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Abstract. For a smooth quasi-projective surface S over C we consider the Borel-Moore homology of the
stack of coherent sheaves on S with compact support and make this space into an associative algebra by
a version of the Hall multiplication. This multiplication involves data (virtual pullbacks) governing the
derived moduli stack, i.e., the perfect obstruction theory naturally existing on the non-derived stack. By
restricting to sheaves with support of given dimension, we obtain several types of Hecke operators. In
particular, we study RpSq, the Hecke algebra of 0-dimensional sheaves. For the flat case S “ A2, we
identify RpSq explicitly. For a general S we find the graded dimension of RpSq, using the techniques of
factorization cohomology.
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0. Introduction

0.1. Motivation. A large part of the classical theory of automorphic forms for GLn over functional fields
can be interpreted in terms of Hall algebras of abelian categories [31], [32]. Relevant here is CohpCq, the
category of coherent sheaves on a smooth projective curve C{Fq. Taking the Hall algebra of BunpCq, the
subcategory of vector bundles, produces (unramified) automorphic forms, while Coh0pCq, the category of
torsion sheaves, gives rise to the Hecke algebra.

The classical Hall algebra of a category such as CohpCq consists of functions on (Fq-) points of the
moduli stack of objects and so admits various modifications, cf.[14, Ch. 8]. Most important is the cohomo-
logical Hall algebra (COHA) where we take the cohomology of the stack instead of the space of functions
on the set of its points [35]. This allows us to work over more general fields such as C.

Study of Hall algebras (classical or cohomololgical) of the categories CohpSq for varieties S of dimension
d ą 1 can be therefore considered as a higher-dimensional analog of the theory of automorphic forms. In
this paper we consider the case of surfaces (d “ 2) over C and study their COHA. In this case we have
a whole new range of motivations coning from gauge theory, where cohomology of the moduli spaces of
instantons is an object of longstanding interest [46], [1], [8].

0.2. Description of the results. The familiar 2-fold subdivision into automorphic forms vs. Hecke
operators now becomes 3-fold: we have categories CohmpSq, m “ 0, 1, 2, of purely m-dimensional sheaves,
see §4.1. Here, Coh2pSq consists of vector bundles, while Coh0pSq is the category of punctual sheaves.
An important feature is that the COHA of Cohm´1pSq acts on that of CohmpSq by Hecke operators.

We denote by RpSq the COHA of the category Coh0pSq. It is the most immediate analog of the
unramified Hecke algebra of the classical theory and we relate it to objects studied before.
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In the flat case S “ A2, the algebra RpA2q is identified with the direct sum, over n ě 0, of the
GLn-equivariant Borel-Moore homology of the commuting varieties of gln.

Our first main result, Theorem 6.1.4, shows that the algebra RpA2q is commutative, and is identified
with the symmetric algebra of an explicit graded vector space Θ. It is convenient to write Θ “ HBM

‚ pA2qb

Θ1, where the first factor is 1-dimensional, in homological degree 4.

For a general surface S, the algebra RpSq is non-commutative. Our second main result, Theorem 7.1.3,
provides a version of Poincaré-Birkhoff-Witt theorem for RpSq. It exhibits a system of generators as well
as determines the graded dimension of RpSq. More precisely, it establishes an isomorphism of graded
vector spaces

σ : SympHBM
‚ pSq bΘ1q » RpSq. (0.2.1)

Like the classical PBW isomorphism for enveloping algebras, σ is given by the symmetrized product map
on the space of generators.

0.3. Role of factorization algebras. Our proof of Theorem 6.1.4 is based on the techniques of factor-
ization homology [9], [19], [20], [41]. More precisely, we consider the cochain lift RpSq of RpSq. This can
be seen as a homotopy associative algebra whose cohomology is RpSq. For any open set U Ă S we have a
similarly defined algebra RpUq. Further, one can consider U to be any open set in the complex topology.
In this case Coh0pUq can be considered as an analytic stack and so its Borel-Moore homology and our
entire construction of the COHA make sense.

In this generality, the assignment U ÞÑ RpUq is a factorization coalgebra in the category of dg-algebras.
This is a reflection of the more fundamental fact: U ÞÑ Coh0pUq is a factorization algebra in the category of
analytic stacks, see Proposition 7.4.2. These considerations allow us to lift σ to a morphism of factorization
coalgebras in the category of dg-vector spaces and deduce the global isomorphism from the local one, i.e.,
from the case when S is an open ball which is equivalent to that of S “ A2.

0.4. Derived nature of the COHA. As a vector space, our COHA is the Borel-Moore homology of
the Artin stack CohpSq (the moduli stack of objects of CohpSq), i.e., it is the cohomology of the dualizing
complex:

HBM
‚ pCohpSqq “ H´‚pCohpSq, ωCohpSqq.

Since S is a surface, CohpSq is singular due to obstructions encoded by Ext2, so the dualizing complex
is highly non-trivial. However, CohpSq is in fact a truncation of a finer object, the derived moduli stack
RCohpSq, smooth in the derived sense, see [59], [57]. While the vector space underlying our COHA
depends on CohpSq alone, the multiplication makes appeal to the derived structure: we use the refined
pullbacks corresponding to the perfect obstruction theories on CohpSq and on the related stack of short
exact sequences. So our construction has appearance of applying some cohomology theory to the derived
stack RCohpSq itself and using its natural functorialities for morphisms of derived stacks. It is very likely
that it can be interpreted in this way directly. We do not know how to do this, and so add “derived
corrections” to the functorialities of a non-derived cohomology theory.

0.5. Relation to other work. The COHA of a surface that we consider here is a non linear analog
of the COHA associated to the preprojective algebra of the Jordan quiver considered in [54], see, e.g.,
[55] for the case of arbitrary quivers. Kontsevich and Soibelman introduced in [35] cohomological Hall
algebras for 3-dimensional Calabi-Yau categories, by taking cohomology of the moduli stack of objects
with coefficients in the natural perverse sheaf of “vanishing cycles” with respect to the Chern-Simons
functional. Although the details of the approach have been worked out only for quiver-type situations,
see, e.g., [10] for a comparison with [54], it seems applicable, in principle, to the category of compactly
supported coherent sheaves on any 3-dimensional Calabi-Yau manifold M . In particular, our COHA for a
surface S should be related to the Kontsevich-Soibelman COHA for M the total space of the anticanonical
bundle on S.



4 M. KAPRANOV, E. VASSEROT

Instead of Borel-Moore homology of the stack CohpSq, one can take its Chow groups or its algebraic
K-theory, in particular, study K-theoretic analogs of the Hecke operators. This approach was developed
by Negut [45] who studied the K-theoretic effect of explicit Hecke correspondences on the moduli spaces
and, very recently, by Zhao [61] who defined independently the K-theoretic Hall algebra of 0-dimensional
sheaves by a method similar to ours. On the other hand, algebraic K-theory, being a more rigid object than
homology, does not easily localize on the complex topology and so determining the size of the resulting
objects is more difficult.

In the particular case where S is the cotangent bundle to a smooth curve, other versions of the COHA
(of 0-dimensional sheaves and of purely 1-dimensional sheaves) of S appeared recently in [44], [53].

0.6. Structure of the paper. In §1 we discuss the basic generalities on groupoids and stacks, including
higher stacks understood as homotopy sheaves of simplicial sets. We pay special attention to Dold-
Kan and Maurer-Cartan (Deligne) stacks associated to 3-term complexes and dg-Lie algebras. These
constructions are used in §2 to describe stacks of extensions (needed for defining the Hall multiplication)
and filtrations (needed to prove associativity).

In §3 we define and study the Borel-Moore homology of Artin stacks. This concept, which is a topolog-
ical analog of A. Kresch’s concept of Chow groups for Artin stacks [36], can be defined easily once we have
a good formalism of constructible derived categories and their functorialities f´1, Rf˚, Rfc, f

!. While in
the “classical” approach (sheaves first, complexes later) this may present complications, cf. [47], [39] for
a discussion, the modern point of view of homotopy descent cf.[21], allows a straightforward definition
of the enhanced derived category of a stack as the 8-categorical limit of the corresponding categories
for schemes. The desired functorialities are also inherited from the case of schemes. We study virtual
pullback in this context.

The COHA is defined in §4, first as a vector space, then as an associative algebra.

In §5 we consider subalgebras in the COHA corresponding to sheaves with various condition on the
dimension of support. These subalgebras play the role of Hecke algebras, since they act on other subspaces
in COHA (corresponding to sheaves whose dimension of support is bigger) by natural “Hecke operators”
(operators formally dual to those of the Hall multiplication).

In §6 we study the flat Hecke algebra RpA2q by relating it to the earlier work on commuting varieties
in gln. Here we prove Theorem 6.1.4.

Finally, in §7 we globalize the consideration of §6 by describing the global Hecke algebra RpSq as the
factorization (co)homology of an appropriate factorization (co)algebra. This leads to the proof of Theorem
7.1.3 .

The brief Appendix provides a reminder on 8-categories and spells out the homotopy unique nature
of Chern classes and orientation classes at the cochain level.
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Rozenblyum and Y. Soibelman for useful discussions. We would like to thank J. Schürrmann for pointing
out an inaccuracy in an earlier version. The research of M.K. was supported by World Premier Interna-
tional Research Center Initiative (WPI Initiative), MEXT, Japan and by the IAS School of Mathematics.
The research of E.V. was supported by the grant ANR-18-CE40-0024.
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algebras, factorization algebras and applications, 07/2018, Kavli IPMU ; Vertex algebras and gauge theory,
12/2018, Simons Center ; TCRT6, 01/2019, Academia Sinica). We are grateful to the organizers of these
events for the invitations to speak.
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1. Generalities on stacks

1.1. Groupoids and simplicial sets. A groupoid is a category G in which all morphisms are invertible.
We write G “ tG1 Ñ G0u where G0 “ ObpGq is the class of objects and G1 “ MorpGq is the class of
morphisms. For an essentially small groupoid G let π0pGq be the set of isomorphisms classes of objects
of G. For any object x P G0 let π1pG, xq “ AutGpxq be the automorphism group of x. All groupoids in
the sequel will be assumed essentially small.

Small groupoids form a 2-category Gpd. For each groupoids G1, G2 we have a groupoid whose objects
are functors G1 Ñ G2 and morphisms are natural transformations of functors. We will refer to 1-
morphisms of Gpd as simply morphisms of groupoids. Considered with this notion of morphisms, groupoids
form a category which we denote Gpd. Let Eq Ă MorpGpdq be the class of equivalences of groupoids.

Proposition 1.1.1. Let f : G Ñ G1 be a morphism of groupoids. Suppose that f induces a bijection of
sets π0pGq Ñ π0pG

1q and, for any x P ObpGq, an isomorphism of groups πpG, xq Ñ π1pG
1, fpxqq.Then f

is an equivalence of groupoids.

Proof. The conditions just mean that f is essentially surjective and fully faithful hence an equivalence. �

For a category C let ∆˝C be the category of simplicial objects in C. In particular, we will use the
category ∆˝Set of simplicial sets and ∆˝Ab of simplicial abelian groups. For a simplicial set X let |X|
be its geometric realization. A morphism f : X Ñ X 1 of simplicial sets is called a weak equivalence, if it
induces a homotopy equivalence |X| Ñ |X 1|. In this case we write X „ X 1. Let W be the class of weak
equivalences.

We also associate to any simplicial set X its fundamental groupoid ΠX. Objects of ΠX are vertices of
X, i.e., elements x P X0, and, for x, y P X0, the set HomΠXpx, yq consists of homotopy classes of paths
in |X| joining x and y. Let π0pXq be the set of connected components of |X|, and, for each i ě 1 and
x P X0 let πipX,xq be the topological homotopy groups of |X| at x.

Dually, the nerve NG of a groupoid G is a simplicial set with the set of m-simplices being

NmG “ G1 ˆG0 ˆG0 ¨ ¨ ¨ ˆG0 G1 (m times). (1.1.2)

The topological homotopy groups of NG match those defined above algebraically for G:

π0pNGq “ π0pGq, π1pNG, xq “ πipG, xq, πipNG, xq “ 0, i ě 2.

A simplicial set is of groupoid type, if it is weak equivalent to the nerve of some groupoid. We denote by
∆˝Setď1 Ă ∆˝Set the full subcategory of simplicial sets of groupoid type.

Proposition 1.1.3.

paq A simplicial set X is of groupoid type if and only if πipX,xq “ 0 for each i ě 2, x P X0. Then, we
have X » NΠX.

pbq The functors Π, N yield quasi-inverse equivalences of homotopy categories ∆˝Setď1rW´1s » GpdrEq´1s.
�

Let C be an abelian category. We denote by dgC the category of cochain complexes K “ pKn, dn :
Kn´1 Ñ KnqnPZ over C. For n P Z we denote by dgďnC the category of complexes concentrated in
degrees ď n. For K P dgC we denote by

Kďn “
 

¨ ¨ ¨
dn´1

ÝÑ Kn´1 dn
ÝÑ KnÝÑ0ÝÑ¨ ¨ ¨

(

P dgďnC,

τďnK “
 

¨ ¨ ¨
dn´1

ÝÑ Kn´1 dn
ÝÑ Kerpdn`1qÝÑ0ÝÑ¨ ¨ ¨

(

P dgďnC

its stupid and cohomological truncation in degrees ď n. Note that τďn sends quasi-isomorphisms of
complexes to quasi-isomorphisms.

Examples 1.1.4 (Dold-Kan groupoids).
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paq Given a 3-term complex of abelian groups

K “ tK´1 d0 // K0 d1 // K1u ,

we have the action groupoid

$K “ Kerpd1q{{K´1 :“ tK´1 ˆKerpd1q Ñ Kerpd1qu

whose set of objects is Kerpd1q and whose morphisms sÑ t are given by th P K´1 ; s` d0phq “ tu.
Then we have

π0p$Kq “ H0pKq, π1p$K, sq “ H´1pKq, @ s P Ob $K.

pbq The Dold-Kan correspondence DK : dgď0Ab Ñ ∆˝Ab associates to a Zď0-graded complex K of
C-vector spaces the simplicial vector space DKpKq such that
‚ DKpKq0 “ K0,
‚ the set of edges joining s, t P K0 is th P K´1 ; s` d0phq “ tu,
‚ 2-simplices with given 1-faces are in bijection with certain elements of K´2, and so on, see, e.g.,

[60, §8.4.1].
For each i ě 0, we have an isomorphism πipDKpKqq » H´ipKq which is independent of the base
point. In fact, the correspondence preserves the respective standard model structures. In particular,
for a 3-term complex K as in (a), we have

$K “ ΠDKpτď0Kq. (1.1.5)

Examples 1.1.6 (Maurer-Cartan groupoids). We will use a non-abelian generalization of Examples 1.1.4,
due to Deligne, see [22], [23] and references therein, Hinich [28] and Getzler [18].

paq Consider a (possibly infinite dimensional) dg-Lie algebra g over C situated in degrees r0, 2s:

g “ tg0 d0 // g1 d1 // g2u .

