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Abstract: In this work we analyze F-theory and Type IIB orientifold compactifi-
cations to study α′-corrections to the four-dimensional, N = 1 effective actions. We
discuss the role of novel α′-corrections in moduli stabilization and the possibility of
generating (meta)-stable vacua.

In particular, we obtain corrections to the Kählermoduli space metric and its
complex structure for generic dimension originating from eight-derivative correc-
tions to eleven-dimensional supergravity. We propose a completion of the G2R3 and
(∇G)2R2-sector in eleven-dimensions relevant in Calabi–Yau fourfold reductions. We
suggest that the three-dimensional, N = 2 Kähler coordinates may be expressed as
topological integrals depending on the first, second, and third Chern-forms of the
divisors of the internal Calabi–Yau fourfold.

The divisor integral Ansatz for the Kähler potential and Kähler coordinates may
be lifted to four-dimensional, N = 1 F-theory vacua. We identify a novel correction
to the Kähler potential and coordinates at order α′2, which is leading compared to
other known corrections in the literature. At weak string coupling the correction
arises from the intersection of D7-branes and O7-planes with base divisors and the
volume of self-intersection curves of divisors in the base. In the presence of the
novel α′-correction resulting from the divisor interpretation the no-scale structure
may be broken. Furthermore, we propose a model independent scenario to achieve
non-supersymmetric AdS vacua for Calabi-Yau orientifold backgrounds with negative
Euler-characteristic.

mailto:matthias.weissenbacher@ipmu.jp


Contents

1 Introduction 2

2 Towards a completion of the G2R3 and (∇G)2R2 sectors 4
2.1 Higher-derivative corrections in M-theory 5
2.2 Checks on the G2R3 and (∇G)2R2-sector 5

3 Three-dimensional effective actions revisited 8
3.1 Three-dimensional gauged N = 2 supergravity 10
3.2 Calabi–Yau fourfold reduction for generic h1,1 11
3.3 Review one-modulus Kähler potential and coordinates 13

4 Three-dimensional Kähler potential and coordinates 15
4.1 Kähler coordinates as integrals on CY4 17
4.2 Topological divisor integrals as Kähler coordinates 19
4.3 One-modulus compatibility 21

5 F-theory uplift to 4d, N = 1 22
5.1 The F-theory uplift 24
5.2 Topological integrals on elliptic Calabi–Yau fourfolds 26
5.3 4d, N = 1 Kähler potential and coordinates 29

6 Moduli Stabilisation 32
6.1 α′-stabilisation scenario for Minkowski vacua? 33
6.2 Extrema in the generic moduli case 36

7 Conclusions 40

A Conventions, definitions, and identities 42
A.1 Divisor integrals in terms of CY4 integrals 45
A.2 3d Kähler coordinates as topological divisor integrals 47
A.3 Variation w.r.t. Kähler moduli fields 48

B Higher-derivatives and F-theory 52
B.1 11d higher-derivative Terms 52
B.2 Adjunction of Chern-classes 53
B.3 Basis of the G2R3 and (∇G)2R2-sector 55

– 1 –



1 Introduction

Four-dimensional minimal super-gravity theories are of particular phenomenological
interest. The effective actions are commonly derived by dimensionally reducing ten-
dimensional supergravity actions arising in string theory with localized brane sources.
The stringy imprint arises in the form of α′-corrections1 to the Kähler potential and
coordinates of the leading two-derivative action or in form of high-derivative couplings
in four dimensions. Such corrections have been shown to be crucial in determining
the vacua of the effective theory in the process of moduli stabilization. However,
to compute α′-corrections in a truly minimal supersymmetric i.e. N = 1 set-up has
been a challenging endeavor. A promising approach is to utilize F-theory which is a
formulation of Type IIB string theory with space-time filling seven-branes at varying
string coupling [1]. It captures the string coupling dependence in the geometry of
an elliptically fibered higher-dimensional manifold. The general effective actions of
F-theory compactifications have been studied using the duality with M-theory [2, 3].
A wide range of phenomenologically promising geometric F-theory backgrounds are
known to giving rise non-Abelian gauge groups [2, 4, 5].

The starting point of the M/F-theory duality is the long wave length limit of
M-theory, i.e. eleven-dimensional supergravity. Higher-derivative or higher-order lM-
corrections can then be followed through the duality to give rise to α′-corrections in
the resulting four-dimensional N = 1 theory. We first compactify eleven-dimensional
supergravity including the next to leading order eight-derivative or l6M-couplings to
three dimensions on a supersymmetry preserving 8-dimensional background. More
precisely, we preform a classical Kaluza-Klein reduction of the purely gravitational
M-theory R4-terms [6–11] on elliptically fibered Calabi–Yau fourfolds. Furthermore,
one needs to consider the G2R3 and (∇G)2R2-sector, where G is the M-theory four-
form field strength. One easily verifies that all those couplings carry eight derivatives.
We then implement the F-theory limit by decompactifying the thee-dimensional the-
ory to four space-time dimensions and interpret the resulting α′-corrections to the
two-derivative effective theory. In particular, we study l6M-corrections to the three-
dimensional Kähler potential and Kähler coordinates of the N = 2 theory, which
then modify the four-dimensional Kähler potential and Kähler coordinates in the
F-theory limit. In particular, we identify a new leading order α′2-correction to the
Kähler potential and coordinates which may break the no-scale structure. It is then
of interest to study its effects in moduli stabilization scenarios.

We start the discussion in section 2 by reviewing the G2R3 and (∇G)2R2-sector.
No super-symmetric completion of those sectors is known. In this work we propose
a completion of the bosonic terms relevant for Calabi–Yau fourfold reductions. We

1Which is given by α′ = l2S with string length lS . The canonical convention for the definition of
α′ is w.r.t, the string tension T as T−1 = 2πα′.
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start from a general basis and fix the coefficients via comparison to controlled theories
upon dimensional reduction. In particular, we compactify on Calabi–Yau threefolds
and verify compatibility with 5d,N = 2 supergravity. Furthermore, upon reduction
on S1 ×K3 we make use of the Heterotic/IIA-theory duality.

This then allows us to fix the parameters such that we can perform a controlled
dimensional reduction on Calabi–Yau fourfolds with a generic number of Kähler
deformations in section 3. Also in this section we review our previous results for the
one-modulus case for which the integration in a three-dimensional Kähler potential
and coordinates can be performed exactly.

In section 4 we suggest a proposal for the three-dimensional Kähler potential
and coordinates for a generic number of Kähler moduli of the Calabi–Yau fourfold
background. The key new approach in contrast to our previous attempts [12, 13] is
the formulation of the higher-derivative contributions as divisor integrals, analogous
to the discussion of the warp-factor in [12]. We argue in 4.1 that the new formulation
can indeed give rise to all relevant higher-derivative couplings in the reduction result
obtained in 3.2. However, to match the reduction result is beyond the aim of this work
and we suggest that non-trivial identities relating the higher-derivative objects are
needed to perform this tasks. Let us stress that obtaining the correct building blocks
from a Kähler potential and Kähler coordinates is a big leap forward as this steps
meets heavy obstacles as pointed out in [12]. We then proceed in 4.2 by showing that
the divisor integral Kähler coordinates can be re-expressed as topological integrals.
This is very intriguing as it will allow for a F-theory interpretation. Lastly in section
4.3 we show compatibility with to the one-modulus case where the Kähler potential
and coordinates could be fixed exactly [14].

In section 5 we discuss the F-theory uplift of the three-dimensional l6M-corrected
Kähler potential and coordinates to four dimensions. The classical uplift of the
topological integrals is well understood and can be performed rigorously. It is ex-
pected that the F-theory lift receives loop-corrections which result from integrat-
ing out Kaluza-Klein states on the 4d/3d circle at one-loop. As we encounter a
l6M-correction to the Kähler coordinates with [14] logarithmic dependence on the
Calabi–Yau fourfold volume reminiscent of such a loop correction we comment on a
one-loop modification of the F-theory uplift. However, to present a complete analy-
sis of the F-theory uplift at one-loop is beyond the scope of this work. Due to this
the resulting α′2-corrected four-dimensional Kähler potential and coordinates thus
carry free parameters we are not able to fix in this work. We conclude, however,
that the divisor integral interpretation of the three-dimensional Kähler coordinates
generically leads to a breaking of the no-scale structure which remains present in
four-dimensions. This breaking of the no-scale structure is also consistent with the
one-modulus case [14].

To give an independent interpretation of the novel α′2-correction we take the
Type IIB weak string coupling limit [15]. The correction is proportional to the
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volume of the intersection curve of D7-branes and the O7-plane with divisors in the
Kähler base of the elliptically fibered Calabi–Yau fourfold. Moreover, it depends
on the volume of the self-intersection curves of those divisors in the base. We also
identify a second correction which survives the F-theory limit. However it vanishes
due to conspiration of pre-factors. The latter correction is proportional to the self-
intersection of divisors in the base intersecting theD7-branes and the O7-plane. Both
are expected to arise from tree-level string amplitudes involving oriented open strings
with the topology of a disk a and non-orientable closed strings with the topology of
a projective plane analogous to the α′2-correction encountered in [16, 17]. We also
discuss the latter in this work.

In section 6 we discuss the implications of the α′2-corrections on moduli stabi-
lization. In 6.1 we analyze the structure of the novel leading order α′2-correction
to the scalar potential. We argue that for specific values of the topological quanti-
ties of the geometric background the correction takes a form in which all but one
two-cycle volumes are fixed in a Minkowski vacuum with a flat direction, i.e. a flat
direction for the overall volume. In more realistic scenarios this feature can be ex-
hibited in particular for backgrounds with χ(B3) = 0, i.e. Calabi–Yau fourfolds with
vanishing Euler-characteristic of the base B3, or for large enough vacuum values of
the string coupling. Lastly in section 6.2 we propose a model independent scenario
to achieve non-supersymmetric AdS vacua for geometric backgrounds with nega-
tive Euler-characteristic χ(B3) < 0, where B3 is the base of the elliptically fibered
Calabi-Yau fourfold in F-theory. In the IIB picture thus for Calabi–Yau oreintifold
backgrounds with negative Euler-characteristic. The vacua are obtained due to an
interplay of the Euler-Characteristic correction [18] and the α′2-corrections to the
scalar potential.2 We close by emphasizing that the discussion can be performed
analogously for Calabi–Yau fourfolds with χ(B3) > 0 which leads to de Sitter ex-
trema. We thus suggest that the scenarios may suffice to construct an explicit counter
example to the recent conjecture by [21]. Let us emphasize that we do not study
explicit geometric backgrounds in this work but derive constraints on the topological
quantities such that vacua may be obtained.

2 Towards a completion of the G2R3 and (∇G)2R2 sectors

In section 2.1 we review the known eleven-dimensional supergravity action at eight-
derivatives. We consider the possibility of having additional G2R3 and (∇G)2R2-
terms in the eleven-dimensional action in section 2.2, where G denotes the M-theory
four-form field strength, and R is an abbreviation for the Riemann tensor. We
propose a completion of these two sectors relevant for Calabi–Yau fourfold reductions.

2 The form of the scalar potential due to the α′2-correction obtained in [16, 17] is similar to the
one obtained at order α′3 in [19, 20].

– 4 –



Due to these potential novel terms one encounters an additional parameter freedom
in the reduction result in section 3. However, as we make not use of this parameter
freedom in the remaining work let us stress that this section stands independent.
The reader more interested in the three and four-dimensional effective actions can
thus safely skip the technical section 2.2 and carry on with section 3.

2.1 Higher-derivative corrections in M-theory

In this section we review the eleven-dimensional supergravity action including the
relevant eight-derivative terms. Note that we comment on a completion of the G2R3

and (∇G)2R2-sector relevant for a Calabi–Yau fourfold CY4 reductions in the next
section 2.2. The bosonic part of the classical two-derivative N = 1 action in eleven
dimensions is given by

2κ2
11 S11 =

∫
M11

R ∗ 1− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G . (2.1)

The purely gravitational sector is corrected at eight-derivatives by R4-terms given
by

2κ2
11 SR4 =

∫
M11

(
t8t8 − 1

24
ε11ε11

)
R4 ∗ 1− 32213C ∧X8 . (2.2)

First derived in [22] these terms can be shown to be re related to the R-symmetry
and conformal anomaly of the world-volume theory of a stack of N M5-branes [11].
Secondly the known contributions [23] to G2R3 and (∇G)2R2-sector of the four-form
field strength are given by

2κ2
11 SG =

∫
M11

−
(
t8t8 + 1

96
ε11ε11

)
G2R3 ∗ 1+s18

(
∇G

)2
R2 ∗ 1+256ZG∧∗G . (2.3)

The last term in (2.3) was argued to be necessary to ensure Type IIA/M-theory
duality when considering Calabi–Yau threefold compactifications [20]. The precise
definition of the higher-derivative terms in (2.2) and (2.3) can be found in the ap-
pendix in B.3. The detailed index structure of the terms

(
∇G

)2
R2 in (2.3) can be

found in B.3.

2.2 Checks on the G2R3 and (∇G)2R2-sector

It is well known that no supersymmetric completion of the eleven-dimensional G2R3-
sector and (∇G)2R2-sector is known. The eleven-dimensional eight-derivative terms
involving two powers of the four-form field strength are lifted from the corresponding
terms in the Type IIA effective action. Those arise at the level of the five point-
functions in the Type IIA superstring and partial indirect conclusions can be drawn
at the level of the six-point function [23]. However, let us stress that a conclusive
study at the level of the six-point function and especially at higher order n-point
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functions remains absent. In particular a supersymmetric completion of the G2R3-
sector and (∇G)2R2-sector employing the Noether coupling method would be of great
interest. It is thus desirable to discuss possible extensions of the G2R3 and (∇G)2R2-
sector beyond the known terms. In this section we accomplish this task and provide
a complete maximal extension of the eleven-dimensional G2R3 and (∇G)2R2-sector
relevant for Calabi–Yau fourfold reductions.3

Instead of computing string amplitudes or employing the Noether coupling method
we take a more pragmatic way here. In [14] a complete basis of eight-derivative terms
of the schematic form G2R3 was constructed. We then compliment this with a basis
for the (∇G)2R2-sector given in appendix (B.3), both of which then upon dimensional
reduction contribute to the kinetic terms of the three-dimensional vectors. To con-
strain the free parameters we follow the same logic as in our previous work [14, 20],
namely deriving constraints on the parameter of the eleven-dimensional Ansatz by
verifying compatibility upon dimensional reduction with lower-dimensional super-
symmetry. For example, as the R4-sector is known to be complete one can fix cer-
tain lower-dimensional supersymmetry variables solely by deriving its dimensional
reduction, which then can be compared to the ones derived from the G2R3 and
(∇G)2R2-sector.

Let us next discuss the general form of the relevant terms in the basis of G2R3

and (∇G)2R2. The terms contributing to the three-dimensional effective action are
those, which do not contain any Ricci tensors or scalars as these vanish trivially on a
Calabi–Yau manifold. Taking into account the first Bianchi identity for the Riemann
tensor a minimal basis of these terms is given in appendix B.3. The general expansion
of terms which may contribute in addition to (2.3) to the three-dimensional action
is then

2κ2
11 S

extra, gen = α2

∫
M11

17∑
i=1

Ci Bi ∗ 1 +
24∑
i=1

Ci+17Bi ∗ 1 (2.4)

for some coefficients Ci ∈ R. To restrict the parameters in the Ansatz (2.4) we first
take a detour to Calabi–Yau threefold compactifications and furthermore discuss the
dimensional reduction on K3×S1. Thus in particular, we provide the maximal com-
plete extensions of the eleven-dimensional G2R3 and (∇G)2R2-sector (2.4), which is
compatible upon dimensional reduction with five-dimensional, N = 2 supersymme-
try, i.e. by dimensional reduction on Calabi–Yau threefolds to five dimension for a
generic number of Kähler moduli. Moreover, we perform the dimensional reduction
on K3 × S1 to six dimensions and employ the Heterotic - IIA duality to compare
the resulting four-derivative couplings to the well known terms on the Heterotic side

3In other words due to the Calabi-Yau condition certain terms in the Ansatz yield zero upon re-
duction. Those coefficients can not be fixed by our arguments but constitute a complete description
relevant for Calabi–Yau fourfold reductions.
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of the duality. It turns out that these arguments are very restrictive and allow us
to parametrize the G2R3 basis with only five parameters [14]. However when allow-
ing for an interplay with the (∇G)2R2-sector the number of independent parameters
reduces from forty-one to thirteen.

Moreover the above analysis allows us to infer that the G2R3 and (∇G)2R2-
terms are consistent with the partially known six-point function results [23]. Let us
stress that it would be of great interest to study additional constrains on this eleven-
dimensional sector by circular reduction to type IIA effective supergravity. Any
combination of novel terms need to be vanishing at the level of the five-point one-
loop string scattering amplitude with two NS-NS two-form field and three graviton
vertex operator insertions. We suggest that such a study will lead to fix the remaining
parameter freedom in the eleven-dimensional action.

By dimensionally reducing the extension (2.4) one modifies the kinetic couplings
of the three-dimensional vectors and introduces an additional parameter freedom.
One may use to this to rewrite the reduction result in terms of 3d, N = 2 variables.
In section 3.2 we perform the dimensional reduction of the G2R3 and (∇G)2R2-
extensions to three space-time dimensions on Calabi–Yau fourfolds with arbitrary
number of Kähler moduli.

Calabi–Yau threefold checks to 5d,N = 2. In the following we derive con-
straints on the coefficients Ci in (2.4) by demanding compatibility with N = 2

supersymmetry in five dimensions upon compactification on a Calabi–Yau threefold.
The l6M-corrections give contributions to the five-dimensional vector multiplets of the
N = 2 supergravity which is expressed in terms of a real pre-potential F(XI) and
real special coordinates XI . Note that physical scalars in the vector multiplets obey

F(XI) = 1
3!
CIJK X

IXJXK = 1 . (2.5)

The totally symmetric and constant tensor CIJK is entirely determined by the U(1)

Chern-Simons terms ∼ CIJK A
IF JFK , which however do not receive l 6

M–corrections.
One concludes that also the physical scalars XI remain uncorrected.

