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THE COHOMOLOGICAL HALL ALGEBRA OF A SURFACE AND
FACTORIZATION COHOMOLOGY

M. KAPRANOV, E. VASSEROT

ABSTRACT. For a smooth quasi-projective surface S over C we consider the Borel-Moore homology of the
stack of coherent sheaves on S with compact support and make this space into an associative algebra by
a version of the Hall multiplication. This multiplication involves data (virtual pullbacks) governing the
derived moduli stack, i.e., the perfect obstruction theory naturally existing on the non-derived stack. By
restricting to sheaves with support of given dimension, we obtain several types of Hecke operators. In
particular, we study R(S), the Hecke algebra of 0-dimensional sheaves. For the flat case S = A? we
identify R(S) explicitly. For a general S we find the graded dimension of R(S), using the techniques of
factorization cohomology.
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0. INTRODUCTION

0.1. Motivation. A large part of the classical theory of automorphic forms for GL,, over functional fields
can be interpreted in terms of Hall algebras of abelian categories [31], [32]. Relevant here is Coh(C'), the
category of coherent sheaves on a smooth projective curve C/F,. Taking the Hall algebra of Bun(C'), the
subcategory of vector bundles, produces (unramified) automorphic forms, while Coho(C'), the category of
torsion sheaves, gives rise to the Hecke algebra.

The classical Hall algebra of a category such as Coh(C) consists of functions on (Fy-) points of the
moduli stack of objects and so admits various modifications, cf.[14, Ch. 8]. Most important is the cohomo-
logical Hall algebra (COHA) where we take the cohomology of the stack instead of the space of functions
on the set of its points [35]. This allows us to work over more general fields such as C.

Study of Hall algebras (classical or cohomololgical) of the categories Coh(S) for varieties S of dimension
d > 1 can be therefore considered as a higher-dimensional analog of the theory of automorphic forms. In
this paper we consider the case of surfaces (d = 2) over C and study their COHA. In this case we have
a whole new range of motivations coning from gauge theory, where cohomology of the moduli spaces of
instantons is an object of longstanding interest [46], [1], [8].

0.2. Description of the results. The familiar 2-fold subdivision into automorphic forms vs. Hecke
operators now becomes 3-fold: we have categories Coh,,(S), m = 0, 1,2, of purely m-dimensional sheaves,
see §4.1. Here, Cohy(S) consists of vector bundles, while Cohg(S) is the category of punctual sheaves.
An important feature is that the COHA of Coh,,—1(S) acts on that of Coh,,(S) by Hecke operators.

We denote by R(S) the COHA of the category Cohy(S). It is the most immediate analog of the
unramified Hecke algebra of the classical theory and we relate it to objects studied before.
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In the flat case S = A?, the algebra R(A?) is identified with the direct sum, over n > 0, of the
G L,-equivariant Borel-Moore homology of the commuting varieties of gl,,.

Our first main result, Theorem 6.1.4, shows that the algebra R(A?) is commutative, and is identified
with the symmetric algebra of an explicit graded vector space ©. It is convenient to write © = HEM(A?)®
©’, where the first factor is 1-dimensional, in homological degree 4.

For a general surface S, the algebra R(S) is non-commutative. Our second main result, Theorem 7.1.3,
provides a version of Poincaré-Birkhoff-Witt theorem for R(S). It exhibits a system of generators as well
as determines the graded dimension of R(S). More precisely, it establishes an isomorphism of graded
vector spaces

o : Sym(H2M(S)®@©') ~ R(S). (0.2.1)
Like the classical PBW isomorphism for enveloping algebras, o is given by the symmetrized product map
on the space of generators.

0.3. Role of factorization algebras. Our proof of Theorem 6.1.4 is based on the techniques of factor-
ization homology [9], [19], [20], [41]. More precisely, we consider the cochain lift R(S) of R(S). This can
be seen as a homotopy associative algebra whose cohomology is R(S). For any open set U < S we have a
similarly defined algebra R(U). Further, one can consider U to be any open set in the complex topology.
In this case Cohg(U) can be considered as an analytic stack and so its Borel-Moore homology and our
entire construction of the COHA make sense.

In this generality, the assignment U — R(U) is a factorization coalgebra in the category of dg-algebras.
This is a reflection of the more fundamental fact: U +— Cohg(U) is a factorization algebra in the category of
analytic stacks, see Proposition 7.4.2. These considerations allow us to lift o to a morphism of factorization
coalgebras in the category of dg-vector spaces and deduce the global isomorphism from the local one, i.e.,
from the case when S is an open ball which is equivalent to that of S = AZ.

0.4. Derived nature of the COHA. As a vector space, our COHA is the Borel-Moore homology of
the Artin stack Coh(S) (the moduli stack of objects of Coh(S)), i.e., it is the cohomology of the dualizing
complex:

H(Coh(S)) = H™*(Coh(S), waon(s))-

Since S is a surface, Coh(S) is singular due to obstructions encoded by Ext?, so the dualizing complex
is highly non-trivial. However, Coh(S) is in fact a truncation of a finer object, the derived moduli stack
RCoh(S), smooth in the derived sense, see [59], [57]. While the vector space underlying our COHA
depends on Coh(S) alone, the multiplication makes appeal to the derived structure: we use the refined
pullbacks corresponding to the perfect obstruction theories on Coh(S) and on the related stack of short
exact sequences. So our construction has appearance of applying some cohomology theory to the derived
stack RCoh(S) itself and using its natural functorialities for morphisms of derived stacks. It is very likely
that it can be interpreted in this way directly. We do not know how to do this, and so add “derived
corrections” to the functorialities of a non-derived cohomology theory.

0.5. Relation to other work. The COHA of a surface that we consider here is a non linear analog
of the COHA associated to the preprojective algebra of the Jordan quiver considered in [54], see, e.g.,
[55] for the case of arbitrary quivers. Kontsevich and Soibelman introduced in [35] cohomological Hall
algebras for 3-dimensional Calabi-Yau categories, by taking cohomology of the moduli stack of objects
with coefficients in the natural perverse sheaf of “vanishing cycles” with respect to the Chern-Simons
functional. Although the details of the approach have been worked out only for quiver-type situations,
see, e.g., [10] for a comparison with [54], it seems applicable, in principle, to the category of compactly
supported coherent sheaves on any 3-dimensional Calabi-Yau manifold M. In particular, our COHA for a
surface S should be related to the Kontsevich-Soibelman COHA for M the total space of the anticanonical
bundle on S.
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Instead of Borel-Moore homology of the stack Coh(S), one can take its Chow groups or its algebraic
K-theory, in particular, study K-theoretic analogs of the Hecke operators. This approach was developed
by Negut [45] who studied the K-theoretic effect of explicit Hecke correspondences on the moduli spaces
and, very recently, by Zhao [61] who defined independently the K-theoretic Hall algebra of 0-dimensional
sheaves by a method similar to ours. On the other hand, algebraic K-theory, being a more rigid object than
homology, does not easily localize on the complex topology and so determining the size of the resulting
objects is more difficult.

In the particular case where S is the cotangent bundle to a smooth curve, other versions of the COHA
(of 0-dimensional sheaves and of purely 1-dimensional sheaves) of S appeared recently in [44], [53].

0.6. Structure of the paper. In §1 we discuss the basic generalities on groupoids and stacks, including
higher stacks understood as homotopy sheaves of simplicial sets. We pay special attention to Dold-
Kan and Maurer-Cartan (Deligne) stacks associated to 3-term complexes and dg-Lie algebras. These
constructions are used in §2 to describe stacks of extensions (needed for defining the Hall multiplication)
and filtrations (needed to prove associativity).

In §3 we define and study the Borel-Moore homology of Artin stacks. This concept, which is a topolog-
ical analog of A. Kresch’s concept of Chow groups for Artin stacks [36], can be defined easily once we have
a good formalism of constructible derived categories and their functorialities f~!, Rfy, Rf., f'. While in
the “classical” approach (sheaves first, complexes later) this may present complications, cf. [47], [39] for
a discussion, the modern point of view of homotopy descent cf.[21], allows a straightforward definition
of the enhanced derived category of a stack as the oco-categorical limit of the corresponding categories
for schemes. The desired functorialities are also inherited from the case of schemes. We study virtual
pullback in this context.

The COHA is defined in §4, first as a vector space, then as an associative algebra.

In §5 we consider subalgebras in the COHA corresponding to sheaves with various condition on the
dimension of support. These subalgebras play the role of Hecke algebras, since they act on other subspaces
in COHA (corresponding to sheaves whose dimension of support is bigger) by natural “Hecke operators”
(operators formally dual to those of the Hall multiplication).

In §6 we study the flat Hecke algebra R(A?) by relating it to the earlier work on commuting varieties
in gl,. Here we prove Theorem 6.1.4.

Finally, in §7 we globalize the consideration of §6 by describing the global Hecke algebra R(S) as the
factorization (co)homology of an appropriate factorization (co)algebra. This leads to the proof of Theorem
7.1.3 .

The brief Appendix provides a reminder on oo-categories and spells out the homotopy unique nature
of Chern classes and orientation classes at the cochain level.
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The research of E.V. was supported by the grant ANR-18-CE40-0024.
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12/2018, Simons Center ; TCRT6, 01/2019, Academia Sinica). We are grateful to the organizers of these
events for the invitations to speak.



THE COHA OF A SURFACE 5

1. GENERALITIES ON STACKS

1.1. Groupoids and simplicial sets. A groupoid is a category G in which all morphisms are invertible.
We write G = {G1 3 Go} where Gg = Ob(G) is the class of objects and G; = Mor(G) is the class of
morphisms. For an essentially small groupoid G let my(G) be the set of isomorphisms classes of objects
of G. For any object z € Gg let m1(G,z) = Autg(x) be the automorphism group of . All groupoids in
the sequel will be assumed essentially small.

Small groupoids form a 2-category &pd. For each groupoids G1, Ga we have a groupoid whose objects
are functors G; — (G5 and morphisms are natural transformations of functors. We will refer to 1-
morphisms of &pd as simply morphisms of groupoids. Considered with this notion of morphisms, groupoids
form a category which we denote Gpd. Let Eq € Mor(Gpd) be the class of equivalences of groupoids.

Proposition 1.1.1. Let f : G — G’ be a morphism of groupoids. Suppose that f induces a bijection of
sets mo(G) — wo(G') and, for any x € Ob(G), an isomorphism of groups (G, x) — 71 (G, f(x)).Then f
18 an equivalence of groupoids.

Proof. The conditions just mean that f is essentially surjective and fully faithful hence an equivalence. [

For a category C let A°C be the category of simplicial objects in C. In particular, we will use the
category A°Set of simplicial sets and A°Ab of simplicial abelian groups. For a simplicial set X let | X|
be its geometric realization. A morphism f : X — X’ of simplicial sets is called a weak equivalence, if it
induces a homotopy equivalence | X| — |X’|. In this case we write X ~ X’. Let W be the class of weak
equivalences.

We also associate to any simplicial set X its fundamental groupoid II1X. Objects of IIX are vertices of
X, i.e., elements z € Xy, and, for z,y € Xy, the set Hompx(x,y) consists of homotopy classes of paths
in |X| joining = and y. Let mo(X) be the set of connected components of |X|, and, for each ¢ > 1 and
x € X let m;(X, z) be the topological homotopy groups of | X| at x.

Dually, the nerve NG of a groupoid G is a simplicial set with the set of m-simplices being
NG = G1 XGy XGo -+ X, G1 - (m times). (1.1.2)
The topological homotopy groups of NG match those defined above algebraically for G:
m(NG) = mo(G), m(NG,z) =m(G,z), m(NG,z)=0, =2

A simplicial set is of groupoid type, if it is weak equivalent to the nerve of some groupoid. We denote by
A°SetS! © A°Set the full subcategory of simplicial sets of groupoid type.

Proposition 1.1.3.
(a) A simplicial set X is of groupoid type if and only if m;(X,x) = 0 for each i = 2, x € Xo. Then, we
have X ~ NIIX.
(b) The functorsII, N yield quasi-inverse equivalences of homotopy categories A°Set<' [W™1] ~ Gpd[Eq™!].
]

Let C be an abelian category. We denote by dgC' the category of cochain complexes K = (K™, d" :
K" ! — K™),cz over C. For n € Z we denote by dgS"C the category of complexes concentrated in
degrees < n. For K € dgC' we denote by

KSn — {CE Knl ﬂ,K”_,()_,} c dgénc’

renK = {- T K Ker(dH)—0—- - } € dg="C

its stupid and cohomological truncation in degrees < n. Note that 7<, sends quasi-isomorphisms of
complexes to quasi-isomorphisms.

Ezamples 1.1.4 (Dold-Kan groupoids).
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(a) Given a 3-term complex of abelian groups

K= (k1L go 4 g1y,

we have the action groupoid
wK = Ker(d')/K™' := {K™ x Ker(d') = Ker(d")}

whose set of objects is Ker(d!') and whose morphisms s — t are given by {h € K~1; s + d°(h) = t}.
Then we have

mo(wK) = HY(K), m(wK,s)=H Y(K), VseObwk.

(b) The Dold-Kan correspondence DK : dg<’Ab — A°Ab associates to a Z<o-graded complex K of

C-vector spaces the simplicial vector space DK(K) such that

e DK(K)o = K°,

e the set of edges joining s,t € K" is {he K~1; s+ d°(h) = t},

e 2-simplices with given 1-faces are in bijection with certain elements of K2, and so on, see, e.g.,

[60, §8.4.1].

For each i > 0, we have an isomorphism m;(DK(K)) ~ H~%(K) which is independent of the base
point. In fact, the correspondence preserves the respective standard model structures. In particular,
for a 3-term complex K as in (a), we have

wK =IIDK(7<K). (1.1.5)

Ezamples 1.1.6 (Maurer-Cartan groupoids). We will use a non-abelian generalization of Examples 1.1.4,
due to Deligne, see [22], [23] and references therein, Hinich [28] and Getzler [18].

(a) Consider a (possibly infinite dimensional) dg-Lie algebra g over C situated in degrees [0, 2]:
d° d!
g=1{g" —g' —¢}.

Thus g° is an ordinary complex Lie algebra. We assume that it is nilpotent, so we have the nilpotent
group GY = exp(g’). By definition, G° consists of formal symbols e¥,y € g* (so G° is identified
with g° as a set), with the multiplication given by the Campbell-Hausdorff formula. The set of
Maurer-Cartan elements of g is

1
mc(g) = {x egh;da+ 5[:(},3?] = 0}.

The group G acts on mc(g) by the formula

Vo = (g)e)+ o ) (1.17)

eVxx = e (y)(zr) + ————(d" (v)), 1.
ad(y)

see [23, p. 45]. We define the Maurer-Cartan groupoid ! (or Deligne groupoid) of g to be the action

groupoid
MC(g) = mc(g)//G” := {G” x mc(g) = mc(g)}.
Note that if the dg-Lie algebra g is abelian, i.e., if it reduces to a 3-term cochain complex, then

GY = g° and it acts on mc(g) = Ker(d') by translation, so we have MC(g) = w(g[1]) where w is as
in Example 1.1.4 (a) .

n this paper we use the terms “Maurer-Cartan groupoid” and “Maurer-Cartan stack” in order to avoid clashes with the
algebro-geometric notion of Deligne-Mumford stacks.
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(b) More generally, let g be any nilpotent dg-Lie algebra over C. The Maurer-Cartan simplicial set
mc,(g) is defined by

an(g) = mc(g ®c pol(An))7

where Q° (A") is the commutative dg-algebra of polynomial differential forms on the standard n-

pol
simplex, see [28], [18]. Further, in [18] it is proved that if g is concentrated in degrees [0,2] then

N.(MC(g)), is weak equivalent to mc.(g).

Proposition 1.1.8. A quasi-isomorphism ¢ : g1 — g2 of nilpotent dg-Lie algebras induces a weak equiv-
alences of simplicial sets mcq(g1) — mcq(g2). In particular:

(a) If g1, g2 are concentrated in degrees [0,2], then ¢ induces an equivalence of groupoids MC(g;) —
MC(g2)-

(b) A quasi-isomorphism K1 — Ko of cochain complezes as in Example 1.1.4(a) induces an equivalence
of groupoids wkKi1 — wkKs.

g

Let now p : g — b be a surjective morphism of dg-Lie algebras. Let n = g be the kernel of p and assume
that there is an embedding ¢ : h — g with po¢ = 1 such that g = h x n is the semi-direct product.

We have a functor of groupoids p, : MC(g) — MC(h). Recall that for a functor ¢ : C — D and an
object x € Ob(D), the fiber category ¢/ consists of pairs (y,h) with y € Ob(C) and h : ¢(y) — x a
morphism in D, with the obvious notion of morphisms of such pairs. If C, D are groupoids, so is ¢/z.
We apply this when C' = MC(g), D = MC(h) and ¢ = p,. We get the fiber category p./z. On the other
hand, the object x € Ob(MC(h)) being an element of mc(h), it gives a new differential d, = d — ad(z)
on n, where we abbreviate x = i(x). Let n, be the dg-Lie algebra with underlying Lie algebra n and
differential d.