Thus g0 is an ordinary complex Lie algebra. We assume that it is nilpotent, so we have the nilpotent
group G0 “ exppg0q. By definition, G0 consists of formal symbols ey, y P g0 (so G0 is identified
with g0 as a set), with the multiplication given by the Campbell-Hausdorff formula. The set of
Maurer-Cartan elements of g is

mcpgq “

"

x P g1 ; d1x`
1

2
rx, xs “ 0

*

.

The group G0 acts on mcpgq by the formula

ey ˚ x “ eadpyqpxq `
1´ eadpyq

adpyq
pd1pyqq, (1.1.7)

see [23, p. 45]. We define the Maurer-Cartan groupoid 1 (or Deligne groupoid) of g to be the action
groupoid

MCpgq “ mcpgq{{G0 :“ tG0 ˆmcpgq Ñ mcpgqu.

Note that if the dg-Lie algebra g is abelian, i.e., if it reduces to a 3-term cochain complex, then
G0 “ g0 and it acts on mcpgq “ Kerpd1q by translation, so we have MCpgq “ $pgr1sq where $ is as
in Example 1.1.4 (a) .

1In this paper we use the terms “Maurer-Cartan groupoid” and “Maurer-Cartan stack” in order to avoid clashes with the
algebro-geometric notion of Deligne-Mumford stacks.
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pbq More generally, let g be any nilpotent dg-Lie algebra over C. The Maurer-Cartan simplicial set
mc‚pgq is defined by

mcnpgq “ mcpgbC Ω‚polp∆
nqq,

where Ω‚polp∆
nq is the commutative dg-algebra of polynomial differential forms on the standard n-

simplex, see [28], [18]. Further, in [18] it is proved that if g is concentrated in degrees r0, 2s then
N‚pMCpgqq, is weak equivalent to mc‚pgq.

Proposition 1.1.8. A quasi-isomorphism φ : g1 Ñ g2 of nilpotent dg-Lie algebras induces a weak equiv-
alences of simplicial sets mc‚pg1q Ñ mc‚pg2q. In particular:

paq If g1, g2 are concentrated in degrees r0, 2s, then φ induces an equivalence of groupoids MCpg1q Ñ

MCpg2q.
pbq A quasi-isomorphism K1 Ñ K2 of cochain complexes as in Example 1.1.4paq induces an equivalence

of groupoids $K1 Ñ $K2.

�

Let now p : gÑ h be a surjective morphism of dg-Lie algebras. Let n Ă g be the kernel of p and assume
that there is an embedding i : hÑ g with p ˝ i “ 1 such that g “ h˙ n is the semi-direct product.

We have a functor of groupoids p˚ : MCpgq Ñ MCphq. Recall that for a functor φ : C Ñ D and an
object x P ObpDq, the fiber category φ{x consists of pairs py, hq with y P ObpCq and h : φpyq Ñ x a
morphism in D, with the obvious notion of morphisms of such pairs. If C, D are groupoids, so is φ{x.
We apply this when C “ MCpgq, D “ MCphq and φ “ p˚. We get the fiber category p˚{x. On the other
hand, the object x P ObpMCphqq being an element of mcphq, it gives a new differential dx “ d ´ adpxq
on n, where we abbreviate x “ ipxq. Let nx be the dg-Lie algebra with underlying Lie algebra n and
differential dx.

Proposition 1.1.9. The fiber category p˚{x is equivalent to the groupoid MCpnxq. �

1.2. Stacks and homotopy sheaves. Let S be a Grothendieck site. We recall that a stack (of es-
sentially small groupoids) on S is a presheaf of groupoids B : T ÞÑ BpT q, T P ObpS q, satisfying the
2-categorical descent condition extending that for sheaves of sets, see [...] for background. Stacks on S
form a 2-category StS . We will refer to 1-morphisms of StS as morphisms of stacks and will denote by
StS the category of stacks on S with these morphisms. Let Eq Ă MorpStS q be the class of equivalences
of stacks.

Remark 1.2.1. For most purposes, the above 1-categorical point of view on stacks will be sufficient.
However, in various constructions below such as gluing, the full 2-categorical structure on StS becomes
important. In particular, as with objects of any 2-category, to define a stack “uniquely” (e.g., naively, in
a way “independent” on some choices) means, more formally, to define it uniquely up to an equivalence
which is defined uniquely up to a unique isomorphism.

A stack of groupoids B gives rise to a sheaf of sets π0pBq on S , obtained by sheafifying the presheaf
T ÞÑ π0pBpT qq. Similarly, for any T P ObpS q and any object x P BpT q we have a sheaf of groups π1pB, xq
on T , i.e., on the site S {T , obtained by sheafifying the presheaf T 1 ÞÑ π1pBpT

1q, x|T 1q, where x|T 1 is the
pullback by the morphism T 1 Ñ T .

Proposition 1.2.2. Let f : B Ñ B1 be a morphism in StS which induces an isomorphism of sheaves
of sets π0pBq Ñ π0pB

1q and an isomorphism of sheaves of groups π1pB, xq Ñ π1pB
1, fpxqq for any

T P ObpS q, x P ObpBpT qq. Then f is an equivalence of stacks.

Proof. Follows from Proposition 1.1.1 by sheafification. �
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Let ∆˝SetS be the category of presheaves of simplicial sets on S . Recall [59] that such a presheaf
X is called a homotopy sheaf or an 8-stack, if it satisfies descent in the homotopy sense. We denote by
St8S the category of homotopy sheaves of simplicial sets on S and by W Ă MorpSt8S q the class of weak
equivalences (defined stalk-wise). A homotopy sheaf X gives rise to a sheaf of sets π0pXq on S and, for
any T P ObpS q and any vertex x P XpT q0, a sheaf of groups πipX,xq on S {T . We have:

Proposition 1.2.3. Let f : X Ñ X 1 be a morphism in St8S . Suppose f induces an isomorphism of
sheaves of sets π0pXq Ñ π0pX

1q and, for each T P ObpS q and x P XpT q0, an isomorphism of sheaves of
groups πipX,xq Ñ πipX

1, fpxqq. Then f is a weak equivalence.

Proof. If S is a point, this is the standard: a map of simplicial sets is a weak equivalence iff it induces
isomorhism on homotopy groups. The case of general S is obtained from this by sheafification. �

Any homotopy sheaf X gives a stack of groupoids ΠX on S , defined by taking T ÞÑ ΠXpT q. Any
stack of groupoids B on S gives rise to a homotopy sheaf NpBq taking T to the nerve of the groupoid
BpT q. A homotopy sheaf X is called of groupoid type, if it is weak equivalent to NpBq for some stack B.

We denote by St8,ď1
S Ă St8S the full category of homotopy sheaves of groupoid type.

Proposition 1.2.4.

paq A homotopy sheaf X is of groupoid type if and only if πipX,xq “ 0 for each T P ObpS q, x P XpT q0
and i ě 2.

pbq The functors Π, N induce mutually quasi-inverse equivalences of homotopy categories St8,ď1
S rW´1s »

StS rEq´1s. �

1.3. Artin and f-Artin stacks. In this paper all schemes, algebras, etc., will be considered over the

base field C of complex numbers. Let ĆAff be the category of affine schemes over C equipped with the
étale topology. We refer to [38], [49] for general background on Artin stacks, i.e., stacks of groupoids on
Aff with a smooth atlas and a representable, quasi-compact, quasi-separated diagonal.

Examples 1.3.1.

paq Let G “ t G1

s //

t
// G0 u be a groupoid the category of schemes of finite type such that the source

and target maps s, t are smooth morphisms. It gives rise to an Artin stack which we denote by }G}.
By definition, }G} is the stack associated with the prestack

T ÞÑ tHompT,G1q Ñ HompT,G0qu.

pbq In particular, let G be an affine algebraic group acting on a scheme Z of finite type. Then we have
the action groupoid tGˆZ Ñ Zu in the category of schemes of finite type. The corresponding Artin
stack is denoted Z{{G and is called the quotient stack of Z by G. Explicitly, for T P Aff the groupoid
pZ{{GqpT q is identified with the category of pairs pP, uq, where P is a G-torsor over T (locally trivial
in étale topology) and u : P Ñ Z is a G-equivariant map.

Definition 1.3.2. An Artin stack B is called:

paq Of finite type, if it is equivalent to the stack of the form }G} for a groupoid G as in Example 1.3.1paq.
pbq An f-Artin stack, if it is locally of finite type.
pcq A quotient (resp. locally quotient) stack is it is equivalent (resp. locally equivalent) to the stack of

the form Z{{G where Z,G are in Example 1.3.1pbq.

All the stacks we will use will be f-Artin. Let the 2-category St and the category St be the full
2-subcategory in St

ĆAff
and the full subcategory in St

ĆAff
formed by f-Artin stacks.



THE COHA OF A SURFACE 9

Let Aff ĂĆAff be the category of affine schemes of finite type with its étale topology. We note that
f-Artin stacks are determined by their restrictions to Aff , and so we can and will consider them as stacks
of groupoids on Aff .

Given an f-Artin stack B, let StB be the 2-category of f-Artin stacks over B, i.e., of f-Artin stacks
X together with a morphism of stacks X Ñ B. Objects of StB can, equivalently, be seen as stacks of
groupoids over the Grothendieck site AffB formed by affine schemes T of finite type together with a
morphism of stacks f : T Ñ B. Thus, an f-Artin stack X over B can be seen as associating to each
T P AffB a groupoid XpT q.

2. Stacks of extensions and filtrations

2.1. Cone stacks. We refer to [47, 49] for general background on quasi-coherent sheaves on Artin stacks.
For an f-Artin stack B we denote by QCohpBq, resp. CohpBq the category of quasi-coherent, resp.
coherent sheaves of OB-modules. By a vector bundle we mean a locally free sheaf of finite rank.

Let B be an f-Artin stack and R “
À

iPNR
i be a graded quasi-coherent sheaf of OB-algebras such

that R0 “ OB, R1 is coherent and R is generated by R1 locally over B. The relative affine B-scheme
C “ SpecR is called a cone over B, see, e.g., [5, §1].

If E is a coherent sheaf over B, we get the associated cone CpEq “ SpecpSymOB
pEqq which is an affine

group scheme over B. Its value (the set of points) on pT
f
Ñ Bq P AffB is HomOT

pf˚E ,OT q. We call such
a cone an abelian cone.

For instance, the total space of a vector bundle E over X is defined as

TotpEq “ CpE_q “ Spec SymOB
pE_q

where E_ is the dual sheaf of OB-modules. For any affine B-scheme f : T Ñ B we have

TotpEqpT q “ H0pT, f˚Eq. (2.1.1)

Thus, a section s P H0pB, Eq is the same as a morphism B Ñ TotpEq of schemes over B.

Any cone C “ SpecR is canonically a closed subcone of the abelian cone SpecpSymOB
pR1qq, called the

abelian hull of C.

Example 2.1.2. Let d : E Ñ F be a morphism of vector bundles on B. We denote by Kerpdq Ă E the
sheaf-theoretic kernel of d. On the other hand, let π : TotpEq Ñ B be the projection. The morphism d
determines a section s of the vector bundle π˚F on TotpEq, and we define the abelian cone Kerpdq Ă TotpEq
as the zero locus of this section. We note that H0pB,Kerpdqq Ă H0pB, Eq consists precisely of those
sections s which, considered as morphisms B Ñ TotpEq, factor through the substack Kerpdq.

A morphism of abelian cones over B is, by definition a morphism of group schemes over B. Given a
morphism of abelian cones E Ñ F , we have an action of the affine group scheme E over B on F . Hence,
we can form the quotient Artin stack F {{E. Stacks of this form are called abelian cone stacks.

2.2. Total spaces of perfect complexes. Let B be an f-Artin stack. We denote CqcohpBq the category
formed by complexes of OB-modules with quasi-coherent cohomology. Let qis be the class of quasi-
isomorphisms in CqcohpBq and DqcohpBq “ Cqcohpbqrqis´1s be the corresponding derived category. For

any integers p ď q let C
rp,qs
qcohpBq Ă CqcohpBq be the full subcategory formed by complexes situated in

degrees from p to q.

Definition 2.2.1. Let C P CqcohpBq and p ď q be integers.

paq C is strictly rp, qs-perfect, if C is quasi-isomorphic to a complex of vector bundles
 

Cp d
p`1

Ñ Cp`1 dp`2

Ñ ¨ ¨ ¨
dq
Ñ Cq

(

situated in degrees from p to q. This complex is called a presentation of C.
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pbq C is rp, qs-perfect, if, locally on B, it is strictly rp, qs-perfect and, moreover, the set of open substacks
U Ă B such that C|U is strictly rp, qs-perfect, is filtering with respect to the partial order by inclusion.

For a rp, qs-perfect complex C and an open U Ă B as above we will refer to a quasi-isomorphism
C|U Ñ CU , with CU strictly rp, qs-perfect, as a presentation of C over U .

A rp, qs-perfect complex C has a virtual rank vrkpCq which is a Z-valued locally constant function on
B, i.e., a function constant on each connected component of B. It is defined in terms of a presentation of
C as vrkpCq “

řq
i“pp´1qirkpCiq.

We will be interested in making sense of total spaces of perfect complexes using (2.1.1) as a motivation,
cf. [57, §3.3] .