We dimensionally reduce the action (2.4) with general coefficients Ci on a Calabi–
Yau threefold Y3 to five dimensions. As our focus is on the kinetic terms for the
vectors we note that in order to dimensionally reduce one expands

G = F i
5D ∧ ω

CY3
i , (2.6)

with the field strength of the five-dimensional vectors F i
5D and the harmonic (1, 1)-

forms on the Calabi–Yau threefold ωCY3
i , i = 1, . . . , h1,1(CY3). The constraints im-

posed by supersymmetry are then inferred by making use of Shouten and total deriva-
tive identities on the internal space CY3. The condition one encounters is that novel
terms (2.4) may no contribute to the five-dimensional couplings, which is equivalent
to the non-renormalisation of (2.5). The computation is in principal straightforward
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(but tedious) and leads us to impose the relations among the coefficients C1 . . . , C41.
Details can be found in the appendix (B.21).

Heterotic and type IIA duality. In this section we compactify (2.4) on K3 ×
S1. We first circular reduce the basis of forty-one G2R3 and (∇G)2R2-terms to ten
dimensions on R1,9 × S1 to obtain a l6M-modified IIA supergravity theory. The only
terms relevant for us are the ones which arise from

G11MNO = e
φ
3HMNO , M,N,O = 1, . . . , 10 , (2.7)

where 11 denotes the direction along S1 and with H the field strength of the type IIA
Kalb-Ramond tensor field. We then check compatibility of the novel induced H2R3-
terms making use of the IIA - Heterotic duality by dimensional reduction on K3.
Compactifying type IIA on K3 is dual to the Heterotic string on T4. For our purpose
it is enough to show that when compactifying the novel H2R3-terms on K3 those
do not induce any l6M-correction to the six-dimensional action. In particular. the
absence of four-derivative terms is imposed, which results in one further constraint
on the parameters. The additional constraints on the C’s arises from imposing the
vanishing of the four-derivative terms such as e.g.

∼ χ(K3) H6DµνρH6D
µ
ν1ρ1 R6D

µµ1νν1 , (2.8)

with µ, ν = 1, . . . , 6. One then infers the additional constraints on the parameters in
(2.4) to be

C2 = 0 , C1 = −1
6

(
8C3 + 2C31 + C35 + 36C4 + 3C6

)
. (2.9)

This concludes that by fixing the parameter (2.9) the proposed maximal extension
of G2R3 and (∇G)2R2-terms in the M-theory effective action is fully consistent with
the indirect six-point functions results discussed in [23].

3 Three-dimensional effective actions revisited

F-theory can be viewed as a map of dualities which allows one to derive controlled IIB
orientifold backgrounds at weak string coupling which incorporate for back-reacted
D7 branes and O7-planes on the axio-dilaton [1–3]. The starting point of this jour-
ney is eleven-dimensional supergravity, which compactified on an appropriate eight-
dimensional internal space gives a 3d, N = 2 supergravity theory which can then be
related via the F-theory lift to a 4d, N = 1 supergravity theory. The main objective
of this section is the dimensional reduction of eleven-dimensional supergravity includ-
ing the novel eight-derivative couplings (2.4) on Calabi–Yau fourfolds for a generic
number of Kähler moduli in section 3.2. We start our discussion with a review of
the generic properties of 3d, N = 2 supergravity theories in section 3.1. Finally, we
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conclude this section with a review of the one-modulus case in which the warp-factor
as well as the higher-derivative couplings can be matched to the 3d, N = 2 variables
[14].

Background solution. Let us set the stage by reviewing the fourfold solutions
including eight-derivative terms studied in [24–26]. The background solution is taken
to be an expansion in terms of the dimensionful parameter 4

α2 =
(4π κ2

11)
2
3

(2π)4 32 · 213
, 2κ2

11 = (2π)5 l 9
M , (3.1)

which reduces to the ordinary direct product solution R1,2×CY4 without fluxes and
warping to lowest order in α. At order α2 a warp-factor W (2) = W (2)(z, z̄) and fluxes
are induced. The background solution is known [25, 26] to then take the form

〈ds2〉 = εα
2 Φ(2)

(
ε−2α2W (2)

ηµν dx
µdxν + 2εα

2 W (2)
gmm̄ dz

mdz̄m̄
)
, (3.2)

〈G〉 = αG(1) + dvolR1,2 ∧ d
(
ε−3α2W (2))

. (3.3)

By solving the eleven-dimensional E.O.M.’s for the metric gmm̄ of the internal space
one encounters that it seizes to be Ricci flat i.e. Calabi–Yau [16]. It receives a cor-
rection at order α2 as

gmm̄ = g(0)
mm̄ + α2 g(2)

mm̄ , g(2)
mm̄ ∼ ∂m∂̄m̄ ∗(0)

(
J (0) ∧ J (0) ∧ F4

)
, (3.4)

where g(0) is the lowest order, Ricci-flat Calabi–Yau metric and J (0) is its associated
Kähler form and where F4 the non-harmonic part of the third Chern form. Latter
is however irrelevant for the following discussion, as it only contributes couplings to
the effective action which are total derivatives [17]. Furthermore, (3.4) includes an
overall Weyl factor Φ(2) = −512

3
∗(0)
(
c(0)

3 ∧ J (0)
)
, which was first discussed in [26] and

a warp-factor W (2)(z, z̄) satisfying the warp-factor equation

∆(0) ε3α
2W (2)

dvol(0)Y4
+

1

2
α2G(1) ∧G(1) − 32213 α2X (0)

8 = 0 . (3.5)

The background value of the four-form field strength (3.3) is given by the sum of the
internal flux G(1) ∈ H4(CY4) and a warp-factor contribution. Due to lowest order
supersymmetry constraints the flux is to be self-dual with respect to the lowest order
Calabi–Yau metric. Note that we do not discuss the corrections to the gravitino
variations at order l6M here but refer the reader to [26] for a detailed discussion. Let
us emphasize that the l6M-gravitino variations are not known as a supersymmetric
completion of eleven-dimensional supergravity at higher lM-order remains elusive.
However, it is widely believed that (3.2)-(3.5) constitutes a supersymmetric back-
ground.

4We follow the conventions of [11].
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3.1 Three-dimensional gauged N = 2 supergravity

In this section we briefly reviewN = 2 gauged supergravity in three dimensions where
all shift symmetries are gauged. Shift symmetries corresponds to an isometry of the
geometry of the scalar field space. Three-dimensional maximal and non-maximal
supergravities are discussed in [27]. For our purpose it is sufficient to consider three-
dimensional N = 2 supergravity coupled to chiral multiplets with complex scalars
Na, which are gauged along the isometries Iab and subject to the constant embedding
tensor Θab. One then infers the simply form of the N = 2 action to be

SN=2 =

∫
M3

1
2
R ∗ 1−Kab̄∇Na ∧ ∗∇N̄ b̄ − 1

2
ΘabA

a ∧ F b −
(
VD + VF

)
∗ 1 , (3.6)

where Kab̄ = ∂Na∂N̄ b̄K is a Kähler metric with Kähler potential K. The gauge
covariant derivative ∇Na is defined by ∇Na = dNa+ Θbc I

abAc . The F-term scalar
potential in (3.6) is given by

VF = εK
(
Kab̄DiWDbW − 4|W |2

)
, (3.7)

with Kab̄ = (K−1)ab̄ the inverse of the Kähler metric given by a hermitian matrix and
W a holomorphic super potential. Furthermore, one finds that VD = Kab̄ ∂aD∂b̄D−
D2 where D is a real function of the chiral fields N i. Lastly, note that the vectors
in the Chern-Simons term (3.6) are non-dynamical.

Dualization of the action. One may now split the chiral fields as Na = (M I , Ti)

and dualizes the chiral multiplets in (3.6) with bosonic component Ti into vector
multiplets [28]. Note that dualization is in general not possible but requires ImTi
to admit a shift symmetry. Upon Legendre dualization the theory depends on the
kinematic potential K̃ which is expressed in terms of the quantities of the dual theory
as

K(M,T ) = K̃(M,L)− ReTi Li , Li = − ∂K

∂ReTi
. (3.8)

One then derives the dual action to take the form5

SN=2, dual =

∫
M3

1
2
R ∗ 1− K̃MIM̄J DM I ∧ ∗DM̄ J̄ + 1

4
K̃LiLj dL

i ∧ ∗ dLj

+

∫
M3

1
4
K̃LiLj F

i ∧ ∗F j + 1
2
ΘijA

i ∧ F j + F i ∧ Im
[
K̃LiMI ∇M I

]
−
∫
M3

(
VD + VF

)
∗ 1 , (3.9)

5One may choose a constant embedding tensor such that

Iij = −2i dxij , IIJ = ĨiJ̄ = 0 , IiJ = 0 , ΘIJ = 0 .
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with kinematic couplings given by

K̃LiLj = ∂Li∂LjK̃ . (3.10)

Note that the scalars Li belong to vector multiplets. One may furthermore infer from
(3.8) that

KTiT̄ j = −1
4
K̃LiLj , ReTi = K̃Lj ,

∂Li

∂Tj
= 1

2
K̃LiLj . (3.11)

Left to discuss is the dualization of the scalar potential.6 The F-term scalar potential
in the vector multiplet language is then given by

VF = εK
[
K̃MIM̄ J̄

DMIW DMJW −
(
4 + Li K̃LiLj L

j
)∣∣W ∣∣2] . (3.13)

where we have assumed that the superpotential does not depend on the scalars Li

in the vector multiplet. This case is relevant when matching to the string theory
reduction result in which the superpotential does not depend on the Kähler moduli,
i.e. non-perturbative effects such as M5-brane instantons are absent. For the dis-
cussion in this work this will be sufficient but one may choose to generalize (3.13)
easily.

3.2 Calabi–Yau fourfold reduction for generic h1,1

In this section we discuss the reduction result of M-theory involving the eight-
derivative action (2.1)-(2.3) and (2.4) on the warped background (3.2)-(3.5) and
allow for an arbitrary number of Kähler moduli of the internal manifold. Latter is
achieved by deforming the background metric as

gmn̄ → gmn̄ + iδviω(0)
imn̄ , (3.14)

where δvi = δvi(x) are infinitesimal scalar deformations and {ω(0)
i } are harmonic

(1, 1)-forms w.r.t the background Calabi–Yau metric g(0), with i = 1, . . . , h1,1(CY4).
The non-vanishing contribution for the dynamical three-dimensional vectors Aiµ is
derived by7

Gµνmn̄ = F i
µνω

(0)
imn̄ , F i = dAi . (3.15)

To enhance the readability of the main text in the following we shift the more techni-
cal steps to the appendix. To express the reduction result we need to introduce several

6 The D-term results in

VD = K̃MIM̄ J̄

∂M ĪT ∂M̄ J̄T − K̃LiLj∂LiT ∂LjD −D , D = − 1
2L

i Θij L
j . (3.12)

7Note that in the presence of l6M-correction the deformations (3.14) and (3.15) may receive
higher-order corrections as discussed in [12, 13], none of which alter the dynamics of the resulting
theory. We thus omit them from the present discussion.
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higher-derivative building blocks. Among them the familiar second and third Chern-
forms c2 and c3, respectively, and Z,Zmm̄, Zmm̄nn̄ and Yij,Ωij. All higher-derivative
objects are w.r.t. the zeroth α-order Calabi–Yau metric. Their precise definition can
be found in appendix A, in particular (A.19)-(A.26). Here let us schematically note
that

Z, Zmm̄, Zmm̄nn̄ ∼
(
R
)3

, Yij ∼ (∇ωi)(∇ωj)
(
R
)2

, Ωij ∼ (ωi)(ωj)
(
R
)
. (3.16)

where R denotes the Riemann tensor on the internal manifold and ∇ is the covariant
derivative w.r.t. the Calabi–Yau metric. The warp-factor dependence can be elegantly
captured by introducing the warped volume and warped metric

VW = V + 3W , W =

∫
Y4

W (2) ∗(0) 1 , GW
ij =

1

2VW

∫
Y4

e3α2W (2)
ω(0)
i ∧ ∗(0)ω

(0)
j ,

(3.17)

which at zeroth order in α reduce to V and Gij = 1
2V

∫
Y4
ω(0)
i ∧ ∗(0)ω

(0)
j . We also

introduce

KW
i =iVW ω(0)

im
m +

9

2
α2

∫
Y4

∂iW
(2)| ∗(0) 1 , (3.18)

which at lowest order simply reduces to K(0)
i = iV ω(0)

im
m = 1

3!

∫
Y4
ω(0)
i ∧J (0)∧J (0)∧J (0).

Note that we use the notation K(0)
i to abbreviate the intersection number evaluated

in the background, in contrast to the analogue quantities Ki which may vary over
the Kähler moduli space. With these definitions we state that the action including
the l6M-corrections to the kinetic terms [12, 13] is given by

Skin =
1

2κ11

∫
M3

[
R ∗ 1− (GW

ij + V−2
W KW

i K
W
j )dδvi ∧ ∗dδvj − V2

W G
W
ij F

i ∧ ∗F j

− dδvi ∧ ∗dδvjα
2

V0

∫
CY4

(
768Zω(0)

im
mω(0)

jn
n − 3072iZmn̄ω

(0)
i
n̄mω(0)

js
s
)
∗(0) 1

+ dδvi ∧ ∗dδvjα
2

V0

∫
CY4

3072Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j ∗(0) 1

− F i ∧ ∗F jα2V0

∫
CY4

(
− 256Zω(0)

imn̄ω
(0)
j
n̄m + 192(7− a1)iZmn̄ω

(0)
i
r̄mω(0)

j
n̄
r̄

)
∗(0) 1

+ F i ∧ ∗F jα2V0

∫
CY4

384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j ∗(0) 1 + ΘijA
i ∧ F i

]
.

(3.19)

The one parameter freedom a1 arises from the uncertainty inherent in the (∇G)2R2-
sector. From the novel sector [20] we find
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δS1 = 256 F i ∧ ∗F jα2V
∫
Y4

Zω(0)
imn̄ω

(0)
j
n̄m ∗(0) 1 . (3.20)

Note that novel eleven-dimensional terms (3.20) is precisely cancelled by the same
structure in (3.19). Lastly, one performs the dimensional reduction of (2.4) to yield

δS2 = F i ∧ ∗F jα2V
∫
Y4

(
8i(a3 + a4)Zmn̄ω

(0)
i
n̄mω(0)

js
s ∗ 1− 8a3Zmn̄rs̄ω

(0)n̄m
i ω(0)s̄r

j

)
∗(0) 1

+ F i ∧ ∗F jα2V
∫
Y4

a2 c2 ∧ Ωij , (3.21)

with the coefficients a3, a4 result from the unfixed eleven dimensional parameters,
a3 = −C22 + 4C3 and a4 = 18C4. Let us close this section with some remarks. Note
that in (3.21) one obtains a term proportional to the second Chern-form. In the limit
h1,1 → 1, i.e. the one-modulus case we see that

δS2 → a4Z , (3.22)

as the term Ωij vanishes. For the physical arguments provided in [14] where the
one-modulus case is discussed we infer that δS2 → 0 as it would change the physical
interpretation else-wise. Hence in the remainder of this work we assume C14 = 0 and
thus a4 = 0.8 Furthermore, note that the action (3.19) depends on the infinitesimal
deformation δvi. To establish the connection to the full field space vi, i.e. the coor-
dinates on the Kähler moduli space we replace δvi → vi in the following.9 This will
become relevant for the discussion in section 4.

3.3 Review one-modulus Kähler potential and coordinates

The dimensional reduction of the eleven-dimensional supergravity action including
higher-derivative terms on a warped Calabi–Yau fourfold background with one Kähler
modulus, i.e. h1,1 = 1 case was discussed rigorously in [14]. We devote this section
to reviewing this discussion, in particular the derivation of the Kähler potential and
coordinates of the 3d, N = 2 theory. As a starting point we may take the limit
h1,1 → 1 of the generic Calabi–Yau fourfold reduction result presented in (3.19)-
(3.21). One then infers that the one-modulus l6M-corrected action r takes the standard
form

S3d =

∫
M3

1

2
R ∗ 1 +

1

4
G̃LL(L) dL ∧ ∗ dL+

1

4
G̃LL(L) F ∧ ∗F , (3.23)

with
G̃LL(L) = − 4

L2

(
1− 384α2 Z̃ L

)
= − 4

L2
+ 1536α2 Z̃ 1

L
. (3.24)

8Comparison to five point-scattering and six-point amplitudes can in principle fix the 11-
dimensional coefficient of the basis, thus also C14.

9Possible obstructions and subtleties to this step for higher-derivative couplings of non-
topological nature were discussed in [29].
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and with the topological coupling depending on the third Chern-form given by

Z = (2π3)

∫
CY4

c3 ∧ J , Z = V
1
4 Z̃ , (3.25)

where we have used that J = ω0V
1
4 . We can integrate the metric G̃LL to obtain the

kinetic potential K̃(L) and coordinate

K̃ = 4 logL+ 1536α2 Z̃ L
(

log(L)− 1
)

+ 4 , (3.26)

L = V−
3
4 − 3α2 W V−

7
4 , (3.27)

where we have chosen the integration constants in a convenient way.

Determining the Kähler potential. One may next dualize the vector multiplet
to a chiral multiplet, whose metric derives from a Kähler potential. As outlined in
section 3.1 this is achieved by a Legendre transformation of the kinetic potential

K = K̃ − LReT , ReT = ∂LK̃ . (3.28)

One thus derives the Kähler potential K(T + T̄ ) to be

K = 4 logL− 1536α2 Z̃ L = −3 log
(
V + α2

(
4W + 512Z

))
, (3.29)

with corresponding coordinate

ReT =
4

L
+ 1536α2 Z̃ logL = 4V

3
4 + 12α2 V−

1
4 W − 1152α2 Z̃ logV . (3.30)

Note that all quantities in the Kähler potential (3.29) depend on the one-modulus
V , i.e. the overall volume.