Proposition 1.1.9. The fiber category ps/x is equivalent to the groupoid MC(n,). O

1.2. Stacks and homotopy sheaves. Let . be a Grothendieck site. We recall that a stack (of es-
sentially small groupoids) on . is a presheaf of groupoids B : T +— B(T), T € Ob(.¥), satisfying the
2-categorical descent condition extending that for sheaves of sets, see [...] for background. Stacks on .
form a 2-category &t . We will refer to 1-morphisms of &t as morphisms of stacks and will denote by
St the category of stacks on . with these morphisms. Let Eq © Mor(St«) be the class of equivalences
of stacks.

Remark 1.2.1. For most purposes, the above 1-categorical point of view on stacks will be sufficient.
However, in various constructions below such as gluing, the full 2-categorical structure on &t becomes
important. In particular, as with objects of any 2-category, to define a stack “uniquely” (e.g., naively, in
a way “independent” on some choices) means, more formally, to define it uniquely up to an equivalence
which is defined uniquely up to a unique isomorphism.

A stack of groupoids B gives rise to a sheaf of sets my(B) on .7, obtained by sheafifying the presheaf
T — 7o(B(T)). Similarly, for any T' € Ob(.¥) and any object x € B(T') we have a sheaf of groups m; (B, )
on T, i.e., on the site .//T, obtained by sheafifying the presheaf T" +— 71 (B(T"), z|7/), where x|z is the
pullback by the morphism 77 — T.

Proposition 1.2.2. Let f : B — B’ be a morphism in Sty which induces an isomorphism of sheaves
of sets my(B) — my(B’') and an isomorphism of sheaves of groups m,(B,x) — m (B, f(z)) for any
T € Ob(¥), x € Ob(B(T)). Then f is an equivalence of stacks.

Proof. Follows from Proposition 1.1.1 by sheafification. |
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Let A°Sety be the category of presheaves of simplicial sets on .. Recall [59] that such a presheaf
X is called a homotopy sheaf or an co-stack, if it satisfies descent in the homotopy sense. We denote by
St% the category of homotopy sheaves of simplicial sets on . and by W < Mor(5t%) the class of weak
equivalences (defined stalk-wise). A homotopy sheaf X gives rise to a sheaf of sets my(X) on .7 and, for
any T € Ob(.”) and any vertex x € X (T)o, a sheaf of groups m,;(X, z) on ./T. We have:

Proposition 1.2.3. Let f : X — X' be a morphism in St%,. Suppose f induces an isomorphism of
sheaves of sets wy(X) — mo(X') and, for each T € Ob() and x € X (T)o, an isomorphism of sheaves of
groups ;(X,z) — m; (X', f(x)). Then f is a weak equivalence.

Proof. If . is a point, this is the standard: a map of simplicial sets is a weak equivalence iff it induces
isomorhism on homotopy groups. The case of general .¥ is obtained from this by sheafification. O

Any homotopy sheaf X gives a stack of groupoids 11X on ., defined by taking T — 11X (7). Any
stack of groupoids B on .¥ gives rise to a homotopy sheaf N(B) taking T to the nerve of the groupoid
B(T). A homotopy sheaf X is called of groupoid type, if it is weak equivalent to N(B) for some stack B.
We denote by St?}’gl c St% the full category of homotopy sheaves of groupoid type.

Proposition 1.2.4.

(a) A homotopy sheaf X is of groupoid type if and only if w;(X,x) = 0 for each T € Ob(), x € X(T)o
and v = 2.

(b) The functlors II, N induce mutually quasi-inverse equivalences of homotopy categories St?sl[w_l]
Sty[Eq™].

(I

1.3. Artin and f-Artin stacks. In this paper all schemes, algebras, etc., will be considered over the
base field C of complex numbers. Let ;{?f be the category of affine schemes over C equipped with the
étale topology. We refer to [38], [49] for general background on Artin stacks, i.e., stacks of groupoids on
ff with a smooth atlas and a representable, quasi-compact, quasi-separated diagonal.

Examples 1.3.1.
S

(a) Let G = { Gy Z Gy } be a groupoid the category of schemes of finite type such that the source
¢

and target maps s, ¢ are smooth morphisms. It gives rise to an Artin stack which we denote by |G].
By definition, |G| is the stack associated with the prestack

T — {Hom(T, G1) = Hom(T, Go)}.

(b) In particular, let G be an affine algebraic group acting on a scheme Z of finite type. Then we have
the action groupoid {G x Z =3 Z} in the category of schemes of finite type. The corresponding Artin
stack is denoted Z//G and is called the quotient stack of Z by G. Explicitly, for T € &Zff the groupoid
(Z/)/G)(T) is identified with the category of pairs (P, u), where P is a G-torsor over T' (locally trivial
in étale topology) and u : P — Z is a G-equivariant map.

Definition 1.3.2. An Artin stack B is called:

(a) Of finite type, if it is equivalent to the stack of the form |G| for a groupoid G as in Example 1.3.1(a).

(b) An f-Artin stack, if it is locally of finite type.

(c) A quotient (resp. locally quotient) stack is it is equivalent (resp. locally equivalent) to the stack of
the form Z//G where Z,G are in Ezample 1.3.1(b).

All the stacks we will use will be f-Artin. Let the 2-category &t and the category St be the full
2-subcategory in Gt;ﬁ? and the full subcategory in St;ﬁ? formed by f-Artin stacks.
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Let ff Jf? be the category of affine schemes of finite type with its étale topology. We note that
f-Artin stacks are determined by their restrictions to &/ff, and so we can and will consider them as stacks
of groupoids on Zff.

Given an f-Artin stack B, let Gtg be the 2-category of f-Artin stacks over B, i.e., of f-Artin stacks
X together with a morphism of stacks X — B. Objects of &tp can, equivalently, be seen as stacks of
groupoids over the Grothendieck site @/ffp formed by affine schemes T of finite type together with a

morphism of stacks f : T' — B. Thus, an f-Artin stack X over B can be seen as associating to each
T € Jff g a groupoid X (7).

2. STACKS OF EXTENSIONS AND FILTRATIONS

2.1. Cone stacks. We refer to [47, 49] for general background on quasi-coherent sheaves on Artin stacks.
For an f-Artin stack B we denote by QCoh(B), resp. Coh(B) the category of quasi-coherent, resp.
coherent sheaves of Op-modules. By a vector bundle we mean a locally free sheaf of finite rank.

Let B be an f-Artin stack and R = @),y R be a graded quasi-coherent sheaf of Op-algebras such
that R® = Op, R' is coherent and R is generated by R! locally over B. The relative affine B-scheme
C = Spec R is called a cone over B, see, e.g., [5, §1].

If £ is a coherent sheaf over B, we get the associated cone C(E) = Spec(Symp,(€)) which is an affine

group scheme over B. Its value (the set of points) on (T EN B) € @/ff g is Homp,. (f*E, Or). We call such

a cone an abelian cone.

For instance, the total space of a vector bundle £ over X is defined as
Tot(£) = C(EY) = SpecSymgy, (£Y)
where £V is the dual sheaf of Op-modules. For any affine B-scheme f :T'— B we have
Tot(E)(T) = HO(T, f*€). (2.1.1)
Thus, a section s € H(B, £) is the same as a morphism B — Tot(&) of schemes over B.

Any cone C' = Spec R is canonically a closed subcone of the abelian cone Spec(Symg , (R')), called the
abelian hull of C.

Ezample 2.1.2. Let d : £ — F be a morphism of vector bundles on B. We denote by Ker(d) c £ the
sheaf-theoretic kernel of d. On the other hand, let 7 : Tot(£) — B be the projection. The morphism d
determines a section s of the vector bundle 7*F on Tot(€), and we define the abelian cone Ker(d) < Tot(E)
as the zero locus of this section. We note that H°(B,Ker(d)) = H°(B, &) consists precisely of those
sections s which, considered as morphisms B — Tot(£), factor through the substack Ker(d).

A morphism of abelian cones over B is, by definition a morphism of group schemes over B. Given a
morphism of abelian cones F — F', we have an action of the affine group scheme E over B on F. Hence,
we can form the quotient Artin stack F'//E. Stacks of this form are called abelian cone stacks.

2.2. Total spaces of perfect complexes. Let B be an f-Artin stack. We denote Cyeon(B) the category
formed by complexes of Op-modules with quasi-coherent cohomology. Let qis be the class of quasi-
isomorphisms in Cyeon(B) and Dyeon(B) = Cqeon(b)[qis™] be the corresponding derived category. For

any integers p < q let C’ggf&
degrees from p to q.
Definition 2.2.1. Let C € Cyeon(B) and p < q be integers.

(a) C is strictly [p, q]-perfect, if C is quasi-isomorphic to a complex of vector bundles

(B) © Cqeon(B) be the full subcategory formed by complexes situated in

p+1 p+2 q
{c aret opt1 A4S c?}

situated in degrees from p to q. This complex is called a presentation of C.
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(b) C is [p, q]-perfect, if, locally on B, it is strictly [p, q]-perfect and, moreover, the set of open substacks
U < B such that C|y is strictly [p, q]-perfect, is filtering with respect to the partial order by inclusion.

For a [p, q]-perfect complex C and an open U < B as above we will refer to a quasi-isomorphism
Cluy — Cy, with Cy strictly [p, q|-perfect, as a presentation of C over U.

A [p, q]-perfect complex C has a virtual rank vrk(C) which is a Z-valued locally constant function on
B, i.e., a function constant on each connected component of B. It is defined in terms of a presentation of
C as vrk(C) = ?zp(—l)lrk(cz).

We will be interested in making sense of total spaces of perfect complexes using (2.1.1) as a motivation,
cf. [57, §3.3] .

Definition 2.2.2.
(a) Let Ce C=0 (B). We define the simplicial presheaf Tot™(C) on </ff g by

qcoh
Tot®(C)(T) = DK(H(T, f*C)), (T - B) € a/ffp.
(b) LetCe cl-10l (B). We define the pre-stack of groupoids Tot(C) on «/ffpg by

qcoh
Tot(C)(T) = w(H'(T, f*C)), (T 5 B) e dffy.
We call Tot(C) the total space of C.

Proposition 2.2.3.

(a) Let C € C’(fcgh(B). The simplicial presheaf Tot®(C) is a homotopy sheaf. For any x € Tot™(C)(T)o

we have (independently on the choice of base points)
m;(Tot®(C)) = H(C), i=0.

A morphism ¢ : C; — Ca in C(fc?)h(B) induces a morphism of homotopy sheaves ¢, : Tot*(C1) —
Tot™(Cy) which is an equivalence, if ¢ is a quasi-isomorphism.

(b) Let C € C’(gzolﬁo] (B). The pre-stack Tot(C) on ffp is a stack. The homotopy sheaf Tot™(C) is of
groupoid type and IITot™(C) = Tot(C). In particular, the total space is functorial and takes quasi-

isomorphisms ¢ to isomorphisms ¢, .

Proof. Part (a) follows from the fact that C is a sheaf and from the properties of the Dold-Kan correspon-
dence. Part (b) follows by Proposition 1.2.4. O

Recall that a stack morphism f is called an l.c.i., i.e., a locally complete intersection morphism, if it
factorizes as f = p o4 where p is a smooth map and ¢ is a regular immersion.

Proposition 2.2.4.

(a) Let C € C(EZOI}’IO](B) be strictly [—1,0]-perfect. Then we have a canonical equivalence of stacks of

groupoids u : Tot(C)—Tot(C°)//Tot(C™1) on Fffp.
(b) LetC e C’(E;Ol}’lo] (B) be [—1,0]-perfect. Then Tot(C) is an Artin stack over B.
(c) For any morphism ¢ of [—1,0]-perfect complezes, the induced morphism ¢, of stacks is an l.c.i.

Proof. Part (a) is similar to the proof of [26, lem 0.1]. That is, look at any (T ER B) € dffg. By
definition, the groupoid Tot(C)(T) is the category whose objects are elements of x of HO(T, f*C°) and
a morphism z — 2’ is an element of H'(T, f*C~') mapping by d° to 2’ — x. At the same time, the
groupoid (Tot(C')//Tot(C®))(T) is the category of pairs consisting of an f*C~'-torsor P over T and an
f*C~'-equivariant morphism P — C° of sheaves over T. We see that the former category is the full
subcategory of the second consisting of data with the torsor P being the standard trivial one, P = f*C~1.
This defines a fully faithful functor up, and such functors for all T' give the sought-for morphism of stacks
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u. Now, since T is affine, H'(T, f*C~!) = 0 and so any torsor P above is trivial. This means that the
functor u is (locally) essentially surjective hence an equivalence of stacks. This proves (a). Parts (b) and
(c) follow from (a). O

Ezample 2.2.5. Now, let C be a strictly [—1, 1]-perfect complex
c=f(c -0 4 cny, (2.2.6)
The stupid truncation CS? = {C~! — C°} is strictly [—1,0]-perfect. We denote by
7:Tot(CY) - B, 7:Tot(CSY) = Tot(C®)//Tot(C~)—B
the projections. We recall from Example 2.1.2(c) the abelian cone Ker(d') = Tot(C°) given as the zero
locus of the section s of 7*C! induced by d'.

Proposition 2.2.7.

(a) IfC is strictly [—1, 1]-perfect, then we have a canonical equivalence of stacks Ker(d')//C~t—Tot(1<oC),
i.e., the section s descends to a section s of T*Ct, and Tot(7<oC) is the zero locus of 3.
(b) If C is [—1,1]-perfect, then Tot(1<oC) is an Artin stack over B.

Proof. Part (a) is completely analogous to the proof of Proposition 2.2.4(a), with C” replaced by Ker(d').
Part (b) follows from (a). O

We call Tot(7<oC) the truncated total space of C.

Proposition 2.2.8. Let C be a [—1, 1]-perfect complex and (T EA B) e dffg.
(a) For all s € Ob(Tot(7<oC)(T")) we have
mg(Tot(r<oC)) ~ H"(C), m;(Tot(r<oC),s) ~ H '(f*C).
(b) The truncated total space of [—1,1]-perfect complexes is functorial and takes quasi-isomorphisms ¢
to isomorphisms ¢,. O
Proof. Part (a) is a consequence of Proposition 2.2.7. Part (b) follows from (c). More precisely, a

morphism (resp. quasi-isomorphism) ¢ : C; — Cy of [—1, 1]-perfect complexes yields a morphism (resp.
quasi-isomorphism) 7<oC; — 7<oC2 and the statement follows from Proposition 2.2.3(b). O

2.3. Stacks of extensions. We now consider the following general situation. Let B be an f-Artin stack
and p : Y — B be a scheme of finite type over B. Let £, F be coherent sheaves over Y which are flat

over B. We can form the object C € Dgcoh(B) given by

C = Rpx RHomy, (F,&)[1].

Let SES be the stack over B classifying short exact sequences 0 - E—G—F — 0 of coherent sheaves
over Y. That is, for any B-scheme T' € &/ff 5 the objects of the groupoid SES(T') are short exact sequences

0->&r—-G—>Flr—0 (2.3.1)

of coherent sheaves of Oy ,r-modules, and the morphisms are the isomorphisms of such sequences
identical on the boundary terms. We then have

mo(SES(T)) = Ext%gYXBT(}"|T,E\T), 71 (SES(T),G) = Ext%YXBT(ﬂT,E]T), (2.3.2)
for any object G of SES(T"). This implies identifications of sheaves of sets on Zff, and of sheaves of
groups on &/ ff:

mo(SES) = H°(C), =,(SES xpT,G) = H'(C|7). (2.3.3)
These identifications, together with those of Proposition 2.5.2 (b), suggest the following.
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Proposition 2.3.4. Assume that the complex C is [—1, 1]-perfect. Then, we have an equivalence Tot(T<oC) =
SES of cone stacks over B.

Proof. As pointed out, the 7, and 7; of the two stacks Tot(7<oC) and SES are isomorphic. So it remains
to construct a morphism of stacks inducing these identifications. For this, we first make some general
discussion.

We recall [7], [34], [58] that for any Artin stack Z the category Dgcoh(Z) has a dg-thickening, i.e.,

there is a pre-triangulated dg-category Cgcon(Z) with the same objects and spaces of morphisms being
upgraded to complexes RHoqucoh( Z)(IC, L) of C-vector spaces such that

Homo, (K, £) = H’RHom¢,_, (2)(K, £).