Definition 2.2.2.

paq Let C P Cď0
qcohpBq. We define the simplicial presheaf Tot8pCq on AffB by

Tot8pCqpT q “ DKpH0pT, f˚Cqq, pT
f
Ñ Bq P AffB.

pbq Let C P Cr´1,0s
qcoh pBq. We define the pre-stack of groupoids TotpCq on AffB by

TotpCqpT q “ $pH0pT, f˚Cqq, pT
f
Ñ Bq P AffB.

We call TotpCq the total space of C.

Proposition 2.2.3.

paq Let C P Cď0
qcohpBq. The simplicial presheaf Tot8pCq is a homotopy sheaf. For any x P Tot8pCqpT q0

we have (independently on the choice of base points)

πipTot8pCqq “ H´ipCq, i ě 0.

A morphism φ : C1 Ñ C2 in Cď0
qcohpBq induces a morphism of homotopy sheaves φ5 : Tot8pC1q Ñ

Tot8pC2q which is an equivalence, if φ is a quasi-isomorphism.

pbq Let C P Cr´1,0s
qcoh pBq. The pre-stack TotpCq on AffB is a stack. The homotopy sheaf Tot8pCq is of

groupoid type and ΠTot8pCq “ TotpCq. In particular, the total space is functorial and takes quasi-
isomorphisms φ to isomorphisms φ5.

Proof. Part (a) follows from the fact that C is a sheaf and from the properties of the Dold-Kan correspon-
dence. Part (b) follows by Proposition 1.2.4. �

Recall that a stack morphism f is called an l.c.i., i.e., a locally complete intersection morphism, if it
factorizes as f “ p ˝ i where p is a smooth map and i is a regular immersion.

Proposition 2.2.4.

paq Let C P Cr´1,0s
qcoh pBq be strictly r´1, 0s-perfect. Then we have a canonical equivalence of stacks of

groupoids u : TotpCqÝÑTotpC0q{{TotpC´1q on AffB.

pbq Let C P Cr´1,0s
qcoh pBq be r´1, 0s-perfect. Then TotpCq is an Artin stack over B.

pcq For any morphism φ of r´1, 0s-perfect complexes, the induced morphism φ5 of stacks is an l.c.i.

Proof. Part (a) is similar to the proof of [26, lem 0.1]. That is, look at any pT
f
Ñ Bq P AffB. By

definition, the groupoid TotpCqpT q is the category whose objects are elements of x of H0pT, f˚C0q and
a morphism x Ñ x1 is an element of H0pT, f˚C´1q mapping by d0 to x1 ´ x. At the same time, the
groupoid pTotpC1q{{TotpC0qqpT q is the category of pairs consisting of an f˚C´1-torsor P over T and an
f˚C´1-equivariant morphism P Ñ C0 of sheaves over T . We see that the former category is the full
subcategory of the second consisting of data with the torsor P being the standard trivial one, P “ f˚C´1.
This defines a fully faithful functor uT , and such functors for all T give the sought-for morphism of stacks
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u. Now, since T is affine, H1pT, f˚C´1q “ 0 and so any torsor P above is trivial. This means that the
functor u is (locally) essentially surjective hence an equivalence of stacks. This proves (a). Parts (b) and
(c) follow from (a). �

Example 2.2.5. Now, let C be a strictly r´1, 1s-perfect complex

C “ tC´1 d0 // C0 d1 // C1u. (2.2.6)

The stupid truncation Cď0 “ tC´1 Ñ C0u is strictly r´1, 0s-perfect. We denote by

π : TotpC0q Ñ B, π : TotpCď0q “ TotpC0q{{TotpC´1qÝÑB

the projections. We recall from Example 2.1.2(c) the abelian cone Kerpd1q Ă TotpC0q given as the zero
locus of the section s of π˚C1 induced by d1.

Proposition 2.2.7.

paq If C is strictly r´1, 1s-perfect, then we have a canonical equivalence of stacks Kerpd1q{{C´1ÝÑTotpτď0Cq,
i.e., the section s descends to a section s of π˚C1, and Totpτď0Cq is the zero locus of s.

pbq If C is r´1, 1s-perfect, then Totpτď0Cq is an Artin stack over B.

Proof. Part (a) is completely analogous to the proof of Proposition 2.2.4(a), with C0 replaced by Kerpd1q.
Part (b) follows from (a). �

We call Totpτď0Cq the truncated total space of C.

Proposition 2.2.8. Let C be a r´1, 1s-perfect complex and pT
f
Ñ Bq P AffB.

paq For all s P ObpTotpτď0CqpT qq we have

π0pTotpτď0Cqq » H0pCq, π1pTotpτď0Cq, sq » H´1pf˚Cq.
pbq The truncated total space of r´1, 1s-perfect complexes is functorial and takes quasi-isomorphisms φ

to isomorphisms φ5. �

Proof. Part (a) is a consequence of Proposition 2.2.7. Part (b) follows from (c). More precisely, a
morphism (resp. quasi-isomorphism) φ : C1 Ñ C2 of r´1, 1s-perfect complexes yields a morphism (resp.
quasi-isomorphism) τď0C1 Ñ τď0C2 and the statement follows from Proposition 2.2.3(b). �

2.3. Stacks of extensions. We now consider the following general situation. Let B be an f-Artin stack
and p : Y Ñ B be a scheme of finite type over B. Let E , F be coherent sheaves over Y which are flat
over B. We can form the object C P Db

qcohpBq given by

C “ Rp˚RHomOY
pF , Eqr1s.

Let SES be the stack over B classifying short exact sequences 0 Ñ EÝÑGÝÑF Ñ 0 of coherent sheaves
over Y . That is, for any B-scheme T P AffB the objects of the groupoid SESpT q are short exact sequences

0 Ñ E |T Ñ G Ñ F |T Ñ 0 (2.3.1)

of coherent sheaves of OYˆBT -modules, and the morphisms are the isomorphisms of such sequences
identical on the boundary terms. We then have

π0pSESpT qq “ Ext1
OYˆBT

pF |T , E |T q, π1pSESpT q,Gq “ Ext0
OYˆBT

pF |T , E |T q, (2.3.2)

for any object G of SESpT q. This implies identifications of sheaves of sets on AffB, and of sheaves of
groups on AffT :

π0pSESq “ H0pCq, π1pSESˆBT,Gq “ H´1pC|T q. (2.3.3)

These identifications, together with those of Proposition 2.5.2 (b), suggest the following.
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Proposition 2.3.4. Assume that the complex C is r´1, 1s-perfect. Then, we have an equivalence Totpτď0Cq “
SES of cone stacks over B.

Proof. As pointed out, the π0 and π1 of the two stacks Totpτď0Cq and SES are isomorphic. So it remains
to construct a morphism of stacks inducing these identifications. For this, we first make some general
discussion.

We recall [7], [34], [58] that for any Artin stack Z the category Db
qcohpZq has a dg-thickening, i.e.,

there is a pre-triangulated dg-category CqcohpZq with the same objects and spaces of morphisms being
upgraded to complexes RHomCqcohpZqpK,Lq of C-vector spaces such that

HomOZ
pK,Lq “ H0 RHomCqcohpZqpK,Lq.

The complex RHom above can be explicitly found as

RHomCqcohpZqpK,Lq “ Hom‚
OZ
pIpKq, IpLqq, (2.3.5)

where IpKq is a fixed injective resolution of K for each K.

We now specialize to the case

Z “ Y ˆB T, K “ F |T , L “ E |T r1s,
where T P AffB is an affine B-scheme. The complex of C-vector spaces

τď0 RHomCqcohpZqpF |T , E |T r1sq

has cohomology only in degrees 0 and ´1, given by the Ext groups in (2.3.2). We consider the simplicial
set

XpT q “ DK
`

τď0 RHomCqcohpZqpF |T , E |T r1sq
˘

,

which is of groupoid type by Proposition 1.1.3(a). Its vertices are morphisms of complexes IpF |T q Ñ
IpE |T r1sq. The cone of such a morphism is a complex of sheaves which has only one cohomology sheaf, in
degree ´1, and this sheaf G fits into a short exact sequence as in (2.3.1). In this way we get a morphism
of groupoids

hpT q : ΠXpT q Ñ SESpT q.

At the same time, by (1.1.5), the groupoid ΠXpT q is equivalent to the groupoid ΓH0pT, C|T q in Example
1.1.4(a), hence to Totpτď0CqpT q by Proposition 2.2.8(a). Combining these constructions for all T P AffB,
we get a homotopy sheaf X of simplicial sets on AffB of groupoid type, together with an equivalence
and a morphism of stacks

Totpτď0Cq » ΠX
h
ÝÑ SES .

The morphism h induces the required identification on π0 and π1, so it is an equivalence of stacks.
Proposition 2.3.4 is proved. �

2.4. Maurer-Cartan stacks. We now describe a non-abelian generalization of the construction of §2.2.
Let B be an f-Artin stack and pG, d, r´,´sq be an OB-dg-Lie algebra with quasi-coherent cohomology.
In other words, G is a Lie algebra object in the symmetric monoidal category pCqcohpBq,bBq. We will
assume that G is nilpotent. We define the Maurer-Cartan 8-stack of G to be the simplicial presheaf
mc‚pGq on AffB defined by

mc‚pGqpT q “ mc‚pH
0pT, f˚Gqq.

Here pT
f
Ñ Bq is an object of AffB, and we apply the functor mc‚ to the dg-Lie algebra H0pT, f˚Gq

over C.

Proposition 2.4.1.

paq The simplicial presheaf mc‚pGq is a homotopy sheaf.
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pbq A morphism (resp. quasi-isomorphism) φ : G1 Ñ G2 of nilpotent OB-dg-Lie algebras induces a
morphism (resp. weak equivalence) of homotopy sheaves φ5 : mc‚pG1q Ñ mc‚pG2q.

Proof. Part (b) follows from Proposition 1.1.8 by sheafification. �

Assume that the dg-Lie algebra G is situated in degrees r0, 2s, i.e.,

G “ tG0 d0 // G1 d1 // G2u. (2.4.2)

Then we define the stack MCpGq of groupoids on AffB by

MCpGqpT q “ MCpH0pT,G|T qq

We call MCpGq the Maurer-Cartan stack associated to a 3-term OB-dg-Lie algebra G.

Proposition 2.4.3. If G is situated in degrees r0, 2s, then the simplicial sheaf mc‚pGq is of groupoid type
and Πmc‚pGq “ MCpGq. �

Let G be any OB-dg-Lie algebra with quasi-coherent cohomology. As for complexes, we call G strictly
r0, 2s-perfect, if it is quasi-isomorphic, as an OB-dg-Lie algebra, to a 3-term dg-Lie algebra (2.4.2) with
each Gi being a vector bundle on B. We say that G is r0, 2s-perfect, if, locally on B, it is strictly r0, 2s-
perfect and, moreover, the set of open substacks U Ă B such that G|U is strictly r0, 2s-perfect, is filtering
with respect to the partial order by inclusion.

We now assume that G be a strictly r0, 2s-perfect dg-Lie algebra as in (2.4.2). Then, we have the closed
substack mcpGq Ă TotpG1q “given by the equation d1x` 1

2 rx, xs “ 0”, with two equivalent definitions :

(mc1) For any affine B-scheme T
f
Ñ B we have a dg-Lie algebra H0pT,G|T q, and we define

mcpGqpT q “ mcpH0pT,G|T qq.

(mc2) The stack mcpGq is the zero locus of the section sG of π˚G2 given by the curvature

G1 Ñ G2, x ÞÑ d1x`
1

2
rx, xs. (2.4.4)

Since the Lie algebra G0 is nilpotent, we have a sheaf of groups G0 “ exppG0q on B by Malcev theory,
which acts on the stack mcpGq as in (1.1.7), and we can consider the quotient stack mcpGq{{G0. Consider
also the quotient stack

TotpGď1q “ TotpG1q{{G0

and denote its projection to B by π.

Proposition 2.4.5.

paq Let G be a strictly r0, 2s-perfect dg-Lie algebra as in (2.4.2).
pa1q We have an equivalence of stacks u : MCpGq Ñ mcpGq{{G0, so MCpGq is an Artin stack.
pa2q The section sG of the bundle π˚G2 on TotpG1q descends to a section sG of the bundle π˚G2 on

TotpGď1q, and the substack MCpGq Ă TotpGď1q is the zero locus of sG.
pbq If G is a r0, 2s-perfect OB-dg-Lie algebra, then the simplicial sheaf mc‚pGq is of groupoid type. The

stack of groupoids MCpGq :“ Πmc‚pGq is an Artin stack over B.

Proof. Part (a1) is proved similarly to Proposition 2.2.4(a), using the fact that, G0 being a unipotent
sheaf of groups, any f˚G0-torsor over any T P AffB is trivial. Part (a2) follows from (a) and from the
equivalence of the two definitions (mc1) and (mc2) of the stack mcpGq. Part (b) follows because being of
groupoid type and being an Artin stack over B are properties local on B. �

Example 2.4.6. If the dg-Lie algebra G is abelian, i.e., it reduces to a r0, 2s-perfect complex on B, then
MCpGq “ Totpτď0pGr1sqq.



14 M. KAPRANOV, E. VASSEROT

Let us now globalize the considerations of Proposition 1.1.9 as follows. Let p : G “ H ˙N Ñ H be a
split extension of strictly r0, 2s-perfect dg-Lie algebras on B. The B-scheme πH : mcpHq Ñ B carries a

strictly r0, 2s-perfect dg-Lie algebra Ñ which is equal to π˚HN as a sheaf graded of OmcpHq-Lie algebras,

with the differential dx at a point x P mcpHq defined as above. The action of the sheaf of groups H0

on mcpHq extends to a compatible action on Ñ , so that Ñ descends to a strictly r0, 2s-perfect dg-Lie

algebras on the stack MCpHq. We denote this descended dg-Lie algebra by the same symbol Ñ . Note that

MCpÑ q is a stack over MCpHq, hence over B. Now, we have the following global analogue of Proposition
1.1.9.

Proposition 2.4.7. The stacks MCpGq and MCpÑ q over B are isomorphic.