The no-scale condition and the scalar potential. We next argue that the
` 6

M-suppressed corrections to the Kähler potential in (3.29) generically lead to a
breaking of the no-scale condition and thus generate a F -term scalar potential. One
straightforwardly computes that

KT K
T T̄ KT̄ =

K2
T

KT T̄

= 4− 1536
α2

V
Z . (3.31)

One may next infer the scalar potential originating from the breaking of the no-scale
condition. It enters the effective action via the F-term scalar potential10

VF = εK
(
KT T̄ DTWDTW − 4

∣∣W ∣∣2) = −1536α2

∣∣W0

∣∣2
V4
Z . (3.32)

10Note that superpotential can not be renormalized perturbatively but may be subject to e.g. M5-
instanton corrections which correspond to D3-instantons in the F-theory limit [30].
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Note that it exhibits a runaway direction for V → ∞ if
∫
Y4
c3 ∧ J < 0 11. In

(3.32) we assumed that the complex structure moduli are stabilized by the GVW
superpotential [31] given by

W =
1

` 3
M

∫
Y4

G(1) ∧ Ω , Ω ∈ H4,0(Y4) . (3.33)

which in the vacuum then takes the constant value W0. A critical assessment of this
two step procedure is discussed in [32–34]. The runaway behavior of (3.32) for large
volume V signals an instability of the solution for the case of a non-vanishing W0 as
recently examined in [35].

Let us conclude this section by emphasizing the importance of the one-modulus
results in particular the integration into a Kähler potential and coordinates. In
a following section we will show compatibility with the generic moduli case which
is exceedingly more complicated due to the appearance of non-topological higher-
derivative contributions to the Kähler metric.

4 Three-dimensional Kähler potential and coordinates

The eleven-dimensional higher-derivative corrections manifest themselves in terms of
l6M-modifications of the kinematic couplings of the two-derivative three-dimensional
supergravity theory as discussed in the previous section 3.2. The objective is to
express these l6M-modifications to the kinematic couplings in the language of three-
dimensional, N = 2 supergravity. Namely these must result from a l6M-correction
to the Kähler potential and Kähler coordinates, i.e. fixing the complex structure
on the Kähler moduli space. We reviewed this procedure for the one-modulus case,
i.e. h1,1 = 1 in 3.3. In this section we propose a novel description of the Kähler
coordinates in terms of divisor integrals. Due to these specific divisor integrals of
the Calabi–Yau fourfold one manages to reproduce all high-derivative structures
appearing in the reduction result of the Kähler metric (3.19)-(3.21) which we discuss
in section 4.1. To motivate our Ansatz note that the Kähler coordinates are expected
to linearise the action of M5-brane instantons on divisors Di.12 This implies that the
Ti’s are expected to be integrals over divisors Di. In particular the Ansatz depends
on the first, second and third Chern-form of the Divisors c̃1,2,3 = c̃1,2,3(Di). Let us
first recall further definitions

Zi = (2π)3

∫
CY4

c3 ∧ ωi = (2π)3

∫
Di

c3 , Wi =

∫
Di

W (2) ∗ 1 , Fi = 1536

∫
Di

F6 ∗ 1 .

(4.1)
11An example with this property and h1,1 = 1 is the sextic fourfold. For the sextic one finds∫
Y4
c3 ∧ ω = −420.

12 In fact, as discussed in [36] a holomorphic super-potential of the schematic form W ∝ e−Ti

can be induced by such instanton effects.

– 15 –



The Ansatz for the Kähler potential and coordinates depends on the real parameters
α1, . . . , α9 and κ1, . . . , κ6. We assert the Kähler potential to take the form

K = −3 log
(
V + α2

(
4Wiv

i + κ1Zivi + κ2Tivi
))

, (4.2)

and for the Kähler coordinates to be13

ReTi = Ki + α2
(
Fi + 3Wi + κ3

Ki
V
Zjvj + κ4Zi logV + κ5

Ki
V
Tjvj + κ6Ti

)
. (4.3)

Note that the warp-factor part of this Ansatz was fixed in [13, 37].14 In (4.3) we
introduce a novel divisor integral higher-order correction

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 + α4

∫
Di

C1 c̃1 ∧ c̃1 ∧ J̃

+ α5

∫
Di

C2
1 c̃1 ∧ J̃ ∧ J̃ + α6

∫
Di

C1 c̃2 ∧ J̃ + α7

∫
Di

∗6(c̃1 ∧ J̃) ∧ c̃2 (4.4)

+ α8

∫
Di

∗6(c̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 + α9

∫
Di

C1 c̃1 ∧ ∗6 c̃1 ,

with C1 = ∗6(c̃1 ∧ J̃2) = 2Rm
m
n
n and i = 1, ..., h1,1 and where Di = PD(ωi) are

the Poincare-dual divisors to the harmonic forms ωi the Calabi–Yau fourfold. Fur-
thermore, c̃1, c̃2, c̃3 are the corresponding Chern-forms of the Divisor and J̃ = i∗J

the pull-back of the Kähler form i : Dj → CY4. In the following c3 is the third
Chern-form of CY4. Note that although c1(CY4) = 0 the divisors i.e. sub-manifolds
of complex co-dimension one generically have c1(Di) := c̃1 6= 0. Let us use the
notation

Z = Zivi , (4.5)

in the following. Furthermore, we choose the normalization

α3 = 1 , (4.6)

which is argued for in section 4.1. Note that as in the Ansatz (4.3) we allow for
additional pre-factors (4.6) can be imposed without loss of generality.

Let us next briefly outline the logic of this section. In 4.1 we compute the
variation of the Ansatz (4.4) w.r.t. Kähler deformations of the Calabi–Yau fourfold
and show the correlation with the higher-derivative structures encountered in the
reduction result. We will argue in section 4.2 that the Ansatz (4.2) and (4.3) can
be rewritten solely in terms of topological quantities of the divisors. All the higher-
derivative structures of the reduction result (3.19)-(3.21) can be matched. This steps

13We omit constants shifts such as Zi in the definition of the Kähler coordinates.
14Comparison of the warp-factor contribution of the one modulus Kähler coordinates (3.30) and

(4.3) suggest that Fi → 9W V−1/4 in the one-modulus case.
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fixes the relative factors α1, . . . , α9 with one remaining free parameter α2. In section
4.3 we discuss the compatibility of this Ansatz with the one-modulus case which
can be integrated exactly into a Kähler potential [14] which induces certain relations
among the κ’s in the Ansatz. However, a precise determination of the reminiang
κ-parameters is beyond the aim of this work and we suggest that the matching of
the reduction result is possible with the Ansatz (4.4), (4.2) and (4.3) which then may
fix all the parameters uniquely. Lastly, we provide further indirect evidence for this
claim by comparison to the newly discovered structures (3.21) proportional to the
second Chern form of the Calabi–Yau fourfold which may also be reproduced by the
novel Ansatz. This insight however is not used in the direct line of arguments which
precede through the following sections.

4.1 Kähler coordinates as integrals on CY4

To write the integrals (4.4) defined over Divisors Di = PD(ωi) as integrals over the
Calabi–Yau fourfold we note that e.g.∫

Di

c̃1 ∧ c̃1 ∧ c̃1 =

∫
CY4

c̃1 ∧ c̃1 ∧ c̃1 ∧ ωi. (4.7)

Note that it is crucial to maintain c̃1 instead of c1 as latter would vanish due to the
Calabi–Yau condition. The induced metric on Di inherited from the ambient space
is itself Kähler [38, 39] but generically not Calabi–Yau. Let us note that in previous
work we considered the correction written in terms of topological quantity namely the
third Chern-form of the Calabi–Yau fourfold. One may write the Kähler coordinates
(4.4) in terms of a basis of well defined CY4-integrals in terms the Calabi–Yau metric
and covariant quantities thereof such as the Riemann tensors if the parameters in
(4.4) obey the following relations

α5 = −1
8
α1 + 1

24
+ 1

4
α4 ,

α6 = 1
2
α2 + 1

2
,

α7 = α2 + 1 ,

α8 = 1
2
α1 − 1

3
− α4 ,

α9 = −α1 + 1
6
. (4.8)

Thus in other words by imposing (4.8) we can rewrite the Kähler coordinates in
terms of a higher-derivative density on the Calabi–Yau fourfold, which as we argue
in appendix A.1 may take the form

Ti =

∫
CY4

ωi ∧ X , X ∼ R3 (4.9)

with the higher-derivative (3, 3)-form X defined in the appendix (A.31). One can
easily verify the property

Tivi = Z . (4.10)
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To compute the Kähler metric we need to take derivatives of the Kähler potential
w.r.t. to the Kähler coordinates as

Kij =
∂2K

∂ReTi∂ReTj
=

∂2vk

∂ReTi∂ReTj
∂K

∂vk
+

∂vk

∂ReTi
∂vl

∂ReTj
∂2K

∂vk∂vl
, (4.11)

with
∂vi

∂ReTj
=
(∂ReTj

∂vi

)−1

= Kij − α2κ5Kik
( ∂

∂vk
Tl + . . .

)
Klj , (4.12)

where Kij is the inverse intersection number of the Calabi–Yau fourfold defined in
the appendix (A.11). The variation of Ti w.r.t. to the Kähler moduli fields of the
Calabi–Yau fourfold constitutes the crucial new ingredient to generate and match
the higher-derivative structures in the reduction result (3.19)-(3.21) of the Kähler
metric. Let us next discuss it in more detail.

Variational derivative of Kähler coordinates. The aim of this section is to
argue that the Ansatz for the Kähler potential (4.2) and Kähler coordinates (4.3) may
reproduce the Kähler metric in the Legendre dual variables which are in agreement
with the reduction results. In other words we are able to encounter all relevant
higher-derivative structures found in the reduction result (3.19)- (3.21). However,
let us stress that to precisely match the factors in the reduction result is beyond the
aim of this work. It is expected that additional non-trivial identities relating the
higher-derivative building blocks (4.14) and (3.19) -(3.21), and (4.16) are required to
perform this task.

Let us proceed with the main argument. It is straight forward to compute
derivatives of the previously encountered topological objects [17] w.r.t. to the Kähler
moduli fields as

∂

∂vi
Z = Zi ,

∂

∂vj
Zj = 0 . (4.13)

Let us note that due to (4.13) no terms proportional to the logarithm of the volume
- logV - appear in the Kähler metric nor in the Legendre dual variables and thus
(4.3) and (4.2) are in agreement with the reduction result in this regard.

Let us next compute the variation of Ti in (4.9) w.r.t. to the Kähler moduli fields
which gives

∂

∂vj
Ti =

1

V
KiTj −

2

V
KjTi + 4 Tij + 4

1

V
ZiKj + 2i

∫
CY4

Zmn̄ωi
n̄sωjs

m ∗ 1 , (4.14)

where
Tij =

∫
CY4

∗8

(
ωi ∧ ωj ∧ J

)
∧ X . (4.15)

To compute (4.14) we make extensive use of the compute Algebra package xTensor
[40]. We provide some more technical details in appendix A.3. There we also discuss
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couplings of the Kähler metric proportional to the second Chern form of the Calabi–
Yau fourfold. By using the relation

Yij = −1

6

∫
Y4

(iZmn̄ωi
r̄mωj

n̄
r̄ + 2Zmn̄rs̄ωi

n̄mωj
s̄r) ∗ 1 , (4.16)

one infers that (4.14) can be put in relation to Zmn̄rs̄ωn̄mi ωr̄si and Yij. Let us emphasize
that establishing the relation of topological Kähler coordinates and the building
blocks of the Kähler metric obtained by dimensional reduction ∼ Zmn̄rs̄ω

n̄m
i ωr̄si as

well as ∼ Zmn̄ωi
n̄sωjs

m has been a long standing problem posed in our previous work
[12, 13].

Let us close this section by providing further arguments for the completeness of
higher-derivative building blocks in (4.14). By evaluating (4.11) one obtains that the
Kähler metric Kij contains VKklKijkTj and K(iTj).15 Those structures arise naturally
from the variation of the Kähler coordinates (4.14), in particular Tij ∼ KklKijkTi+. . . .
It has been argued for analogous relations in [41, 42]. Concludingly, the divisor
integral Ansatz (4.3) manages to reproduce all relevant higher-derivative building
blocks which appear in the reduction result (3.19)-(3.21). However, we also find that
we have one abundant object namely Yij which does not appear in the reduction
result but would be generated by our Ansatz. In [12] we had argued for a relation
in between the F and higher-derivative objects which in the light of this work most
certainly needs a revision. Let us close this section with remarks on the warp-factor
in the Kähler potential and coordinates and its potential connection to the higher-
derivative structures. In appendix A.3 we review the integration of the warp-factor
into a Kähler potential in particular in (A.51) - (A.62) . From the definition (A.20)
one immediately infers that Yijvj = Yjivj = 0 and thus it takes special simplified
role in the process of matching the reduction result. We thus suggest that a relation
Yij ∼ Fij might be established to proof the conjectured integration into a Kähler
potential which revises the claims of [12].

4.2 Topological divisor integrals as Kähler coordinates

In this section we argue that the Ansatz for the Kähler coordinates (4.4) may be
rewritten in terms of "topological quantities" by fixing the coefficients in the Ansatz.
The quotation marks refer to an abuse of the word as the integrands can be reduced
to topological integrands by factorizing out Kähler moduli deformations, e.g. the
intersection number of the Calabi–Yau fourfold Kijkl is a topological quantity, in
contrast to the volume of a complex curve Kijk which is not as it depends on the
position in moduli space. However one may write it in terms of the topological
intersection numbers by factorizing out the Kähler moduli fields as Kijk = Kijklvl.

15The precise form of the Kähler metric results from (4.11) by inserting our Ansatz (4.3),(4.2)
and by using the properties of the intersection numbers listed in equation (A.11). Furthermore, one
may use the relations on the higher-derivative building blocks (A.33) and (A.34)
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To set the stage note that any closed form such as c̃1 may be written in terms
of its harmonic part plus a double exact contribution

c̃1 = Hc̃1 + ∂∂̄λ , (4.17)

where λ is a function on the divisor. From the closure of c̃1 and by using inferred
relation thereof in appendix A.2 one may show that the Ansatz for the Kähler coor-
dinates (4.4) can be rewritten as

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 +
α4

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
α5

K2
i

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2 +
α6

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃

+ 2α6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −
(
2α4 + 8α5

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1

− 4α5

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ ∗6Hc̃1 , (4.18)

where Ki denotes the volume of the divisor Di. Note that in order to obtain (4.18)
one fixes the coefficients such that

α7 = 2α6 , α8 = 2α4 − 8α5 , α9 = −4α5 . (4.19)

Additionally requiring that we can write Ti as integrals on the Calabi–Yau fourfold
one is led to additional constraints which in combination with (4.8) then impose

α1 = 1
6
, α3 = 1 , α4 = − 1

12
, α5 = 0 ,

α6 = 1
2

+ 1
2
α2 , α7 = 1 + α2 , α8 = −1

6
, α9 = 0 . (4.20)

One thus infers from (4.20) the final form of the higher-derivative Kähler coordinate
divisor integral to be

Ti = 1
6

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 +

∫
Di

c̃3 −
1

12Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+ 1
2

(
1 + α2

) 1

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃ +
(
1 + α2

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2

− 1
6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 . (4.21)

Let us note that (4.21) is in indeed a sum of "topological integrals". In this sense after
factorizing out Kähler moduli deformations one may vary the integrands of (4.21)
w.r.t. the induced metric on the divisors Di and find that the resulting variation
constitutes a total derivative. This follows straightforwardly from the properties of
c̃1, c̃2, c̃3 and J̃ . The integrands involving the hodge star ∗̃6 crucially have it act on
only the harmonic part of the first Chern-form Hc̃1.
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4.3 One-modulus compatibility

The one-modulus case can be integrated exactly into a Kähler potential as discussed
in section 3.3. Thus in this section we examine the limit h1,1 → 1 of the generic
moduli case 3.2 to impose constraints on the κ-parameters in the Ansatz. We focus
on the higher-derivative components and do not discuss the warp-factor contributions
W and F here. Recall that

Zi = (2π)3

∫
CY4

c3 ∧ ωi , Z = Zivi , (4.22)

We made the Ansatz for the Kähler potential

K = −3 log
(
V + α2

(
κ1Zivi + κ2Tivi

))
, (4.23)

and for the Kähler coordinates

ReTi = Ki + α2
(
Fi + 3Wi + κ3

Ki
V
Zjvj + κ4Zi logV + κ5

Ki
V
Tjvj + κ6Ti

)
. (4.24)

Let us next analyse these expressions (4.23) and (4.24) in the case h1,1 = 1. One
finds that

Ki → 4V
3
4 , Kij → 12V

1
2 , Kijk → 24V

1
4 , Kijkl → 1 , Kij → 1

12
V−

1
2

(4.25)
and from the expression (4.9) and (4.10) that in the one-modulus case

Ti → Z̃ with Z̃ = (2π)3

∫
CY4

c3 ∧ ω0 . (4.26)

The relation (4.26) follows from (4.4) and (4.18) due to the Calabi–Yau condition
which leads to a vanishing of terms proportional to c̃1. One furthermore notes that
J = ω0V

1
4 and thus

Z = V
1
4 Z̃ = (2π)3

∫
CY4

c3 ∧ J . (4.27)

Ones concludes that (4.23) and (4.24) for h1,1 → 1 by using relations (4.25)-(4.27)
become

K → −3 log
(
V + α2 (κ1 + κ2)V

1
4 Z̃
)
. (4.28)

and
ReTi → 4V

3
4 + α2

(
(4κ3 + 4κ5 + κ6)Z̃ + κ4Z̃ logV

)
, (4.29)

Thus one infers by comparison to the one-modulus case (3.29) (3.30) that

κ1 + κ2 = 512 , 4κ3 + 4κ5 + κ6 = 0 , κ4 = −1152 . (4.30)

Additionally one aims to match the Legendre dual coordinates to the one modulus
case. To proceed one needs to specify the precise form of the Kähler coordinates in
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terms of Calabi–Yau fourfold integrals. In section 4.1 we emphasized that the match
with the divisor integral form remains ambiguous. Let us proceed with a simple
version given in (4.15) for the remainder of this section. One can then use

Li = −∂K
∂Ti

= − ∂K
∂vji

∂vj

∂Ti
, (4.31)

to find

Li =
vi

V
+
α2

V

(
κ6KijTj + (3κ1− 4κ3− 4κ5− κ6)KijZj −

vi

3V
(3κ1− κ3− κ5 + κ4)Z

)
.

