The following proof is an adaptation of the
argument communicated to us by P. Schapira.

We consider three pairs
MtcV* MeMtcVeV* McV,

and the corresponding normal deformations which are related by the natural
projections:

—_——

(5.8) Vil «— VOV yeut — Var,

Each of the three normal deformations fits into its own diagram of the form
(3.10) whose spaces and maps will be decorated by the subscripts M+, M @
M+ and M. In particular, the projections of the three spaces in (5.8) to the
line R will be denoted 7,1, Ty« a2 and 7p,. These projections commute with
the maps in (5.8). The coordinate in R will be denoted ¢.
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Now, the Fourier-Sato transform on any vector bundle W is defined using
the region
P = Py = {(z,f) e WaW?*| (f(z) =0},

cf. §4A. We apply this to W =V and W = M @ (V/M) and denote the

corresponding regions

PycVeV* Pugvmy € M@ V/M)eM* @ (V/M)*
We want to lift Py into a region P < V/@V* memt Which specializes, for
t >0, to Py and for t = 0, to Pygv/m)-
For this we consider the region Qg < V/@\V* Mamt, defined as the
preimage TA}1®ML (Rop), cf. (3.10). It is identified with V & V* x Roo. Let
P < Q) be the image of Py x R.g.

Proposition 5.9. The closure P of P in V/@\‘;*M@ML is the union of P
and PM@(V/M) e TJQI@ML(O)

Proof: The statement is local in B. So we can assume that there exists a
complement M’ to M and to write V. = M @ M’. We then identify, as in
(3.10),

VeV*yen: = MM &M ®@M* xR

and the projection pygut : VO V* yeur — V @ V™ can be written as

Pruent  MOM M @M* xR— MM &M @M,
(m,m’,0,¢,t) — (m,tm/,t,¢).

Recall that the identification Qg — V @ V* x Rog is given by the map
(Pv@mts Tmew), the second component being projection to t. It follows
from (5.10) that for any ¢ > 0 the image, under pygL, of Py x {t} is Py.
Therefore the inverse of pyeurt, Tigart) identifies Py x Rog with Py x Ry,
where for ¢ = 0 our choice of complement has identified P with Pygnr =

(5.10)

Puew/m)- [
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We now consider the following diagram:

e P2,V Py 1,V e
DpslL Pm
QML P2 P P1 QM
Vvl Jm
po . m p d P
Spl SM

M*®M*<~—— Pygwmy —————= M & (V/M)

P2, M@(V /M) P1,M@®(V/M)

Given G € Db

con

(V), we have that

v FSy(G) = shR(jaes )« Pypr (P2 ) 01y (G),
FSuawmmvm(G) = (p2mew/an) P vew i Si B« Pir(9)
are given by moving along the two boundary paths of this diagram from the

northeast to the southwest corner. We identify these functors using the base
change theorem for the Cartesian squares forming this diagram.

F. Proof of Theorem 5.6. We write the diagram (5.5) in our case as
follows:

(5.11) DYV, Sg) il Db (M x (V/M)*)

con

MNl N lMNX(V/M)*

Deon(N % (V/N)*) — e Dion(N 5 (M/N)* 5 (V/M)).

VN x (V) M)* bicon

Here and below the subscript “con” means complexes which are R y-conic
with to the second argument, and “bico” means cmplexes which are (Rxq)*-
biconic with respect to the second and third arguments.

We recall that s is the composition

(Nx(M/N)x(V/M)) FSaumx v pp

bicon

Db(v7 SR) VN—M) Dll;icon

(NX(M/N)*>(V/M)*).

We now prove the 2-commutativity of each of the two triangles in (5.11).
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Upper triangle. We write each p as the composition of the corresponding F'S
and v and apply Theorem 3.17 to decompose vxj; as the composition of two
specializations. After this we represent the two paths in the triangle as the
two boundary paths in the following diagram:

Db(V, Sg)
DY (M x (VM) —— Db (M x (V/M)*)
Dheon(N x (M/N) x (V/M)) 22D (N x (M/N) x (V/M)*))

FSyn
FS(n/Nyx v/

Db (N x (M/N)* x (V/M)*).

bicon

In this diagram, the top triangle commutes by definition of u,, and the
commutativity of the bottom triangle expresses the fact that the Fourier-
Sato transform of biconic sheaves on the direct sum of vector bundles can
be done in stages, cf. [KS2] Prop. 3.7.15. The commutativity of the middle
square follows because specialization along N and the Fourier-Sato transform
along V' /M operate in different factors so they are independent of each other
and can be permuted.

Lower triangle. As before, by unravelling the definitions of various p and
applying Theorem 3.17, we represent the two paths in the triangle as the two
boundary paths in the following diagram:

/ Db(V, Sg)
DEL(N x (V/N)?) DE,L(N x (V/N))
VN x(V/M)* VN x(M/N)
Dheon(N x (M/N) x (V/M)) Dheon(N x (M/N) x (V/M))

FS(n/nyx(v/an)

The commutativity of the top triangle in this diagram is the definition of py.
The commutativity of the lower square is an instance of Theorem 5.7 for the
trivial vector bundle over B = N with fiber V//N and the trivial subbundle
with fiber M /N. Theorem 5.6 is proved.
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