Proof. For each affine B-scheme T P AffB, we have a split exact sequence of dg-Lie algebras

0 // H0pT,N |T q // H0pT,G|T q
p // H0pT,H|T q // 0

which gives rise to a functor p˚ : MCpH0pT,G|T qq Ñ MCpH0pT,H|T qq with the fiber category over
an object x equivalent to MCpH0pT,H|T qxq. This yields the following isomorphism of groupoids over
MCpH0pT,H|T qq

MCpH0pT,G|T qq “ MCpH0pT, Ñ |T qq.
�

2.5. Stacks of filtrations. Let B be an f-Artin stack and p : Y Ñ B be a scheme over B, locally of
finite type. Let E01, E12, E23 be coherent sheaves over Y which are flat over B. We define FILT to be the
stack over B classifying filtered coherent sheaves E01 Ă E02 Ă E03 over Y , together with identifications
E0j{E0i » Eij for ij “ 12, 23. We have a sheaf of associative dg-algebras over B defined by

G “
à

ijăkl

Rp˚RHompEkl, Eijq, 01 ă 12 ă 23. (2.5.1)

We’ll consider G as a sheaf of dg-Lie algebras using the supercommutator. Then, we have the following
generalization of Proposition 2.3.4.

Proposition 2.5.2. Assume that G is a strictly r0, 2s-perfect dg-Lie algebra on B. Then, we have an
equivalence MCpGq “ FILT of stacks over B.

Proof. Let SES012 be the stack over B classifying short exact sequences

E012 “
 

0 Ñ E01ÝÑE02ÝÑE12 Ñ 0
(

(2.5.3)

of coherent sheaves over Y . Then FILT is the stack over SES012 classifying short exact sequences

E0123 “
 

0 Ñ E02ÝÑE03ÝÑE23 Ñ 0
(

, (2.5.4)

and G “ H˙N where

N “ Rp˚HompE23, E01 ‘ E12q, H “ Rp˚HompE12, E01q.

Since the dg-Lie algebra H is abelian, by Example 2.4.6 and Proposition 2.3.4 the stacks MCpHq, SES012

are equivalent, and N gives an abelian strictly r0, 2s-perfect dg-Lie algebra Ñ over SES012. Further, by

Proposition 2.4.7, we have MCpGq “ MCpÑ q as stacks over SES012. So we are reduced to prove that

MCpÑ q is the stack over SES012 classifying short exact sequences (2.5.4).

Let T
f
Ñ B be an affine B-scheme. Suppose the object E012 of SES012pT q is the cone of a morphism

u012 in RHom1
YˆBT

pf˚E12, f
˚E01q. Thus, given injective resolutions of f˚Eij for each i, j, the complex E02

is quasi-isomorphic to the complex Cpu012q “ I12‘I01 where the differential is the sum of the differentials
of I12, I01 and the composition with u012, viewed as a morphism of complexes of sheaves I12 Ñ I01r1s.
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Next, we have Ñ “ π˚HN as a graded sheaf, and the differential d012 of rN at the point E012 is given by

d012puq “ dpuq ´ adpu012qpuq, @u P HomYˆBT pf
˚E23, f

˚E01 ‘ f
˚E12q,

see Proposition 1.1.9 and the discussion before it. In our case adpu012qpuq reduces to the composition
u012u. Thus, the condition for u to satisfy the equation d012puq “ 0 is equivalent to saying that it lifts to
a morphism of complexes f˚E23 Ñ Cpu012q, i.e., to a dotted arrow u0123 in the diagram.

E02

""
f˚E01

<<

f˚E12
`1

u012
oo f˚E23u

oo

u0123

`1

ii

u

gg

The cone of such an arrow defines E03 with a short exact sequence (2.5.4). We have thus constructed

a morphism MCpÑ q Ñ FILT of stacks over SES012, and it is easy to check that this morphism is an
equivalence. �

3. Borel-Moore homology of stacks and virtual pullbacks

3.1. BM homology and operations for schemes. We fix a field k of characteristic 0 which will serve
as the field of coefficients for (co)homology. The cases k “ Q or k “ Ql will be the most important.
For basics on simplicial categories, 8-categories and dg-categories, see §A and the references there. By
dgVect “ dgVectk we denote the dg-category of cochain complexes over k. We recall the standard
formalism of constructible derived categories of complexes of k-vector spaces and their functorialities [33],
together with its 8-categorical enhancement.

Let Sch denote the category of schemes of finite type over C. For a scheme T P Sch we denote by CpT q
the category of constructible complexes of sheaves of k-vector spaces on T pCq. Let DpT q “ CpT qrQis´1s

be the constructible derived category, i.e., the localization of CpT q by the class of quasi-isomorphisms.
We denote by DpT qdg and DpT q8 the dg- and 8-categorical enhancements of DpT q defined as in §A.2. If
k “ Ql, we can use the étale l-adic version of the constructible derived category, see [47], [48]. It admits
similar enhancements.

These categories carry the Verdier duality functor which we denote by D. For a morphism f : S Ñ T
in Sch we have the usual functorialities

DpSq
Rf˚,f!//

DpT q
f´1,f !
oo

with their standard adjunctions, see [33] for the case of classical topology or [47], [48] for the case of étale
topology. They extend to the above enhancements and we will be using these extensions.

We denote by ωT “ p! k, p : T Ñ pt, the dualizing complex of T . The Borel-Moore homology of T and
its complex of Borel-Moore chains are defined by

HBM
‚ pT q “ H´‚pT, ωT q, CBM

‚ pT q “ RΓpT, ωT q, (3.1.1)

with the understanding that CBM
m pKq is the degree p´mq part of RΓpT, ωT q. The Poincaré-Verdier duality

implies that
HBM
‚ pT q “ H‚c pT q

˚. (3.1.2)

A morphism f : S Ñ T in Sch is called strongly orientable of relative dimension m P Z, if there is an
isomorphism kS Ñ f !kT rms in DpSq. A choice of such an isomorphism is called a strong orientation of
f . For not necessarily connected S we can speak of relative dimension being a locally constant function
on S, with the obvious modifications of the above.
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Recall that HBM
‚ is covariantly functorial with respect to proper morphisms. By (3.1.1), an oriented

morphism f : S Ñ T of relative dimension m gives rise to a pullback map f˚ : HBM
‚ pT q Ñ HBM

‚`mpSq, and
such maps are compatible with compositions of oriented morphisms.

Examples 3.1.3.

paq A smooth morphism f of dimension d is strongly oriented of relative dimension 2d.
pbq An l.c.i. (locally complete intersection) morphism is a morphism f : S Ñ T represented as a com-

position f “ p ˝ i where p is smooth and i is a regular embedding. Thus an l.c.i. morphism f has
a well defined dimension d, which is a locally constant Z-valued function on S. If the embedding i
is strongly oriented, then f is also strongly oriented of relative dimension 2d, hence gives rise to a
pullback morphism f˚. Note that the map f˚ still make sense for any l.c.i. morphism, see, e.g., [48,
§2.17].

Example 3.1.4. Let E be a rank r vector bundle on T . We recall that the rth Chern class crpEq P H2rpT,kq
is the obstruction to the existence of a continuous section of E which does not vanish anywhere. Let s be

any section of E . We denote the zero locus of s with its embedding into T by Ts
is
Ñ T . In this situation

we have the refined rth Chern class

crpE , sq P H2r
TspT,kq “ H2rpTs, i

!
skT q

whose image in H2rpT,kq is crpEq, yieldding a virtual pullback map s! : HBM
‚ pT qÝÑHBM

‚´2rpTsq. More
precisely, following [17, §7.3], we introduce the bivariant cohomology of any morphism f : S Ñ T to be

H‚pS
f
Ñ T q “ H‚pS, f !kT q.

Recall that

paq We have H‚pS
Id
Ñ T q “ H‚pS,kq while H‚pS Ñ ptq “ HBM

´‚ pSq.

pbq For a composable pair of maps S
f
Ñ T

g
Ñ U we have the product

H‚pS
f
Ñ T q bH‚pT

g
Ñ UqÝÑH‚pS

gf
Ñ Uq.

So, taking U “ pt, each h P HdpS
f
Ñ T q gives rise to a map uh : HBM

‚ pT q Ñ HBM
‚´dpSq.

We deduce that crpE , sq P H2rpTs
is
Ñ T q defines a map HBM

‚ pT qÝÑHBM
‚´2rpTsq.

The construction of crpE , sq is as follows. We consider the embedding T
0
Ñ TotpEq as the zero section.

It is strongly oriented of relative dimension 2r, see [17, prop. 4.1.3, 7.3.2], hence we get a class η P
H2r
T pTotpEqq. Now Ts is the intersection of T with Γs, the graph of s inside TotpEq, and crpE , sq is the

image of η under the restriction map

H2r
T pTotpEq,kqÝÑH2r

TXΓs
pΓs,kq “ H2r

TspT,kq.

See also [48, §2.17] for a different approach.

Proposition 3.1.5. Let E be a vector bundle on T of rank r and let p : TotpEq Ñ B be the projection.
The pullback p˚ : HBM

‚ pT q Ñ HBM
‚`rpTotpEqq is an isomorphism. �

Remark 3.1.6. For T P Sch let AmpT q be the Chow group of m-dimensional cycles in T . We have the
canonical class map cl : AmpT q Ñ HBM

2m pT q. All the above constructions (proper pushforwards, l.c.i.
pullbacks, virtual pullbacks) have natural analogs for the Chow groups, see [16], which are compatible,
via cl, with the sheaf-theoretical constructions described above.
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3.2. BM homology and operations for stacks. The formalism of constructible derived categories
and their functorialities extends to f-Artin stacks. For the case k “ Ql and étale topology this is done
in [47, 48]. Another approach using 8-categorical limits, which we outline below, is applicable for the
complex topology, any k, as well as for the case of analytic stacks in §7.3. It is an adaptation of the
approach used in [21], §3.1.1 for ind-coherent sheaves, to the constructible case. All stacks in this sections
will be f-Artin.

Let B be a stack. By SchB we denote the category formed by schemes T of finite type over C together
with a morphism of stacks T Ñ B. We define

DpBq8 “ lim
ÐÝ

tTÑBu

DpT q8, (3.2.1)

the 8-categorical projective limit over the category SchB, with respect to the pullback functors. Note
that DpBq8 also carries the Verdier duality D induced by such dualities on the DpT q8 above.

We compare this with the following. Let Z be a scheme of finite type over C with an action of an affine
algebraic group G. Then we have action groupoid tGˆ Z Ñ Zu in the category of schemes, so its nerve
N‚tG ˆ Z Ñ Zu is a simplicial scheme defined as in (1.1.2). The Bernstein-Lunts equivariant derived
constructible 8-category of Z is

DpZ,Gq8 “ lim
ÐÝ
rnsP∆˝

DpNntGˆ Z Ñ Zuq8.

It is an 8-categorical version of the definition from [6]. Just as in [6], given a GpCq-equivariant con-
structible complex F‚ on ZpCq, then

Ext‚DpZ,Gq8pkZ ,F
‚q “ H‚GpCqpZpCq,F

‚q

is the topological equivariant (hyper)cohomology.

Proposition 3.2.2. The 8-category DpZ,Gq8 is identified with DpZ{{Gq8.

Proof. Each NntGˆ Z Ñ Zu is an affine scheme over Z, therefore over Z{{G. In fact

NntGˆ Z Ñ Zu “ Z ˆZ{{G ¨ ¨ ¨ ˆZ{{G Z pn timesq.

So N‚tGˆ Z Ñ Zu is the nerve of the (smooth) morphism Z Ñ Z{{G, which we can see as a 1-element
covering of Z{{G in the smooth topology. Our statement therefore means that Dp´q8 satisfies (8-
categorical) descent with respect to this covering. A more general statement if true: Dp´q8 as a functor
from stacks to 8-categories satisfies descent (for any covering) in the smooth topology. This statement is
a formal consequence of the corresponding, obvious, statement for shemes: Dp´q8 as a functor from Sch
to 8-categories satisfies descent (for any covering) in the smooth topology. �

Given a morphism of stacks f : B Ñ C, the composition with f defines a functor f˝ : SchB Ñ SchC ,
hence a functor which we denote

f´1 : DpCq8 “ lim
ÐÝ
pUÑCq

DpUq ÝÑ lim
ÐÝ

pTÑB
f
ÑCq

DpT q “ DpBq8.

The right adjoint functor to f´1 is denoted by Rf˚ : DpCq8 Ñ DpBq8.

We further define the functors

f ! “ D ˝ f´1 ˝ D : DpCq8ÝÑDpBq8, Rf! “ D ˝Rf˚ ˝ D : DpBq8ÝÑDpCq8.

In particular, we have the dualizing complex ωB “ DpkBq “ p!pkq, where p : B Ñ pt, cf. [39]. Note that,
for each affine algebraic group G over C, then ωBG » kBGr´2dimpGqs, while for each smooth complex
variety S we have ωS » kSr2dimpSqs.
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We define the Borel-Moore homology, resp. cohomology with compact support of an (f-Artin) stack B
as

HBM
‚ pBq “ H´‚pB,ωBq, H‚c pB,kBq “ H‚pRp!kBq. (3.2.3)

The Poincaré-Verdier duality extends from schemes of finite type to f-Artin stacks and implies that
HBM
‚ pBq “ H‚c pB,kBq

˚. By gluing the corresponding properties of schemes, we get that HBM
‚ is covari-

antly functorial for proper morphisms and has pullbacks with respect to l.c.i. morphisms.

Remark 3.2.4. The BM homology for stacks is the topological analog of the Chow groups for stacks as
defined by Kresch [36].

We also note the following, cf. [36, thm. 2.1.12].

Proposition 3.2.5. Let C‚ “ tC´1 Ñ C0u be a two-term strictly perfect complex on B of virtual rank

r, with the total space TotpC‚q “ C0{{C´1 π
Ñ B. Then π is a smooth morphism, hence it is strongly

oriented of relative dimension 2r, and π˚ : HBM
‚ pBq Ñ HBM

‚ pTotpCqq is an isomorphism if B admits a
stratification by global quotients ([36, def. 3.5.3]), in particular if B is locally quotient. �

3.3. Virtual pullback for a perfect complex. Let B be a stack and E be a vector bundle of rank r
over B. Let s P H0pB, Eq be a section of E and

i : Bs “ ts “ 0u ãÑ B

be the inclusion of the zero locus of s, which is a closed substack. The section s gives a regular embedding
in the total space of E , which we denote also s : B Ñ TotpEq. The construction of Example 3.1.4 extends
(by gluing) from schemes to stacks and gives the refined pullback morphism, or refined Gysin morphism

s! : HBM
‚ pBqÝÑHBM

‚´2rpBsq, (3.3.1)

making the following diagram commute

HBM
‚ pBq

s˚
��

s! // HBM
‚´2rpBsq

i˚
��

HBM
‚ pTotpEqq HBM

‚´2rpBqπ˚
„oo

Remark 3.3.2. The map s! is the BM-homology analog of the refined pullback on Chow groups for Artin
stacks which is a particular case of Construction 3.6 of [43], or of [36, §3.1] which uses deformation to the
normal cone.