(4.32)
To compute (4.32) we only used the fact that

(
∂
∂vj
Ti
)
vi = −Tj+Zj which follows from

Tivi = Z. Lastly by imposing (4.30) one infers a match of (3.27) with comparison of
the one-modulus limit of (4.32), i.e. the order α-contributions vanishes in the limit.
One can furthermore compute the scalar potential by evaluating (4.11) which can be
performed by using (A.34) and (A.11) contracted with (4.32). One finds for a non
vanishing flux-superpotential W0 that

VF =
|W0|2

V4

4

3

(
9κ1 + 5κ4 + 9κ6

)
Z (4.33)

which by imposing (4.30) matches the one modulus case given in (3.32). Moreover,
note that from (4.33) one infers that for the Ansatz (4.2) and (4.3) the no-scale
structure is broken due to the imposed compatibility with the one-modulus case.

Let us close this section with a critical remark. In section 4.1 and 4.2 we pointed
out that the lift of the divisor integral expressions to integrals on the Calabi–Yau
fourfold leaves certain parameters unfixed. In order to compute other quantities
such as (4.33) in full generality we suggest that a better understanding of the Ti
contribution is to be developed.

5 F-theory uplift to 4d, N = 1

In this section we utilize the duality between M-theory and F- theory to lift the
lM-corrections in the three-dimensional theory obtained in the previous section to
α′-corrections to the four-dimensional effective theory arising from F-theory com-
pactified on CY4. This requires the Calabi–Yau manifold to be elliptically fibered
over a three-dimensional Kähler base B3.

In the following we consider the classical result of the F-theory uplift [3]. One
may parametrize the shrinking of the torus fiber by the parameter ε→ 0. One then
infers the scaling of the fields v0 ∼ ε and vα ∼ ε−1/2. This leads to an identification
of the 3d,N = 2 multiplet field L0 = v0

V = 1
r2 with r the radius of the 4d/3d circular

reduction. To keep the base volume finite in the limit one finds

2πvαb =
√
v0vα . (5.1)
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For simplicity, let us restrict to a smooth Weierstrass model, i.e. a geometry without
non-Abelian singularities, that can be embedded in an ambient fibration with typical
fibers being the weighted projective spaceWP231. This implies having just two types
of divisors Di, i = 1, ..., h1,1(CY4). There is the horizontal divisor corresponding to
the zero-section D0, and the vertical divisors Dα, α = 1, ..., h1,1(B3), corresponding
to elliptic fibrations over base divisors Db

α. Denoting the Poincare-dual two-forms to
the divisors by ωi = (ω0, ωα), one expands the Kähler form as

J = v0ω0 + vαωα , (5.2)

where v0 is the volume of the elliptic fiber, and we choose the harmonic represen-
tatives of the class. We are now in a position to discuss the F-theory uplift of the
individual terms in

Ti = 1
6

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 +

∫
Di

c̃3 −
1

12Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+ 1
2

(
1 + α2

) 1

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃ +
(
1 + α2

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2

− 1
6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 . (5.3)

and the correction
Zα = (2π)3

∫
CY4

c3 ∧ ωα , (5.4)

where Ki is the volume of the divisor Di. Latter was discussed already in [16, 17]
however, we review these results in section 5.2. Note that the relation between the
eleven-dimensional Planck length lM and the string length ls by the M/F-theory
duality is obtained as

2πls = V
1
2 lM . (5.5)

As in the F-theory limit one sends v0 → 0 decompactifying the fourth dimension
by sending to infinity the radius of the 4d/3d circle r ∼ V3/2 → ∞. Thus after the
limit all volumes of the base B3 are expressed in terms of the string units ls. In the
following we omit the warp-factor W and thus F from the discussion.

In section 5.1 we shortly comment on the uplift of F-theory involving one-loop
corrections resulting from integrating out massive KK-modes at one-loop in the cir-
cular reduction from four to three dimensions. As those results are not well studied
in the literature we present an superficial discussion. Let us stress however, that as
we are not able to fix all parameters in the 3d, N = 2 coordinates the ambiguity of
the "one-loop" up-lift can be hidden in the following section in the uncertainty of the
parameters and the generic conclusions of this work are expected to be unchanged.
In section 5.2 we then analyse the terms in the Kähler potential (4.2) and Kähler
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metric (4.3) surviving the F-theory uplift. Finally, in section (5.3) we then combine
the conclusions of sections 5.1 and 5.2 to discuss the 4d,N = 1 Kähler potential
and Kähler metric. In particular we give a string theory interpretation of the novel
corrections and discuss the breaking of the no-scale structure and the α′2-modified
scalar potential.

5.1 The F-theory uplift

In this section we review the supergravity perspective of the F-theory lift identifying
the connection in-between the four and three-dimensional fields and their kinematic
couplings [3]. Note that by compactifying a general four-dimensional, N = 1 super-
gravity theory on a circle one matches the original four-dimensional Kähler potential
with the three-dimensional Kähler potential K or kinetic potential K̃. The resulting
kinetic potential arising in the 4d/3d circular dimensional reduction takes the form

K̃(r, Tα) = − log(r2) +KF (Tα) . (5.6)

To match (5.6) with the natural three-dimensional multiplets one may split Li and
Ti such that

Li =
(
L0 ≡ R , Lα

)
, Ti = (T0 , Tα ) . (5.7)

One is then led to identify that R is given by R = r−2, where r is the radius of the
4d/3d circle [3]. Furthermore, the fields Tα remain complex scalars in four dimensions
whilst T0 should be dualized already in three dimensions into vector multiplets with
(R,A0) and then uplifted to four dimensions as it arises from the four-dimensional
metric. Note that one computes the dualized kinetic potential K̃(R,ReTα) by Leg-
endre dualization as discussed in 3.1. In the F-theory limit one then identifies

Lαb = Lα|ε=0 , T bα = Tα|ε=0 , (5.8)

where we denote the four-dimensional fields Lαb and T bα due to the fact that they
correspond to fields with couplings related to the base B3 representing the Calabi–
Yau orientifold in the IIB picture, i.e. in the F-theory limit. Let us next review the
classical analysis to determine KF (T bα). Evaluating the intersection numbers Kijkl
for an elliptic fibration the non-vanishing coupling is

K0αβγ = Kbαβγ , Kbαβγ =

∫
B3

ωα ∧ ωβ ∧ ωγ . (5.9)

The kinetic potential and coordinates take the following form for an elliptic fibration

K̃(Li) = log(R)− 2 log
(
Vb +O(R)

)
+ 4 , (5.10)

ReTα = Kbα +O(R) , V =
1

3!
Kαβγvαb v

β
b v

γ
b , (5.11)
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or equivalently

K̃(Li) = log(R) + log
( 1

3!
KbαβγLαbL

β
bL

γ
b +O(R)

)
+ 4 , (5.12)

ReTα =
1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
+O(R) , V̂b(Lb) =

1

3!
KαβγLαbL

β
bL

γ
b , (5.13)

where we have replaced the Lα with Lαb by means of (5.8) and made use of the
relation V̂b(Lb) = (Vb)−2 . Performing the Legendre transform in order to express
everything in terms of T bα and comparing the result with (5.6) by setting R = r−2 in
the limit r →∞ one encounters

KF (T bα) = −2 log
(
Vb
)

= log
(
V̂b(Lb)

)
, ReT bα = Kbα =

1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
, (5.14)

where one has to solve T bα for Lαb (T bα) and insert the result into KF .
Let us next comment on the case present in this work namely where one encoun-

ters higher-order lM-corrections to the three-dimensional fields. As suggested by the
generic 4d/3d circular reduction result and one infers for the corrected the Kähler
coordinates that

ReTα → ReT bα , (5.15)

where we analyse ReT bα in the next section 5.2. The corrected Kähler potential (4.2)
can be re-written as

K = − log
(
R
)
− 2 log

(
Vb
(

1 + α2 3
2Vb
(
(512− κ2)Zbαvαb + κ2T bα vαb

))
+O(R)

)
,

(5.16)
by making use of the sub-leading order of α2. Thus in the limit r →∞ one encounters

KF (T bα) = −2 log
(
Vb + α2

(
(768− κ̃2)Zbαvαb + κ̃2T bα vαb

)
, (5.17)

where is Zbα the F-theory limit of Zα derived in in the following section 5.2 and
κ̃2 = 3

2
κ2. The identification of the dependence T bα is implicit.

Let us close this section with remarks on one-loop corrections to the F-theory
limit resulting from integrating out massive KK-modes which is expected to modify
the relation (5.15). The logV-correction to the Kähler coordinates (4.3) is remi-
niscent of such a one loop correction. To see this one is to preform a dimensional
reduction of a general 4d, N = 1 supergravity theory on the circle to three dimen-
sions where massive KK-modes are integrated out at one-loop. The case for pure
supergravity is discussed in [43] which yields the three-dimensional Kähler coordi-
nates

ReT 1−loop
0 =

2π2

R
− 7

48
log(R) . (5.18)

However, we are interested in a theory with additional chiral multiplets and vector
multiplets which will lead to a modification of the purely gravitational result (5.18).
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We are not aware of such a discussion in the literature and thus have no rigorous tool
to argue for the up-lift of the Zα logV correction in F-theory except the comments
made in [14]. Note that the main result of this work is obtained from the novel
divisor integral modification of the Kähler potential and coordinates in (4.2) and
(4.3) thus the one-loop discussion is not expected to change these conclusions. Let
us assume in the following that the logV-correction in the Kähler coordinates (4.3)
is absorbed entirely by the F-theory uplift. This leads us to write

ReTi = Ki + α2κ3Zi logV , (5.19)

where for simplicity we only write the logarithmic correction to the Kähler coordi-
nates. Considering (5.19) on the elliptically fibered Calabi–Yau fourfold one finds

ReT0 =
1

R
− α2κ3

3
Zb0 logR− α2κ3

3
Zb0 log

(
(Vb)−3 +O(R)

)
,

ReTα = Kbα − α2κ3

3
Zbα log(R)− α2κ3

3
Zbα log

(
(Vb)−3 +O(R)

)
. (5.20)

The assumption that it is absorbed in the uplift immediately leads us to a revision
of (5.15) to

ReT 1−loop
0 → 1

R
− q0 logR +

1

2
q0K

4d ,

ReT 1−loop
α → ReT b treeα − qα logR +

1

2
qαK

4d . (5.21)

where K4d is the four-dimensional classical Kähler potential. By matching (5.20) and
(5.21) one fixes the charges to qi = −α2κ3

3
Zbi +O(R). Let us stress that an assumption

leads us to find (5.21) but a honest one-loop computation needs to be performed to
check its validity. Note that (5.21) implies that by integrating out massive KK-
modes only the three-dimensional Kähler coordinates receive modifications whilst
the Kähler potential remains uncorrected.

5.2 Topological integrals on elliptic Calabi–Yau fourfolds

In this section we discuss the F-theory uplift of the higher-order lM -corrections ap-
pearing in (5.3) and (5.4) resulting in α′-corrections. For topological integrals we
can use adjunction formulae to express Chern-classes of CY4 and the divisors Dα in
terms of Chern-classes of the base B3. For details of the derivation of the adjunction
formulae see appendix B.2. One infers that

c̃3(Dα) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0 − c̃2(Dα) ∧ ωα ,

c̃2(Dα) = c2(B3) + 11c2
1(B3) + 12c1(B3) ∧ ω0 + ω2

α ,

c̃1(Dα) =− ωα , (5.22)
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where the ci=1,2,3(B3) on the r.h.s. of these expressions denote the Chern classes of B3

pulled-back to CY4 restricted to Dα. Note that the Poincare duals of the harmonic
(1, 1)-forms in (5.22) are given by PD(ω0) = B3, and PD(ωα) = Dα. We choose to
omit the pull-back map in expressions in this section for notational simplicity. One
furthermore finds that

ω2
0 = −c1(B3) ∧ ω0 . (5.23)

Note that the new contribution to the Kähler coordinates Ti is expressed as integrals
on the divisors Di where the Kählerform is inherited from the ambient CY4 and one
thus may use the decomposition (5.2) as well for J̃ . In the F-theory limit one finds
the scalings discussed at the beginning of this section to imply

vα ∼ ε−
1
2 , v0 ∼ ε ⇒ Vα = Kα ∼ ε0 . (5.24)

Using (5.22) and (5.24) one infers the contributions in (4.3) and (4.2) which survive
the F-theory limit. For the object defined as the third Chern-form of the Calabi–Yau
fourfold (5.4) one finds in the limit

Zα −→ Zbα = −60 (2π)2

∫
Dbα

c1(B3) ∧ c1(B3) . (5.25)

The leading order contributions which are non vanishing in the limit must scale as
Tα ∼ O(ε0). The integrals in (5.4) which thus contribute are∫
Dα

c̃1 ∧ c̃2 −→ −12

∫
Dbα

c1(B3) ∧ ωbα ,

∫
Dα

c̃3 −→ −60

∫
Dbα

c1(B3) ∧ c1(B3)− 12

∫
Dbα

c1(B3) ∧ ωbα ,

∫
Dα

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −→ − 12

Kbα

∫
Dbα

ωbα ∧ J b
∫
Dbα

c1(B3) ∧ J b + 12

∫
Dbα

c1(B3) ∧ ωbα ,

1

Kα

∫
Dα

c̃1 ∧ J̃2

∫
Dα

c̃2 ∧ J̃ −→ − 12

Kbα

∫
Dbα

ωbα ∧ J b
∫
Dbα

c1(B3) ∧ J b , (5.26)

where we used (A.14) and where Db
α are the divisors of the base such that their pre-

image w.r.t. the projection π : CY4 → B3 gives the vertical divisors of the Calabi–Yau
fourfold as Dα = π−1(Db

α).16 One thus infers the divisor integral contribution of the
Kähler coordinates in the limit to take the form

16Note that in order to rewrite the integrals we note that e.g.∫
B3

c1(B3) ∧ ωbα ∧ ωbα =

∫
Dbα

c1(B3) ∧ ωbα , (5.27)

where we again omit the pull-back map on c1(B3) in the r.h.s. of the equality.
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Tα −→ T bα = Zbα − 18(1 + α2) (2π)2 1

Kbα

∫
Dbα

ωbα ∧ J b
∫
Dbα

c1(B3) ∧ J b (5.28)

with Kbα = 1
2!

∫
B3
ωbα ∧ J b2 the volume of the divisor Db

α and the Kähler form J b =

ωbαv
α
b . For further use let us define

Wb
α :=

(2π)2

Kbα

∫
Dbα

ωbα ∧ J b
∫
Dbα

c1(B3) ∧ J b , (5.29)

U bα := (2π)2

∫
Dbα

c1(B3) ∧ ωbα . (5.30)

The contribution (5.29) takes a special role as it depends on the Kähler form of
the divisor and thus is non-vanishing upon taking derivatives w.r.t. Kähler moduli
fields. This will be of particular interest in the following sections. Note that the
F-theory uplift absorbs two-derivatives along the fiber thus the resulting corrections
are of order α′2. The U bα-correction (5.30) vanishes from (5.28) due to a vanishing
pre-factor. As one may find that our constraints imposed are too restrictive this
correction may survive if an additional parameter freedom is somehow introduced in
the present discussion of divisor integrals. In the following we thus as well comment
on its potential origin and interpretation.

Let us next comment on some special cases before providing a Type IIB string
interpretation of the α′-corrections in (5.25) and (5.28). Firstly, for a trivial elliptic
fibration, i.e. CY4 = CY3 × T 2 with CY3 a Calabi–Yau threefold, one infers that
ci(CY4) = ci(CY3), i = 1, 2, 3, in particular c1(CY3) = 0. Furthermore, the divisors
relevant in the Kähler coordinates (4.3) are a direct product and obey c1(Db

α×T 2) =

c1(Db
α), c2(Db

α × T 2) = c2(Db
α) and c3(Db

α × T 2) = 0, see appendix B.2 for details.
One infers that in this case all corrections in (5.26) and (5.25) go to zero due to
their scaling behavior in the limit v0 → 0 and thus the α′-corrections in the resulting
4d, N = 2 theory are absent.

Secondly, one may study other N = 2 F-theory vacua by taking Y4 = K3×K3, a
configuration discussed in [44] with a focus on α′-corrections. In this case c3(Y4) = 0

and thus the Zb-correction (5.25) vanishes identically. The corrections resulting
from the divisors (5.26) vanish due to analogous arguments as in the above case.
Concludingly, the α′-corrections discussed in this work vanish in these N = 2 set-
ups.