The complex RHom above can be explicitly found as
RHoqucoh(Z)(lC, L) = Homg,, (I(K), (L)), (2.3.5)
where I(K) is a fixed injective resolution of K for each K.
We now specialize to the case
Z=YxpT, K=F|pr, L=Er[1],

where T' € o/ff p is an affine B-scheme. The complex of C-vector spaces
coh(Z)(]:|T’5|T[1])

has cohomology only in degrees 0 and —1, given by the Ext groups in (2.3.2). We consider the simplicial
set

T<0 RHoqu

X(T) = DK(r<o RHom¢, , (z)(Flr,E|r[1])),

which is of groupoid type by Proposition 1.1.3(a). Its vertices are morphisms of complexes I(F|r) —
I(&|7[1]). The cone of such a morphism is a complex of sheaves which has only one cohomology sheaf, in
degree —1, and this sheaf G fits into a short exact sequence as in (2.3.1). In this way we get a morphism
of groupoids
h(T) : TLX (T) — SES(T).

At the same time, by (1.1.5), the groupoid I1X (T') is equivalent to the groupoid T H°(T,C|7) in Example
1.1.4(a), hence to Tot(7<oC)(T") by Proposition 2.2.8(a). Combining these constructions for all T' € <Zff p,
we get a homotopy sheaf X of simplicial sets on &7ff 5 of groupoid type, together with an equivalence
and a morphism of stacks

Tot(r<oC) ~ IIX > SES.

The morphism A induces the required identification on 7, and 7;, so it is an equivalence of stacks.
Proposition 2.3.4 is proved. O

2.4. Maurer-Cartan stacks. We now describe a non-abelian generalization of the construction of §2.2.
Let B be an f-Artin stack and (G, d,[—, —]) be an Op-dg-Lie algebra with quasi-coherent cohomology.
In other words, G is a Lie algebra object in the symmetric monoidal category (Cqcon(B),®p). We will
assume that G is nilpotent. We define the Maurer-Cartan co-stack of G to be the simplicial presheaf
mc,(G) on &ff 5 defined by

me, (G)(T) = me (H'(T, f*G)).

Here (T ER B) is an object of .@/ff, and we apply the functor mec, to the dg-Lie algebra H°(T, f*G)
over C.

Proposition 2.4.1.
(a) The simplicial presheaf mce(G) is a homotopy sheaf.
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(b) A morphism (resp. quasi-isomorphism) ¢ : Gi — Go of nilpotent Op-dg-Lie algebras induces a
morphism (resp. weak equivalence) of homotopy sheaves ¢, : mce(G1) — mce(Go).

Proof. Part (b) follows from Proposition 1.1.8 by sheafification. O

Assume that the dg-Lie algebra G is situated in degrees [0, 2], i.e.,

g=1{g0L-g' g2, (2.4.2)

Then we define the stack MC(G) of groupoids on <Zff 5 by
MC(G)(T) = MC(H®(T,dl|r))
We call MC(G) the Maurer-Cartan stack associated to a 3-term Op-dg-Lie algebra G.

Proposition 2.4.3. If G is situated in degrees [0, 2], then the simplicial sheaf mce(G) is of groupoid type
and IImc,(G) = MC(G). O

Let G be any Op-dg-Lie algebra with quasi-coherent cohomology. As for complexes, we call G strictly
[0, 2]-perfect, if it is quasi-isomorphic, as an Op-dg-Lie algebra, to a 3-term dg-Lie algebra (2.4.2) with
each G’ being a vector bundle on B. We say that G is [0, 2]-perfect, if, locally on B, it is strictly [0, 2]-
perfect and, moreover, the set of open substacks U — B such that G|y is strictly [0, 2]-perfect, is filtering
with respect to the partial order by inclusion.

We now assume that G be a strictly [0, 2]-perfect dg-Lie algebra as in (2.4.2). Then, we have the closed
substack mc(G) < Tot(G') “given by the equation d'z + %[z, z] = 07, with two equivalent definitions :

(mcl) For any affine B-scheme T’ 1, B we have a dg-Lie algebra H(T,G|r), and we define
me(G)(T) = me(H"(T,G|r)).

(mc2) The stack mc(G) is the zero locus of the section sg of T*G? given by the curvature

1
G' -G ze—da+ i[ac,x] (2.4.4)
Since the Lie algebra G is nilpotent, we have a sheaf of groups G° = exp(G°) on B by Malcev theory,
which acts on the stack mc(G) as in (1.1.7), and we can consider the quotient stack mc(G)//G°. Consider
also the quotient stack

Tot(G<) = Tot(G1)//G°

and denote its projection to B by 7.

Proposition 2.4.5.

(a) Let G be a strictly [0, 2]-perfect dg-Lie algebra as in (2.4.2).
(al) We have an equivalence of stacks u : MC(G) — mc(G)//G°, so MC(G) is an Artin stack.
(a2) The section sg of the bundle 7*G? on Tot(G') descends to a section 3g of the bundle T*G? on
Tot(GSY), and the substack MC(G) < Tot(GS) is the zero locus of 3g.
(b) If G is a [0, 2]-perfect Op-dg-Lie algebra, then the simplicial sheaf mce(G) is of groupoid type. The
stack of groupoids MC(G) := Ilmc,(G) is an Artin stack over B.

Proof. Part (al) is proved similarly to Proposition 2.2.4(a), using the fact that, G° being a unipotent
sheaf of groups, any f*GO-torsor over any T € &/ff g is trivial. Part (a2) follows from (a) and from the
equivalence of the two definitions (mcl) and (mc2) of the stack me(G). Part (b) follows because being of
groupoid type and being an Artin stack over B are properties local on B. ]

Ezample 2.4.6. If the dg-Lie algebra G is abelian, i.e., it reduces to a [0, 2]-perfect complex on B, then
MC(G) = Tot(r<o(G[1]))-
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Let us now globalize the considerations of Proposition 1.1.9 as follows. Let p: G = H x N’ — H be a
split extension of strictly [0, 2]-perfect dg-Lie algebras on B. The B-scheme m3; : mc(H) — B carries a
strictly [0, 2]-perfect dg-Lie algebra N which is equal to 73N as a sheaf graded of Ome(n)-Lie algebras,
with the differential d, at a point z € mc(#) defined as above. The action of the sheaf of groups H°
on mc(H) extends to a compatible action on N, so that N descends to a strictly [0, 2]-perfect dg-Lie
algebras on the stack MC(#H). We denote this descended dg-Lie algebra by the same symbol N. Note that

MC(N) is a stack over MC(H), hence over B. Now, we have the following global analogue of Proposition
1.1.9.

Proposition 2.4.7. The stacks MC(G) and MC(N') over B are isomorphic.
Proof. For each affine B-scheme T € @/ff 5, we have a split exact sequence of dg-Lie algebras

0 ——= HYT,N|r) —= H(T,G|r) —2> HY (T, H|r) —= 0

which gives rise to a functor p, : MC(H®(T,G|r)) — MC(H®(T,H|r)) with the fiber category over
an object x equivalent to MC(H"(T,H|r).). This yields the following isomorphism of groupoids over
MC(H(T, H|r))
MC(H®(T, G|r)) = MC(H"(T, Nz)).
O

2.5. Stacks of filtrations. Let B be an f-Artin stack and p : Y — B be a scheme over B, locally of
finite type. Let &1, £12, £23 be coherent sheaves over Y which are flat over B. We define FILT to be the
stack over B classifying filtered coherent sheaves £y < Eyp < Epz over Y, together with identifications
Eoj/€0i ~ Ej for ij = 12,23. We have a sheaf of associative dg-algebras over B defined by

G = @ Rp.RHom(&, &), 01 <12 <23. (2.5.1)
ij<kl
We'll consider G as a sheaf of dg-Lie algebras using the supercommutator. Then, we have the following
generalization of Proposition 2.3.4.

Proposition 2.5.2. Assume that G is a strictly [0, 2]-perfect dg-Lie algebra on B. Then, we have an
equivalence MC(G) = FILT of stacks over B.

Proof. Let SESgp12 be the stack over B classifying short exact sequences

Eo12 = {0 = En—Ep—E12 — 0} (2.5.3)
of coherent sheaves over Y. Then FILT is the stack over SESg12 classifying short exact sequences
Enzz = {0 — Epp—Enz—Ea3 — 0}, (2.5.4)

and G = H x N where
N = Rp*HOHI(gQg, 501 G—) 512), H = Rp*Hom(Slg, 801).

Since the dg-Lie algebra H is abelian, by Example 2.4.6 and Proposition 2.3.4 the stacks MC(H), SESy12
are equivalent, and AN gives an abelian strictly [0, 2]-perfect dg-Lie algebra N over SESgp12. Further, by

Proposition 2.4.7, we have MC(G) = MC(N) as stacks over SESp12. So we are reduced to prove that

MC(N) is the stack over SESg1o classifying short exact sequences (2.5.4).

Let T ER B be an affine B-scheme. Suppose the object Eyia of SESp12(T) is the cone of a morphism
up12 in RHom%/XBT(f*Em, f*Eo1). Thus, given injective resolutions of f*&;; for each ¢, j, the complex Epo
is quasi-isomorphic to the complex C'(ug12) = I12@® Io1 where the differential is the sum of the differentials
of I12, Ip; and the composition with ugi2, viewed as a morphism of complexes of sheaves I1o — Ip1[1].



THE COHA OF A SURFACE 15

Next, we have N = Wit/\/ as a graded sheaf, and the differential dyio of N at the point £p1s is given by
do2(u) = d(u) — ad(uo12)(w), Vu € Homy 7 (f*E23, [*E01 @ f*&12),

see Proposition 1.1.9 and the discussion before it. In our case ad(ug12)(u) reduces to the composition
up12u. Thus, the condition for u to satisfy the equation dgpi2(u) = 0 is equivalent to saying that it lifts to
a morphism of complexes f*E33 — C(up12), i.e., to a dotted arrow upi23 in the diagram.

o2 _ _
= o123
+17~ _
+1 ~

J*En T w2 [*&12 ~u J*Es

\/

u

The cone of such an arrow defines &3 with a short exact sequence (2.5.4). We have thus constructed

a morphism MC(N) — FILT of stacks over SESp12, and it is easy to check that this morphism is an
equivalence. O

3. BOREL-MOORE HOMOLOGY OF STACKS AND VIRTUAL PULLBACKS

3.1. BM homology and operations for schemes. We fix a field k of characteristic 0 which will serve
as the field of coefficients for (co)homology. The cases k = Q or k = @Q; will be the most important.
For basics on simplicial categories, co-categories and dg-categories, see §A and the references there. By
dgVect = dgVect, we denote the dg-category of cochain complexes over k. We recall the standard
formalism of constructible derived categories of complexes of k-vector spaces and their functorialities [33],
together with its oco-categorical enhancement.

Let Sch denote the category of schemes of finite type over C. For a scheme T" € Sch we denote by C(7')
the category of constructible complexes of sheaves of k-vector spaces on T(C). Let D(T) = C(T)[Qis™']
be the constructible derived category, i.e., the localization of C(T') by the class of quasi-isomorphisms.
We denote by D(T)4, and D(T") the dg- and co-categorical enhancements of D(T") defined as in §A.2. If
k = @Q;, we can use the étale l-adic version of the constructible derived category, see [47], [48]. It admits
similar enhancements.

These categories carry the Verdier duality functor which we denote by D. For a morphism f: S5 — T
in Sch we have the usual functorialities

Rfs. /i
D(5) ——=D(T)
7L
with their standard adjunctions, see [33] for the case of classical topology or [47], [48] for the case of étale
topology. They extend to the above enhancements and we will be using these extensions.

We denote by wr = p'k, p: T — pt, the dualizing complex of T. The Borel-Moore homology of T and
its complex of Borel-Moore chains are defined by

HEM(T) = H™*(T,wr), CPM(T) = RIN(T,wr), (3.1.1)

with the understanding that CEM(K) is the degree (—m) part of RT(T,wr). The Poincaré-Verdier duality
implies that
HEM(T) = H2(T)*. (3.1.2)

A morphism f : .S — T in Sch is called strongly orientable of relative dimension m € Z, if there is an
isomorphism kg — f'ky[m] in D(S). A choice of such an isomorphism is called a strong orientation of
f. For not necessarily connected S we can speak of relative dimension being a locally constant function
on S, with the obvious modifications of the above.
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Recall that HBM is covariantly functorial with respect to proper morphisms. By (3.1.1), an oriented
morphism f : S — T of relative dimension m gives rise to a pullback map f* : HEM(T) — HEM (9), and
such maps are compatible with compositions of oriented morphisms.

Ezamples 3.1.3.

(a) A smooth morphism f of dimension d is strongly oriented of relative dimension 2d.

(b) An l.c.i. (locally complete intersection) morphism is a morphism f : S — T represented as a com-
position f = poi where p is smooth and 7 is a regular embedding. Thus an l.c.i. morphism f has
a well defined dimension d, which is a locally constant Z-valued function on S. If the embedding ¢
is strongly oriented, then f is also strongly oriented of relative dimension 2d, hence gives rise to a
pullback morphism f*. Note that the map f* still make sense for any l.c.i. morphism, see, e.g., [48,
§2.17].

Example 3.1.4. Let € be a rank r vector bundle on T. We recall that the rth Chern class ¢, (€) € H*" (T, k)
is the obstruction to the existence of a continuous section of £ which does not vanish anywhere. Let s be

any section of £. We denote the zero locus of s with its embedding into T by Ty > T. In this situation
we have the refined rth Chern class

¢ (&,5) € HF (T.k) = H*(Ts,iky)

whose image in H?"(T,k) is ¢, (&), yieldding a virtual pullback map s' : HEM(T)— HEBEM (T,). More

«—2r
precisely, following [17, §7.3], we introduce the bivariant cohomology of any morphism f : S — T to be

H(S L T) = H*(S, f'kp).
Recall that

(a) We have H*(S 13 T) = H*(S, k) while H*(S — pt) = HBM(S).
(b) For a composable pair of maps S 4, T % U we have the product

oS Lryea (TS u)—a(s ).
So, taking U = pt, each h e H%(S EN T) gives rise to a map uy, : HEM(T) — HEM(S).

We deduce that c.(€,s) € H? (T L, T) defines a map HPM(T)—HEM (Ty).

o—2r

The construction of ¢, (&, s) is as follows. We consider the embedding T’ 9 Tot(€) as the zero section.
It is strongly oriented of relative dimension 2r, see [17, prop. 4.1.3, 7.3.2], hence we get a class 7 €
HZ (Tot(€)). Now Ty is the intersection of T with Ty, the graph of s inside Tot(£), and ¢, (€, s) is the
image of n under the restriction map

HF (Tot(€), k) Fr,(Ts, k) = HF (T, k).
See also [48, §2.17] for a different approach.

Proposition 3.1.5. Let £ be a vector bundle on T of rank r and let p : Tot(E) — B be the projection.
The pullback p* : HEM(T) — HEM(Tot(£)) is an isomorphism. O

Remark 3.1.6. For T' € Sch let A,,(T) be the Chow group of m-dimensional cycles in 7. We have the
canonical class map cl : Ap(T) — HZM(T). All the above constructions (proper pushforwards, l.c.i.
pullbacks, virtual pullbacks) have natural analogs for the Chow groups, see [16], which are compatible,
via cl, with the sheaf-theoretical constructions described above.
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3.2. BM homology and operations for stacks. The formalism of constructible derived categories
and their functorialities extends to f-Artin stacks. For the case k = Q; and étale topology this is done
in [47, 48]. Another approach using oo-categorical limits, which we outline below, is applicable for the
complex topology, any k, as well as for the case of analytic stacks in §7.3. It is an adaptation of the
approach used in [21], §3.1.1 for ind-coherent sheaves, to the constructible case. All stacks in this sections
will be f-Artin.

Let B be a stack. By Schp we denote the category formed by schemes T of finite type over C together
with a morphism of stacks T' — B. We define
D(B)ew = lim D(T)c, (3.2.1)
{T—-B}
the oo-categorical projective limit over the category Schp, with respect to the pullback functors. Note
that D(B)y also carries the Verdier duality D) induced by such dualities on the D(T")4 above.

We compare this with the following. Let Z be a scheme of finite type over C with an action of an affine
algebraic group G. Then we have action groupoid {G x Z =3 Z} in the category of schemes, so its nerve
NJG x Z 3 Z} is a simplicial scheme defined as in (1.1.2). The Bernstein-Lunts equivariant derived
constructible co-category of Z is

D(Z,G) = lim D(Nu{G x Z 3 Z}).
[n]eA°

It is an oco-categorical version of the definition from [6]. Just as in [6], given a G(C)-equivariant con-
structible complex F* on Z(C), then

Exthz.6), Kz: F°) = Heye)(Z(C), F*)
is the topological equivariant (hyper)cohomology.

Proposition 3.2.2. The cwo-category D(Z, G)y is identified with D(Z//G)oo.
Proof. Each N,{G x Z =3 Z} is an affine scheme over Z, therefore over Z//G. In fact
Nn{GXZ:))Z} = ZXZ//G'"'XZ//GZ (TL times).

