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We derive a general equation for the evolution of the curvature perturbation on comoving slices
Rc in the presence of anisotropic and non-adiabatic pressure terms in the energy-momentum tensor
of matter field. The equation is obtained by manipulating the perturbed Einstein equations in the
comoving slicing. It could be used to study the evolution of perturbations for a system with an
anisotropic energy-momentum tensor, such as in the presence of a vector field or in the presence of
non-adiabaticity, such as in a multi-field system.

I. INTRODUCTION

The theory of cosmological perturbations is very use-
ful to study the early stages of the Universe, especially
during inflation, that is, an exponential expansion phase
which the standard cosmological model hypothesizes to
explain observations such as anisotropies in the cosmic
microwave background radiation (CMB). One quantity
which is particularly important in this context is the cur-
vature perturbation on comoving slices, Rc. In slow-roll
single field inflationary models this quantity is conserved
on super-horizon scales[1, 2], which has important impli-
cations on the relation between primordial perturbations
and late-time observables such as CMB anisotropies. For
a globally adiabatic system in a single field model this
quantity may not be conserved [3]. Other possible causes
of super-horizon evolution could be anisotropic or non-
adiabatic pressure components of the energy-momentum
tensor. In this short note we derive the equations for
the curvature perturbation on comoving slices, Rc, in-
cluding these two terms showing that they act, as ex-
pected, as source terms which are relevant also on super-
horizon scales. Our approach is quite generic and can
be applied to any system which can be described by an
energy-momentum tensor of the form we use, not only to
a multi-scalar scalar system.

The derivation is based on manipulating the Einstein
equations in order to obtain an equation involving only
Rc, the anisotropy and non-adiabatic pressure terms and
background quantities. The equation can be used to
study phenomenologically the effects of anisotropy and
non-adiabaticity without assuming any specific model.

One useful application could be to study models which
violate the non-Gaussianity consistency relation [4] that
was derived in fact based on the assumption of the con-
servation of the comoving curvatue perturbation on su-
perhorizon scales.

II. EVOLUTION OF COMOVING CURVATURE
PERTURBATIONS

The Einstein equations in a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background are

3H2 = a2(η) ρ , (1)

2(H′ −H2) = −a2(η) (ρ+ P ) . (2)

Here a prime denotes a derivative with respect to the
conformal time η and H stands for the conformal Hubble
parameter defined by H = a′/a. ρ and P represent the
background energy density and pressure of the matter
field respectively. We use the units in which 8πG = c = 1.

Scalar perturbations on a spatially flat FLRW metric
can be written as

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2∂iBdxidη+

+
{

(1 + 2R)δij + 2∂i∂jE
}

dxidxj
]
, (3)

where the Latin indices run from 1 to 3. The correspond-
ing energy-momentum tensor takes the form :

T 0
0 = −(ρ+ δρ) , T 0

i =
ρ+ P

a(η)
ui ,

T i
j = (P + δP )δij + Πi

j ; (4)

where

ui = a(η) ∂i(v +B) , (5)

Πi
j = δik∂k∂jΠ−

1

3

(3)

∆ Πδij , Πi
i = 0 . (6)

In the above equations Πi
j is the anisotropic pressure

component of the energy-momentum tensor, v is the ve-
locity potential, Π is the anisotropy potential and we

have defined
(3)

∆≡ δij∂i∂j .
The curvature perturbation on comoving slices Rc is a

gauge-invariant quantity defined as the curvature pertur-
bation R evaluated on the hypersurfaces in which v +B



2

vanish. The spatial Fourier expansion of the linearly per-
turbed Einstein equations on comoving slices [5] takes the
form :

2k2(Rc −Hσc) = a2δρc , (7)

R′
c −HAc = 0 , (8)

2(H′ −H2)Ac = a2
[
δPc − (2k2/3)Πc

]
, (9)

σ′
c + 2Hσc −Ac −Rc = a2Πc , (10)

where σ = E′ −B is the scalar shear.
In general we can decompose the pressure perturbation

as

δPc = c2s(η)δρc + Γc , (11)

where we can interpret cs and Γc as the adiabatic sound
speed and the non-adiabatic part of the pressure respec-
tively. For a minimally coupled scalar field model cs = 1
and Γc is zero, but in general one would expect that Γc

could be non-vanishing. Our goal is to derive an equation
for Rc in the presence of both anisotropic stress Πi

j and
non-adiabatic pressure Γc.

First we use Eq. (8) to express Ac in terms of Rc,

Ac =
R′

c

H
. (12)

We substitute this Ac and δPc given in Eq. (11) into
Eq. (9), and solve it for δρc :

δρc =
H
(
2k2Πc − 3Γc

)
− 3(ρ+ P )R′

c

3Hc2s
. (13)

We then insert this into eq. (7) to get an expression for
σc :

σc =
Rc

H
−
a2
[
H(2k2Πc − 3Γc)− 3(ρ+ P )R′

c

]
6k2H2c2s

. (14)

Finally we substitute Ac and σc given by Eqs. (12) and
(14), respectively, into Eq. (10) to obtain

R′′
c +

(z2)′

z2
R′

c − c2s
(3)

∆ Rc +
H

ρ+ P
Yc = 0 , (15)

where we have defined

z2 ≡ a4(ρ+ P )

c2sH2
, (16)

Yc ≡
[
log

(
a4

Hcs2

)]′(
2

3

(3)

∆ Πc + Γc

)
+ 2Hc2s

(3)

∆ Πc +
2

3

(3)

∆ Π′
c + Γ′

c . (17)

This is the main result of this note. As expected, for
adiabatic (Γc = 0) and isotropic perturbations (Πc = 0)
the above equation takes the well-known form :

R′′
c +

(z2)′

z2
R′

c − c2s
(3)

∆ Rc = 0 , (18)

III. CONCLUSIONS

We have derived a general equation for the evolution of
the comoving curvature perturbation by taking into ac-
count the effects of anisotropic and non-adiabatic stress
components. The equation can be applied to study the
generic evolutionary behavior of the curvature perturba-
tion in a system where anisotropic and/or non-adiabatic
stress perturbations play important roles.
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