Finally, let us stress that there are several additional lM-corrections to the four-
fold volume surviving the F-theory limit. Let us again go back to the example of the
product geometry Y4 = X3 × T 2, without D7-branes. The α′-corrections involving
the Type IIB axio-dilaton τ have been computed by integrating out the whole tower
of T 2 Kaluza-Klein modes of the 11d supergravity multiplet [7], which results in

v0−
1
2 χ(CY 3)E3/2(τ, τ̄) with E3/2 the non-holomorphic Eisenstein series. Note that
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it obeys the correct scaling behavior to survive the F-theory limit. One expects that
the proper treatment of the KK-modes in a generic elliptic fibration is crucial to en-
counter the Euler-characteristic α′3-correction [18] to the 4d,N = 1 Kähler potential
inside the F-theory framework.17

5.3 4d, N = 1 Kähler potential and coordinates

The discussion of the uplift of the α′-corrections in the previous sections 5.1 and 5.2
enables us to infer the resulting 4d,N = 1 Kähler potential and coordinates. Let us
use the dimensionless coefficients from now one, where all dimensionful quantities,
e.g. α′-corrections are expressed in terms of the string length ls, we thus write

α2 → 1

32 · 213
. (5.31)

One infers that

K4d,N=1 = −2 log
(
Vb + α2

(
(768− κ̃2)Zbαvαb + κ̃2T bαvαb

))
, (5.32)

and

ReT bα = Kbα + α2

(
κ3
Kbα
Vb
Zvαvαb + κ5

Kbα
Vb
T vα vαb − 4(κ3 + κ5) T bα

)
. (5.33)

Note that we have argued in 5.1 that the term κ3Zb
α logVb can be absorbed in the F-

theory uplift as a one-loop correction and is thus not present in (5.33). To verify this
assumption is of great interest. One expects, however, that this remains indepen-
dent of the discussion of the contribution proportional to T bα which constitutes the
main protagonist of this work. Note that (5.32) and (5.33) depend on four unfixed
parameters, due to the additional freedom in (5.28). Further studies are required
need to proof the existence of the α′-corrections in (5.32) and (5.33). Nevertheless,
let us proceed by giving a string theory interpretation of the novel corrections to the
four-dimensional Kähler potential and coordinates.

String theory interpretation and weak string-coupling limit. We follow
the weak string-coupling limit by Sen [15] which is is performed in the complex
structure moduli space of CY4 to give a weakly coupled description of F-theory in
terms of Type IIB string theory on a Calabi–Yau threefold with an O7-plane and D7-
branes. Where CY3 is a double cover of the base B3 branched along the O7-plane.
Let us stress that the class of this branching locus is the pull-back of c1(B3) to
CY3. In section 5.2 we considered the topological divisor integrals on the geometries
described by the smooth Weierstrass model i.e. non-Abelian singularities are absent.
In this case Sen’s limit contains a single recombined D7-brane wrapping a divisor

17An alternative approach was taken in [45].
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of class 8c1(B3). This follows from the seven-brane tadpole cancellation condition.
As was noted in [46, 47] this D7-brane is of the characteristic Whitney-umbrella
shape. It would be interesting to extend the study to geometries with non-Abelian
singularities analogously to [17].

The Zbα-correction (5.25) was discussed extensively in [16, 17] and we refer the
reader to this work for details. Let us mention here however, that in more generic
geometries it morally counts the number of self-intersections of stacks of D7-branes
and the O7-plane. It should arise at tree-level in string theory and is of order α′2.
In the geometry studied in this work this can be checked by identifying

VD7∩O7 = 8

∫
CY3

c2
1(B3) ∧ Jb , (5.34)

where we omitted the pull-back map from B3 to its double cover CY3 in the integrand.
To give the string theory interpretation one identifies the string amplitude capturing
it by considering the Einstein-Hilbert term of the four-dimensional action in the
string frame18

S(4) ⊃
1

(2π)7l2sg
2
IIB

∫ (
Vsb − 5π2

2
gIIBVsD7∩O7

)
Rs

sc ∗s4 1 . (5.35)

Let us recall the general formula for the Euler number of Riemann surfaces, possibly
non-orientable and with boundaries, is

χ(Σ) = 2− 2g − b− c , (5.36)

where g, b, c denote the genus, the number of boundaries, and the number of cross
caps, respectively. One thus infers that the correction in (5.35) arises from a string
amplitude that involves the sum over two topologies, namely the disk g = c = 0, b = 1

and the projective plane g = b = 0, c = 1. These are tree-level amplitudes of the
orientable open strings and non-orientable closed strings which is in agreement with
the property that the correction is intrinsically N = 1, i.e. its presence is constrained
by having D7-branes intersecting with an O7-plane.

Let us next give a string theory interpretation of (5.28). In fact, at weak string
coupling one infers that∫

Dbα

c1(B3) ∧ J b ∼
(
VD7∩Db

α
+ 4VO7∩Db

α

)
, (5.37)

where VD7 and VO7 are the volumes of the D7-brane and the O7-plane in CY3,
respectively. Both volumes are in the Einstein frame and in units of ls. By tadpole
cancellation one infers VD7 = 8VO7. It follows that∫

Dbα

c1(B3) ∧ ωbα ∼ D7 ∩Db
α ∩Db

α + 4 O7 ∩Db
α ∩Db

α, (5.38)

18The superscript s denotes quantities computed using the string frame metric.
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are the self-intersection curves of the base Divisors Db
α intersected with the D7-brane

and the O7-plane in CY3, respectively. Lastly, the Wb
α-correction in (5.29) which is

of order α′2 and depends on the volume the self intersection curve of Db
α∫

Dbα

ωα ∧ J b ∼ VDbα∩Dbα , (5.39)

and furthermore ∫
Dbα

c1(B3) ∧ J b ∼ VD7∩Db
α

+ 4VO7∩Db
α
, (5.40)

the volume to the intersection curves of the D7-branes and O7-planes with the base
divisors Db

α. One concludes that (5.29) is a product of the curve volumes (5.39)
and (5.40) weighted over the volume of the divisor Db

α. It is of same order in the
string coupling as (5.35) and is thus expected to arise equivalently from a tree-level
amplitude of the orientable open string and non-orientable closed string amplitude
in an orientifold background.

4d Scalar Potential and no-scale condition. We next comment on the scalar
potential resulting from (5.32) and (5.33). We assume that the complex structure
moduli have been fixed and thus the superpotential remains to be a function of the
Kähler moduli. The F-term scalar potential of a 4d, N = 1 theory is well known and
adjusted to our case results in

V 4d
F = eK

(
KαβD

αWDβW − 3
∣∣W ∣∣2) , (5.41)

with the superpotential W = W (ReTα) and the Kähler covariant derivative given by

DαW =
∂K

∂ReTα
W +

∂W

∂ReTα
. (5.42)

Let us next discuss the special case in which the superpotential is given generated
by fluxes in F-theory (3.33) and non-perturbative effects are absent. We denote W0

as the vacuum expectation value of the superpotential resulting after stabilizing the
complex structure moduli. One then infers that for the Kähler potential (5.32) and
Kähler coordinates (5.33) the F-term scalar potential (5.41) results in

VF = α2 3|W0|2

V3
b

(
κ̃2 T bα vαb + (768− κ̃2)Zbα vαb

)
(5.43)

=
3|W0|2

V3
b

(
κ̂2Wb

α v
α
b + 768α2Zbα vαb

)
, κ̂2 = −33α2 · (1 + α2)κ2 .

Note that we cannot fix κ̂2 in this work. Furthermore, we have argued for a vanishing
of the term proportional to κ3Zbα logVb in (5.33) due to an assumption on the F-
theory uplift. As the uplift of this one-loop term remains elusive note that the pre-
factor of the Zbα-correction in (6.34) might be subject to change. In the context of
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this work however it is suggested that the α′2-correction breaks the no-scale structure
as seen from (5.43). The presence of T b

α in the 4d,N = 1 Kähler potential always
lead to a breaking of the no-scale condition as can be inferred from (5.43). Let
us emphasize that all corrections Zbα and Wb

α are of order α′2 and are thus leading
with respect to the well known Euler-characteristic correction [18]. Finally note that
both contributions in (5.43) result from the α′-correction to the Kähler potential
(5.32). The terms in the Kähler coordinates (5.33) admit a functional structure
which remarkably never breaks the no-scale condition, i.e. thus (5.43) is independent
of the additional parameters.

Let us close this section with two critical remarks. Firstly, the F-theory lift is
performed by shrinking the fiber i.e.making the geometry singular and thus other
higher-order corrections may become relevant. However, let us emphasize that all the
corrections discussed in this work are of topological nature and thus are expected to
be protected in the F-theory limit. Secondly, let us stress that we did not aim to prove
the integration into 3d,N = 2 variables of the reduction result. However, we suggest
an Ansatz for the Kähler coordinates and Kähler potential which allow to obtain
all the higher-derivative couplings in the Kähler metric obtained by dimensional
reduction from the l6M eight-derivative couplings to eleven-dimensional supergravity.
This is a necessary but not sufficient step, and it thus remains to ultimately decide
the faith of the α′-corrections Wb

α and Zbα .

6 Moduli Stabilisation

In this section we comment on the vacuum structure of the potential generated by
the novel α′-correction (5.43). Furthermore, we study the interplay with the well
known Euler-characteristic α′3-correction to the Kähler potential

ξ = −g
−3

2
s (2π)3 ζ(3)

4
χ(CY3) , (6.1)

with χ(CY3) Euler-characteristic of CY3. Note that it is of order O(α′3) and it
depends on the Type IIB string coupling.19 It is obtained from the parent N = 2

theory arising from compactification of Type IIB on Calabi–Yau orientifolds [18,
48].20 Note that Calabi-Yau threefold in IIB is the double cover of the base B3

branched along the O7-plane. Thus in particular we find that χ(CY3) = χ(B3). As
we discuss intrinsic N = 1 vacua in this work we continue in the terminology of
F-theory. We comment on the potential F-theoretic origin of the correction (6.1) in

19The correction is known to depend on the dilaton e−Φ. We assume that the dilaton is stabilized
by the flux background and we thus encounter the string coupling constant gs = 〈eΦ〉.

20To compute the correction to the scalar potential resulting from (6.1) we use the Kähler potential
and coordinates obtained in [48].
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section 5.2. Note that the string coupling dependence of (6.1) makes it parametrically
relevant although being sub leading in α′ compared to (5.43).

Lastly let us close with a remark on the stability of the following scenarios in
regard to higher-order corrections in α′ and gs in the light of [49]. The classical
correction to the scalar potential vanishes due to the no-scale condition and thus the
leading order gs and α′-correction determine the vacuum. Higher-order α′-corrections
are parametrically under control as one stabilizes the internal space at large volumes.
Moreover the string coupling constant gs may be achieved to be parametrically small
thus higher-order string loop corrections can be safely neglected.

6.1 α′-stabilisation scenario for Minkowski vacua?

In this section we analyse minima of the four-dimensional scalar potential generated
solely by the novel α′2-correctionWb

α given in (5.29). We study the simplified scenario
in which neither the Euler-characteristic α′3-correction (6.1) nor the α′2-correction
in (5.43) contributes, i.e. for the cases χ(B3) = 0 and Zbα = 0, respectively.21 The
correction takes the form

V new
F ∼ 1

V3
b

Wb
α v

α
b , (6.2)

where we cannot fix the pre-factor in (6.2) and thus in particular its sign in the
context of this work. The following scenario however remains applicable in either
case of the pre-factor in (6.2) determined by κ̂2, as it leads to different conditions
on the topological quantities. Let us next introduce some useful abbreviations. One
may write

Wb
α =

1

Kbα
Sα Cα , (6.3)

with the volume of the self-intersection curve Sα and the volume of the intersection
curve Cα in between of D7-branes and O7-planes with the divisors

Sα =

∫
B3

ωbα ∧ ωbα ∧ J b , Cα = 2π

∫
B3

c1(B3) ∧ ωbα ∧ J b . (6.4)

and furthermore Sα = Sαβvβb and Cα = Cαβvβb , where one simply uses J b = vαb ω
b
α.

Note that Cαβ is symmetric in its components whilst Sαβ is not.
We will argue that for a generic number of Kähler moduli there exist values for Sα

and Cα such that all but one modulus, i.e. the overall volume is fixed in a Minkowski
minimum with a remaining flat direction for Vb. One may want to extend this results
for χ(CY3) 6= 0 which then will fix all cycles up to scaling by the volume Vb and
induce a runaway direction Vb →∞ for χ(B3) < 0 and Vb → 0 for χ(B3) > 0. Thus
one may furthermore use additional contributions to the scalar potential such as

21Note that alternatively one may stabilize the potential in a regime where the α2-correction is
subleasing due to its α′-suppression. In a weakly coupled string regime the Euler-characteristic
correction is always expected to be relevant.
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non-perturbative effects to the superpotential e.g.M5-brane instanton in F-theory,
i.e. D3-brane instantons in IIB [30, 50] to stabilize the overall volume such that all
moduli are fixed. We do not explicitly study the latter scenario in this work but
rather analyse the intriguing structure of the potential generated by Wb

α. Let us
emphasize that we won’t study explicit geometries in this section where Sα and Cα
are computed, but we instead provide generic conditions on those quantities such
that the Minkowski vacua with one remaining flat direction is generated. It would
be interesting in future work to construct explicit examples, i.e. elliptically fibered
Calabi–Yau fourfold geometries over the base B3 which exhibit this features.

The case h1,1 = 3. Let us first show the claim for the case of three Kähler moduli
of the base. The scalar potential (6.2) in particular Sα ∈ Z and Cα ∈ Z may be
chosen such that the Minkowski minimum is located at

v2
b = γ1 v

1
b , v3

b = γ2 v
1
b , with γ1, γ2 ∈ Q+

>0 , (6.5)

where we consider the region v1
b ≥ 0.22 The self-intersection numbers are such that

Sαβγβ = 0 , ∀α = 1, 2, 3 , (6.6)

with γβ = (1, γ1, γ2) is a vector with three components, which may always be chosen
such that (6.6) is satisfied as Sαβ admits 3× 3 = 9 independent components.23 Note
that from (6.6) it follows that the potential (6.2) vanishes at the chosen coordinates
(6.5) if the denominator depending on Kbα and Vb is not singular.24 To actually
obtain an extremum one fixes

Cαβγβ = 0 ∀α , and C1β 6= 0 ∀ β , (6.7)

and furthermore
C22 = 0 , C33 = 0 , (6.8)

which implies that

γ1 = −C13

C23

, γ2 = −C12

C23

, C11 = 2
C12C13

C23

. (6.9)

where we have used the symmetry of the tensor Cαβ. Note that as we demanded the
γ’s to be strictly positive this implies

C13, C12 > 0 & C23 < 0 or C13, C12 < 0 & C23 > 0 . (6.10)
22 Note that γ1, γ2 6= 0.
23Let us stress again that in principle the geometric background fixes the components of Sαβ thus

those cannot be chosen freely.
24Note that the constraints in this do not specify all intersection numbers of B3 thus one is to

check that the remaining intersection numbers are such that the Kbα and Vb are non-singular in the
minimum defined by (6.5).
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These conditions lead to an extremum of (6.2), which one can easily verify. To
show that we have a minimum one analyses the determinant of the Hessian matrix
which however computes to zero due to the remaining flat direction. To compute
the eigenvalues of the Hessian matrix is straightforward and one can verify that
the minimum will be obtained for many possible combinations of the remaining
parameters. Additionally for a satisfactory vacuum we want the volume to be positive
and large such that other higher-order α′-corrections are under control. Latter is
trivially satisfied as due to the flat direction for the volume Vb. The positivity needs
to be verified in the explicit geometry by computing the topological quantities.

Generic moduli case. In this paragraph we generalize the argument for the three
moduli case to the generic case. As before we only impose restrictions on Cαβ and
Sαβ to obtain an extremum. The positivity of all eigenvalues of the Hessian matrix
remains to be verified for concrete examples. We proceed analogously as before.

The potential in particular Sα ∈ Z and Cα ∈ Z may be chosen such that the
Minkowski minimum is located at

vαb = γα v1
b , γα ∈ (Q+

>0)h
1,1(B3) with γ1 = 1 , (6.11)

where we consider the region v1
b ≥ 0. The self-intersection numbers are such that

Sαβγβ = 0 , ∀α = 1, . . . , h1,1(B3) , (6.12)

Sαβ admits h1,1(B3) × h1,1(B3) independent components.25 Note that from (6.12)
it follows that the potential (6.2) vanishes at the chosen coordinates (6.11), if the
denominator depending on Kbα and Vb is not singular.26 Furthermore, one constraints

C1β 6= 0 β = 1, . . . , h1,1(B3) , (6.13)

which implies that for h1,1 odd

γk = − C1k

Ck k+1

, Ck k+1, C1k 6= 0 , k = 2, . . . , h1,1(B3) , (6.14)

and for h1,1 even

γk = − C1k

Ck k+1

, Ch1,1(B3)h1,1(B3), Ck k+1, C1k 6= 0 , k = 2, . . . , h1,1(B3)− 1 .

(6.15)
Moreover, all other C’s are vanishing. Note that this in particular leads to

Cαβγβ = 0 , ∀α . (6.16)
25The geometric background fixes the components of Sαβ .
26The totally symmetric tensor Kbαβγ admits h1,1(B3)(h1,1(B3)+1)(h1,1(B3)+2) / 3! independent

components. The condition (6.12) only determines h1,1(B3)2 components and thus the remaining
intersection numbers can be found such that the Kbα and Vb are non-singular in the minimum defined
by (6.11).
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The conditions (6.13) -(6.16) lead to an extremum of (6.2), which one can easily
verify. To see this note that now the scalar potential is a sum of fractions with simply
functional dependence of the numerator being a product of to components both
vanishing separately for (6.11). Thus upon taking partial derivatives and applying
the chain rule one of the components always remains and assures vanishing of each
term of the sum, respectively. The condition (6.13) assures that indeed all moduli
except for one are fixed. Let us close this section by noting that other values of
Sαβ, Cαβ can exhibit the same behavior leading to a Minkowski minimum with a
flat remaining direction of the overall volume Vb. It would be interesting to see if
the suggested conditions on the topological quantities can be obtained in explicit
geometric backgrounds of elliptically fibered Calabi-Yau fourfolds with base B3.

6.2 Extrema in the generic moduli case

In this section we discuss a scenario in which all Kähler moduli might be stabilized
in a non-supersymmetric anti-de Sitter minimum for manifolds with χ(B3) < 0. We
argue for a model independent extremum and provide a sufficient condition for the
existence of a local minimum in generic geometric backgrounds such as e.g.