So No{G x Z =3 Z} is the nerve of the (smooth) morphism Z — Z//G, which we can see as a l-element
covering of Z//G in the smooth topology. Our statement therefore means that D(—) satisfies (co-
categorical) descent with respect to this covering. A more general statement if true: D(—)q, as a functor
from stacks to co-categories satisfies descent (for any covering) in the smooth topology. This statement is
a formal consequence of the corresponding, obvious, statement for shemes: D(—)4 as a functor from Sch
to oo-categories satisfies descent (for any covering) in the smooth topology. O

Given a morphism of stacks f : B — C, the composition with f defines a functor f, : Schg — Schg,
hence a functor which we denote
FUD(C)e = lim DU) — lm  D(T) = D(B)s.
U=0) (r—BL.0)
The right adjoint functor to f~! is denoted by Rfy : D(C)sp — D(B)w.
We further define the functors
fl'=DofloD:D(C)y—D(B)y, Rfi=DoRfyoD:D(B)y— D(C)sy.

In particular, we have the dualizing complex wp = D(kg) = p'(k), where p : B — pt, cf. [39]. Note that,
for each affine algebraic group G over C, then wpe ~ kpg[—2dim(G)], while for each smooth complex
variety S we have wg ~ kg[2dim(5)].
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We define the Borel-Moore homology, resp. cohomology with compact support of an (f-Artin) stack B
as

HEM(B) = H™*(B,wp), H:(B,kgp) = H*(Rpkp). (3.2.3)
The Poincaré-Verdier duality extends from schemes of finite type to f-Artin stacks and implies that

HBM(B) = H?(B,kp)*. By gluing the corresponding properties of schemes, we get that HPM is covari-
antly functorial for proper morphisms and has pullbacks with respect to l.c.i. morphisms.

Remark 3.2.4. The BM homology for stacks is the topological analog of the Chow groups for stacks as
defined by Kresch [36].

We also note the following, cf. [36, thm. 2.1.12].

Proposition 3.2.5. Let C* = {C™! — C°} be a two-term strictly perfect complexr on B of virtual rank

r, with the total space Tot(C*) = C°//C~' 5 B. Then © is a smooth morphism, hence it is strongly
oriented of relative dimension 2r, and 7* : HPM(B) — H2M(Tot(C)) is an isomorphism if B admits a
stratification by global quotients (136, def. 3.5.3]), in particular if B is locally quotient. O

3.3. Virtual pullback for a perfect complex. Let B be a stack and £ be a vector bundle of rank r
over B. Let s € H°(B, ) be a section of £ and

i:Bs={s=0}—>B

be the inclusion of the zero locus of s, which is a closed substack. The section s gives a regular embedding
in the total space of £, which we denote also s : B — Tot(€). The construction of Example 3.1.4 extends
(by gluing) from schemes to stacks and gives the refined pullback morphism, or refined Gysin morphism

st HBM(B)— HEM (B,), (3.3.1)

making the following diagram commute

HEM(B) —*~ HEY, (B,)

o—2r

HPM(Tot(€)) < HPM, (B)

o—2r

Remark 3.3.2. The map s' is the BM-homology analog of the refined pullback on Chow groups for Artin
stacks which is a particular case of Construction 3.6 of [43], or of [36, §3.1] which uses deformation to the
normal cone.

Now, let C be a strictly [—1, 1]-perfect complex on B and
7 : Tot(CS®) — B, ¢ : Tot(r<oC) — B

be the obvious projections. The differential d' of C gives a section s¢ of the vector bundle 7*C! on
Tot(C<Y) whose zero locus is the cone stack Tot(7<oC), yielding the diagram

mCl <2 Tot(C<)

B <" Tot(C<") = Tot(r<cC)

such that ¢ = 7 o 4. By Proposition 3.2.5, see also [36, thm. 2.1.12], the pullback along 7 defines a
morphism

T HPM(B) — HP%vrk(c@)(Tot(Cgo)),
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which is an isomorphism if B admits a stratification by global quotients. Further, we have the refined
pullback map on Borel-Moore homology

SIC : Hls_,’l_\gvrk(cgo)(TOt(Cgo)) — HFi\gvrk(C) (TOt(TgOC)).
We define the virtual pullback associated with C to be the composite map

q!c = Slc om*: H?M(B) - HPngrk(C)(TOt(T<OC))'

By Proposition 2.2.8, the stack Tot(7<oC) depends only on the isomorphism class of the complex C in
D? . (B) and not on the choice of the presentation (2.2.6).

coh

Proposition 3.3.3. Let C be a strictly [—1, 1]-perfect complex on B. The virtual pullback q!c depends
only on the isomorphism class of the strictly [—1,1]-perfect complex C in Db, (B).
Proof. Fix two presentations Cy, C2 of the complex C as in (2.2.6), with
1 R dj,
Ch={C,'—=C)—=cCl}, k=12

and fix a quasi-isomorphism ¢ : C; — Cy. By functoriality of the total space and the truncated total
space, we have the commutative diagram

Tot (T<0C1) —2— Tot(r<oCs)

. B

Tot (C20) — = Tot (C5°)

|

B.

We claim that the following triangle commutes

!

q
HBM(B) — > {BM (Tot(7<oC1))

.+2VI'k(Cl)
| (&)
o,
HPJIr\erk(CQ) (Tot(r<0C2))-

To prove this, we must prove that we have
! * * ! *
S¢, O] = @y OS¢, O Ty.

By Proposition 2.2.4, the map ¢, : Tot(C5°) — Tot(C5) is an l.c.i. Hence there is a Gysin map (¢,)*
and we have expressions through the local Chern classes associated to the sections s¢; of w;‘Cil, i=1,2:

! * %1 * *

S¢p °M = Crk(cll)(ﬁcpscl) 0@ 0Ty,

* ! * * %1 *
¢y © Sy © T2 = ¢, © Crk(C%)(ﬂ-Qc%scz) 0Ty

The proposition is a consequence of the following version of the excess intersection formula.

Lemma 3.3.4. Let f: By — Bs be a morphism of stacks which is an l.c.i of relative dimension ro — 1.
Let &1, & be vector bundles on By, By of ranks r1, ro and sections s1, so of E1, €. Let h: £, — [*E5 be
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a vector bundle homomorphism such that h o s1 = s9 o f, which yields a fiber diagram

(Ba)s, 2 By 2= Tot(&,)
o
(B1)s, s By~ Tot(&1)
where g is an isomorphism. Then, we have a commutative square

crq (E1,8
HBM(By) T ey (By),)

d |
Cry (52 752)

13—1\/57’1-‘,-27‘2 (B2) - HP—NéTl ((B2)52)'

Finally, let now B be an Artin stack and let C be any [—1, 1]-perfect complex on B. Let i be a filtering
open cover of B consisting of open substacks U such that C|y is strictly [—1, 1]-perfect. We have

HM(B) = lim HM(U), HM(Tot(r<C)) = lim H(Tot(r<oCly)). (3.3.5)
Uesl Uesl

Definition 3.3.6. A coherent perfect system on a [—1, 1]-perfect complex C on B is a collection of quasi-
isomorphisms ¢y : Cly — Cy and ¢ycy : Culy — Cy for each U,V € U with V. < U such that Cy is a
strictly [—1, 1]-perfect complex on U with a presentation as in (2.2.6), and ¢y = vy o duly.

Given a coherent perfect system on C, we define the virtual pullback
g : HM(B)—H 2%, 1) (Tot(r<oC))

as the map

g = lim((¢v)* o qe,,). (3.3.7)
Ueid

Remark 3.3.8. If C is a strictly [—1, 1]-perfect complex on the stack B, then its total space has a dg-stack
structure given by

Tot(C) = (Tot(c<0), (Sym(=*(C1)¥[1]), as)), (3.3.9)

that is, the stack Tot(C<") equipped with the sheaf of commutative dg-algebras which is the Koszul
complex of the section s above. This dg-stack gives rise to a derived stack in the sense of [57]. The
derived stack Tot(C) depends, up to a natural equivalence, only on the isomorphism class of the complex
C in Dgoh(B). We expect a direct conceptual interpretation of the virtual pullback q!C in terms of the
derived stack Tot(C). However, this would require a well behaved Borel-Moore homology theory for

derived stacks and we do not know how to do it.
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3.4. Virtual pullback for Maurer-Cartan stacks. Let B be an Artin stack of finite type and G be a
strictly [0, 2]-perfect dg-Lie algebra over B as in (2.4.2). We define now a virtual pullback

gg : HOV(B) — H2Y, 1) (MC(G))
using the diagram
B <= Tot(Gs!) <—>MC(Q)
\—//

q

In order to define the map q!g = s!g o7* as in §3.3, we must check that the pullback morphism

* L HP(B) = H ' geo) (Tot(GS))

and the refined pullback
G Hen(g=oy (Tot(G=1) — HPY, g (MC(G))

are well-defined. The refined pullback is as in the previous sections, using the fact that MC(G) is the zero
locus of the section s of the bundle 7*G? on Tot(G<!) associated with the curvature (2.4.4). The pullback
map 7* is well-defined, because 7 is a vector bundle stack, hence is smooth although non representable.

Next, we study the behavior of the virtual pullback under extensions of dg-Lie algebras. Note that
Proposition 2.4.7 allows to write the commutative diagram

B <" Tot(HS!) <2 OMC(H)

ST

Tot(GS1) Tot(N'<h)
\ i
ig
MC(G).

The virtual pullback maps qé;, and q;_[ are defined as above.

!
U
Proposition 3.4.1. We have the equality q!g = qJ!(/ o q;{.

Proof. Let sg, sx, sy be the sections of the bundles 7%G2, 7% N2, 7% H2 associated with the curvature
Gs SN g N H
maps of G, N, H respectively. We must prove that
! * ! * ! *
Sgoﬂ'g = SNOWNOSHOWH.

First, observe that we have the fiber diagram

B <" Tot(H<Y) <L3MC(H)

Sl

Tot(GS') <=—Tot(N'<!

1

where the maps p,, j, are given by the functoriality of the total space of a [—1,0]-complex. Note further
that we have vector bundle homomorphisms

m6G° — () 75 (H?), TN — (3,)* 7567

H_
|
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These vector bundle homomorphisms being compatible with the sections sg, s and sz, the claim follows
from the functoriality of the refined pullback respectively to pullback by smooth maps. O

4. THE COHA OF A SURFACE

4.1. The COHA as a vector space. Let S be a smooth connected quasi-projective surface over C.
Let Coh(S) be the stack of coherent sheaves on S with proper support. It is not smooth because the
deformation theory can be obstructed due to Ext?.

Proposition 4.1.1. Coh(S) is a locally quotient f-Artin stack.
Proof. This is standard, see [38, thm. 4.6.2.1]. Here are the details for future use in Prop. 4.3.2. Let S be

a smooth projective variety containing S an an open set. Then Coh(S) is an open substack in Coh(S).
So it is enough to assume that S is projective which we will. Let O(1) be the ample line bundle on S
induced by a projective embedding. The stack Coh(.S) splits into disjoint union

Coh(S) = | | Coh™(s),
hek[[t]]
where Coh(h)(S ) consists of sheaves F with Hilbert polynomial h, i.e., of F such that
dim H°(S, F(n)) = h(n), n > 0.
For any N € N, let Coh®N)(8) c Coh™(S) be the open substack formed by F such that for each n > N
two conditions hold:
(a) H'(S,F(n)) =0,i>0,
(b) the canonical map HY(S, F(n)) ® O(—n) — F is surjective.
Now, for any coherent sheaf £ on a scheme B, let Quote be the scheme such that, for any B-scheme
T — B, the set of T-points Quotg(T') is the set of surjective sheaf homomorphisms £|7 — F where F is
flat over T, modulo the equivalence relation
(q:Elr = F)~ (¢ :E|r - F') <= Ker(q) = Ker(q).
Let Quot"N )(S ) be the open subscheme of Quoto(_ N)®h(N) formed by equivalence classes of surjections
¢ : O(=N)®N) s F with F e Coh™™)(S) such that ¢(N) induces an isomorphism H?(S, ©)®MN)
HO(S, F(N)). Then, the stack Coh™™)($) is isomorphic to the quotient stack of Quot™™)(S) by the
obvious action of the group GLy,(y). It is a stack of finite type and, as N — 0, the substacks Coh(h’N)(S)
form an open exhaustion of Coh( (). O

4.2. The induction diagram. Let SES be the Artin stack classifying short exact sequences
0> E—HG—F -0 (4.2.1)

of coherent sheaves with proper support over S. Morphisms in SES are isomorphisms of such sequences.
We then have the induction diagram

q p

Coh(S) x Coh(S) SES Coh(S), (4.2.2)

where the map p projects a sequence (4.2.1) to G, while ¢ projects it to (€, F).
Proposition 4.2.3. The morphism p is schematic (representable) and proper.

Proof. For any coherent sheaf G on S with proper support, the Grothendieck Quot scheme Quotg is
proper. O
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4.3. The derived induction diagram. We have the projections
Coh(S) x Coh(S) &2 Coh(S) x Coh(S) x S "2 Coh(S) x S.

Consider the tautological coherent sheaf U over Coh(S) x S and the complex of coherent sheaves over
Coh(S) x Coh(S) given by

C = R(p12)+RHom(pysl, pist)[1]. (4.3.1)
Its fiber at a point (£, F) is the complex of vector spaces RHomg(F,E)[1]. Given a substack X < Coh(S5),
let Ux = U|xxs and Cx = C|xxx be the restrictions of & and C.
Proposition 4.3.2.
(a) The complex C is [—1,1]-perfect and admits a perfect coherent system.
(b) The complex Cx is strictly [—1,1]-perfect if X = Cohg(S).

Proof. As in the proof of Proposition 4.1.1, the statements reduce to the case when S is projective
which we assume. We also keep the notation from that proof. Fix two polynomials h, h’' € k[t] and let

& e Coh™(S), F e Coh™)(S) be two fixed coherent sheaves on S with Hilbert polynomials h, h’. Since
S is smooth of dimension 2, we can fix a locally free resolution P* = (P72 > P71 — P of F. If we
know that the P are “sufficiently negative” with respect to &, i.e., for each i € [—2,0] and j > 0 the
space Ext%(P*,&) = HI(S, (P ® £) vanishes, then the complex of vector spaces RHomg(F, £)[1] is
represented by the complex

Homg(P°, ) — Homg(P~', ) — Homg(P 2, E) (4.3.3)
situated in degrees [—1,1]. In order to achieve this, we define, in a standard way,

P? = H(S, F(No)) ® O(=No) => F, Ny <0,
with evg being the evaluation map. Then we set Ky = Ker(evg) <4 PO and

7)_1 = HO(S, Ko(Nl)) @’C(—Nl) o, ’Co, N1 < No,

and P~2 = Ker(evy) <> P~!. Then by Hilbert’s syzygy theorem, P2 is locally free, and

d—2=¢9 =g10€evy evo

—1
p-1e F

(P P}

is a locally free resolution of F. Further, if N1 « Ny « 0 are sufficiently negative with respect to £ and
F, then the dimensions (denote then r_1,7rg,71) of the term of the complex (4.3.3) are determined by
h,h' and Ny, N;. For fixed N1 « Ny « 0 the locus of (€, F) for which it is true, form an open substack
Uy Noh e 1D Coh(h)(S) X Coh(h/)(S). On Up, Ny,hn» the complex C is then represented by a complex
of vector bundles whose ranks are r_j,rg, 71, so it is strictly perfect. Further, as Ny, Ng — —o0, the
substacks Upn, ny.hp form an open exhaustion of Coh™ (8) x Coh™)(S). This proves (a).

To see (b), we notice that for O-dimensional £ and F with given h and /', i.e., with given dimensions
of H°(S,€E) and H(S, F), one can choose Ny, N1 in a universal way. O

Let now X < Coh(S) be a substack whose points are closed under extensions in Coh(S). Let SESx <
SES be the substack which classifies all short exact sequences of coherent sheaves over S which belong to
X. We abbreviate Y = Ux, C = Cx and SES = SESx. Assume further that the complex C over X x X
is strictly [—1, 1]-perfect. Fix a presentation of C as in Example 2.2.5.

Proposition 4.3.4. The stack Tot(7<oC) is isomorphic to SES.
Proof. Apply Proposition 2.3.4 with Y = X x X x § and F = p3;U, £ = pisU. O
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Thus, for all X as above we have the following diagram of f-Artin stacks

p

X x X <= Tot(C<0) <O SES X (4.3.5)

with ¢ = mo4, which can be viewed as a refinement of the induction diagram (4.2.2). We call this diagram
the derived induction diagram.