Now, let C be a strictly r´1, 1s-perfect complex on B and

π : TotpCď0q Ñ B, q : Totpτď0Cq Ñ B

be the obvious projections. The differential d1 of C gives a section sC of the vector bundle π˚C1 on
TotpCď0q whose zero locus is the cone stack Totpτď0Cq, yielding the diagram

π˚C1 TotpCď0q
sCoo

B TotpCď0q
πoo

0

OO

Totpτď0Cq? _ioo
� ?

i

OO

such that q “ π ˝ i. By Proposition 3.2.5, see also [36, thm. 2.1.12], the pullback along π defines a
morphism

π˚ : HBM
‚ pBq

„
ÝÑ HBM

‚`2vrkpCď0qpTotpCď0qq,
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which is an isomorphism if B admits a stratification by global quotients. Further, we have the refined
pullback map on Borel-Moore homology

s!
C : HBM

‚`2vrkpCď0qpTotpCď0qq Ñ HBM
‚`2vrkpCqpTotpτď0Cqq.

We define the virtual pullback associated with C to be the composite map

q!
C “ s!

C ˝ π
˚ : HBM

‚ pBq Ñ HBM
‚`2vrkpCqpTotpτď0Cqq.

By Proposition 2.2.8, the stack Totpτď0Cq depends only on the isomorphism class of the complex C in
Db

cohpBq and not on the choice of the presentation (2.2.6).

Proposition 3.3.3. Let C be a strictly r´1, 1s-perfect complex on B. The virtual pullback q!
C depends

only on the isomorphism class of the strictly r´1, 1s-perfect complex C in Db
cohpBq.

Proof. Fix two presentations C1, C2 of the complex C as in (2.2.6), with

Ck “ tC´1
k

d0k // C0
k

d1k // C1
k u, k “ 1, 2

and fix a quasi-isomorphism φ : C1 Ñ C2. By functoriality of the total space and the truncated total
space, we have the commutative diagram

Totpτď0C1q
φ5

� _

i1
��

Totpτď0C2q� _

i2
��

TotpCď0
1 q

φ5 //

π1
��

TotpCď0
2 q

π2
ww

B.

We claim that the following triangle commutes

HBM
‚ pBq

q!C1 //

q!C2 ((

HBM
‚`2vrkpC1qpTotpτď0C1qq

pφ5q˚

HBM
‚`2vrkpC2qpTotpτď0C2qq.

To prove this, we must prove that we have

s!
C1 ˝ π

˚
1 “ φ˚5 ˝ s

!
C2 ˝ π

˚
2 .

By Proposition 2.2.4, the map φ5 : TotpCď0
1 q Ñ TotpCď0

2 q is an l.c.i. Hence there is a Gysin map pφ5q
˚

and we have expressions through the local Chern classes associated to the sections sCi of π˚i C1
i , i=1,2:

s!
C1 ˝ π

˚
1 “ crkpC1

1q
pπ˚1C1

1 , sC1q ˝ φ
˚
5 ˝ π

˚
2 ,

φ˚5 ˝ s
!
C2 ˝ π

˚
2 “ φ˚5 ˝ crkpC1

2q
pπ˚2C1

2 , sC2q ˝ π
˚
2 .

The proposition is a consequence of the following version of the excess intersection formula.

Lemma 3.3.4. Let f : B1 Ñ B2 be a morphism of stacks which is an l.c.i of relative dimension r2 ´ r1.
Let E1, E2 be vector bundles on B1, B2 of ranks r1, r2 and sections s1, s2 of E1, E2. Let h : E1 Ñ f˚E2 be
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a vector bundle homomorphism such that h ˝ s1 “ s2 ˝ f , which yields a fiber diagram

pB2qs2
� � i2 // B2

s2 // TotpE2q

pB1qs1

g

OO

� � i1 // B1
s1 //

f

OO

TotpE1q

h

OO

where g is an isomorphism. Then, we have a commutative square

HBM
‚ pB1q

cr1 pE1,s1q // HBM
‚´2r1

ppB1qs1q

HBM
‚´2r1`2r2

pB2q
cr2 pE2,s2q//

f˚

OO

HBM
‚´2r1

ppB2qs2q.

g˚

OO

�

�

Finally, let now B be an Artin stack and let C be any r´1, 1s-perfect complex on B. Let U be a filtering
open cover of B consisting of open substacks U such that C|U is strictly r´1, 1s-perfect. We have

HBM
‚ pBq “ lim

ÐÝ
UPU

HBM
‚ pUq, HBM

‚ pTotpτď0Cqq “ lim
ÐÝ
UPU

HBM
‚ pTotpτď0C|U qq. (3.3.5)

Definition 3.3.6. A coherent perfect system on a r´1, 1s-perfect complex C on B is a collection of quasi-
isomorphisms φU : C|U Ñ CU and φVĂU : CU |V Ñ CV for each U, V P U with V Ă U such that CU is a
strictly r´1, 1s-perfect complex on U with a presentation as in (2.2.6), and φV “ φVĂU ˝ φU |V .

Given a coherent perfect system on C, we define the virtual pullback

q!
C : HBM

‚ pBqÝÑHBM
‚`2vrkpCqpTotpτď0Cqq

as the map

q!
C “ lim

ÐÝ
UPU

ppφU q
˚ ˝ q!

CU q. (3.3.7)

Remark 3.3.8. If C is a strictly r´1, 1s-perfect complex on the stack B, then its total space has a dg-stack
structure given by

TotpCq “
´

TotpCď0q ,
`

Sympπ˚pC1q_r1sq , Bs
˘

¯

, (3.3.9)

that is, the stack TotpCď0q equipped with the sheaf of commutative dg-algebras which is the Koszul
complex of the section s above. This dg-stack gives rise to a derived stack in the sense of [57]. The
derived stack TotpCq depends, up to a natural equivalence, only on the isomorphism class of the complex
C in Db

cohpBq. We expect a direct conceptual interpretation of the virtual pullback q!
C in terms of the

derived stack TotpCq. However, this would require a well behaved Borel-Moore homology theory for
derived stacks and we do not know how to do it.
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3.4. Virtual pullback for Maurer-Cartan stacks. Let B be an Artin stack of finite type and G be a
strictly r0, 2s-perfect dg-Lie algebra over B as in (2.4.2). We define now a virtual pullback

q!
G : HBM

‚ pBq Ñ HBM
‚`2vrkpCqpMCpGqq

using the diagram

B TotpGď1q
πoo MCpGq.? _oo

q

jj ? _ioo

In order to define the map q!
G “ s!

G ˝ π
˚ as in §3.3, we must check that the pullback morphism

π˚ : HBM
‚ pBq Ñ HBM

‚`2vrkpGď0qpTotpGď1qq

and the refined pullback

s!
G : HBM

‚`2vrkpGď0qpTotpGď1qq Ñ HBM
‚`2vrkpGqpMCpGqq

are well-defined. The refined pullback is as in the previous sections, using the fact that MCpGq is the zero
locus of the section s of the bundle π˚G2 on TotpGď1q associated with the curvature (2.4.4). The pullback
map π˚ is well-defined, because π is a vector bundle stack, hence is smooth although non representable.

Next, we study the behavior of the virtual pullback under extensions of dg-Lie algebras. Note that
Proposition 2.4.7 allows to write the commutative diagram

B TotpHď1q
πHoo MCpHq? _

iHoo

TotpGď1q

πG

cc

TotpÑď1q

πÑ

OO

MCpGq.
3 S

iG

ff

� ?

iÑ

OO

The virtual pullback maps q!
G , q!

Ñ and q!
H are defined as above.

Proposition 3.4.1. We have the equality q!
G “ q!

Ñ ˝ q
!
H.

Proof. Let sG , sÑ , sH be the sections of the bundles π˚GG2, π˚Ñ Ñ 2, π˚HH2 associated with the curvature

maps of G, Ñ , H respectively. We must prove that

s!
G ˝ π

˚
G “ s!

Ñ ˝ π
˚

Ñ ˝ s
!
H ˝ π

˚
H.

First, observe that we have the fiber diagram

B TotpHď1q
πHoo MCpHq? _

iHoo

TotpGď1q

πG

cc

p5

OO

TotpÑď1q

πÑ

OO

? _
j5oo

MCpGq,
3 S

iG

ff

� ?

iÑ

OO

where the maps p5, j5 are given by the functoriality of the total space of a r´1, 0s-complex. Note further
that we have vector bundle homomorphisms

π˚GG2 Ñ pp5q
˚π˚HpH2q, π˚Ñ Ñ 2 Ñ pj5q

˚π˚GG2.
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These vector bundle homomorphisms being compatible with the sections sG , sÑ and sH, the claim follows
from the functoriality of the refined pullback respectively to pullback by smooth maps. �

4. The COHA of a surface

4.1. The COHA as a vector space. Let S be a smooth connected quasi-projective surface over C.
Let CohpSq be the stack of coherent sheaves on S with proper support. It is not smooth because the
deformation theory can be obstructed due to Ext2.

Proposition 4.1.1. CohpSq is a locally quotient f-Artin stack.

Proof. This is standard, see [38, thm. 4.6.2.1]. Here are the details for future use in Prop. 4.3.2. Let S be
a smooth projective variety containing S an an open set. Then CohpSq is an open substack in CohpSq.
So it is enough to assume that S is projective which we will. Let Op1q be the ample line bundle on S
induced by a projective embedding. The stack CohpSq splits into disjoint union

CohpSq “
ğ

hPkrrtss

CohphqpSq,

where CohphqpSq consists of sheaves F with Hilbert polynomial h, i.e., of F such that

dimH0pS,Fpnqq “ hpnq, n " 0.

For any N P N, let Cohph,NqpSq Ă CohphqpSq be the open substack formed by F such that for each n ě N
two conditions hold:

paq H ipS,Fpnqq “ 0, i ą 0,
pbq the canonical map H0pS,Fpnqq bOp´nq Ñ F is surjective.

Now, for any coherent sheaf E on a scheme B, let QuotE be the scheme such that, for any B-scheme
T Ñ B, the set of T -points QuotEpT q is the set of surjective sheaf homomorphisms E |T Ñ F where F is
flat over T , modulo the equivalence relation

pq : E |T Ñ Fq „ pq1 : E |T Ñ F 1q ðñ Kerpqq “ Kerpq1q.

Let Quotph,NqpSq be the open subscheme of QuotOp´Nq‘hpNq formed by equivalence classes of surjections

φ : Op´Nq‘hpNq Ñ F with F P Cohph,NqpSq such that φpNq induces an isomorphism H0pS,Oq‘hpNq Ñ
H0pS,FpNqq. Then, the stack Cohph,NqpSq is isomorphic to the quotient stack of Quotph,NqpSq by the

obvious action of the group GLhpNq. It is a stack of finite type and, as N Ñ8, the substacks Cohph,NqpSq

form an open exhaustion of CohphqpSq. �

4.2. The induction diagram. Let SES be the Artin stack classifying short exact sequences

0 Ñ EÝÑGÝÑF Ñ 0 (4.2.1)

of coherent sheaves with proper support over S. Morphisms in SES are isomorphisms of such sequences.
We then have the induction diagram

CohpSq ˆ CohpSq SES
qoo p // CohpSq, (4.2.2)

where the map p projects a sequence (4.2.1) to G, while q projects it to pE ,Fq.

Proposition 4.2.3. The morphism p is schematic (representable) and proper.

Proof. For any coherent sheaf G on S with proper support, the Grothendieck Quot scheme QuotG is
proper. �
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4.3. The derived induction diagram. We have the projections

CohpSq ˆ CohpSq
p12
ÐÝ CohpSq ˆ CohpSq ˆ S

p13, p23
ÝÑ CohpSq ˆ S.

Consider the tautological coherent sheaf U over CohpSq ˆ S and the complex of coherent sheaves over
CohpSq ˆ CohpSq given by

C “ Rpp12q˚RHompp˚23U , p˚13Uqr1s. (4.3.1)

Its fiber at a point pE ,Fq is the complex of vector spaces RHomSpF , Eqr1s. Given a substack X Ă CohpSq,
let UX “ U |XˆS and CX “ C|XˆX be the restrictions of U and C.

Proposition 4.3.2.

paq The complex C is r´1, 1s-perfect and admits a perfect coherent system.
pbq The complex CX is strictly r´1, 1s-perfect if X “ Coh0pSq.

Proof. As in the proof of Proposition 4.1.1, the statements reduce to the case when S is projective
which we assume. We also keep the notation from that proof. Fix two polynomials h, h1 P krts and let

E P CohphqpSq, F P Cohph
1qpSq be two fixed coherent sheaves on S with Hilbert polynomials h, h1. Since

S is smooth of dimension 2, we can fix a locally free resolution P‚ “ tP´2 Ñ P´1 Ñ P0u of F . If we
know that the P i are “sufficiently negative” with respect to E , i.e., for each i P r´2, 0s and j ą 0 the

space ExtjSpP i, Eq “ HjpS, pP iq_ b Eq vanishes, then the complex of vector spaces RHomSpF , Eqr1s is
represented by the complex

HomSpP0, Eq Ñ HomSpP´1, Eq Ñ HomSpP´2, Eq (4.3.3)

situated in degrees r´1, 1s. In order to achieve this, we define, in a standard way,

P0 “ H0pS,FpN0qq bOp´N0q
ev0
ÝÑ F , N0 ! 0,

with ev0 being the evaluation map. Then we set K0 “ Kerpev0q
ε1
ãÑ P0 and

P´1 “ H0pS,K0pN1qq bKp´N1q
ev1
ÝÑ K0, N1 ! N0,

and P´2 “ Kerpev1q
ε2
ãÑ P´1. Then by Hilbert’s syzygy theorem, P´2 is locally free, and

tP´2 d´2“ε2 // P´1 d´1“ε1˝ev1 // P0u
ev0 // F

is a locally free resolution of F . Further, if N1 ! N0 ! 0 are sufficiently negative with respect to E and
F , then the dimensions (denote then r´1, r0, r1) of the term of the complex (4.3.3) are determined by
h, h1 and N0, N1. For fixed N1 ! N0 ! 0 the locus of pE ,Fq for which it is true, form an open substack

UN1,N0,h,h1 in CohphqpSq ˆ Cohph
1qpSq. On UN1,N0,h,h1 , the complex C is then represented by a complex

of vector bundles whose ranks are r´1, r0, r1, so it is strictly perfect. Further, as N1, N0 Ñ ´8, the

substacks UN1,N0,h,h1 form an open exhaustion of CohphqpSq ˆ Cohph
1qpSq. This proves (a).