〈Kbα〉〈Kbα〉 > −1
2
〈Kbαα〉〈Vb〉 , ∀ α = 1, . . . , h1,1(B3) . (6.17)

However, to show that is a true local minimum further studies in explicit geome-
tries are required. The stabilization is achieved by an interplay of the correction
proportional to Zbα and Wb

α in (5.43), respectively, with the α′3 Euler-characteristic
correction (6.1) to the Kähler potential [18, 48]. We discuss the two cases in which
only the Zbα and Wb

α-correction is present, respectively. To achieve positivity of the
four-cycle volumes in the vacuum the α′-corrections additionally need to obey strict
positivity and negativity conditions, i.e. the geometric background must be suitable.
The combined case is a straightforward generalization and relaxes the positivity and
negativity constraints. Note that due to a similar potential all Kähler moduli may
be stabilized for χ(B3) > 0 as discussed in [19]. Let us emphasize that the we do
not require non-perturbative effects which are generically exponentially suppressed
by the volume of the cycles. In future work [51] we study a modified scenario by
additionally considering the α′3g−3 / 2

s -correction to the scalar potential discussd in
[19, 20].

Stabilisation with the Zbα-correction. We henceforth assume that we consider
geometries in which all self-intersection numbers are vanishing and thus the correction
Wb

α is identically zero. The resulting potential in the large volume limit then takes
the form27

VF =
3|W0|2

V3
b

(
3 ξ + 768α2Zbα vαb

)
. (6.18)

27We refer to the large volume limit to the regime at large volumes Vb and weak string coupling
such that higher order α′ and gs-corrections can be neglected.
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We note that the functional structure is similar to the α′-correction discussed in
[19, 20]. One finds the AdS vacua where all four-cycle volumes Kbα are stabilized at

〈Kbα〉 = −Λ2Zbα , with Λ = −4 ξ · 1

Zbα〈vα0 〉
, (6.19)

where 〈vα0 〉 = 1
Λ
〈vαb 〉 is the expectation value of the fields such that

Kbαβγ〈v
β
0 〉〈v

γ
0 〉 = −Zbα . (6.20)

This scaling is required to ensure that Zbα〈vαb 〉 = −4 ξ. In other words this addi-
tional condition can always be satisfied as one concludes from (6.20) which fixes 〈vα0 〉
uniquely, and thus implies (6.19). One infers the volume in the extremum to be

〈Vb〉 =
4 ξ Λ2

3
∼ g

−9
2

s , (6.21)

and moreover that the value of the potential in the extremum takes the form

〈V F 〉 = −9 ξ

8
· |W0|2

〈Vb〉3
∼ g12

s |W0|2 < 0 . (6.22)

Note that since χ(B3) < 0 one infers that ξ > 0. In the weakly coupled string
regime gs < 1 one generically achieves a large positive overall volume Vb > 0 in
(6.21). Moreover, positivity of all four-cycles volumes Kbα > 0 for Zbα < 0 for all
α = 1, . . . , h1,1(B3) in (6.19) and (6.20).28 From (6.22) one finds that one may
achieve small values of 〈V F 〉 also for a moderately large |W0| due to the strong string
coupling suppression. By analyzing the matrix of second derivatives in the extremum
one infers〈 ∂2 VF

∂vαb ∂v
β
b

〉
=

3|W0|2Λ2

〈Vb〉5
(
γ1Kbαβ + γ2ZbαZbβ

)
, γ1 = 3

2
ξ2 , γ2 = 9

4
ξΛ2 , (6.23)

where one concludes that γ1 > 0 and γ2 > 0. The matrix γ2ZbαZbβ is positive semi-
define, however it was argued in [52] that Kbαβ is of signature (1, h1,1(B3)), i.e. it
exhibits one positive eigenvalue in the direction of the vector 〈vαb 〉. Thus to argue
for a local minimum one needs to analyse (6.23) in explicit models. One may rewrite
(6.23) to be in the form〈 ∂2 VF

∂vαb ∂v
β
b

〉
=

33 |W0|2ξ
23〈Vb〉4

(
1
〈Vb〉〈K

b
α〉〈Kbβ〉+ 1

2
〈Kbαβ〉

)
, (6.24)

from which one infers a sufficient condition on the geometry for positive semi-
definiteness of (6.24) and thus for the existence of a local minimum to be

〈Kbα〉〈Kbα〉 > −1
2
〈Kbαα〉〈Vb〉 , ∀ α = 1, . . . , h1,1(B3) . (6.25)

28Note that the mechanism could also be applied for different sign of the pre-factor of the Zbα-
correction in (6.34) and would then lead to Zbα > 0 for all α = 1, . . . , h1,1(B3) with opposite overall
sign in (6.19) and (6.20).
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Note that in this paragraph we have assumed that the self-intersection numbers are
vanishing to argue for the vanishing of the Wb

α in the scalar potential (6.34). Thus
(6.25) is automatically satisfied by the non-vanishing of all four-cycle volumes in the
vacuum. Thus one encounters a local minimum for those geometries. Let us next
compare the gravitino mass with the string and Kaluza-Klein scale [53] for which
one finds that

mS ∼ 〈Vb〉−
1
2 , mKK ∼ 〈Vb〉−

2
3 , m3/2 ∼

|W0|
〈Vb〉

. (6.26)

Thus one infers by using (6.21) that

m3/2

mS

∼ |W0|
2|Λ|

√
3

ξ
g

9
4
s ∼ |W0| ,

m3/2

mKK

∼ g
3
2
s |W0| ,

mKK

mS

∼ g
3
4
s . (6.27)

Thus for a weakly coupled string regime the hierarchies in (6.27) can be satisfied
accordingly. Let us conclude that this mechanism might lead to a stabilization for
all four-cycles for geometric backgrounds with χ(B3) < 0. This is achieved solely
by an interplay of the Euler-Characteristic α′3-correction [18] with the α2-correction
[16, 17]. As the volume can be stabilized at sufficiently large values higher-order
α′-corrections are under control i.e. the vacuum may not be shifted.

Let us close this section with some remarks concerning the recent conjecture
by [21] which in particular implies the absence of local de Sitter extrema in any
controlled string theory set-up. Note that the discussion in this section can be
performed analogously for χ(B3) > 0 which then leads to a de Sitter extremum as
seen by equation (6.22) with ξ < 0. To achieve a positive overall volume Vb > 0 in
(6.21) and positivity of all four-cycles volumes Kbα > 0 one infers that Zbα > 0 for all
α = 1, . . . , h1,1(B3) and the opposite overall sign choice in (6.19) and (6.20) which
as well constitutes a solution. It would be interesting to study explicit geometries
where Zbα takes values such that de Sitter are obtained. Let us close this section by
emphasizing that the scenario in this section might suffice as the starting point for
a concrete counter example to the conjecture [21].

Stabilisation with the Wb
α-correction. In this paragraph we henceforth con-

sider a regime in which the Zbα-correction in (5.43) may be neglected, e.g. geometries
in which it results in zero. The resulting potential in the large volume limit then
takes the form29

VF =
3|W0|2

V3
b

(
3 ξ + κ̂2Wb

α v
α
b

)
. (6.28)

One finds the AdS vacua where all four-cycle volumes Kbα are stabilized at

〈Kbα〉 = ±Λ2
〈

∂
∂vα
Wb
〉
, with Λ = − 33 ξ

23 κ̂2

· 1

〈Wb
α〉〈vα0 〉

, (6.29)

29In a large volume regime higher order α′-corrections and non-perturbative effects can be safely
neglected.
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where we have defined Wb = Wb
α v

α
b and 〈vα0 〉 = 1

Λ
〈vαb 〉 is the expectation value of

the fields such that
Kbαβγ〈v

β
0 〉〈v

γ
0 〉 = ±

〈
∂
∂vα
Wb
〉
. (6.30)

Note that (6.30) is independent of Λ and thus constitutes an implicit definition for
〈vα0 〉.30 Furthermore, (6.29) ensures that 〈Wb〉 = −32ξ/(23κ̂2). The volume and
potential in the extremum are given by

〈Vb〉 = ∓ 9 ξ Λ2

8 κ̂2

, 〈V F 〉 = −9

8
ξ
|W0|2

〈Vb〉3
. (6.31)

For ξ > 0 one infers from (6.31) the "upper" sign choice in (6.29) and (6.30) if κ̂2 < 0

and the "lower" one if κ̂2 > 0. The positivity of the four-cycle volumes then imposes
that

〈
∂
∂vα
Wb
〉
> 0 and

〈
∂
∂vα
Wb
〉
< 0, respectively. From computing the second

partial derivative of the potential in the extremum one finds the sufficient condition
for a minimum to be

〈Kbα〉〈Kbα〉 ∓ Λ2

2

〈
∂
∂vα

∂
∂vβ
Wb
〉∣∣∣
β=α

> −1
2
〈Kbαα〉〈Vb〉 , (6.32)

for all α = 1, . . . , h1,1(B3).31 Let us close by commenting on the case in which
χ(B3) > 0. From (6.31) it is clear that in this case one finds a de Sitter extremum,
which is likely to be a local maximum or a saddle point.

Stabilisation with the Zbα and Wb
α-correction. This constitutes the generic

case. The scalar potential in a large volume regime then takes the form

VF =
3|W0|2

V3
b

(
3 ξ + κ̂2Wb

α v
α
b + 768α2Zbα vαb

)
. (6.34)

In this case one finds the AdS vacua where all four-cycle volumes Kbα are stabilized
at

〈Kbα〉 = ±Λ2
( 〈

∂
∂vα
Wb
〉

+ γZbα
)
, with Λ = − 33 ξ

8 κ̂2

· 1

〈(Wb
α〉+ γZbα)〈vα0 〉

, (6.35)

with γ = 33

25κ̂2
and where yet again 〈vα0 〉 = 1

Λ
〈vαb 〉 is the expectation value of the fields

such that
Kbαβγ〈v

β
0 〉〈v

γ
0 〉 = ±

〈
∂
∂vα
Wb
〉
± γZbα . (6.36)

Note that (6.36) is independent of Λ and thus constitutes an implicit definition for
〈vα0 〉. Intriguingly the remainder of the discussion is exactly equivalent to previous

30Due to the functional form ofWb
α see (6.3) one expects that a solution for 〈vα0 〉 exists generically.

31One infers that vαb
∂
∂vαW

b
β = 0 and thus one finds that

〈vαb 〉
〈
∂
∂vα

∂
∂vβ
Wb
〉
〈vβb 〉 = 0 . (6.33)
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case and one infers the volume and potential in the extremum are given by (6.31).
From computing the second partial derivative of the potential in the extremum one
finds the sufficient condition for a minimum to be (6.32). Note that the undeter-
mined parameter κ̂2 in (6.35) and (6.36) leads to two different cases in which positive
four-cycles volumes are achieved. Noteworthy, due to the interplay of the Zbα and
Wb

α-correction in (6.35) the strict positivity or negativity of the α′-correction can be
relaxed in contrast to the previous cases (6.19) and (6.29). Furthermore, one con-
cludes that in particular for χ(B3) > 0 from (6.31) one infers a de Sitter extremum.
Lastly let us emphasize once more that it would be of great interest to construct
explicit geometries in which the local anti-de Sitter minimum or de Sitter extremum
is realized, respectively, due to the presence of the α′-corrections.

7 Conclusions

In this work we established a connection in between eight-derivative l6M-couplings in
eleven-dimensional supergravity i.e. the low wave length limit of M-theory, and α′-
corrections to the Kähler potential and Kähler coordinates of four-dimensionalN = 1

supergravity. The derivation relies on the M/F-theory duality. In particular we ar-
gue for two novel corrections to the Kähler coordinates and potential at order α′2.
Noteworthy one of them breaks the no-scale structure. However, we are not able to
ultimately determine the faith of the proposed correction as a more complete analysis
of the 3d,N = 2 variables needs to be performed. This work constitutes the foun-
dation for such a future study. We provide the completion of the eleven-dimensional
G2R3 and (∇G)2R2-sectors relevant four Calabi–Yau fourfold reductions. We sug-
gest that it would be of great interest to match our proposal against 5-point and
6-point scattering amplitudes. Furthermore, we provide the reduction result of the
G2R3 and (∇G)2R2-sectors for Calabi–Yau fourfolds with an arbitrary number of
Kähler moduli.

One of the main achievements presented is the establishment of a divisor inte-
gral basis for the three-dimensional Kähler coordinates at higher-order in lM. This
allows us to derive the non-topological higher-derivative couplings obtained in the
dimensional reduction from the novel Ansatz for the Kähler potential and Kähler
coordinates. We suggest that in order to prove the integration into the proposed
3d, N = 2 variables additional non-trivial identifies relating the higher-derivative
building blocks are required. Then this amounts to fixing the remaining parameters
in our Ansatz. We are able to fix several parameters by ensuring compatibility with
the one-modulus case in which the Kähler potential and Kähler coordinates can be
determined exactly as no non-trivial higher-derivative couplings appear in the Kähler
metric.

To connect the lM-corrections in the three-dimensional Kähler coordinates and
Kähler potential to the α′2-corrections in the 4d,N = 1 theory we employ the classical
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well understood F-theory uplift. Although it is expected that a one-loop modifica-
tion of the F-theory lift is needed we argue that in particular the novel T bα - contri-
bution to the Kähler potential and coordinates is expected to remain untouched by
such an extension. It would be interesting to perform a dimensional reduction of a
generic 4d,N = 1 supergravity theory in particular with vector and chiral multiplets
where the Kaluza Klein-modes are integrated out at one-loop extending the work
of [43]. The novel divisor integral contribution in four-dimensions is of order α′2.
The α′2-contribution to the Kähler potential moreover generically break the no-scale
structure. Let us stress that the ultimate faith of the novel α′-corrections to the
scalar potential shall be decided in a forthcoming work as the present result admits
one free parameter. Let us continue with a critical remark. The F-theory lift is per-
formed by shrinking the fiber of the Calabi–Yau fourfold, i.e. the geometry becomes
singular in this process. In this limit other higher-order UV-corrections may become
relevant and modify the uplift. However, the corrections discussed in this work are
of topological nature and are thus expected to be protected in the F-theory limit.

Although not all parameters in the resulting α′-corrected scalar potential are
fixed it is of interest to study possible scenarios to obtain stable vacua. We discuss
two scenarios. One in which only the Wb

α-correction is present, in which all two-
cycle volumes are fixed relative to each other in a Minkowski minima however a
flat direction for the overall volume remains. We do not study explicit geometric
Calabi–Yau fourfold backgrounds, but put generic constraints on the topological
quantities of the base B3. Secondly, we propose scenarios in which the Wb

α and
Zbα-correction at order α′2 interplay with the α′3 Euler-characteristic correction to
achieve a model-independent non-supersymmetric an anti-de Sitter minimum for
geometric backgrounds with χ(B3) < 0. Moreover constraints on the topological
quantities of the geometric backgrounds are derived such that a minimum may be
obtained. It would be of great interest to realize our constraints in explicit examples
of elliptically fibered Calabi-Yau fourfolds. Furthermore, we note that the scenarios
provide a model independent de Sitter extremum for geometric backgrounds with
χ(B3) > 0. One may extend the present analysis [51] by additionally considering
the α′3-correction to the scalar potential discussd in [19, 20]. Lastly let us point the
reader to an obvious extension of the present work. Our analysis of geometries does
not allow for no-Abelian singularities, i.e. no non-Abelian four-dimensional gauge
fields are present. It would be highly desirable to analyse the uplift of the Kähler
potential and Kähler coordinates for such backgrounds.
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A Conventions, definitions, and identities

In this work we denote the eleven-dimensional space indices by capital Latin letters
M,N = 0, . . . , 10 and the external ones by µ, ν = 0, 1, 2, and the internal complex
ones by m,n, p = 1, ..., 4 and m̄, n̄, p̄ = 1, . . . , 4. The metric signature of the eleven-
dimensional space is (−,+, . . . ,+). Furthermore, the convention for the totally anti-
symmetric tensor in Lorentzian space in an orthonormal frame is ε012...10 = ε012 = +1.
The epsilon tensor in d dimensions then satisfies

εR1···RpN1...Nd−pεR1...RpM1...Md−p = (−1)s(d− p)!p!δN1
[M1 . . . δ

Nd−p
Md−p] , (A.1)

where s = 0 if the metric has Riemannian signature and s = 1 for a Lorentzian
metric. We adopt the following conventions for the Christoffel symbols and Riemann
tensor

ΓRMN =
1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN) , RMN = RR

MRN ,

RM
NRS = ∂RΓMSN − ∂SΓMRN + ΓMRTΓT SN − ΓMSTΓTRN , R = RMNg

MN ,

(A.2)

with equivalent definitions on the internal and external spaces. Written in compo-
nents, the first and second Bianchi identity are

RO
PMN +RO

MNP +RO
NPM = 0

(∇LR)OPMN + (∇MR)OPNL + (∇NR)OPLM = 0 . (A.3)

Differential p-forms are expanded in a basis of differential one-forms as

Λ =
1

p!
ΛM1...Mpdx

M1 ∧ . . . ∧ dxMp . (A.4)

The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q =
(p+ q)!

p!q!
Λ

(p)
[M1...Mp

Λ
(q)
M1...Mq ]

. (A.5)

Furthermore, the exterior derivative on a p-form Λ results in

(dΛ)NM1...Mp = (p+ 1)∂[NΛM1...Mp] , (A.6)
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while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p =
1

p!
ΛM1...MpεM1...MpN1...Nd−p . (A.7)

Moreover,

Λ(1) ∧ ∗Λ(2) =
1

p!
Λ

(1)
M1...Mp

Λ(2)M1...Mp∗1 , (A.8)

which holds for two arbitrary p-forms Λ(1) and Λ(2).
Let us next define the intersection numbers, where {ωi} are harmonic w.r.t. to

the Calabi- Yau metric gmn̄

Kijkl =

∫
X

ωi ∧ ωj ∧ ωk ∧ ωl , Kij = Kijklvl , Kij =
1

2
Kijklvkvl,

Ki =
1

3!
Kijklvjvkvl , V =

1

4!
Kijklvivjvkvl . (A.9)

Let us review well known identities such as∫
ωi ∧ ∗8ωj = −Kij +

1

V
KiKj . (A.10)

Let us note that the intersection numbers obey the properties

Kivi = 4V , Kijvj = 3Kj , Kijkvk = 2Kij
Kijklvl = Kijk , KikKjk = δij , KikKk = 1

3
vi( ∂

∂vk
Kij
)
Kj = −2

3
δik ,

( ∂

∂vk
Kij
)
Kjl = −KijKkjl , (A.11)

with the inverse intersection matrix Kij. The intersection numbers for the Kähler
base are given by

Kbαβγ =

∫
B3

ωα ∧ ωβ ∧ ωγ , Kαbβ = Kbαβγv
γ
b , Kbα =

1

2
Kbαβγv

β
b v

γ
b ,

Vb =
1

3!
Kbαβγvαb v

β
b v

γ
b . (A.12)

One may show that for a six-dimensional Kähler manifold

∗6 (ωbα ∧ J b) =
Kbα
Vb
J b − ωbα . (A.13)

with intersection numbers defined analogously to (A.9). In particular, this implies
the analogous relation∫

Dα

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 =
1

Kα

∫
Dα

c̃1 ∧ J̃2

∫
Dα

c̃2 ∧ J̃ −
∫
Dα

c̃1 ∧ c̃2 , (A.14)

which holds due to the harmonicity of Hc̃1(Dα).
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We define the curvature two-form for Hermitian manifolds to be

Rm
n = Rm

nrs̄dz
r ∧ dz̄s̄ , (A.15)

and

TrR = Rm
mrs̄dz

r ∧ dz̄s̄ ,

TrR2 = Rm
nrs̄R

n
mr1s̄1dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ,

TrR3 = Rm
nrs̄R

n
n1r1s̄1R

n1
mr2s̄2dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 . (A.16)

The Chern forms can be expressed in terms of the curvature two-form as

c1 = iTrR ,

c2 =
1

2

(
TrR2 − (TrR)2

)
, (A.17)

c3 =
1

3
c1c2 +

1

3
c1 ∧ TrR2 − i

3
TrR3 ,

c4 =
1

24

(
c4

1 − 6c2
1TrR2 − 8ic1TrR3

)
+

1

8
((TrR2)2 − 2TrR4) .