4.4. The COHA as an algebra. We apply the analysis of §3.3 to all diagrams (5.2.1) as X runs over the
set of open substacks of finite type of Coh(S) such that the complex C in (4.3.1) is strictly [—1, 1]-perfect
over X x X. Note that the stack Coh(S) is covered by all such X’s by the proof of Proposition 4.3.2.
Since the map p is representable and proper, the pushforward p, in Borel-Moore homology is well-defined.
Hence, we have the maps

HPM(X x X) ﬁ) ng-il-\gvrk(C) (SES) - HP—&I-\erk(C) (X)7

which, by (3.3.5), give rise to the maps

HEM(CO(S) x Coh(S)) > HEY, ¢ (SES) 25 HE, ) (Coh(S)).
Composing the maps q!c, ps and the exterior product
HM(X) @ HM(X) — HM(X x X),
we get the map
m s HP(X) @ HEM(X)—HEY | o) (X), (14.1)
and, by (3.3.5), the map
m : HM(Coh(S)) ® HIM(Coh(S))—H2Y, ¢y (Coh(S)).

The first main result of this paper is the following theorem. It is proved in the next section.

Theorem 4.4.2. The map m equips HEM(X) and HEM(Coh(S)) with an associative k-algebra structure.
]

4.5. Proof of associativity. We must prove the associativity of the map m. It is enough to do it for
HBPM(X). To do that, we consider the Artin stack FILT classifying flags of coherent sheaves &1 < Ega <
Eo3 over S such that the sheaves £y1, £12, 23 defined by &;; = &y;/Eni belong to the substack X < Coh(S5).
For any i < j we introduce a copy X;; of the stack X parametrizing sheaves &;;. For any ¢ < j < k we
introduce a copy SES;j;, of the stack SES parametrizing short exact sequences

0— gz‘j—’gz‘k—>gjk — 0.

Then, we have the fiber diagrams of stacks

FILT - SESo23 — = Xo3
yi ql
SESp12 x X23 AL Xo2 X Xos (4.5.1)

qxli

Xo1 X X192 x Xo3
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and
FILT u SESo13 ——— Xo3
wi ql
Xo1 x SES125 — 2> Xo1 x Xi3 (4.5.2)
lxqi
Xo1 x X12 x Xog
given by

z(Eo1 < Eo2 < E03) = (o2 < E03),  y(Eo1 < Eo2 < Eu3) = (o1 < En2, E23),
v(€o1 < En2 < &p3) = (Eo1 < E03),  w(Eo1 < En2 < Ep3) = (o1, E12 € E3).
We must prove that we have
p,koq!co(p>I< X 1)o(q!c x 1) :p*oq!co(l X py) o (1 Xq!c).

Note that the morphisms z, z are both proper and representable and that we have the following equalities
of stack homomorphisms

(gx1)oy=(1xgow, pov=pouz.
We claim that there are virtual pullback homomorphisms y('j and w!C such that
Teoye = qe o (ps x 1),

ve o wp = gz o (1 X py), (4.5.3)

!

ye o (ge x 1) = we x (1 x gp).
The complex Cpaz = (p x 1)*C on SESp12 x Xa3 and the complex Cp13 = (1 x p)*C on X1 x SES;23 are both

strictly [—1, 1]-perfect. Since the squares in the diagrams (4.5.1), (4.5.2) are Cartesian, by Proposition
2.3.4 we have stack isomorphisms

Tot(7<0Co23) = SESo12 X x4y SESo23 = FILT,
Tot(7<0Co13) = SES123 X x,53 SESo13 = FILT.
Therefore, we have virtual pullback maps
Yo = Yoo+ HV (SESora x Xog) — HY ) (FILT),
we = Weyy, : HOV(Xo1 x SES193) = HPY ey (FILT)

associated with the complexes Cpo3 and Cpis. Then, the first two equations in (4.5.3) follow from the
following base change property of virtual pullbacks.

Lemma 4.5.4. Let B, B’ be Artin stacks of finite type, C be a strictly [—1, 1]-perfect complex on B, and
f : B" — B be a representable and proper morphism of stacks. Then, the complex C' := f*C on B’ is
strictly [—1, 1]-perfect and gives rise to the following Cartesian square

Tot(7<oC") 7, Tot(7<oC)
q’l iq
B’ B.
Further, we have the following equality of maps

geode =gk o fu s HPN(B') — HP2Y ey (Tot(T<00)).-
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Now, we concentrate on the third equation in (4.5.3). To do this, we first apply Proposition 2.5.2 to
the stack homomorphism
pIY=X01XX12XX23XS—>B=X01 XX12><X23

and to the coherent sheaves &;; = p;“jl/l with ij = 01,12, 23 given by the pullback of the tautological sheaf
U by the obvious projections Y — X x S. The sheaf G of associative dg-algebras in (2.5.1) is a strictly
[0, 2]-perfect dg-Lie algebra on B. So, Proposition 2.5.2 yields an equivalence of stacks over B

MC(G) ~ FILT.
More precisely, we realize G as a semi-direct product in two ways G = H x N = H' x N/ where
N = Rp.Hom(&23,E01 @ £12), H = Rp.Hom(&12,&o1),
N’ = Rp,Hom(E12 @ E23,€01), H' = Rp.Hom(Eas, Er2).
Then, the proof of Proposition 2.5.2 yields the following isomorphism of stacks
MC(H) = SESp12 x X23,
MC(H') = Xo1 x SESia3,
MC(G) = MC(N) = SESo12 % x,, SESge3 = FILT,
MC(G) = MC(N") = SES125 % x,, SESo13 = FILT.

In particular, we can identify the diagram

T*Coos Tot(Cy3)
SESOH XX23 <L TOt(CO%%) <—) FILT
- Ve
Y

with the diagram

Tot(N'1)//N°

MC(H) < Tot (N 1) /N0 <2 5MC(G).
‘\_//

We deduce that y('z = q/!\7‘ Similarly, we get

| | | | | |
e x1l=aqy, we=0qy, 1xdq=aqy.
So the third equation in (4.5.3) follows from Proposition 3.4.1. This finishes the proof of Theorem 4.4.2.
4.6. Chow groups and K-theory versions of COHA. Given an f-Artin stack B, we denote by A.(B)
its rational Kresch-Chow groups, as in as in [36]. By K(B) we denote the Grothendieck group of the

category of coherent sheaves on B. The construction in §3.3 makes sense as well for A, and K-theory,
yielding virtual pullback morphisms

ge + As(Coh(S) x Coh(S)) = Auiyuc)(SES),
K (Coh(S) x Coh(S)) — K(SES),
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associated with the complex C in (4.3.1). Composing them with the pushforward p, : A.(SES) —
A.(Coh(S)) and p« : K(SES) — K(Coh(S)) by the map p in (4.2.2), we get an associative ring structure
on A.(Coh(S5)) and on K (Coh(S)).

A definition of the K-theoretic COHA of finite length coherent sheaves over S was independently
proposed along these lines in the recent paper of Zhao [61].

5. HECKE OPERATORS

5.1. Hecke patterns and Hecke diagrams. We continue to assume that S is a smooth quasi-projective
surface over C. Recall that Coh(S) is the stack of coherent sheaves on S with proper support.

Definition 5.1.1. A Hecke pattern for S is a pair (X,Y) of substacks in Coh(S) with the following
properties:
(H1) X is open and Y is closed.
(H2) For any short exact sequence
0— E—G—>F -0 (5.1.2)
with Ge X and FeY, we have £ € X.
(H3) Y is closed under extensions, i.e., if in the sequence (5.1.2) we have E,F €Y, then Ge Y.

To a Hecke pattern (X,Y’) we associate a version of the induction diagram (4.2.2) which we call the

Hecke diagram
X xY < SESyxy > X. (5.1.3)
Here SESx xy is the moduli stack of short exact sequences (5.1.2) with £,G € X and F € Y, and the
projections ¢ : SESxxy — X x Y, p: SESxxy — Y associate to a sequence (5.1.2) the pair of sheaves
(€,F) and to the sheaf G respectively. We note the following analog of Propositions 4.2.3 and 4.3.4.
Proposition 5.1.4.
(a) The morphism p is schematic and proper.
(b) The morphism q identifies SESx xy with an open substack in Tot(7<oCxy ), where Cxy is the [0,2]-
perfect complex on X x Y defined as in (4.3.1).

Proof. The fiber of p over G consists of subsheaves £ ¢ G such that £ € X and G/€ € Y. Because of the
property (H2) we can say that it consists of £ ¢ G such that G/€ € Y. Since Y is closed in Coh(S), our
fiber is a closed part of the Quot scheme of G hence proper. Parts (a) is proved. To prove (b), note that,
similarly to Proposition 4.3.4, the full Tot(7<oCxy) is the stack SES x7y formed by short exact sequences
(5.1.2) with £ € X, F € Y but G being an arbitrary coherent sheaf. Now, SESx xy in the intersection of
SES x7y with the preimage of X < Coh(S) under the projection to the middle term. Since X is open in
Coh(S), we see that SESx xy is open in Tot(7<oCxy). O

5.2. The derived Hecke action. Let (X,Y) be a Hecke pattern for S. Denote Hx = HEM(X) and
Hy = HEM(Y). From the property (H3) we see, as in Theorem 4.4.2, that the derived induction diagram
(5.2.1) for Y makes Hy into an associative algebra. Further, similarly to (5.2.1), we have the diagram of
f-Artin stacks which we call the derived Hecke diagram:

X x Y <" Tot(C3Y) < SESxxy ——> X (5.2.1)
Here i identifies SES x xy with an open subset of the zero locus of a section of the vector bundle W*C}(Y
and so gives rise to the virtual pullback 7'. So as in §4.4, we define the map
viHx @Hy = HM(X) @ HM(Y)—H2Y vie,, (X) = Hx.
Theorem 5.2.2. The map v makes Hx into a right module over the algebra Hy .

Proof. Completely similar to that of Theorem 4.4.2. It is based on considering FILT xyy, the stack of
flags of coherent sheaves £y < Epo < Eygs with Ey € X and Eya/Eo1, E03/Ep2 € Y. ]
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5.3. Examples of Hecke patterns. The general phenomenon is that sheaves with support of lower
dimension act, by Hecke operators, on sheaves with support of higher dimension. We consider several
refinements of the condition on dimension of support.

Definition 5.3.1. Let 0 < m < 2.
(a) A coherent sheaf F on S with proper support is called m-dimensional, if dim Supp(F) < m. We
denote by Cohg,, = Cohg,,(S) < Coh the substack formed by m-dimensional sheaves.
(b) We say that F is purely m-dimensional, if any non-zero Og-submodule F' < F is m-dimensional.
(c) We further say that F is homologically m-dimensional, if it is m-dimensional and for any C-point
x € S we have Ext‘és((’)w,}") =0 for 0 < j < m. We denote by Coh,, = Coh,,(S) < Coh the
substack formed by m-dimensional sheaves.

Proposition 5.3.2.

(a) Form = 0, the conditions “0-dimensional”, “purely 0-dimensional” and “homologically 0-dimensional”
sheaves are the same.

(b) For m =1, the conditions “purely 1-dimensional” and “homologically 1-dimensional” are the same.

(¢) For m = 2, the condition “purely 2-dimensional” is the same as “torsion-free” while “homologically
2-dimensional” is the same as “vector bundle”.

Proof. Parts (a) and (b) are obvious, as is the first statement in (c). Let us show the second statement.
Notice that condition of being homologically 2-dimensional, i.e., Ext/(Q,, F) = 0 for j < 2 and all z,
is nothing but the maximal Cohen-Macaulay condition. Since S is assumed to be smooth, any maximal
Cohen-Macaulay sheaf is locally free. O

We denote by Coh,,(.S) the moduli stack of homologically 2-dimensional sheaves with proper support,
and by Cohy(S) denote the moduli stack of torsion-free (i.e., purely 2-dimensional) sheaves.

Proposition 5.3.3. The following pairs of substacks are Hecke patterns: (Cohi(S), Cohg(S), (Coha(S), Cohy(S5)),
(Cohy(S), Cohg(S)) and (Cohy(S), Cohy(5)).

To prove the proposition, we note that Coh;(S) and Cohg(S) are both open and closed in Coh(S).
Further, Cohy(.S), the stack of vector bundles, is open, as is Cohy(S). Further, all these stacks are closed
under extensions. So it remains to prove the following.

Lemma 5.3.4. Suppose we have a short exact sequence as in (5.1.2).

(a) If G € Coh,,(S) and F € Cohy,—1(S), then £ € Coh,,(5).
(b) if G € Cohy(S), then £ € Coht(S).

Proof. (a) Since £ c G, it is clear that dim Supp(£) < m. The vanishing of Ext/(O,, &) for j < m follows
at once from the long exact sequence of Ext*(O,, —) induced by the short exact sequence above. Part (b)
is obvious: any subsheaf of a torsion free sheaf is torsion free. O

This ends the proof of Proposition 5.3.3.

Remark 5.3.5. The non-trivial part of the proposition says that homologically (or, what is the same,
purely) 1-dimensional sheaves govern Hecke modifications of vector bundles on a surface.

5.4. Stable sheaves and Hilbert schemes. Let S be a smooth connected projective surface and m =
0,1. We can apply the construction in §4.4 to the substack of m-dimensional sheaves X = Cohg,(5) of
Coh(S). We have the derived induction diagram (5.2.1), hence the formula (4.4.1) yields an associative
multiplication on HEM(Cohg,,(9)).

Now, let P(£) : m — x(E(m)) be the Hilbert polynomial of a coherent sheaf £ on S, and p(€) =
P(€)/(leading coefficient) be the reduced Hilbert polynomial. The sheaf £ is stable if it is pure and
p(F) < p(€) for any proper subsheaf F < £. Let Mg(r,d,n) be the moduli space of rank r semi-stable
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sheaves with first Chern number d and second Chern number n. See [29] for a general background on
these moduli spaces.

Theorem 5.4.1.

(a) The direct image by the closed embeddings Coho(S) < Coh«1(S) < Coh(S) gives algebra homomor-
phisms HEM(Cohg(S)) — HEM(Coh<y(S)) — HEM(Coh(S)).

(b) The algebra HPM(Coh<(S))°P acts on Dan HBM(Mg(1,d,n)).

(c) The algebra HEM(Coho(S))°P acts on @,, HEM(Ms(1,d,n)) for each d.

Proof. Part (a) follows from base change. Parts (b), (c) are proved as in §5.2. Let us give more details
on (b), part (c) is proved in a similar way.

First, let us consider the following more general setting : let X = Coh(S) and Y < Coh(S) the substack
consisting of torsion free sheaves. Note that the substack Y < X is both open and stable by subobjects.
We claim that the algebra HEM(X)°P acts on HPM(Y). To prove this, we consider the restrictions of
Tot(C<Y) and SES to the stack Y x X given by

Tot(CS|yxx =7 1Y x X), SES|yxx =q¢ (Y x X).

Then, the derived induction diagram (5.2.1) gives rise to the following commutative diagram

Coh(S) x Coh(S) £(C<0) <~ SSES ——— SES —~~ Coh(S)

o T

Y x X Tot(C CcsY YX_)(<—>SES‘Y><X <—)SES

where SES = p~1(Y) and j is the obvious open immersion of stacks j : SES < SES |y« x. Let 5¢ be the
restriction of the section s¢ of 7*C! to Y x X. We define a map

m : HM(Y) @ HM(X)—H 5 o) (Y) (5.4.2)

as the composition of the exterior product and the composed map py o j* o E!C o7*. We claim that the
map M above defines an action of the algebra HEM(X)°P on HPM(Y'). Then, the diagrams (4.5.1), (4.5.2)
yield the following fiber diagrams of stacks

p

FILT —*—=SES Y
yl ql
EXXAYXX (5.4.3)
qxll
Y x X x X
and
FILT —* SES—2 >V
| |
Y x SES — Loy x X (5.4.4)

lqu

Y x X x X,
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where FILT < FILT is the open substack classifying flags of coherent sheaves &1 < &y < &g over S
such that &y, 92, &3 € Y. Then, the claim is proved as in §4.5, replacing the diagrams (4.5.1), (4.5.2)
by (5.4.3), (5.4.4).

Now, a rank 1 coherent sheaf is stable if and only if it is torsion free. Thus, setting X = Coh<;(S) and
Y < Coh(S) to be the susbtack consisting of rank 1 torsion free sheaves, the argument above proves the
part (b).

O

Remark 5.4.5.

(a) The moduli space Mg(1,Og,n) of rank one sheaves with trivial determinant and second Chern
number n is canonically isomorphic to the Hilbert scheme Hilb™(S). If S is a K3 surface, then
Hilb"(.S) is further isomorphic to Mg(1,0,n).

(b) The rings As(Cohg;(5))°P and K (Cohg;(S5))°P act on

D A(Ms(1,d,m), @ K(Ms(1,d,n))
dn dn

respectively, as in Theorem 5.4.1. The proofs are analogous to the proof in Borel-Moore homology.