To see (b), we notice that for 0-dimensional E and F with given h and h1, i.e., with given dimensions
of H0pS, Eq and H0pS,Fq, one can choose N0, N1 in a universal way. �

Let now X Ă CohpSq be a substack whose points are closed under extensions in CohpSq. Let SESX Ă
SES be the substack which classifies all short exact sequences of coherent sheaves over S which belong to
X. We abbreviate U “ UX , C “ CX and SES “ SESX . Assume further that the complex C over X ˆX
is strictly r´1, 1s-perfect. Fix a presentation of C as in Example 2.2.5.

Proposition 4.3.4. The stack Totpτď0Cq is isomorphic to SES.

Proof. Apply Proposition 2.3.4 with Y “ X ˆX ˆ S and F “ p˚23U , E “ p˚13U . �
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Thus, for all X as above we have the following diagram of f-Artin stacks

X ˆX TotpCď0q
πoo SES? _ioo p // X (4.3.5)

with q “ π ˝ i, which can be viewed as a refinement of the induction diagram (4.2.2). We call this diagram
the derived induction diagram.

4.4. The COHA as an algebra. We apply the analysis of §3.3 to all diagrams (5.2.1) as X runs over the
set of open substacks of finite type of CohpSq such that the complex C in (4.3.1) is strictly r´1, 1s-perfect
over X ˆ X. Note that the stack CohpSq is covered by all such X’s by the proof of Proposition 4.3.2.
Since the map p is representable and proper, the pushforward p˚ in Borel-Moore homology is well-defined.
Hence, we have the maps

HBM
‚ pX ˆXq

q!C
ÝÑ HBM

‚`2vrkpCqpSESq
p˚
ÝÑ HBM

‚`2vrkpCqpXq,

which, by (3.3.5), give rise to the maps

HBM
‚ pCohpSq ˆ CohpSqq

q!C
ÝÑ HBM

‚`2vrkpCqpSESq
p˚
ÝÑ HBM

‚`2vrkpCqpCohpSqq.

Composing the maps q!
C , p˚ and the exterior product

HBM
‚ pXq bHBM

‚ pXq Ñ HBM
‚ pX ˆXq,

we get the map

m : HBM
‚ pXq bHBM

‚ pXqÝÑHBM
‚`2vrkpCqpXq, (4.4.1)

and, by (3.3.5), the map

m : HBM
‚ pCohpSqq bHBM

‚ pCohpSqqÝÑHBM
‚`2vrkpCqpCohpSqq.

The first main result of this paper is the following theorem. It is proved in the next section.

Theorem 4.4.2. The map m equips HBM
‚ pXq and HBM

‚ pCohpSqq with an associative k-algebra structure.
�

4.5. Proof of associativity. We must prove the associativity of the map m. It is enough to do it for
HBM
‚ pXq. To do that, we consider the Artin stack FILT classifying flags of coherent sheaves E01 Ă E02 Ă

E03 over S such that the sheaves E01, E12, E23 defined by Eij “ E0j{E0i belong to the substack X Ă CohpSq.
For any i ă j we introduce a copy Xij of the stack X parametrizing sheaves Eij . For any i ă j ă k we
introduce a copy SESijk of the stack SES parametrizing short exact sequences

0 Ñ EijÝÑEikÝÑEjk Ñ 0.

Then, we have the fiber diagrams of stacks

FILT
x //

y

��

SES023

q

��

p // X03

SES012ˆX23
pˆ1 //

qˆ1

��

X02 ˆX23

X01 ˆX12 ˆX23

(4.5.1)
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and

FILT
v //

w

��

SES013

q

��

p // X03

X01 ˆ SES123
1ˆp //

1ˆq

��

X01 ˆX13

X01 ˆX12 ˆX23

(4.5.2)

given by

xpE01 Ă E02 Ă E03q “ pE02 Ă E03q, ypE01 Ă E02 Ă E03q “ pE01 Ă E02 , E23q,

vpE01 Ă E02 Ă E03q “ pE01 Ă E03q, wpE01 Ă E02 Ă E03q “ pE01 , E12 Ă E13q.

We must prove that we have

p˚ ˝ q
!
C ˝ pp˚ ˆ 1q ˝ pq!

C ˆ 1q “ p˚ ˝ q
!
C ˝ p1ˆ p˚q ˝ p1ˆ q

!
Cq.

Note that the morphisms x, z are both proper and representable and that we have the following equalities
of stack homomorphisms

pq ˆ 1q ˝ y “ p1ˆ qq ˝ w, p ˝ v “ p ˝ x.

We claim that there are virtual pullback homomorphisms y!
C and w!

C such that

x˚ ˝ y
!
C “ q!

C ˝ pp˚ ˆ 1q,

v˚ ˝ w
!
C “ q!

C ˝ p1ˆ p˚q,

y!
C ˝ pq

!
C ˆ 1q “ w!

C ˆ p1ˆ q
!
Cq.

(4.5.3)

The complex C023 “ ppˆ1q˚C on SES012ˆX23 and the complex C013 “ p1ˆpq
˚C on X01ˆSES123 are both

strictly r´1, 1s-perfect. Since the squares in the diagrams (4.5.1), (4.5.2) are Cartesian, by Proposition
2.3.4 we have stack isomorphisms

Totpτď0C023q “ SES012 ˆX02 SES023 “ FILT,

Totpτď0C013q “ SES123 ˆX13 SES013 “ FILT.

Therefore, we have virtual pullback maps

y!
C “ y!

C023 : HBM
‚ pSES012 ˆX23q Ñ HBM

‚`2vrkpCqpFILTq,

w!
C “ w!

C013 : HBM
‚ pX01 ˆ SES123q Ñ HBM

‚`2vrkpCqpFILTq

associated with the complexes C023 and C013. Then, the first two equations in (4.5.3) follow from the
following base change property of virtual pullbacks.

Lemma 4.5.4. Let B, B1 be Artin stacks of finite type, C be a strictly r´1, 1s-perfect complex on B, and
f : B1 Ñ B be a representable and proper morphism of stacks. Then, the complex C1 :“ f˚C on B1 is
strictly r´1, 1s-perfect and gives rise to the following Cartesian square

Totpτď0C1q
g //

q1

��

Totpτď0Cq

q

��
B1

f // B.

Further, we have the following equality of maps

g˚ ˝ q
1!
C1 “ q!

C ˝ f˚ : HBM
‚ pB1q Ñ HBM

‚`2vrkpCqpTotpτď0Cqq.
�
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Now, we concentrate on the third equation in (4.5.3). To do this, we first apply Proposition 2.5.2 to
the stack homomorphism

p : Y “ X01 ˆX12 ˆX23 ˆ S Ñ B “ X01 ˆX12 ˆX23

and to the coherent sheaves Eij “ p˚ijU with ij “ 01, 12, 23 given by the pullback of the tautological sheaf

U by the obvious projections Y Ñ X ˆ S. The sheaf G of associative dg-algebras in (2.5.1) is a strictly
r0, 2s-perfect dg-Lie algebra on B. So, Proposition 2.5.2 yields an equivalence of stacks over B

MCpGq » FILT.

More precisely, we realize G as a semi-direct product in two ways G “ H˙N “ H1 ˙N 1 where

N “ Rp˚HompE23, E01 ‘ E12q, H “ Rp˚HompE12, E01q,

N 1 “ Rp˚HompE12 ‘ E23, E01q, H1 “ Rp˚HompE23, E12q.

Then, the proof of Proposition 2.5.2 yields the following isomorphism of stacks

MCpHq “ SES012ˆX23,

MCpH1q “ X01 ˆ SES123,

MCpGq “ MCpÑ q “ SES012ˆX02 SES023 “ FILT,

MCpGq “ MCpÑ 1q “ SES123ˆX13 SES013 “ FILT.

In particular, we can identify the diagram

π˚C1
023 TotpCď0

023q
soo

SES012ˆX23 TotpCď0
023q

πoo
� ?

OO

FILT? _ioo

y

ll

� ?

OO

with the diagram

π˚Ñ Ñ 2 TotpÑ 1q{{Ñ0
sÑoo

MCpHq TotpÑ 1q{{Ñ0
πÑoo

� ?

OO

MCpGq.? _
iÑoo

qÑ

ll

� ?

OO

We deduce that y!
C “ q!

Ñ . Similarly, we get

q!
C ˆ 1 “ q!

H, w!
C “ q!

Ñ 1 , 1ˆ q!
C “ q!

H1 .

So the third equation in (4.5.3) follows from Proposition 3.4.1. This finishes the proof of Theorem 4.4.2.

4.6. Chow groups and K-theory versions of COHA. Given an f-Artin stack B, we denote by A‚pBq
its rational Kresch-Chow groups, as in as in [36]. By KpBq we denote the Grothendieck group of the
category of coherent sheaves on B. The construction in §3.3 makes sense as well for A‚ and K-theory,
yielding virtual pullback morphisms

q!
C : A‚pCohpSq ˆ CohpSqq Ñ A‚`vrkpCqpSESq,

q!
C : KpCohpSq ˆ CohpSqq Ñ KpSESq,



THE COHA OF A SURFACE 27

associated with the complex C in (4.3.1). Composing them with the pushforward p˚ : A‚pSESq Ñ
A‚pCohpSqq and p˚ : KpSESq Ñ KpCohpSqq by the map p in (4.2.2), we get an associative ring structure
on A‚pCohpSqq and on KpCohpSqq.

A definition of the K-theoretic COHA of finite length coherent sheaves over S was independently
proposed along these lines in the recent paper of Zhao [61].

5. Hecke operators

5.1. Hecke patterns and Hecke diagrams. We continue to assume that S is a smooth quasi-projective
surface over C. Recall that CohpSq is the stack of coherent sheaves on S with proper support.

Definition 5.1.1. A Hecke pattern for S is a pair pX,Y q of substacks in CohpSq with the following
properties:

pH1q X is open and Y is closed.
pH2q For any short exact sequence

0 Ñ EÝÑGÝÑF Ñ 0 (5.1.2)

with G P X and F P Y , we have E P X.
pH3q Y is closed under extensions, i.e., if in the sequence (5.1.2) we have E ,F P Y , then G P Y .

To a Hecke pattern pX,Y q we associate a version of the induction diagram (4.2.2) which we call the
Hecke diagram

X ˆ Y
q
ÐÝ SESXXY

p
ÝÑ X. (5.1.3)

Here SESXXY is the moduli stack of short exact sequences (5.1.2) with E ,G P X and F P Y , and the
projections q : SESXXY Ñ X ˆ Y, p : SESXXY Ñ Y associate to a sequence (5.1.2) the pair of sheaves
pE ,Fq and to the sheaf G respectively. We note the following analog of Propositions 4.2.3 and 4.3.4.

Proposition 5.1.4.

paq The morphism p is schematic and proper.
pbq The morphism q identifies SESXXY with an open substack in Totpτď0CXY q, where CXY is the r0, 2s-

perfect complex on X ˆ Y defined as in (4.3.1).

Proof. The fiber of p over G consists of subsheaves E Ă G such that E P X and G{E P Y . Because of the
property (H2) we can say that it consists of E Ă G such that G{E P Y . Since Y is closed in CohpSq, our
fiber is a closed part of the Quot scheme of G hence proper. Parts (a) is proved. To prove (b), note that,
similarly to Proposition 4.3.4, the full Totpτď0CXY q is the stack SESX?Y formed by short exact sequences
(5.1.2) with E P X, F P Y but G being an arbitrary coherent sheaf. Now, SESXXY in the intersection of
SESX?Y with the preimage of X Ă CohpSq under the projection to the middle term. Since X is open in
CohpSq, we see that SESXXY is open in Totpτď0CXY q. �

5.2. The derived Hecke action. Let pX,Y q be a Hecke pattern for S. Denote HX “ HBM
‚ pXq and

HY “ HBM
‚ pY q. From the property (H3) we see, as in Theorem 4.4.2, that the derived induction diagram

(5.2.1) for Y makes HY into an associative algebra. Further, similarly to (5.2.1), we have the diagram of
f-Artin stacks which we call the derived Hecke diagram:

X ˆ Y TotpCď0
XY q

πoo SESXXY? _ioo p // X (5.2.1)

Here i identifies SESXXY with an open subset of the zero locus of a section of the vector bundle π˚C1
XY

and so gives rise to the virtual pullback i!. So as in §4.4, we define the map

ν : HX bHY “ HBM
‚ pXq bHBM

‚ pY qÝÑHBM
‚`2 vrk CXY

pXq “ HX .

Theorem 5.2.2. The map ν makes HX into a right module over the algebra HY .

Proof. Completely similar to that of Theorem 4.4.2. It is based on considering FILTXY Y , the stack of
flags of coherent sheaves E01 Ă E02 Ă E03 with E01 P X and E02{E01, E03{E02 P Y. �
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5.3. Examples of Hecke patterns. The general phenomenon is that sheaves with support of lower
dimension act, by Hecke operators, on sheaves with support of higher dimension. We consider several
refinements of the condition on dimension of support.

Definition 5.3.1. Let 0 ď m ď 2.

paq A coherent sheaf F on S with proper support is called m-dimensional, if dim SupppFq ď m. We
denote by Cohďm “ CohďmpSq Ă Coh the substack formed by m-dimensional sheaves.

pbq We say that F is purely m-dimensional, if any non-zero OS-submodule F 1 Ă F is m-dimensional.
pcq We further say that F is homologically m-dimensional, if it is m-dimensional and for any C-point

x P S we have ExtjOS
pOx,Fq “ 0 for 0 ď j ă m. We denote by Cohm “ CohmpSq Ă Coh the

substack formed by m-dimensional sheaves.