The Chern classes of a n complex-dimensional Calabi-Yau manifold CYn reduce to

c3(CYn≥3) = − i
3
TrR3 and c4(CYn≥4) =

1

8
((TrR2)2 − 2TrR4) , (A.18)

with TrR4 defined analogous as in (A.16). Let us next define a set of higher-derivative
building blocks identified in [13] as

Zmm̄nn̄ =
1

4!
ε(0)mm̄m1m̄1m2m̄2m3m̄3

ε(0)nn̄n1n̄1n2n̄2n3n̄3
R(0)m̄1m1n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 ,

(A.19)

and

Yijmn̄ =
1

4!
ε(0)mm̄m1m̄1m2m̄2m3m̄3

ε(0)nn̄n1n̄1n2n̄2n3n̄3
∇(0)nω(0)

i
m̄1m1∇(0)m̄ω(0)

j
n̄1n1

×R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 . (A.20)

It turns out that the tensor Zmm̄nn̄ given in (A.19) plays a central role in the following
and is related to the key topological quantities on Y4. It satisfies the identities

Zmm̄nn̄ = Znm̄mn̄ = Zmn̄nm̄ , ∇(0)mZmm̄nn̄ = ∇(0)m̄Zmm̄nn̄ = 0 . (A.21)

It is related to the third Chern-form c(0)
3 via

Zmm̄ = i2Zmm̄n
n = (2π)3 1

2
(∗(0)c(0)

3 )mm̄ ,

– 44 –



Z = i2Zm
m = (2π)3 ∗(0) (J (0) ∧ c(0)

3 ) , (2π)3 ∗(0) (c(0)
3 ∧ ω

(0)
i ) = −2Zmn̄ω

(0)
i
n̄m , (A.22)

and yields the fourth Chern-form c(0)
4 by contraction with the Riemann tensor as

Zmm̄nn̄R
(0)m̄mn̄n = (2π)4 ∗(0) c(0)

4 . (A.23)

We note that Yijmn̄ is also related to Zmm̄nn̄ upon integration as∫
Y4

Yijm
m ∗(0) 1 = −1

6

∫
Y4

(iZmn̄ω
(0)
i
r̄mω(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)
i
n̄mω(0)

j
s̄r) ∗(0) 1 , (A.24)

where the right hand side represents the same linear combination that will be relevant
in 4.1. Let us for further use define

Yij :=

∫
Y4

Yijm
m ∗(0) 1 . (A.25)

Lastly in this work we encounter a new (2,2)-form object

Ωij = R(0)
mn̄rs̄ω

(0)
i
r
tω

(0)
j
s̄
ū dzm ∧ dzt ∧ dz̄n̄ ∧ dz̄ū . (A.26)

A.1 Divisor integrals in terms of CY4 integrals

We define an arbitrary basis of higher-derivative (1, 1) -forms convenient for the
computations in this work

X1 = Rm
m2

m5

n2Rm2

n3
n2

n4Rn3m̄n4

m5 dzm ∧ dz̄m̄

X2 = Rm
m2

m5

n2Rm2m̄n3

n4Rn2

m5
n4

n3 dzm ∧ dz̄m̄

X3 = Rmm̄m2

m5Rm5

n2
n3

n4Rn2

m2
n4

n3 dzm ∧ dz̄m̄

X4 = gmm̄Rm1

m2
m5

n2Rm2

n3
n2

n4Rn3

m1
n4

m5 dzm ∧ dz̄m̄

X5 = gmm̄Rm1

m2
m5

n2Rm2

m1
n3

n4Rn2

m5
n4

n3 dzm ∧ dz̄m̄ (A.27)

These (1, 1)-forms can be expressed as integrals on Calabi–Yau fourfolds which
admit an interpretation as integrals on divisors Di of a Calabi–Yau fourfold as∫

CY4

(
∗8 Xk=1,..,5

)
∧ ωi =

∫
Di

∗8Xk=1,..,5 , (A.28)

where the r.h.s. is to be seen as pulled back to the divisor. Let us now recall the
fact [38] that any complex sub-manifold of a Kähler manifold M is itself Kähler with
induced metric and Kähler form g, J of M. Thus in particular we find for the Divisors
i : Di ↪−→ CY4 the Kähler metric and form ∗ig and ∗iJ , respectively, which are pulled
back from the Calabi–Yau fourfold. One may thus as well restrict Riemann tensors
on the Calabi–Yau fourfold to divisors Di expressed by the induced metric which
generically obeys c1(Di) 6= 0. In particular contractions of the Riemann tensors
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which do not vanish on the Calabi–Yau manifold due to the Calabi–Yau conditions
may be pulled back to the divisors and expressed in terms of Riemann tensors in
terms of the induced metric on Di. Note that the (1, 1)-forms in (A.27) expressed as
integrals on divisors (A.28) in are of this form. By

We may write the Kähler coordinates as (4.4) in terms as the new basis on CY4

in the following way if the coefficients obey the following relations

α5 = −1
8
α1 + 1

24
α3 + 1

4
α4 ,

α6 = 1
2
α2 + 1

2
α3 ,

α7 = α2 + α3 ,

α8 = 1
2
α1 − 1

3
α3 − α4 ,

α9 = −α1 + 1
6
α3 . (A.29)

one then infers that

Ti = − i
3

∫
CY4

ωi ∧ ∗8

(
(α3 + 3γ2 + 6γ3)X1 + (α3 + 3γ1 − 12γ3)X2 + 3(γ3 − α3)X3

+ 3(−γ2 + γ4 + γ5)X4 − 3(γ1 + 2γ4 + 2γ5)X5

)
, (A.30)

where Xi=1,2,3,4,5 are defined in (A.27), and where the freedom in the real parameters
γ1, . . . , γ5 results due to total derivatives which take different form on the divisors
integrals and Calabi–Yau fourfold integrals, respectively. The simplest choice in this
work for coefficients γ1, γ2, γ3 defines the higher-derivative (3, 3)-form to be

X = − i
3
∗8

(
X1 +X2 −X3

)
, (A.31)

and thus the Kähler coordinate modification is

Ti = − i
3

∫
CY4

ωi ∧ ∗8

(
X1 +X2 −X3

)
. (A.32)

Note that α3 = 1 which is in agreement with the divisor integral one-modulus limit.32

Note that the choice of fixing α1 does not limit the Ansatz for the Kähler coordinates
as it amounts only to an overall coefficients which is anyway taken into account for
in (4.3). One may easily show that thus

Tivi =

∫
CY4

J ∧ X = Z . (A.33)

and from this property (A.33) that( ∂

∂vj
Ti
)
vi = −Tj + Zj( ∂2

∂vk∂vj
Ti
)
vi = −

( ∂

∂vj
Tk
)
−
( ∂

∂vk
Tj
)
. (A.34)

32The coefficients in (A.30) are chosen as γ1 = 8/3, γ2 = −4/3, γ3 = 2/3, γ5 = −4/3− γ4.
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Let us comment on (A.31). the combination of basis elements Xi=1,2,3,4,5 is a
choice compatible with the match to six-dimensional divisor integrals. In section A.3
we discuss the variation of Ti w.r.t. to the Kähler deformations.

As the matching of the correction to the Kähler coordinates in terms of CY4

integrals to the divisor integral expression is not unique, let us close this section on
remarks other possible choices of γ1, γ2, γ3. Due to (A.33) the Ansatz (4.2) and (4.3)
cannot depend separately on Tivi. It is interesting to study the possible where (4.2)
is modified by this expression as well and (4.3) by 1

VKiTjv
j. Let us close this section

by discussing a caveat to the Ansatz in this work namely that our choice for Ti (A.31)
may be rewritten by splitting integrals using the harmonicity of ωi

Ti = 1
3

(
−Zi + 1

VKiZ
)
. (A.35)

Let us emphasize that the insights of this work is that the higher-derivative struc-
tures derived in dimensional Calabi–Yau fourfold reductions for h1,1 > 1 can be
obtained by variation of Ti before applying the integral split (A.35) which suggests
an interpretation in terms of divisor integrals. One infers that by imposing (A.35)
first the Ansatz for the Kähler coordinates (4.3) does not carry any new information,
i.e. those to steps seem not to commute. However, by choosing a more involved com-
bination for the correction to the Kähler coordinate in terms of Calabi–Yau fourfold
quantities in (A.30) this caveat can be prevented as then no analogous relation for
(A.35) holds. Generically we expect the form Ti + T 0

i where in the one-modulus
limit Ti → Z̃ and T 0

i → 0. This suggests that one might need to extend the basis
(A.27) to also contain terms with explicit covariant derivatives such as e.g.∼ (∇R)2.
Moreover, one may not expect to capture the information of topological quantities
of divisors entirely by local covariant integral densities on the entire space but may
need to include additional global obstructions to succeed in the matching.

A.2 3d Kähler coordinates as topological divisor integrals

In this section we argue that the Ansatz for the Kähler coordinates (4.4) may be
rewritten in terms of topological integrals by fixing the coefficients in the Ansatz.
Any closed form on such as c̃1 may be written in terms of its harmonic part plus a
double exact contribution

c̃1 = Hc̃1 + ∂∂̄λ , (A.36)

where λ is a function on the divisor. From the closure of c̃1 we infer that

∇[mR̃n]n̄r
r = 0 . (A.37)
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But equivalently one may use that

∇mR̃n
n
r
r = ∇m∇n∇nλ ,

∇mR̃n
n
r
r = ∇m∇n∇nλ ,

∇mR̃n
m
r
r = ∇m∇n∇mλ ,

∇mR̃m
n
r
r = ∇m∇n∇mλ . (A.38)

Using the above set of equations one may show that the Ansatz for the Kähler
coordinates (4.4) can be written as

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 +
α4

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
α5

K2
i

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2 +
α6

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃

+ 2α6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −
(
2α4 + 8α5

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1

− 4α5

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ ∗6Hc̃1 , (A.39)

where Ki denotes the volume of the divisor Di. Note that in order to obtain (4.18)
one fixes the coefficients such that

α7 = 2α6 , α8 = 2α4 + 8α5 , α9 = −4α5 . (A.40)

Additionally requiring that we can write Ti as integrals on the Calabi–Yau fourfold
i.e. the constraints (4.8) then imposes

α1 = 1
6
, α3 = 1 , α4 = − 1

12
, α5 = 0 ,

α6 = 1
2

+ 1
2
α2 , α7 = 1 + α2 , α8 = −1

6
, α9 = 0 . (A.41)

Note that this coordinate (A.41) depends on the free parameter α2. It would be
interesting to determine it by imposing some other constraint.

A.3 Variation w.r.t. Kähler moduli fields

To compute the variation of covariant integral densities such as (3.12) w.r.t. Kähler
moduli fields we deform the Calabi–Yau fourfold metric gmn̄ in complex coordinates
by

gmn̄ → gmn̄ + iδviωimn̄ and gn̄m → gn̄m − iδviωn̄mi . (A.42)

The determinant of the metric subject to (A.42) derives to
√
−g →

√
−g + i

√
−g viωimm . (A.43)
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Note that we are only interested in linear deformations here thus we need to expand
the expression to O(δvi). The Riemann tensors variation compute to

Rmm̄nn̄ → Rmm̄nn̄ + iδvi∇m∇m̄ωin̄n + i
2
δviRmn̄n

rωirm̄ + i
2
δviRmm̄n

rωirn̄ . (A.44)

To evaluate the variation of higher-derivative object a computer algebra package such
as xTensor [40] is highly desirable. One may employ its power to generate a complete
set of Shouten identities, Bianchi identities and total derivatives to show that the
variation of (A.32) can be written as

∂

∂vj
Ti =

1

V
KiTj −

2

V
KjTi + 4 Tij + Λij , (A.45)

where
Tij =

∫
CY4

∗8

(
ωi ∧ ωj ∧ J

)
∧ X , (A.46)

and

Λij = 4i

∫
CY4

Zmn̄ω(i
n̄sωj)s

m ∗ 1 + 8i

∫
CY4

Zmn̄ωi
m̄nωjs

s ∗ 1

= 2i

∫
CY4

Zmn̄ωi
n̄sωjs

m ∗ 1 + 4
1

V
ZiKj . (A.47)

Let us stress that in order to compute (4.14) we make extensive use of the com-
puter algebra package [40], and a non-publicly self-developed extension for complex
manifolds and tools to perform the above computation. By using the relation

Yij = −1

6

∫
Y4

(iZmn̄ωi
r̄mωj

n̄
r̄ + 2Zmn̄rs̄ωi

n̄mωj
s̄r) ∗ 1 , (A.48)

We note in section (A.1) that the we are not able to fix Ti precisely in this work.
Thus let us present here the variation of a different possible choice of the parameter
freedom in (A.30) which one may show then leads to analogous expression as (A.45).
It is intriguing to note that one can obtain also the novel higher-derivative structure
in (3.21) by variation of the alternative Kähler coordinates

∂

∂vj
T alti ⊃

∫
CY4

c2 ∧ Ωij +

∫
CY4

c2 ∧ J ∧ Ω1
ij +

∫
CY4

c2 ∧ J ∧ Ω2
ij (A.49)

with Ωij defined in (A.26) and with the (1, 1)-forms

Ω1
ij mn̄ :=

(
∇m∇n̄ωirs̄

)
ωj

s̄r Ω2
ij mn̄ :=

(
∇r∇rωims̄

)
ωj

s̄
n̄ . (A.50)

Note that the second Chern-form c2 appears in this case (A.49) in particular in the
combination as in (3.21). Note that (A.49) is of schematic form and we do not specify
the factors in this work.
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Warp-factor and the Kähler potential. Let us next review the integration of
the warp factor into a Kähler potential following [12]. To begin with, let us reduce
our Ansatz (4.3) and (4.2) to the warp factor related quantities which gives

K = −3 log

(
V + 4α2Wiv

i

)
(A.51)

We therefore suggest that they take the form

ReTi = Ki + α2
(
Fi + 3Wi

)
(A.52)

where Di are h1,1(Y4) divisors of Y4 that span the homology H2(Y4,R). The six-form
F6 in this expression is a function of degrees of freedom associated with the internal
space metric. It is constrained by a relation to the fourth Chern form c4 such that
F6 determines the non harmonic part of c4 as

c4 = Hc4 + i∂∂̄F6 . (A.53)

Note that (A.53) leaves the harmonic and exact part of F6 unfixed and we will discuss
constraints on these pieces in more detail below. The justification of the first term in
ReTi is simpler. Remarkably, this definition of the Kähler coordinates as Di integrals
will help us to obtain the couplings

∫
e3α2W (2)

J ∧ J ∧ ωi ∧ ωj, which, as we stressed
in our previous work [13], cannot be obtained as vi-derivatives of the considered
CY4-integrals. In order to evaluate the derivatives of Ti with respect to vi and to
make contact with the Kähler metric found in the reduction result (3.19), we have
to rewrite the integrals over Di into integrals over CY4. Due to the appearance of
the warp-factor and the non-closed form F6 in (A.52) this is not straightforward. In
particular, one cannot simply use Poincaré duality and write Ti as an integral over
CY4 with inserted ωi. Of course, it is always possible to write Ti as a CY4 integral
when inserting a delta-current localized on Di, i.e.

ReTi =

∫
CY4

( 1

3!
e3α2W (2)

J ∧ J ∧ J + 1536α2F6

)
∧ δi , (A.54)

where δi is the (1,1)-form delta-current that restricts to the divisor Di. Appropriately
extending the notion of cohomology to include currents [54], we can now ask how
much δi differs from the harmonic form ωi in the same class. In fact, any current δi
is related to the harmonic element of the same class ωi by a doubly exact piece as

δi = ωi + i∂∂̄λi . (A.55)

This equation should be viewed as relating currents. Importantly, as we assume
Di and hence δi to be vi-independent, the vi dependence of the harmonic form ωi
and the current λi has to cancel such that ∂jωi = −i∂∂̄∂jλi. Importantly, once we
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determine ∂jReTj we can express the result as Y4-integrals without invoking currents.
We therefore need to understand how each part of Ti varies under a change of moduli.
This will also fix the numerical factor in front of F6 in (A.52).