6. THE FLAT COHA

6.1. R(A?) and commuting varieties. In this section we assume S = A? and denote

R(A?) = HJ™(Coho(4%))
the COHA of 0-dimensional coherent sheaves on A2. We note that

Cohg(A?) = | | Coh{”(a2),
n=0

where Coh{j(A?) is the stack of O-dimensional sheaves F such that the length of F, i.e., dim HY(F), is
equal to n. We further recall that

Coh{” (4%) = C,//GLy,
where C,, is the n x n commuting variety

Cn = {(A, B) € 9l,(C) x 81, (C); [A, B] = 0},

acted upon by GL,, (simultaneous conjugation). Indeed, a 0-dimensional coherent sheaf F on A? of length
n is the same as a C[z,y]-module H°(F) which has dimension n over C, i.e., can be represented by the
space C™ with two commuting operators A, B, the actions of z and y. We recall.

Proposition 6.1.1. C,, is an irreducible variety of dimension n> + n. Therefore Coh(()”) (A2) is an irre-

ducible stack of dimension n. O
Accordingly, we have a direct sum decomposition
R(A?) = @ R'(A%), R"(A%) = HPM(Cohy” (4%) = HM(Co//GLy).
n=0

where on the right we have the equivariant Borel-Moore homology of the topological space C,. The
algebra R(A?) has a Z? grading (compatible with multiplication), consisting of (in this order):

(a) the length degree, by the decomposition into the ’Hgg,

(b) the homological degree, where we put HlBM in degree 1.
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Define the Z2-graded vector space
© = ¢ 't-k[g,1], deg(q) = (0,-2), deg(t)=(1,0). (6.1.2)

The following is well known, see, e.g., [55, §5.3] and the references there, and goes back to the Feit-Fine
formula for the number of points in the commuting varieties over finite fields [15, (2)].

Proposition 6.1.3. As a Z?-graded vector space, R(A?) ~ Sym(©). O

The goal of this section is to prove the following.

Theorem 6.1.4. We have an isomorphism of algebras R(A?) ~ Sym(©). In particular, R(A?) is com-
mutative.

Before to do this, let us observe the following.

Proposition 6.1.5. The algebra R(A?) is the same as the COHA considered in [54, §4.4] in the case of
the Jordan quiver.

Proof. To prove this, we abbreviate X,, = C,//GL,, S = A2, and note that the tautological sheaf U/
over X, x S is identified with the G L,-equivariant sheaf over C), x S given by U = C" ® O¢,,, with the
Oc,-linear action of Og = Cl[z,y] such that x, y act as A® 1, B®1 respectively on the fiber U4 ). Let
p be the Lie algebra consisting of (n,m)-uper triangular matrices in gl ,,, and let u, [ be its nilpotent
radical and its standard Levi subalgebras. Let P, U and L be the corresponding linear groups. Write
Xnm = Xp x Xy, and Gy, = Cp, x Oy, We identify (), ,, with the commuting variety of the Lie algebra
[ and X, ,,, with the moduli stack Cy, ,,,//L. We have u = Homc(C", C"™), and the perfect [-1,1]-complex C
over X, n,, in (4.3.1) is identifed with the L-equivariant Koszul complex of vector bundles over C,, ,, given
by

u®0c,,, — =2 ®0c,, t>u®0c,,, ,
where the differentials over the C-point (A, B) in C,, ,, are given respectively by
do(u) = ([A7 u] ) [B,u]), dl(’l),w) = [A7w] - [B, U] = [A@Ua B Ei—)w],

and the direct sum holds for the canonical isomorphism [ x u — p. The total space Tot(C) of this complex,
defined in (3.3.9), is a smooth derived stack over X, ,,, such that :

(a) The underlying Artin stack is the vector bundle stack C°//C~! over X,, , such that
C'=(Chm xw)//L, C°= (Cpm xu?)//L.
It is isomorphic to the following quotient relatively to the diagonal P-action
Tot(CS%) = (Cym x u?)//P.

(b) The structural sheaf of derived algebras is the free P-equivariant graded-commutative O¢,,  «y2-
algebra generated by the elements of u¥ in degree -1. The differential is given by the transpose of
the Lie bracket u x u — u.

Therefore, the derived induction diagram (5.2.1) is
| L <"— (Com % 12) | P <Clp )| P —> Cm | G L, (6.1.6)
where 6’nm is the commuting variety of the Lie algebra p. We can now compare the product

m: HPM(X,) @ HPM(X,,) — HEM (X m)
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in (4.4.1) with the multiplication in [54, §4.4]. We have the fiber diagram of stacks

(Crm X U)JJP <L (Crm X 13) /P <>— (Cron % u2)//P

S

Crm// P (Cpn X 12) /)P <——C,, 1/ P.

where 1 is the identity, 0 is the zero section, f is the projection to the third component of u? (which is
a local complete intersection morphism) and s = 1 x d'. Hence, the composed map g = f o s is the Lie
bracket (A, B;v,w) — [A® v, B@® w] and the composition rule of refined pullback morphisms implies
that

g'(x) =s'f(x) = s'7*(x)

in HBM( nm//P) for any class z € HEM(X,, x X,,). We deduce that the multiplication map m is the
same as the multiplication considered in [54, §4.4]. O

6.2. R(A?) as a Hopf algebra. As a first step in the proof of Theorem 6.1.4, we introduce on R(A?) a
compatible comultiplication.

Let U = C? be any open set in the complex topology. We denote by Cohg(U) the category of 0-
dimensional coherent analytic sheaves on U. The corresponding moduli stack Cohy(U) can be understood
as a complex analytic stack in the sense of [51], i.e., as a stack of groupoids on the site of Stein complex
analytic spaces. It can also be understood in a more elementary way, as follows.

Let C,(U) < C,, be the open subset (in the complex topology) formed by pairs (A, B) of commuting
matrices for which the joint spectrum (the support of the corresponding coherent sheaf on C?) is contained
in U. It is, therefore, a complex analytic space. Then we can define

Coh§" (U) = Con(U)//GL(C),
as the quotient analytic stack, and put
Coho(U) = | | Conf” (U
n=0
Using this understanding, we define directly
R(U) = HM(Coho(V)) = @ HM(C,(U)//GL,(C)) = P R*(U).

n=0 n=0

The same considerations as in §4 make R(U) into a graded associative algebra.

If U/ = U < C? are two open sets, then C,,(U’) < C,(U) is an open embedding, and we have maps of
Z-graded, resp. Z2-graded vector spaces

Pt : HM(Cn(U) /G L (C)—HIPM(Co(U") //GLn(C)),
pPUU = @ P R(U)—R(U").

n=0
Proposition 6.2.1.

(a) pupr is an algebra homomorphism.
(b) If the embedding U' — U is a homotopy equivalence, then pyy is an isomorphism.
(¢) If U is a disjoint union of open subsets Uy, -+ , Uy, then

R(U) ~ R(U1) ® - ® R(Uy).
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Proof. Part (a) is clear from definitions. To show (b), we note that C,(U) and C,(U’) are naturally
stratified (by singularities), and, under our assumption, the embedding C,,(U’) < C,,(U) is a homotopy
equivalence relative to the stratifications, i.e., it induces homotopy equivalences on all the strata. By
dévissage (spectral sequence argument) this implies that the map

BM,G Ly (C —e —e BM,G Ly (C
H, ( )(Cn(U)) = HGLH(C)(CH(U)van(U))—)HGLn((C)(Cn(U/)?an(U/)) = H, ( )(Cn(U/»

is an isomorphism.

We abbreviate GLy, ... n,, = GLp, % -+ x GLy, . Then, part (c) follows from the GL,,(C)-equivariant
identifications

CU) = LI (CLa(©) %61y (@ Con (U1) X -+ % Co (Un))
ni+:--+nm=n
which reflect the fact that a length n sheaf F on U consists of sheaves F; on U; of lengths n; summing
up to n. O

Corollary 6.2.2. If an open U < C? is homeomorphic to a 4-ball, then pc2yr : R(C?) — R(U) is an
isomorphism. O

Let us now choose, once and for all, two disjoint round balls Uy, Us < C2. Define a morphism of
Z*-graded vector spaces A : R(C?) — R(C?) ® R(C?) as the composition
Pe 1, %P2 1,

R{ULuly) ~R(U)®R(U) - "% R(C? ® R(C?).

Pc2 (UyuUy)
e

R(C?)
Proposition 6.2.3.

(a) A does not depend on the choice of the balls Uy, Uy provided they are disjoint.
(b) A makes R(C?) into a cocommutative, coassociative Hopf algebra.

Proof. Any two admissible choices of Uy, Uy are connected by a path of admissible choices, and A does
not change along this path. This proves (a). To prove (b), note that all the maps in the above chain are
compatible with the Hall multiplication, so A is a homomorphism of algebras. Its cocommutativity follows
from (a) by interchanging U; and Us, i.e., by connecting (Uy,Uz) and (Usa,U;) by a path of admissible
choices. Coassociativity is proved similarly by considering triples of disjoint balls. This proves that R(C?)
into a cocommutative, coassociative bialgebra.

It remains to prove that R(C?) has an antipode. This is a standard argument using co-nilpotency, see,
e.g., [40, §1.2]. That is, define

A:R(CH—R(C*)Q@R(C?), Alx)=A@l)-2®1+1®),
and let A" : R(C?)— R(C?)®" be the n-fold iteration of A. Then R(C?) is co-nilpotent, that is, for any
z € R(C?) there is n such that A™(z) = 0 for m > n. Therefore the antipode a : R(C?) — R(C?) is given

by the following geometric series, terminating upon evaluation on any z € R(C?):
a0
o = Z (=1)"m, o A",
n=1
where m,, : R(C2)®" — R(C?) is the n-fold multiplication.
O

Let R(CQ)prim = {a e R(C?); Ala) =a®1+1 ®a} be the Lie algebra of primitive elements with the
bracket [a,b] = ab — ba.

Corollary 6.2.4.
(a) R(C?) is isomorphic, as a Hopf algebra, to the universal enveloping algebra of R(C?)prim-
(b) R(C?)prim =~ © as a Z*-graded vector space.
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Proof. Part (a) follows from the Milnor-Moore theorem. Part (b) follows from the Poincaré-Birkhoff-Witt
theorem and from Proposition 6.1.3. g

6.3. Explicit primitive elements in R(A?). For any open U < C2 let Coh%)t(U) c Coh(()n)(U) be
the closed analytic substack formed by I-point coherent sheaves, i.e., sheaves whose support consists of
precisely one point. In other words,

Coh{") (C?) = Cyp1p(U)//GL4(C),

where C, 1pt(U) < Cy(U) is the closed analytic subspace formed by pairs (A, B) of commuting matrices
whose joint spectrum reduces to one point in C? (but can be degenerate). Still more explicitly,

Crnapt(U) = U x NCy,
where NC,, is the n by n nilpotent commuting variety
NC, = {(A,B) €gl,(C) x gl,,(C); [A,B] = A" = B" = 0}.
In particular, we have the closed subvariety
Cript = Cnapt(C?) = C*x NC,, < O, (6.3.1)
invariant under GL,(C). We recall.

Proposition 6.3.2 ([3]). NC,, is an irreducible algebraic variety of dimension n*> — 1. O

The proposition implies that Cj, 1p¢ is an irreducible variety of dimension n? + 1. So Cohﬁ))t (C?), its
(n)

image in Cohy"(C?), is an irreducible stack of dimension 1, and it has the equivariant fundamental class
On = [Cnapt] € HPM(Cr//GLy).

Further, let &, be the trivial vector bundle of rank n on the G L,-variety C,, equipped with the vectorial
representation of GL,. We call &, the tautological sheaf. Being an equivariant vector bundle, it has the
equivariant Chern characters

chi(E,) € H*(C,//GLy), i=0,
and, for ¢ > 0, n > 1, we define
Oni = chi(En) N0, € HPN,(Cy//GL,) = R™72(C?). (6.3.3)
Comparing the Z2-grading of ©, we see that the map
a:0—R(CH, t"¢" s b, (6.3.4)
is a morphism of Z2-graded vector spaces.

Proposition 6.3.5.

(a) «a is injective, i.e., each O, ; is non-zero.
(b) Oy, is primitive.

Proof. The claim (a) follows from [11, thm. C] and the explicit computations in [11, §5] in the case of the
Jordan quiver. More precisely, let ), be the quiver with one vertex and g loops. For each integer n > 0,
let M(Qg)n be the coarse moduli space of semisimple n-dimensional representations of CQy, i.e., the
categorical quotient of (gl,)? by the adjoint action of GL,. We'll abbreviate M(Qy) = |_|,,50 M(Qg)n-
The direct sum of representations yields a finite morphism M(Qg) x M(Q4) — M(Qy), hence a symmetric
monoidal structure on the category Perv(M(Qy)) of perverse sheaves on M(Q), which allows to consider
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the n-th symmetric power Sym"(£) for any object £ in Perv(M(Q,)). Let Sym(E) = @,,5, Sym"(£).
Set g = 3 and fix an embedding Q2 < Q3. By [11], we have
@ H:(Co//GLn) = H (M(Q3), Sym(BPS © HZ(BCX)))

n=0

@ H2(Coipt//GLn) = HZ (M(Q3)1p1, Sym(BPS ® HZ (BC™)))

n=0

(6.3.6)

where BPS = @

diagonal

BPS,, and BPS, is, up to some shift, the constant sheaf supported on the small

n>0

C3 < Sym™(C?) = M(Q3), = (gln)?/G Ly,

where Sym™(C?) is the categorical quotient of triple of commuting matrices in (gl,)* by GL,. Here, for
each n, the closed subset M(Q3)n,1pt © M(Q3)y is the coarse moduli space of semisimple representations
of CQ3 for which the underlying CQo-module has a punctual support in C2. In particular, we have

C? € M(Q3)n,1pt © M(Q3)n-
Now, the pushforward
HM(Cpyp1//GLy) — HPM(C /)G L) (6.3.7)

by the closed embedding Cy, 1 pt = Cy, is dual to the restriction map g : H2(Cy,//GLy) — H2(Cp1pt//GLy).
Taking the direct summand

BPS, ® H:(BC*) c Sym(BPS ® H:(BC*))

in (6.3.6), we get the commutative diagram

H? (M(Qs)n, BPS, ® H: (BC*)) H2(Cof/GLy)

1| l
H? (M(Q3)n,1pt » BPS, ® HS(BC*)) — HZ(Cp1pt//GLy).

The map f is invertible. We deduce that the class ch;(E,) N [Ch 1pt] is non-zero in H?_l\gi(C’nylpt //GLy,)
and that its image by (6.3.7) is non zero and equal to the element 6,,; € HZM.(C,,//GLy).

To prove (b), given an open U = C?, we define, in the same way as before, elements
0ni(U) € R™*72(U) = Hy%;(Ca(U)//GLy(C)).
For U’ ¢ U we have
pu (0in(U)) = 0ni(U).

For U = U; u Uy being a disjoint union of two opens, a length n 0-dimensional sheaf F on U consists of
two sheaves F; on U; of lengths n;, ¢ = 1,2 such that n; + ne = n. This can be expressed by saying that

CulUiuT) = | | <GLn((C) XLy my (©) (Crr (U1) X ch(Ug))), (6.3.8)
ni+ng=n
from which we deduce the following identification
R"(U) = (—D R™(U;) ® R™(Uy), (6.3.9)
ni+ne2=n

Let &, be the tautological sheaf of C,(U) and similarly for Uy, Us. With respect to the identification
(6.3.8), we have

gn,U = |_| (5n1,U1 O® 0 SM7U2)'

ni+ns2=n
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Thus, the additivity of the Chern character gives
chi(Env) = Y (chi(Eny ) ®1 + 1@ chi(Enyu,)), Vi = 0. (6.3.10)

ni+nz=n
Since, under the identification (6.3.9), we have
On(U) = 0,(U1)®1+1®6,(Us)
we deduce that we have also
0ni(U) = 0,:;(U1)®1+1®86,,;(Uz), Vi=D0.

Our statement follows from this and from the definition of A via p. O

Corollary 6.3.11. The space R(C?)pyim of primitive elements of R(C?) coincides with the image a(0).
It is closed under the commutator [a,b] = ab — ba. O

6.4. Commutativity of R(A?): end of proof of Theorem 6.1.4. To finish the proof of Theorem
6.1.4, it remains to prove:

Proposition 6.4.1. The Lie algebra R(CQ)prim =a(0) = Span{@nyi; nx=1,1> 1} 1s abelian.

Before starting the proof, for any smooth surface S let Qg = Q% be the sheaf of volume forms. The
category Coho(S) has a perfect duality (equivalence with the opposite category whose square is identified
with the identity functor)

F = FY =Exty (F,Qg).