Proposition 5.3.2.

paq For m “ 0, the conditions “ 0-dimensional”, “purely 0-dimensional” and “homologically 0-dimensional”
sheaves are the same.

pbq For m “ 1, the conditions “purely 1-dimensional” and “homologically 1-dimensional” are the same.
pcq For m “ 2, the condition “purely 2-dimensional” is the same as “torsion-free” while “homologically

2-dimensional” is the same as “vector bundle”.

Proof. Parts (a) and (b) are obvious, as is the first statement in (c). Let us show the second statement.
Notice that condition of being homologically 2-dimensional, i.e., ExtjpOx,Fq “ 0 for j ă 2 and all x,
is nothing but the maximal Cohen-Macaulay condition. Since S is assumed to be smooth, any maximal
Cohen-Macaulay sheaf is locally free. �

We denote by CohmpSq the moduli stack of homologically 2-dimensional sheaves with proper support,
and by CohtfpSq denote the moduli stack of torsion-free (i.e., purely 2-dimensional) sheaves.

Proposition 5.3.3. The following pairs of substacks are Hecke patterns: pCoh1pSq,Coh0pSq, pCoh2pSq,Coh1pSqq,
pCohtfpSq,Coh0pSqq and pCohtfpSq,Coh1pSqq.

To prove the proposition, we note that Coh1pSq and Coh0pSq are both open and closed in CohpSq.
Further, Coh2pSq, the stack of vector bundles, is open, as is CohtfpSq. Further, all these stacks are closed
under extensions. So it remains to prove the following.

Lemma 5.3.4. Suppose we have a short exact sequence as in (5.1.2).

paq If G P CohmpSq and F P Cohm´1pSq, then E P CohmpSq.
pbq if G P CohtfpSq, then E P CohtfpSq.

Proof. (a) Since E Ă G, it is clear that dim SupppEq ď m. The vanishing of ExtjpOx, E 1q for j ă m follows
at once from the long exact sequence of Ext‚pOx,´q induced by the short exact sequence above. Part (b)
is obvious: any subsheaf of a torsion free sheaf is torsion free. �

This ends the proof of Proposition 5.3.3.

Remark 5.3.5. The non-trivial part of the proposition says that homologically (or, what is the same,
purely) 1-dimensional sheaves govern Hecke modifications of vector bundles on a surface.

5.4. Stable sheaves and Hilbert schemes. Let S be a smooth connected projective surface and m “

0, 1. We can apply the construction in §4.4 to the substack of m-dimensional sheaves X “ CohďmpSq of
CohpSq. We have the derived induction diagram (5.2.1), hence the formula (4.4.1) yields an associative
multiplication on HBM

‚ pCohďmpSqq.

Now, let P pEq : m ÞÑ χpEpmqq be the Hilbert polynomial of a coherent sheaf E on S, and ppEq “
P pEq{(leading coefficient) be the reduced Hilbert polynomial. The sheaf E is stable if it is pure and
ppFq ă ppEq for any proper subsheaf F Ă E . Let MSpr, d, nq be the moduli space of rank r semi-stable
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sheaves with first Chern number d and second Chern number n. See [29] for a general background on
these moduli spaces.

Theorem 5.4.1.

paq The direct image by the closed embeddings Coh0pSq Ă Cohď1pSq Ă CohpSq gives algebra homomor-
phisms HBM

‚ pCoh0pSqq Ñ HBM
‚ pCohď1pSqq Ñ HBM

‚ pCohpSqq.
pbq The algebra HBM

‚ pCohď1pSqq
op acts on

À

d,nH
BM
‚ pMSp1, d, nqq.

pcq The algebra HBM
‚ pCoh0pSqq

op acts on
À

nH
BM
‚ pMSp1, d, nqq for each d.

Proof. Part (a) follows from base change. Parts (b), (c) are proved as in §5.2. Let us give more details
on (b), part (c) is proved in a similar way.

First, let us consider the following more general setting : let X “ CohpSq and Y Ă CohpSq the substack
consisting of torsion free sheaves. Note that the substack Y Ă X is both open and stable by subobjects.
We claim that the algebra HBM

‚ pXqop acts on HBM
‚ pY q. To prove this, we consider the restrictions of

TotpCď0q and SES to the stack Y ˆX given by

TotpCď0q|YˆX “ π´1pY ˆXq, SES |YˆX “ q´1pY ˆXq.

Then, the derived induction diagram (5.2.1) gives rise to the following commutative diagram

CohpSq ˆ CohpSq TotpCď0q
πoo SES? _ioo SES

p // CohpSq

Y ˆX
� ?

OO

TotpCď0q|YˆX
π̄oo

� ?

OO

SES |YˆX? _ı̄oo
� ?

OO

SES? _
joo p̄ //

� ?

OO

Y
� ?

OO

where SES “ p´1pY q and j is the obvious open immersion of stacks j : SES Ă SES |YˆX . Let s̄C be the
restriction of the section sC of π˚C1 to Y ˆX. We define a map

m̄ : HBM
‚ pY q bHBM

‚ pXqÝÑHBM
‚`2vrkpCqpY q (5.4.2)

as the composition of the exterior product and the composed map p̄˚ ˝ j̄
˚ ˝ s̄!

C ˝ π̄
˚. We claim that the

map m̄ above defines an action of the algebra HBM
‚ pXqop on HBM

‚ pY q. Then, the diagrams (4.5.1), (4.5.2)
yield the following fiber diagrams of stacks

FILT
x //

y

��

SES

q

��

p // Y

SESˆX
pˆ1 //

qˆ1

��

Y ˆX

Y ˆX ˆX

(5.4.3)

and

FILT
v //

w

��

SES

q

��

p // Y

Y ˆ SES
1ˆp //

1ˆq

��

Y ˆX

Y ˆX ˆX,

(5.4.4)
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where FILT Ă FILT is the open substack classifying flags of coherent sheaves E01 Ă E02 Ă E03 over S
such that E01, E02, E03 P Y . Then, the claim is proved as in §4.5, replacing the diagrams (4.5.1), (4.5.2)
by (5.4.3), (5.4.4).

Now, a rank 1 coherent sheaf is stable if and only if it is torsion free. Thus, setting X “ Cohď1pSq and
Y Ă CohpSq to be the susbtack consisting of rank 1 torsion free sheaves, the argument above proves the
part (b).

�

Remark 5.4.5.

paq The moduli space MSp1,OS , nq of rank one sheaves with trivial determinant and second Chern
number n is canonically isomorphic to the Hilbert scheme HilbnpSq. If S is a K3 surface, then
HilbnpSq is further isomorphic to MSp1, 0, nq.

pbq The rings A‚pCohď1pSqq
op and KpCohď1pSqq

op act on
à

d,n

A‚pMSp1, d, nqq,
à

d,n

KpMSp1, d, nqq

respectively, as in Theorem 5.4.1. The proofs are analogous to the proof in Borel-Moore homology.

6. The flat COHA

6.1. RpA2q and commuting varieties. In this section we assume S “ A2 and denote

RpA2q “ HBM
‚ pCoh0pA2qq

the COHA of 0-dimensional coherent sheaves on A2. We note that

Coh0pA2q “
ğ

ně0

Coh
pnq
0 pA2q,

where Cohn0 pA2q is the stack of 0-dimensional sheaves F such that the length of F , i.e., dimH0pFq, is
equal to n. We further recall that

Coh
pnq
0 pA2q » Cn{{GLn,

where Cn is the nˆ n commuting variety

Cn “
 

pA,Bq P glnpCq ˆ glnpCq ; rA,Bs “ 0
(

,

acted upon by GLn (simultaneous conjugation). Indeed, a 0-dimensional coherent sheaf F on A2 of length
n is the same as a Crx, ys-module H0pFq which has dimension n over C, i.e., can be represented by the
space Cn with two commuting operators A,B, the actions of x and y. We recall.

Proposition 6.1.1. Cn is an irreducible variety of dimension n2 ` n. Therefore Coh
pnq
0 pA2q is an irre-

ducible stack of dimension n. �

Accordingly, we have a direct sum decomposition

RpA2q “
à

ně0

RnpA2q, RnpA2q “ HBM
‚ pCoh

pnq
0 pA2qq “ HBM

‚ pCn{{GLnq,

where on the right we have the equivariant Borel-Moore homology of the topological space Cn. The
algebra RpA2q has a Z2 grading (compatible with multiplication), consisting of (in this order):

paq the length degree, by the decomposition into the Hpnq
txu,

pbq the homological degree, where we put HBM
i in degree i.
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Define the Z2-graded vector space

Θ “ q´1t ¨ krq, ts, degpqq “ p0,´2q, degptq “ p1, 0q. (6.1.2)

The following is well known, see, e.g., [55, §5.3] and the references there, and goes back to the Feit-Fine
formula for the number of points in the commuting varieties over finite fields [15, (2)].

Proposition 6.1.3. As a Z2-graded vector space, RpA2q » SympΘq. �

The goal of this section is to prove the following.

Theorem 6.1.4. We have an isomorphism of algebras RpA2q » SympΘq. In particular, RpA2q is com-
mutative.

Before to do this, let us observe the following.

Proposition 6.1.5. The algebra RpA2q is the same as the COHA considered in [54, §4.4] in the case of
the Jordan quiver.

Proof. To prove this, we abbreviate Xn “ Cn{{GLn, S “ A2, and note that the tautological sheaf U
over Xn ˆ S is identified with the GLn-equivariant sheaf over Cn ˆ S given by U “ Cn bOCn , with the
OCn-linear action of OS “ Crx, ys such that x, y act as Ab 1, Bb 1 respectively on the fiber U |pA,Bq. Let
p be the Lie algebra consisting of pn,mq-uper triangular matrices in gln`m, and let u, l be its nilpotent
radical and its standard Levi subalgebras. Let P , U and L be the corresponding linear groups. Write
Xn,m “ XnˆXm and Cn,m “ CnˆCm. We identify Cn,m with the commuting variety of the Lie algebra
l and Xn,m with the moduli stack Cn,m{{L. We have u “ HomCpCn,Cmq, and the perfect [-1,1]-complex C
over Xn,m in (4.3.1) is identifed with the L-equivariant Koszul complex of vector bundles over Cn,m given
by

ubOCn,m

d0 // u2 bOCn,m

d1 // ubOCn,m ,

where the differentials over the C-point pA,Bq in Cn,m are given respectively by

d0puq “ prA, us , rB, usq, d1pv, wq “ rA,ws ´ rB, vs “ rA‘ v,B ‘ ws,

and the direct sum holds for the canonical isomorphism lˆuÑ p. The total space TotpCq of this complex,
defined in (3.3.9), is a smooth derived stack over Xn,m such that :

paq The underlying Artin stack is the vector bundle stack C0{{C´1 over Xn,m such that

C´1 “ pCn,m ˆ uq{{L, C0 “ pCn,m ˆ u2q{{L.

It is isomorphic to the following quotient relatively to the diagonal P -action

TotpCď0q “ pCn,m ˆ u2q{{P.

pbq The structural sheaf of derived algebras is the free P -equivariant graded-commutative OCn,mˆu2-
algebra generated by the elements of u_ in degree -1. The differential is given by the transpose of
the Lie bracket uˆ uÑ u.

Therefore, the derived induction diagram (5.2.1) is

Cn,m{{L pCn,m ˆ u2q{{P
πoo rCn,m{{P? _ioo p // Cn`m{{GLn`m, (6.1.6)

where rCn,m is the commuting variety of the Lie algebra p. We can now compare the product

m : HBM
‚ pXnq bH

BM
‚ pXmq Ñ HBM

‚ pXn`mq
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in (4.4.1) with the multiplication in [54, §4.4]. We have the fiber diagram of stacks

pCn,m ˆ uq{{P pCn,m ˆ u3q{{P
foo pCn,m ˆ u2q{{P

soo

Cn,m{{P
� ?

1ˆ0

OO

pCn,m ˆ u2q{{P
πoo

� ?

1ˆ0

OO

rCn,m{{P.? _ioo
� ?

i

OO

where 1 is the identity, 0 is the zero section, f is the projection to the third component of u3 (which is
a local complete intersection morphism) and s “ 1 ˆ d1. Hence, the composed map g “ f ˝ s is the Lie
bracket pA,B; v, wq ÞÑ rA ‘ v,B ‘ ws and the composition rule of refined pullback morphisms implies
that

g!pxq “ s!f !pxq “ s!π˚pxq

in HBM
‚ p rCn,m{{P q for any class x P HBM

‚ pXn ˆ Xmq. We deduce that the multiplication map m is the
same as the multiplication considered in [54, §4.4]. �

6.2. RpA2q as a Hopf algebra. As a first step in the proof of Theorem 6.1.4, we introduce on RpA2q a
compatible comultiplication.

Let U Ă C2 be any open set in the complex topology. We denote by Coh0pUq the category of 0-
dimensional coherent analytic sheaves on U . The corresponding moduli stack Coh0pUq can be understood
as a complex analytic stack in the sense of [51], i.e., as a stack of groupoids on the site of Stein complex
analytic spaces. It can also be understood in a more elementary way, as follows.

Let CnpUq Ă Cn be the open subset (in the complex topology) formed by pairs pA,Bq of commuting
matrices for which the joint spectrum (the support of the corresponding coherent sheaf on C2) is contained
in U . It is, therefore, a complex analytic space. Then we can define

Coh
pnq
0 pUq “ CmpUq{{GLnpCq,

as the quotient analytic stack, and put

Coh0pUq “
ğ

ně0

Coh
pnq
0 pUq.

Using this understanding, we define directly

RpUq “ HBM
‚ pCoh0pUqq “

à

ně0

HBM
‚ pCnpUq{{GLnpCqq “

à

ně0

RnpUq.

The same considerations as in §4 make RpUq into a graded associative algebra.

If U 1 Ă U Ă C2 are two open sets, then CnpU
1q ãÑ CnpUq is an open embedding, and we have maps of

Z-graded, resp. Z2-graded vector spaces

ρnU,U 1 : HBM
‚ pCnpUq{{GLnpCqqÝÑHBM

‚ pCnpU
1q{{GLnpCqq,

ρU,U 1 “
à

ně0

ρnU,U 1 : RpUqÝÑRpU 1q.