In order to take derivatives of Ti we first use the fact that Di and hence δi are
independent of the moduli vi, which implies

∂jReTi =

∫
Y4

(1

2
e3α2W (2)

ωj∧J ∧J+
1

2
α2∂jW

(2)J ∧J ∧J+1536α2∂jF6

)
∧δi . (A.56)

We next claim that we can replace δi with ωi such that finally

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi∧ωj∧J∧J+

1

2
α2

∫
Y4

∂jW
(2)ωi∧J∧J∧J+1536α2

∫
Y4

ωi∧∂jF6 .

(A.57)
Note that by using (A.55) the two expressions (A.56) and (A.57) only differ by a
term involving ∂∂̄λi. By partial integration this term is proportional to∫

Y4

λi∂∂̄
(1

2
e3α2W (2)

ωj ∧ J ∧ J +
1

2
α2∂jW

(2)J ∧ J ∧ J + 1536α2∂jF6

)
(A.58)

=

∫
Y4

λi

(1

2
∂∂̄(e3α2W (2)

)ωj ∧ J ∧ J +
1

2
α2∂∂̄(∂jW

(2))J ∧ J ∧ J + 1536α2∂∂̄∂jF6

)
.

It is now straightforward to see that the terms multiplying λi are simply the ∂j
derivative of the warp-factor equation (3.5). One first writes (3.5) as

d†de3α2W (2) ∗8 1− α2Q8 = −1

3
i∂∂̄(e3α2W (2)

) ∧ J ∧ J ∧ J − α2Q8 . (A.59)

Then one takes the vj-derivative of (A.59) by using the fact that Q8 is given via

Q8 = −1
2
G(1) ∧G(1) − 32213X (0)

8 , (A.60)

which can easily be inferred by comparison to (3.5) and (A.53). The moduli depen-
dence of Q8 only arises from the term involving F6, i.e. one has ∂iQ8 = 3072 i ∂∂̄∂iF6.
Hence one finds exactly the terms in (A.58) such that this λi dependent part of the Ti
variation vanishes due to the warp-factor equation (3.5). The final expression (A.57)
is then written as

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi ∧ ωj ∧ J ∧ J + 3α2KiWj + 1536α2

∫
Y4

ωi ∧ ∂jF6 . (A.61)

Evaluating (4.11) effective action will depend on the quantities∫
Y4

ωi ∧ ∂jF6| and
∫
Y4

J ∧ ∂i∂jF6| . (A.62)

in order for the results to match the reduction result those terms need to interact
with the higher-derivative building blocks. One may use the freedom in the definition
(A.53) to accomplish this task. A concise match with the reduction result is beyond
the scope of this work.
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B Higher-derivatives and F-theory

B.1 11d higher-derivative Terms

The terms t8t8R4 and t8t8G2R3 in require the definition

tN1...N8
8 = (B.1)
1

16

(
− 2

(
gN1N3gN2N4gN5N7gN6N8 + gN1N5gN2N6gN3N7gN4N8 + gN1N7gN2N8gN3N5gN4N6

)
+ 8

(
gN2N3gN4N5gN6N7gN8N1 + gN2N5gN6N3gN4N7gN8N1 + gN2N5gN6N7gN8N3gN4N1

)
− (N1 ↔ N2)− (N3 ↔ N4)− (N5 ↔ N6)− (N7 ↔ N8)

)
.

Let us now discuss the various eight-derivative couplings in in more detail. We recall
the definition

X8 =
1

192

(
TrR4 − 1

4
(TrR2)2

)
, (B.2)

where R is the eleven-dimensional curvature two-from RM
N = 1

2
RM

NPQdx
P ∧ dxQ,

and

ε11ε11R
4 = εR1R2R3M1...M8εR1R2R3N1...N8R

N1N2
M1M2R

N3N4
M3M4R

N5N6
M5M6R

N7N8
M7M8 ,

t8t8R
4 = tM1...M8

8 t8N1...N8R
N1N2

M1M2R
N3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8 , (B.3)

where ε11 is the eleven-dimensional totally anti-symmetric epsilon tensor and t8 is
given explicitly in (B.1). Using ε11 and t8 the explicit form for the terms in section
2.1 are precisely given by

ε11ε11G
2R3 = εRM1...M10εRN1...N10G

N1N2
M1M2G

N3N4
M3M4

×RN5N6
M5M6R

N7N8
M7M8R

N9N10
M9M10 ,

t8t8G
2R3 = tM1...M8

8 t8N1...N8G
N1

M1R1R2G
N2

M2

R1R2RN3N4
M3M4R

N5N6
M5M6R

N7N8
M7M8 .

(B.4)

Finally, we need to introduce the tensor sN1...N18
18 , however its precise form not known.

Significant parts of it may be fixed following [55]. We argue for an extension in 2.1
of this work. In order to express the kwon parts we use the basis Bi, i = 1, ..., 24

of [55], that labels all unrelated index contractions in s18(∇G)2R2. The basis {Bi}
is explicitly given in section B.3. The result can then be expressed in terms of a
four-point amplitude contribution A and a linear combination of six contributions
Si=1,...,6 which do not affect the 4-point amplitude as

s18(∇G)2R2 = sN1...N18
18 RN1...N4RN5...N8∇N9GN10...N13∇N14GN15...N18 = A+

∑
n

anSn .

(B.5)
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The combinations A and Sn are then given in terms of the basis elements as

A = −24B5 − 48B8 − 24B10 − 6B12 − 12B13 + 12B14 + 8B16 − 4B20

+B22 + 4B23 +B24 ,

S1 = 48B1 + 48B2 − 48B3 + 36B4 + 96B6 + 48B7 − 48B8 + 96B10

+ 12B12 + 24B13 − 12B14 + 8B15 + 8B16 − 16B17 + 6B19 + 2B22 +B24 ,

S2 = −48B1 − 48B2 − 24B4 − 24B5 + 48B6 − 48B8 − 24B9 − 72B10

− 24B13 + 24B14 −B22 + 4B23 ,

S3 = 12B1 + 12B2 − 24B3 + 9B4 + 48B6 + 24B7 − 24B8 + 24B10

+ 6B12 + 6B13 + 4B15 − 4B17 + 3B19 + 2B21 ,

S4 = 12B1 + 12B2 − 12B3 + 9B4 + 24B6 + 12B7 − 12B8 + 24B10 + 3B12

+ 6B13 + 4B15 − 4B17 + 2B20 ,

S5 = 4B3 − 8B6 − 4B7 + 4B8 −B12 − 2B14 + 4B18 ,

S6 = B4 + 2B11 . (B.6)

Note that S3 to S6 vanish both on the considered Calabi-Yau fourfold background
solution.

B.2 Adjunction of Chern-classes

Let us next discuss the adjunction of Chern-classes of divisors on an elliptically
fibered Calabi–Yau fourfold CY4 which is a hyper-surface in a P321 bundle of the
Kähler base B3 denoted by P321(L)given by the vanishing locus of the Weierstrass
equation

y2(x3 + fxz4 + gz6) = 0 , (B.7)

with f, g holomorphic sections of L4 and L6, respectively. The SL(2,Z) line bundle
L over B together with the choice of f, g defines the elliptic fibration. One may show
that the first Chern class is given by

c1(X) = c1(B)− c1(L) (B.8)

Then the total Chern class is given by

c(P321(L)) = c(B3)(1 + 2ω0 + 2c1(B3)))(1 + 3ω0 + 3c1(B3)))(1 + ω0) (B.9)

were ω0 is the harmonic (1, 1)-form such that PD(ω0) = B.33 Using adjunction
formulae for the

c(CY4) =
c(P321(L))

(1 + L)
(B.10)

33We are using abuse of notation in the following using ω0 and c1,2,3 in the context of a concrete
representative of the class as well as the class itself.
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with
L = 6ω0 + 6c1(B3) (B.11)

one then derives

c3(CY4) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0

c2(CY4) = c2(B3) + 11c2
1(B3) + 12c1(B3) ∧ ω0

c1(CY4) =0 (B.12)

and furthermore
ω2

0 = −c1(B3) ∧ ω0 . (B.13)

where the ci=1,2,3(B3) on the r.h.s. of these expressions denote the Chern classes of
B pulled-back to CY4.

One may next iterate the adjunction formulae to find The Chern-forms of the
vertical divisors Dα of the Calabi–Yau fourfold which are pullbacks of divisors of the
base Db

α. Thus we denote the class of such divisors via its representatives of harmonic
(1, 1)-forms ωα, α = 1, ..., h1,1. Thus one may use adjunction to write

c(Dα) =
c(P321(L))

(1 + L)(1 + ωα)
, (B.14)

with which one then derives

c3(Dα) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0 − c2(Dα) ∧ ωα

c2(Dα) = c2(B3) + 11c2
1(B3) + 12c1(B3) ∧ ω0 + ω2

α

c1(Dα) =− ωα . (B.15)

where ci=1,2,3(B3) on the r.h.s of the above equality are pulled back to the divisor Dα,
which amounts to a simply restriction to the subspace Dα ⊂ CY4. In particular we
find that the self intersection of divisors [Dα] · [Dα] is generically non-vanishing.

Let us close this section by analyzing the case where the Calabi–Yau fourfold is
a direct product manifold e.g. CY4 = CY3 × T 2 or CY4 = K3 × K3. The Chern-
character on product spaces X = Y × Z obeys c(X) = c(Y )c(Z). Thus we find for
the Chern-forms

c3(X) = c1(Y ) ∧ c2(Z) + c2(Y ) ∧ c1(Z) + c3(Y ) + c3(Z) ,

c2(X) = c1(Y ) ∧ c1(Z) + c2(Y ) + c2(Z) ,

c1(X) = c1(Y ) + c1(Z) . (B.16)

Furthermore, on may apply adjunction to compute the Chern-forms of CY3 in therms
of Chern-forms Divisors Db

α pulled back to CY3 which results in

c1(Db
α) = ωbα , c2(Db

α) = c2(CY3) , (B.17)
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where we have used the Calabi–Yau condition c1(CY3) = 0. Divisors inside CY4 =

CY3 × T 2 wrapping the torus are as well a direct product of Db
α × T 2. Thus by

combing (B.16) and (B.17) one can straightforwardly infer their Chern-forms.

B.3 Basis of the G2R3 and (∇G)2R2-sector

Basis of the G2R3-sector. The complete eleven-dimensional G2R3 terms may be
written in terms of the basis [20] The basis for the potentially relevant eight-derivative
terms involving the four-form field strength is

B1 = GM5
M7M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3M4
M6 (B.18)

B2 = GM4M6
M8M9 GM5M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3
M6M7

B3 = GM4M5
M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3
M6M7

B4 = GM6M7M8M9 G
M6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4M3M5

B5 = GM6M7M8M9 G
M6M7M8M9
4 RM

M4
M2

M5 RMM1M2M3 RM1M4M3M5

B6 = GM5
M7M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4M3
M6

B7 = GM5
M7M8M9 GM6M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4M3
M6

B8 = GM3M6
M8M9 GM5M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4
M6M7

B9 = GM3M5
M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4
M6M7

B10 = GM3M6
M8M9 GM5M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4
M6M7

B11 = GM3M5
M8M9 GM6M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4
M6M7

B12 = GM4M7
M8M9 GM5M6M8M9 RM

M4
M2

M5 RMM1M2M3 RM1
M6

M3
M7

B13 = GM3M7
M8M9 GM5M6M8M9 RMM2

M4M5 RMM1M2M3 RM1
M6

M4
M7

B14 = GM3M7
M8M9 GM5M6M8M9 RM

M4
M2

M5 RMM1M2M3 RM1
M6

M4
M7

B15 = GM5
M7M8M9 GM6M7M8M9 RMM1M2

M4 RMM1M2M3 RM3
M5

M4
M6

B16 = GM4M6
M8M9 GM5M7M8M9 RMM1M2

M4 RMM1M2M3 RM3
M5M6M7

B17 = GM4M6
M8M9 GM5M7M8M9 RMM1M2M3 R

MM1M2M3 RM4M5M6M7 .

Basis of the (∇G)2R2-sector. The complete eleven-dimensional (∇G)2R2 terms
may be written in terms of the basis [55]. In order to discuss the term s18 appearing
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in (2.4) and (B.5) we introduce the basis

B1 = RM1M2M3M4RM5M6M7M8∇M5GM1M7M8
M9∇M3GM2M4M6M9 ,

B2 = RM1M2M3M4RM5M6M7M8∇M5GM1M3M7
M9∇M8GM2M4M6M9 ,

B3 = RM1M2M3M4RM5M6M7M8∇M5GM1M3M7
M9∇M6GM2M4M8M9

B4 = RM1M2M3M4RM5M6M7M8∇M9G
M3M4M7M8∇M6GM9M1M2M5

B5 = RM1M2M3M4RM5M6M7
M4∇M1GM2M3

M8M9∇M5GM6M7M8M9 ,

B6 = RM1M2M3M4RM5M6M7
M4∇M1GM2M5

M8M9∇M3GM6M7M8M9 ,

B7 = RM1M2M3M4RM5M6M7
M4∇M1GM2M5

M8M9∇M7GM3M6M8M9

B8 = RM1M2M3M4RM5M6M7
M4∇M1GM3M5

M8M9∇M2GM6M7M8M9 ,

B9 = RM1M2M3M4RM5M6M7
M4∇M1GM3M5

M8M9∇M6GM2M7M8M9 ,

B10 = RM1M2M3M4RM5M6M7
M4∇M9G

M3M5M7M8∇M9GM1M2M6M8 ,

B11 = RM1M2M3M4RM5M6M7
M4∇M8G

M1M2M6
M9∇M9GM3M5M7M8 ,

B12 = RM1M2M3M4RM5M6M7
M4∇M3GM5M6

M8M9∇M7GM2M1M8M9 ,

B13 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M2M6
M7M8∇M9GM4M5M7M8 ,

B14 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M2M4
M7M8∇M9GM5M6M7M8 ,

B15 = RM1M2M3M4RM5
M1

M6
M3∇M2GM6

M7M8M9∇M5GM4M7M8M9 ,

B16 = RM1M2M3M4RM5
M1

M6
M3∇M2GM4

M7M8M9∇M5GM6M7M8M9 , ,

B17 = RM1M2M3M4RM5
M1

M6
M3∇M2GM5

M7M8M9∇M4GM6M7M8M9 ,

B18 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M5M6
M7M8∇M4GM2M7M8M9 ,

B19 = RM1M2M3M4RM5M6
M3M4∇M9G

M1M5
M7M8∇M9GM2M6M7M8 ,

B20 = RM1M2M3M4RM5M6
M3M4∇M1GM5

M7M8M9∇M2GM6M7M8M9 ,

B21 = RM1M2M3M4RM5M6
M3M4∇M1GM5

M7M8M9∇M6GM2M7M8M9 ,

B22 = RM1M2M3M4RM5
M1M3M4∇M2GM6M7M8M9∇M5GM6M7M8M9 ,

B23 = RM1M2M3M4RM5
M1M3M4∇M9G

M2
M6M7M8∇M9GM5M6M7M8 ,

B24 = RM1M2M3M4R
M1M2M3M4∇M5GM6M7M8M9∇M6GM5M7M8M9 . (B.19)
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The contributions to s18(∇G)2R2 are then formed from the linear combinations de-
scribed in (B.5). We write the eleven-dimensional action as

2κ2
11 S

extra, gen = α2

∫
M11

17∑
i=1

Ci Bi ∗ 1 +
24∑
i=1

Ci+17Bi ∗ 1 (B.20)

with real parameters C1, . . . , C41 which are fixed by the reduction on a Calabi–Yau
threefold and compatibility with 5d, N2 super symmetry to

C5 = −1
2
C4 , C7 = −C1 − 1

2
C6 ,

C9 = 4C3 , C10 = −3C1 − 2C2 − 8C3 − 18C4 − 3
2
C6 − C8 ,

C11 = −4C3 , C12 = 4C3 ,

C13 = −8C3 , C14 = −6C1 − 2C2 − 12C3 − 36C4 − 3C6 − C8 ,

C15 = 1
3
C2 + 3C4 , C16 = −2C2 − 4C3 ,

C17 = 1
4
C2 , C25 = 2C22 − C24 ,

C29 = 1
4
C22 + 1

4
C23 − 1

4
C24 + 1

4
C26 ,

C32 = −C1 − 1
3
C22 − 4

3
C3 + 2

3
C30 − 6C4 − 1

2
C6 ,

C33 = C1 − 1
3
C22 + 4

3
C3 + 6C4 + 1

2
C6 ,

C37 = −C1 − 4
3
C3 − 1

3
C31 − 1

2
C34 − 1

6
C35 − 2

3
C36 − 6C4 − 1

2
C6 ,

C38 = 1
3
C30 + 1

3
C31 + 1

2
C34 + 1

6
C35 + 2

3
C36 ,

C39 = 1
4
C1 − 1

24
C22 + 1

3
C3 + 3

2
C4 + 1

8
C6 ,

C40 = 1
2
C1 + 2

3
C3 + 1

3
C31 + 1

6
C35 + 3C4 + 1

4
C6 ,

C41 = 1
4
C1 + 1

3
C3 + 1

12
C31 + 1

24
C35 + 3

2
C4 + 1

8
C6 ,

(B.21)
We then check compatibility of the novel induces H2R3 terms making use of the IIA
- Heterotic duality. Compactifying type IIA on K3 is dual to the Heterotic string on
T4. One finds that additionally

C2 = 0 , C1 = −1
6

(
8C3 + 2C31 + C35 + 36C4 + 3C6

)
, (B.22)

where more details can be found in section 2.2.
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