We note that Grothendieck duality gives a canonical identification
HO(FY) = HY(F)*.
Passing to FV gives an automorphism of Cohg(S) of order 2 and an involution on the COHA
s« 1 HPM(Cohg(S))—H2M(Cohg(S)), a— a*, (ab)* = b*a*, a** = a.

Proof of Proposition 6.4.1. We specialize the above remarks for S = C2. If F € Cohy(C?) is given by a
pair of commuting matrices (A4, B), then FV is given by the pair (A*, B*) of the transposes. Thus the
involution * on R(C?) is induced by the automorphisms 7, : (4, B) — (A*, B*) of C,, forn > 1. To
prove that R(C?) is commutative, it is enough to show that * = Id. It is not true, in general, that F" is
isomorphic to F. However, we have the following.

Proposition 6.4.2. The elements 6,,; € R(C?) satisfy 9;’;1. =0

Proof. The locus Cy1pt < C), is invariant under the transformation 7,. Further, 7, being a complex

algebraic transformation, it preserves the orientation, and so the fundamental class 6,, = [Cy 1pt] is
invariant under *. Similarly, the GL,,(C)-equivariant vector bundles &, and 7,*&, on C,, are identified.
S0 Opi = 0, N ch;i(Ey,) is invariant under *. O

Now we notice the following.

Lemma 6.4.3. Let g be a Lie algebra and % be an involution on U(g) such that a® = a for any a € g.
Then g is abelian and = = Id.

Proof. Let a,b € g, and ¢ = [a,b]. Then in U(g) we have ¢ = ab — ba and so
c* = (ab—ba)* =b*a* — a*b* =ba —ab= —c
while by assumption ¢* = ¢, so ¢ = 0. O

Theorem 6.1.4 is proved. g
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6.5. Group-like elements. In this section we describe two natural families of group-like elements of R,
which then give primitive elements by passing to the logarithms, in a standard way. The results of this
section are not needed in the rest of the paper. First, we consider

i = [Cn] € Hy'(Co//GLy),
the equivariant fundamental class of C,, itself (recall that the dimension of the quotient stack C,,//G Ly, is
n). We put
Mni = [Cn] 0 e1(On)',n=1,i=0, nyo=1,1m0;=0,i>0.
Second, we note that C), carries a canonical virtual fundamental class

777\?]r = [Cn]Vir € HgM(Cn /GLy).

It arises because C,, < gl,,(C)? is given by a system of n? equations, the matrix elements of the commutator
[A, B]. More invariantly, consider the G L,-equivariant vector bundle ad on gl,,(C)? of rank n? which, as
a vector bundle, is trivial with fiber sl,(C) and with GL,-action being the adjoint representation. The
commutator can be considered as a G L,-invariant section s of ad, so that s(A, B) = [A, B], and the zero
locus of s is Cy,. Thus we have a class (virtual pullback of the equivariant fundamental class of gl,,(C)?)

[Cn]Vir = 5![9[71(@)2] € H;BM(Cn /G Ly).

As before, we denote

et = [Cul™ ner(&), n=1,i>0, ns =115 =0,i>0.

n,i

Proposition 6.5.1. We have

Alg) = D) Nois @Tinniias A = Do myr, @y,

nytng=n ni+ng=n
i1 +i9=1 i1 +ig=1

Proof. Let Uy, Us be two disjoint balls in C?, as in the definition of A. With respect to the identification
(6.3.8), we have

Cl(gn,U) = Z (Cl(gnl,Ul) ®1+1® Cl(gRQ,U2))'

ni+no=n

This implies the statement about the 7, ;’s. The statement about the leg is proved similarly. O

Corollary 6.5.2.

(a) The formal series

n(zw) = 1+ Y miz™w’, n™(z,w) = 14+ Y pyiz"w’ € R(C?)[[zw]]

n>0 n>0
=0 =0
are group-like, i.e., we have A(n(z,w)) = n(z, w)®n(z, w) and AT (z,w)) = 0V (2, w)@0 (2, w).
(b) The series log(n(z,w)), log(n'(z,w)) are primitive. In other words, all their coefficients are primi-
tive elements of R(C?) and are, therefore, linear combinations of the Oni-

O
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7. THE COHA OF A SURFACE S AND FACTORIZATION HOMOLOGY

7.1. Statement of results. Let S be an arbitrary smooth quasi-projective surface and R(S) = HEM(Cohg(S))
be the corresponding cohomological Hall algebra. It is Z2-graded by (length, homological degree). We
introduce a global analog of the space © generating the flat COHA R(A?) from §6.3. Let

S & Coh{", () = Coh{”(S)

be the stack of 1-pointed, length n sheaves on S with its canonical closed embedding i, into Coh(on)(S )
and projection p, to S (so p,(F) is the unique support point of F). Proposition 6.3.2 implies that p, is
a morphism with all fibers irreducible of relative dimension (—1). Therefore we have the pullback map
pk given by the composition

HEM(S) = H72(5) £ H*~*(Coh{}), (5))—HIP(Coh{}) (5)).
where the last arrow is the cap-product with the fundamental class. Define the subspace
Ou(S) = inspiHEM(S) < HPM(Coh{"(S)) = R™(S).
Let &, denote also the tautological sheaf on Cohén)(S ) and further put, for ¢ > 0,
©,,i(S) = O,(5) nchi(&E,) < R"(S).
Proposition 7.1.1. The canonical map HEM(S) — ©,,,(S) is an isomorphism.

Proof. We consider the open subscheme FCoh(()n)(S) := Quot™9)(S) of the quot-scheme formed by equiv-
alence classes of surjections ¢ : O" — F with F € Coh(()n)(S) such that ¢ induces an isomorphism
C™ — HY(S,F). Then, the stack Cohén)(S ) is isomorphic to the quotient stack of FCohén)(S )//GL,,. Let

T < GL,, be a maximal torus. Then, the fixed points locus FCoh(()n)(S )T is isomorphic to FCoh[()l)(S "=
S™. Thus, we have a commutative diagram

HEM(S) P EMCL(BCOR{™) ()10 —> HEPMCE (FCOL™ () i0e

T :

HPM(S)® Hyp .2 (HPM(S™) @ HE)S:

loc?

where H¢, = H*(BG) and loc is the tensor product by the fraction field H¢,; . of Hgy —over Hey .

The maps b, ¢ are the pushforward by the closed embeddings S — FCohg@t(S) and S™ FCoh(()n)(S),
which are invertible by the localization theorem in equivariant cohomology. The map A is the diagonal
embedding. It is injective. The map a is equal to Id ®1, up to the cap-product by an invertible element
in H*(S) ® HYp,, o0~ 1t is injective. We deduce that the map

inspl + HPM(S) — HEMCLn (FCoh{")(S))

is injective as well. O

We define
(S) = (—B@n,i(S) c R(S).

Thus, for S = A% we have that ©(A?) is identified with the graded space © from (6.1.2), embedded into
R by the map a as in (6.3.4). We recall that HPM(A?) is 1-dimensional, concentrated in homological
degree 4. Thus shifting the grading by putting

0 = ©[0,~4] = qt-K[q,1],
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we have by Proposition 7.1.1, an identification of Z?-graded vector spaces
0(S) ~ HEM(S)® 0" ~ HPM(S//C*) ® tk[t].

We now consider the symmetrized product map o : Sym(0(S)) — R(S) defined as

1
o= Z On, 0p:Sym™(O(S)—R(S), on(vie---ev,) = ] Z Vg(1) * % Ug(). (7.1.2)

n=0 " seSn

Here e is the product in the symmetric algebra and * is the Hall multiplication. The second main result
of this paper is a version of the Poincaré-Birkhoff-Witt theorem for R(.S) which allows us to commute its
graded dimension. It is proved in the next sections.

Theorem 7.1.3. o : Sym(0(S)) — R(S) is an isomorphism of Z*-graded vector spaces. O

7.2. Reminder on factorization algebras. We follow the approach of [9] and [19]. Let (C,®,1) be
a symmetric monoidal model category. In particular, it has a class W of weak equivalences. We will
consider three examples:

(a) C = Top is the category of topological spaces (homotopy equivalent to a CW-complex), ® is cartesian
product, and weak equivalence have the usual topological meaning.

(b) C is the category of Artin stacks, ® is the Cartesian product of stacks and weak equivalences are
equivalences of stacks.

(¢) C = dgVect is the category of cochain complexes, ® is the usual tensor product and weak equivalences
are quasi-isomorphisms.

Let M be a C® manifold of dimension n.

Definition 7.2.1. A prefactorization algebra on M wvalued in C is a rule A which associates

(a) to any open set U < M an object A(U) € C, so that A(J) = 1.

(b) to any system Uy,--- ,U, of disjoint open sets contained in an open set Uy, a morphism ”g(l),---,Up :
AU) ® -+ ® A(U,)—A(Uy), such that

(c) the morphisms ,ug(l) U, satisfy associativity.

A morphism of prefactorization algebra o : A — A’ is a datum of morphisms oy : A(U) — A (U)
compatible with the structures. It is a weak equivalence if each oy is a weak equivalence.

A prefactorization algebra is, in particular, a precosheaf via the maps ug‘i, i.e., it is a covariant functor
from the category of open subsets in M to C.

Definition 7.2.2. An open covering of M is called a Weiss covering if any finite subset of M is contained
in an open set of the covering.

Ezample 7.2.3.

(a) Let D < R™ be the standard unit disk |z| < 1. A disk in M is an open subset which is homeomorphic
to D. The open covering © (M) of M generated by the disks of M is a Weiss covering. By definition,
an open subset of © (M) consists of a finite disjoint union of disks.

(b) A prefactorization algebra is called locally constant, if for any inclusion of disks Uy < U; the map
Up

Ky,
Definition 7.2.4.

is a weak equivalence.

(a) A prefactorization algebra A is called a (homotopy) factorization algebra if :
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(al) For any Weiss covering s = {U,}ier of any open set U < M the natural morphism
holim N, (U, A) — A(U),

Ne(t, A) = { == [ AUyr) == [l AUy) —= LIA(Ui)} :
i,5,kel i,j€l el
with U;j = U; 0 Uj, etc., is a weak equivaelnce (co-descent).
(a2) ,ug‘l)’_” U, is a weak equivalence for any system Ug,--- ,U, of open sets with
Up = Uy u--- 1 U, (multiplicativity).
(b) The factorization homology of M with coefficients in a factorization algebra A is the object of global
cosections of A which we denote

JMA — A(M) e C.

Remark 7.2.5.

(a) A multiplicative prefactorization algebra A is a factorization algebra if and only if for the particular
Weiss covering ©(U) of any open subset U < M, the object A(U) is the homotopy colimit of the
diagram

[ Atint)= ] AW).
Uy, U2e®(U) U1eD (V)
In particular, we have

JMA = hOtheg(M)A(U)'

See [9, §A.4.3] for details.

(b) Any locally constant prefactorization algebra has a unique extension as a locally constant factorization
algebra taking the same value on any disk, but possibly different values on other open sets, see [19,
rem. 24].

Sometimes it is convenient to use the dual language. By a (pre)factorization coalgebra B in C we will
mean a (pre)factorization algebra in C°P. Thus, we have maps
Uty
VU B(UG)—B(UL) ® -+ @ B(Uy)
yieldding a presheaf on M. For a factorization coalgebra B we have the factorization cohomology which
we denote as

%B = B(M) = holim,, . B(U).
M

Let us record the following two statements for later use.

Proposition 7.2.6. If F is a locally constant sheaf of k-dg-vector spaces, then Sym(F) : U — Symy (F(U))
1s a locally constant factorization coalgebra.

Note that Sym(F) as we define it, is not the same as the symmetric algebra of F in the symmetric
monoidal category of sheaves of (dg-)vector spaces, in fact it is not a sheaf in the usual sense.

Proof. This is an analog of [9, thm. 5.2.1] which deals with sheaves corresponding to C* sections of vector
bundles, and their symmetric products in the sense of bornological vector spaces. In our case the proof is
similar but easier due to the absense of analytic difficulties. That is, call a covering i an n-Weiss covering,
if each subset I ¢ M of cardinality < n is contained in one of the opens of L. Then it suffices to show
that Sym"(F) : U — Symy.(F(U)) satisfies descent for n-Weiss coverings. This follows, as in the proof of
[9, thm. 5.2.1], from the fact that 72" is a sheaf of M™. O
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Proposition 7.2.7. Let o : B — B’ be a morphism of factorization coalgebras. Suppose that for any
disk U < M the morphism oy : B(U) — B(U') is a weak equivalence. Then o is a weak equivalence of
factorization coalgebras, in particular, o induces a weak equivalence oy : §M B — §M B

Proof. For any open U we realize oy by descent from the Weiss cover © (U). O

7.3. Analytic stacks. For the analytic version of the theory of algebraic stacks we follow [51] (where,
in fact, the case of higher and derived stacks is also considered).

An analytic stack is a stack of groupoids on the category of (possibly singular) Stein analytic spaces
over C, equipped with the Grothendieck topology consisting of open covers in the usual sense. Analytic
stacks form a 2-category Gtan as well as a model category Stan where weak equivalences are equivalences
of stacks.

We will need only analytic stacks of special form, namely the quotient analytic stacks Z//G, where G
is an analytic stack and G is a complex Lie group. For such stacks various concepts such as Borel-Moore
homology, etc., can be defined directly in terms of equivariant homology of the topological spaces of
C-points.

7.4. The stack Cohy and factorization algebras. Let S be a smooth connected algebraic surface
over C. We view it as a C'° manifold of dimension 4 and consider open subsets U < S in the analytic
topology. For any such nonempty U we have the category Cohy(U) of 0-dimensional coherent sheaves
on U (with finite support). We set Cohg(J) = {e}. We also have the analytic moduli stack Cohy(U) =
L0 Coh(()n)(U) parametrizing objects of Cohy(U), with its components given by the length, as in the
algebraic case. Each component is explicitly realized as a quotient analytic stack

Coh " (U) = FCoh"(U)//GL,(C),

where FCoh(()n)(U ) is the analytic space parametrizing pairs (F, ¢), where F is a 0-dimensional coherent

sheaf on U and ¢ : C* — HY(U,F) is an isomorphism. To see that FCoh(()n)(U ) is well defined as an
analytic space, we note that the datum of ¢ is equivalent to the datum of the corresponding surjection
¢ : (9(3" — F. Thus FCoh(()n)(U ) is a locally closed analytic subspace in Quot(”)(OC[Jj)"), the analytic analog
of the Grothendieck Quot scheme parametrizing all length n quotients of O%n.

If Uy,..., U, are disjoint open sets contained in the open subset Uy — S, then we have an open
embedding of analytic stacks

apt . g, + Cohg(Ur) x -+ x Cohg(U,)—Coho(U). (7.4.1)
Proposition 7.4.2. Cohg is a factorization algebra on S with values in the category Stan.

Proof. Let 84 = {U;}ier be a Weiss open cover of U. Let us understand more explicitly the analytic
stack holim N, (4, Cohg), a homotopy limit in the model category Stan, or, equivalently, the 2-categorical
colimit of N, (4, Cohg) in the 2-category Gtan. It is parametrized by pairs (i € I, F € Cohy(U;)), the
leftmost term in the diagram N, (4, Cohg), subject to coherent systems of identifications given by the rest
of the diagram. These identifications say that two pairs (i € I, F € Coho(U;)) and (j € J, F € Cohg(Uj))
are identified, whenever in the second pair F is the same sheaf but living on U;. This happens whenever F
lives in fact on U;; = U; n U;. Further terms in the diagram N, (U, Cohy) impose coherence conditions on
such identifications. This means that this homotopy colimit parametrizes O-dimensional coherent sheaves
which live on some U;. But 4 is a Weiss cover and every F € Cohg(U), has finite support which, therefore,
must lie in some U;. Thus, our homotopy colimit is identified with Cohg(U). O
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7.5. Chain-level COHA as a factorization coalgebra. For each open set U — S as above we consider
the complex of Borel-Moore chains of Cohg(U)

R(U) = CPM(Cohg(U)) := RI(Coho(U), weohy(w))-

Proposition 7.5.1. The assignment R : U — R(U) is a locally constant factorization coalgebra on S in
the category dgVect.

Proof. The fact that R it is a factorization algebra follows from Proposition 7.4.2. The fact that R is
locally constant is proved in the same was as Proposition 6.2.1(b). ]

Next, we upgrade this statement to take into account the Hall multiplication. The relevant concept
here is that of a homotopy associative (E;-)algebra which we now recall. We will use the language of
operads, see, e.g., [9] for a brief background and additional references. An operad P is a symmetric
monoidal category (C,®,1) consisting of:

(O1) objects P(r) € C with actions of S,, given for r > 0.
(O2) The unit morphism 1 — P(1).
(O3) The operadic compositions for any k,ry,--- 7

P(k) ®P(7“1) K- &® 'P(Tk)—;P(Tl + -+ Tk).
These data satisfy the axioms of equivariance, associativity and unit.

We will use the case when C = A°Set and C = Top. We will refer to these cases as simplicial operads
and topological operads. Any topological operad P gives a simplicial operad Sing(P) by passing to the
singular simplicial sets of the P(r)’s.

A weak equivalence of simplicial operads is a morphism P — Q of such operads such that for each r the
morphism of simplicial sets P(r) — Q(r) is a weak equivalence, i.e., it induces a homotopy equivalence
on the realizations.

Recall (A.1.1) that the category dgVect is enriched in the category A°Set of simplicial sets. Thus, for
any simplicial operad P we can speak about P-algebras in dgVect. Such an algebra is a cochain complex
A together with morphisms of simplicial sets

P(T)—>Map(A®T, A)

compatible with the S,-actions and operadic compositions. It sends the image of 1 = pt to the identity
map. Dually, a P-coalgebra in dgVect is a complex B with morphisms of simplicial sets

P(r)—Map(B, B®")

satisfying similar compatibilities. If P is a topological operad, its (co)algebras in dgVect are understood
as (co)algebras over the simplicial operad Sing(P).

Let m > 1. Let D,, the topological operad of little m-disks. The space D,,(r) parametrizes families
(B1,- -+, B;) of round m-dimensional open balls disjointly embedded into the standard unit ball B =
{|z] < 1} of R™, see, e.g., [9] for more details including the definition of the operadic compositions.

Definition 7.5.2. An E,,-(co)algebra in dgVect is a (co)algebra over a simplicial operad weakly equivalent
to D,,.

Ezxample 7.5.3. Consider the case m = 1. An embedding of a unit disk is determined by the midpoints
and radii of the image disks. For each choice of distinct points as midpoints of images, the choice of
acceptable radii is contractible. Thus the space D1 (r) is homotopy equivalent to a configuration space
of points in the interval. These spaces break apart into r! connected components depending on the
ordering of the points and each connected component is contractible. Hence Ep is homotopy equivalent
to the associative operad. More precisely, an E7-algebra structure on a cochain complex A is given by
a morphism of complexes j, : AY" — A, for each r, defined up to a contractible space of choices in the
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sense of Definition A.3.1, so that any superposition g (g, - -« , pir, ) of the p,’s lies in the space of choices
for fir,4+...4r,. A Ej-algebra in this sense is essentially the same as an Ay -algebra, or an associative
dg-algebra, by the results of Hinich [27, Th. 4.7.4], on invariance of the homotopy categories of algebras
under quasi-isomorphisms of dg-operads.

We can now formulate our upgrade of the chain level COHA.
Proposition 7.5.4. R is a locally constant factorization coalgebra on S in the category of E1-algebras.
Proof. For r = 1, we define
pry =t R(U)E" = CPM(Cohg(U))®"—C7M (Coho(U)) = R(U) (7.5.5)
using the stack FILT() parametrizing flags of objects of Cohy(U)
Eo1 € Epo < -+ © Ey,.

This stack comes with the projections
FILT(™) —2+ Cohy(U)
q

Cohg(U)"

p(Eo © Eoz © -+ < Eor) = Eor,
q(Eo1 © Eo2 © --- < Eop) = (Eo1, Eo2/Eor, - -+, Eor/Ey—1))-

Let &1 < - -+ < &y be the tautological flag of sheaves on FILT™ x S and put &; = &oj/Eois @ < j. Let
p: FILT") x § — FILT(™ be the projection.
Similarly to §2.5, we form the sheaf of associative dg-algebras (and, passing to the super-commutator,
of dg-Lie algebras)
G= @ RpHom(j1,Eiir1)

o<i<j<r—1

and find that FILT() = MC(G). Therefore we have the diagram
Cohy(U)" <% Tot(GS) «— FILT™ <2~ Cohy(U), (7.5.6)

in which the map 7 realizes FILT() as the zero locus of the section of 7*G(2) given by the curvature map.
This gives a virtual pullback i' on Borel-Moore homology. We get, so far at the level of BM-homology,
the map

my = pyoit o R(U)®"—R(U), R(U)= HEM(Coho(U)).
As in §4.5, we see that m, is the r-fold product in the (associative) COHA R(U).

To lift m, to the chain level we examine the choices that are made in its definition. The only nontrivial
choice is in the definition of the virtual pullback i'. That definition, see Example 3.1.4 depends on the
construction, for a vector bundle £ of rank m on a scheme 7 and a section s € H(T, &), of the class
cm(€,s) € HF™(T, k). We now note that at the cochain level, ¢,,(€,s) is defined canonically up to
a contractible space of choices (Proposition A.3.5). This means that we have a morphism of cochain
complexes p, as in (7.5.5), defined canonically up to a contractible space of choices and lifting m,..

Any superposition g (ter,, -« -, ptr,,) Will, by the same argument as in §4.5, belong to the (contractible)
space of determinations of fi, 4...4r,. This means that R(U) is an Ej-algebra.

As U runs over the open subsets of S in the complex topology, the maps ji, 7 are compatible with the
cosheaf structure on Cohg. This finishes the proof. O



44 M. KAPRANOV, E. VASSEROT

By [19], [41], locally constant factorization (co)algebras on R™ with values in a symmetric model
category C can be identified with E,,-(co)-algebras in C, the identification associating to a (co)algebra B
the object B(B) where B — R™ is the standard unit m-ball. Note that B(B) is weak equivalent to B(R%).

Let us specialize this to the case when B = R and m = 4, since C?> ~ R*. In this case we form the
cochain complex R(B) ~ R(C?) whose cohomology is the flat Hecke algebra R(B) ~ R(C?) studied in
86. The general results above, applied to the category C of Ej-algebras, imply:

Corollary 7.5.7. R(C?) is Ei-algebra in the category of E4-coalgebras. ([l

Remarks 7.5.8.

(a) The Ej4-coalgebra structure on R(C?) is a cochain level refinement of the comultiplication A on
R(C?), see §6.2. While A is cocommutative, because it is independent on the choice of two distinct
disks Uy, Uy < C?, at the cochain level we do not seem to have cocommutativity since the space of
choices of such pairs of disks is not contractible (it is precisely the space of binary operations in the
operad Dy).

(b) By forming the Koszul dual to the Ej-algebra structure on R(C?), we obtain an FEj-coalgebra in
the category of Ej-coalgebras, i.e., an Fs-coalgebra. Alternatively, forming the Koszul dual to the
FE-algebra structure, we obtain an Es-algebra. This suggest that some 5-dimensional field theory
may be relevant to this picture.

7.6. Proof of Theorem 7.1.3. Note that all the construction leading to, as well as the statement of,
the theorem make sense for an arbitrary complex analytic surface. So, for any open subset U < S in the
complex topology we have the Z2-graded space ©(U) and the symmetrized product map Sym(©(U)) —
R(U). If U is a disk, this map is an isomorphism by Theorem 6.1.4. We will deduce the global statement
(for U = S) from these local ones.

For this, we upgrade the correspondence U — O(U) to a complex of sheaves V on S so that O(U) =
H~*(U,V) is the hypercohomology of U with coefficients in V. That is, write

V = ws Qx o'

The sheaf V and the factorization coalgebra R are both presheaves with values in the category of cochain
complexes. We define a morphism of presheaves & : V—R by

& : RD(U,ws) ® t"q" ' — Rpn (piws 1 ¢1(Oy)")—>RT(Cohl", (U)

—

’ wCohﬁ))t

(U))

—RT(Coh{™ (V) = R(U)™.

»Weon{™ (U))

Since V is a sheaf with values in the category of cochain complexes, its symmetric algebra Sym(V) is
a factorization coalgebra with values in this category, by Proposition 7.2.6. Since R is a factorization
algebra in the category of Ei-algebras, we can define the symmetrized product & : Sym(V) — R by setting

~

0 = .,=00n, Where
511 : Sym”(V)—»R, c~rn(vl ®:---0 vn) = E Z ,un(&(vs(l)) ®--- ®&(vs(n))), (7.6.1)

lifting the map o from (7.1.2). The map & is a morphism of factorization coalgebras in the category of
cochain complexes. By the above, &y is a weak equivalence for any U which is, topologically, a disk.
Therefore & is a weak equivalence of factorization coalgebras by Proposition 7.2.7. Taking U = S we
obtain Theorem 7.1.3.
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APPENDIX A. BASICS ON 00-CATEGORIES, ORIENTATIONS AND CHERN CLASSES

A.1. co-categories. Let k be a field of characteristic 0. By dgVect = dgVecty, we denote the category
of cochain complexes over k. By A°Set we denote the category of simplicial sets. For a simplicial set Y
we denote by |Y| the geometric realization of Y. We say that Y is contractible, if |Y| is a contractible
topological space. For a topological space 1" we denote by Sing(7") the singular simplicilal set of T'.

An oo-category € is a simplicial set (€,),>0 satisfying the partial Kan condition, with elements of &g
called objects and elements of €; called morphisms. Every oo-category € contains the maximal Kan
simplicial subset €K2" with Cga’“ = €p, having the meaning of the subgroupoid of (weakly) invertible
morphisms. We refer to [42] for more details.

A simplicial category is a category C enriched in A°Set, so that for any two objects x,y € C we are
given a simplicial set Mapg(x,y) with standard properties. A simplicial category C gives an co-category
MN(C) with Ob(C) as a set of objects, as explained in [42].

A dg-category is a category C enriched in dgVect, so that for any two objects z,y € C we are given a
cochain complex Homg(x,y) with standard properties. Any dg-category C can be made into a simplicial
category by

Map(z,y) = DK(7<o Hom¢(z,y)) (A.1.1)

where DK is the Dold-Kan simplicial set associated to a Z<o-graded complex, see [60, §8.4.1] and a
discussion in Example 1.1.4. So it gives rise to an co-category denoted N9&(C), see [41].

A.2. Enhanced derived categories. Let A be a k-linear abelian category. We denote by C(A) the
category of complexes over A bounded below, with morphisms being morphisms of complexes. By C(A)qq
we denote the dg-category with the same objects as C(.A). For any two objects of C(.A)qg, the complex
Homg(),, (F,G) is the graded k-vector space Hom 4(F, G) with the differential given by the commutation

with d7 and dg. By D(A) = C(A)[Qis™!] we denote the bounded below derived category of A, i.e., the
localization of C(A) by the class Qis of quasi-isomorphisms. There are three closely related enhancements
of D(A) with the same objects:

(a) If A has canonical injective resolutions A — I(A), then we have D(A)q, =the dg-category with
morphisms given as follows, see [7],

Homp ) (F,G) = H°(RHom®(F,G)), RHom®(F,G) = Homa(A) (I(F),1(G)).

dg
(b) D(A)a =the simplicial category with morphisms given by Homp4)(F,G) = moMap,(F,G) with
appropriate simplicial sets Map,(F,G). There are two homotopy equivalent ways of constructing
these:
(bl) Given the data in (a), we can define, as in (A.1.1),

Map,(F,G) = DK (Tg() RHom® (F, g))

(b2) The Dwyer-Kan simplicial localization procedure [12],[13] produces simplicial sets Map, (F, G),
starting from the category C(A) and the class of morphisms Qis. Using these Map,(F,G),
we can get an intrinsic definition of the RHom®(F,G) in (a) by taking the normalized chain
complexes and stabilizing with respect to the shift.

(¢) D(A)y =the oo-category obtained from D(A)a in the standard way. As in (b2), it can be defined

intrinsically, as the oo-categorical localization of C(.A) by Qis, see [41]

A.3. Homotopy canonical Chern classes and orientations. The concept of coherent homotopy
uniqueness of objects, morphisms, cohomology classes, etc., is implicit in the formalism of co-categories,
as well as in homotopical algebra in general. In this appendix we spell out some instances of this concept
which we use in the main text.

Definition A.3.1.
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(a) Let € be a oo-category. An object of € defined up to a contractible set of choices is a datum of a
contractible simplicial set K and a morphism of simplicial sets K — €K& Suppose x,y are objects
of €. A morphism z — y defined up to a contractible set of choices is an object of the co-category
Homg (z,y) defined up to a contractible set of choices.

(b) Let C be a simplicial or dg-category. An object of C defined up to a contractible set of choices is
defined by applying (a) to the co-category MN(C) or N(C).

Ezamples A.3.2.

(a) The representing (resp. co-representing) object of a contravariant (resp. covariant) oco-functor € —
A°Set is, when it exists, defined uniquely up to a contractible set of choices, see [42].

(b) The value of the adjoint (left or right) of an oco-functor f : € — © on an object of ©, being a
(co)representing object, is defined uniquely up to a contractible set of choices.

(c¢) The direct images of complexes of sheaves, the cochain complexes RI'(B, F) of derived global sections,
etc., are defined uniquely up to a contractible set of choices.

Let us note a particular case.

Definition A.3.3. Let V* be a cochain complex. An r-cocycle of V* defined up to a contractible set of
homotopies is an object of € = DK(7<,V*[—r]) defined up to a contractible set of choices.

Such a datum consists of a contractible K € A°Set plus a set of cocycles ¢; € V", one for each vertex
i € Ko, plus cochains c., one for each edge e € K7 so that d(c.) = cg,(c) — €, (e), and so on.

Ezamples A.3.4 (Chern classes).

(a) Let Y be a complex manifold and E be a holomorphic vector bundle on M. The pth Chern class
cp(E) € H*(Y,C) comes from a cocycle in the C* de Rham complex Q°(M) defined canonically up
to a contractible set of choices. That is, for any m > 0 and any Hermitian metrics hqg,- - , hy in E,
the Bott-Chern theory of secondary characteristic forms [produces a form ¢, (ho, - -+ , hy,) € Q2P7™(X)
such that ¢, (hg) represents ¢, (E) and

dCT(h()u o 7hm) = Z(_l)iCT(h(h o 7}/L\i7 o 7hm)

The simplicial set K is here the simplex with vertices corresponding to all the h;’s.

(b) More generally, let Y be any CW-complex and FE be a topological complex vector bundle on Y of rank
p. Let BU(p) be the topological classifying space of the group U(p) (the infinite Grassmannian),
with its universal rank p vector bundle E"". Let Lp be the space formed by pairs (¢, u), where
¢ :Y — BU(p) is a continuous map and u : ¢*E"™ — FE is an isomorphism of topological vector
bundles. Then Lg is contractible, and so Kp = Sing(Lg) is a contractible simplicial set. Thus,
fixing some cocycle representative of the the Chern class c,(E"™) € H?"(BU(p), k), we get a cocycle
representing c¢,(E) defined uniquely up to a contractible set of choices. These cocycles are compatible
with pullbacks, modulo the choices.

We want to give an algebraic analog of Example A.3.4(b). For each f-Artin stack B, every vector
bundle £ over B of rank r and every section s € H%(&) with zero locus i : B, = B, we have a canonically
defined class ¢, (&, s) € H?BZ (B,k). It can be seen as coming from a morphism ¢, (,s) : kg — itkg[2r]
in the triangulated category Dconstr(Bs)-

Proposition A.3.5. The classes ¢, (E,s) can be lifted to cocycles, defined, for each B,E,s, canonically
up to a contractible set of choices and compatible with pullbacks, modulo the choices.

To prove this, we recall that ¢, (£, S) is obtained by pullback from the orientation class ns € Hz (Tot(€), k),
in fact from the canonical isomorphism 7. : iIBKTOt(g) — kp[2r] in the classical derived category, i.e., in
the homotopy category of the dg-enhancement. So we reduce to the following.
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Proposition A.3.6. The isomorphisms ne can be lifted to morphisms of complexes defined, for each B,
&, canonically up to a contractible set of chozces and compatible with pullbacks, modulo the choices.

Proof. Similarly to Example A.3.4, we first consider the stack BGL, = pt//GL, with its tautological rank
r bundle £"". Fix a chain level representative 7. for the quasi-isomoprhism 7,

Jun un*
Let now B be any Artin stack and £ be any rank r vector bundle on B. Let us work in the co-category
DG of derived stacks of [59], so B can be seen as an object of ©&. In this category we have the derived

stack Bun,(B) of rank r vector bundles on B which is represented as the mapping stack
Bun,(B) «— Map(B, BGL,), (A.3.7)

see [59]. In other words, (A.3.7) is the pullback morphism which, at the level of points, sends ¢ : B —
BGL, to ¢*&™.

This means that our bundle £ = ¢*&"™ under a morphism ¢ which is defined uniquely up to a con-
tractible set of choices. More precisely, the corresponding simplicial set K¢ is obtained by taking the
homotopy fiber of (A.3.7) over £ and then taking the simplicial set of C-points. This simplicial set is
contractible since (A.3.7) is a weak equivalence of derived stacks. So the pullback of ﬁgun is also defined
juniquely up to a contractible set of choices as desired. The compatibility with the pullback follows by
the very construction. O
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