Proposition 6.2.1.

paq ρU,U 1 is an algebra homomorphism.
pbq If the embedding U 1 ãÑ U is a homotopy equivalence, then ρU,U 1 is an isomorphism.
pcq If U is a disjoint union of open subsets U1, ¨ ¨ ¨ , Um, then

RpUq » RpU1q b ¨ ¨ ¨ bRpUnq.
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Proof. Part (a) is clear from definitions. To show (b), we note that CnpUq and CnpU
1q are naturally

stratified (by singularities), and, under our assumption, the embedding CnpU
1q ãÑ CnpUq is a homotopy

equivalence relative to the stratifications, i.e., it induces homotopy equivalences on all the strata. By
dévissage (spectral sequence argument) this implies that the map

H
BM,GLnpCq
‚ pCnpUqq “ H´‚GLnpCqpCnpUq, ωCnpUqqÝÑH

´‚

GLnpCqpCnpU
1q, ωCnpU 1qq “ H

BM,GLnpCq
‚ pCnpU

1qq

is an isomorphism.

We abbreviate GLn1,...,nm “ GLn1 ˆ ¨ ¨ ¨ ˆGLnm . Then, part (c) follows from the GLnpCq-equivariant
identifications

CnpUq “
ğ

n1`¨¨¨`nm“n

´

GLnpCq ˆGLn1,...,nm pCq Cn1pU1q ˆ ¨ ¨ ¨ ˆ CnmpUmq
¯

,

which reflect the fact that a length n sheaf F on U consists of sheaves Fi on Ui of lengths ni summing
up to n. �

Corollary 6.2.2. If an open U Ă C2 is homeomorphic to a 4-ball, then ρC2,U : RpC2q Ñ RpUq is an
isomorphism. �

Let us now choose, once and for all, two disjoint round balls U1, U2 Ă C2. Define a morphism of
Z2-graded vector spaces ∆ : RpC2q Ñ RpC2q bRpC2q as the composition

RpC2q
ρC2,pU1YU2q
ÝÑ RpU1 Y U2q » RpU1q bRpU2q

ρ´1

C2,U1
bρ´1

C2,U2
ÝÑ RpC2q bRpC2q.

Proposition 6.2.3.

paq ∆ does not depend on the choice of the balls U1, U2 provided they are disjoint.
pbq ∆ makes RpC2q into a cocommutative, coassociative Hopf algebra.

Proof. Any two admissible choices of U1, U2 are connected by a path of admissible choices, and ∆ does
not change along this path. This proves (a). To prove (b), note that all the maps in the above chain are
compatible with the Hall multiplication, so ∆ is a homomorphism of algebras. Its cocommutativity follows
from (a) by interchanging U1 and U2, i.e., by connecting pU1, U2q and pU2, U1q by a path of admissible
choices. Coassociativity is proved similarly by considering triples of disjoint balls. This proves that RpC2q

into a cocommutative, coassociative bialgebra.

It remains to prove that RpC2q has an antipode. This is a standard argument using co-nilpotency, see,
e.g., [40, §1.2]. That is, define

∆ : RpC2qÝÑRpC2q bRpC2q, ∆pxq “ ∆pxq ´ pxb 1` 1b xq,

and let ∆
n

: RpC2qÝÑRpC2qbn be the n-fold iteration of ∆. Then RpC2q is co-nilpotent, that is, for any
x P RpC2q there is n such that ∆

m
pxq “ 0 for m ě n. Therefore the antipode α : RpC2q Ñ RpC2q is given

by the following geometric series, terminating upon evaluation on any x P RpC2q:

α “
8
ÿ

n“1

p´1qnmn ˝∆
n
,

where mn : RpC2qbn Ñ RpC2q is the n-fold multiplication.
�

Let RpC2qprim “
 

a P RpC2q ; ∆paq “ ab 1` 1b a
(

be the Lie algebra of primitive elements with the
bracket ra, bs “ ab´ ba.

Corollary 6.2.4.

paq RpC2q is isomorphic, as a Hopf algebra, to the universal enveloping algebra of RpC2qprim.
pbq RpC2qprim » Θ as a Z2-graded vector space.
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Proof. Part (a) follows from the Milnor-Moore theorem. Part (b) follows from the Poincaré-Birkhoff-Witt
theorem and from Proposition 6.1.3. �

6.3. Explicit primitive elements in RpA2q. For any open U Ă C2 let Coh
pnq
1 ptpUq Ă Coh

pnq
0 pUq be

the closed analytic substack formed by 1-point coherent sheaves, i.e., sheaves whose support consists of
precisely one point. In other words,

Coh
pnq
1 ptpC

2q “ Cn,1 ptpUq{{GLnpCq,

where Cn,1 ptpUq Ă CnpUq is the closed analytic subspace formed by pairs pA,Bq of commuting matrices
whose joint spectrum reduces to one point in C2 (but can be degenerate). Still more explicitly,

Cn,1 ptpUq “ U ˆNCn,

where NCn is the n by n nilpotent commuting variety

NCn “
 

pA,Bq P glnpCq ˆ glnpCq ; rA,Bs “ An “ Bn “ 0
(

.

In particular, we have the closed subvariety

Cn,1 pt “ Cn,1 ptpC2q “ C2 ˆNCn Ă Cn, (6.3.1)

invariant under GLnpCq. We recall.

Proposition 6.3.2 ([3]). NCn is an irreducible algebraic variety of dimension n2 ´ 1. �

The proposition implies that Cn,1 pt is an irreducible variety of dimension n2 ` 1. So Coh
pnq
1 ptpC2q, its

image in Coh
pnq
0 pC2q, is an irreducible stack of dimension 1, and it has the equivariant fundamental class

θn “ rCn,1 pts P H
BM
2 pCn{{GLnq.

Further, let En be the trivial vector bundle of rank n on the GLn-variety Cn, equipped with the vectorial
representation of GLn. We call En the tautological sheaf. Being an equivariant vector bundle, it has the
equivariant Chern characters

chipEnq P H2ipCn{{GLnq, i ě 0,

and, for i ě 0, n ě 1, we define

θn,i “ chipEnq X θn P HBM
2´2ipCn{{GLnq “ Rn,2´2ipC2q. (6.3.3)

Comparing the Z2-grading of Θ, we see that the map

α : ΘÝÑRpC2q, tnqi´1 ÞÑ θn,i, (6.3.4)

is a morphism of Z2-graded vector spaces.

Proposition 6.3.5.

paq α is injective, i.e., each θn,i is non-zero.
pbq θn,i is primitive.

Proof. The claim (a) follows from [11, thm. C] and the explicit computations in [11, §5] in the case of the
Jordan quiver. More precisely, let Qg be the quiver with one vertex and g loops. For each integer n ě 0,
let MpQgqn be the coarse moduli space of semisimple n-dimensional representations of CQg, i.e., the
categorical quotient of pglnq

g by the adjoint action of GLn. We’ll abbreviate MpQgq “
Ů

ně0 MpQgqn.
The direct sum of representations yields a finite morphism MpQgqˆMpQgq ÑMpQgq, hence a symmetric
monoidal structure on the category PervpMpQgqq of perverse sheaves on MpQgq, which allows to consider
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the n-th symmetric power SymnpEq for any object E in PervpMpQgqq. Let SympEq “
À

ně0 SymnpEq.
Set g “ 3 and fix an embedding Q2 Ă Q3. By [11], we have

à

ně0

H‚c pCn{{GLnq “ H‚c
`

MpQ3q , Sym
`

BPS bH‚c pBCˆq
˘˘

à

ně0

H‚c pCn,1 pt{{GLnq “ H‚c
`

MpQ3q1 pt , Sym
`

BPS bH‚c pBCˆq
˘˘ (6.3.6)

where BPS “
À

ną0 BPSn and BPSn is, up to some shift, the constant sheaf supported on the small
diagonal

C3 Ă SymnpC3q ĂMpQ3qn “ pglnq
3{GLn,

where SymnpC3q is the categorical quotient of triple of commuting matrices in pglnq
3 by GLn. Here, for

each n, the closed subset MpQ3qn,1 pt ĂMpQ3qn is the coarse moduli space of semisimple representations
of CQ3 for which the underlying CQ2-module has a punctual support in C2. In particular, we have

C3 ĂMpQ3qn,1 pt ĂMpQ3qn.

Now, the pushforward

HBM
‚ pCn,1 pt{{GLnq Ñ HBM

‚ pCn{{GLnq (6.3.7)

by the closed embedding Cn,1 pt Ă Cn is dual to the restriction map g : H‚c pCn{{GLnq Ñ H‚c pCn,1 pt{{GLnq.
Taking the direct summand

BPSn bH‚c pBCˆq Ă Sym
`

BPS bH‚c pBCˆq
˘

in (6.3.6), we get the commutative diagram

H‚c
`

MpQ3qn , BPSn bH‚c pBCˆq
˘

//

f
��

H‚c pCn{{GLnq

g

��
H‚c

`

MpQ3qn,1 pt , BPSn bH‚c pBCˆq
˘

// H‚c pCn,1 pt{{GLnq.

The map f is invertible. We deduce that the class chipEnq X rCn,1 pts is non-zero in HBM
2´2ipCn,1 pt{{GLnq

and that its image by (6.3.7) is non zero and equal to the element θn,i P H
BM
2´2ipCn{{GLnq.

To prove (b), given an open U Ă C2, we define, in the same way as before, elements

θn,ipUq P R
n,2´2ipUq “ HBM

2´2ipCnpUq{{GLnpCqq.

For U 1 Ă U we have

ρU,U 1pθi,npUqq “ θn,ipU
1q.

For U “ U1 \ U2 being a disjoint union of two opens, a length n 0-dimensional sheaf F on U consists of
two sheaves Fi on Ui of lengths ni, i “ 1, 2 such that n1 ` n2 “ n. This can be expressed by saying that

CnpU1 \ U2q “
ğ

n1`n2“n

´

GLnpCq ˆGLn1,n2 pCq
`

Cn1pU1q ˆ Cn2pU2q
˘

¯

, (6.3.8)

from which we deduce the following identification

RnpUq “
à

n1`n2“n

Rn1pU1q bR
n2pU2q, (6.3.9)

Let En,U be the tautological sheaf of CnpUq and similarly for U1, U2. With respect to the identification
(6.3.8), we have

En,U “
ğ

n1`n2“n

`

En1,U1 b O ‘ O b En2,U2

˘

.
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Thus, the additivity of the Chern character gives

chipEn,U q “
ÿ

n1`n2“n

`

chipEn1,U1q b 1 ` 1b chipEn2,U2q
˘

, @i ě 0. (6.3.10)

Since, under the identification (6.3.9), we have

θnpUq “ θnpU1q b 1` 1b θnpU2q

we deduce that we have also

θn,ipUq “ θn,ipU1q b 1` 1b θn,ipU2q, @i ě 0.

Our statement follows from this and from the definition of ∆ via ρ. �

Corollary 6.3.11. The space RpC2qprim of primitive elements of RpC2q coincides with the image αpΘq.
It is closed under the commutator ra, bs “ ab´ ba. �

6.4. Commutativity of RpA2q: end of proof of Theorem 6.1.4. To finish the proof of Theorem
6.1.4, it remains to prove:

Proposition 6.4.1. The Lie algebra RpC2qprim “ αpΘq “ Span
 

θn,i ; n ě 1, i ě 1
(

is abelian.

Before starting the proof, for any smooth surface S let ΩS “ Ω2
S be the sheaf of volume forms. The

category Coh0pSq has a perfect duality (equivalence with the opposite category whose square is identified
with the identity functor)

F ÞÑ F_ “ Ext2
OS
pF ,ΩSq.

We note that Grothendieck duality gives a canonical identification

H0pF_q “ H0pFq˚.
Passing to F_ gives an automorphism of Coh0pSq of order 2 and an involution on the COHA

˚ : HBM
‚ pCoh0pSqqÝÑH

BM
‚ pCoh0pSqq, a ÞÑ a˚, pabq˚ “ b˚a˚, a˚˚ “ a.

Proof of Proposition 6.4.1. We specialize the above remarks for S “ C2. If F P Coh0pC2q is given by a
pair of commuting matrices pA,Bq, then F_ is given by the pair pA˚, B˚q of the transposes. Thus the
involution ˚ on RpC2q is induced by the automorphisms τn : pA,Bq ÞÑ pA˚, B˚q of Cn for n ě 1. To
prove that RpC2q is commutative, it is enough to show that ˚ “ Id. It is not true, in general, that F_ is
isomorphic to F . However, we have the following.

Proposition 6.4.2. The elements θn,i P RpC2q satisfy θ˚n,i “ θn,i.

Proof. The locus Cn,1 pt Ă Cn is invariant under the transformation τn. Further, τn being a complex
algebraic transformation, it preserves the orientation, and so the fundamental class θn “ rCn,1 pts is
invariant under ˚. Similarly, the GLnpCq-equivariant vector bundles En and τ˚nEn on Cn are identified.
So θn,i “ θn X chipEnq is invariant under ˚. �

Now we notice the following.

Lemma 6.4.3. Let g be a Lie algebra and ˚ be an involution on Upgq such that a˚ “ a for any a P g.
Then g is abelian and ˚ “ Id.

Proof. Let a, b P g, and c “ ra, bs. Then in Upgq we have c “ ab´ ba and so

c˚ “ pab´ baq˚ “ b˚a˚ ´ a˚b˚ “ ba´ ab “ ´c

while by assumption c˚ “ c, so c “ 0. �

Theorem 6.1.4 is proved. �
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6.5. Group-like elements. In this section we describe two natural families of group-like elements of R,
which then give primitive elements by passing to the logarithms, in a standard way. The results of this
section are not needed in the rest of the paper. First, we consider

ηn “ rCns P H
BM
2n pCn{{GLnq,

the equivariant fundamental class of Cn itself (recall that the dimension of the quotient stack Cn{{GLn is
n). We put

ηn,i “ rCns X c1pOnq
i, n ě 1, i ě 0, η0,0 “ 1, η0,i “ 0, i ą 0.

Second, we note that Cn carries a canonical virtual fundamental class

ηvir
n “ rCns

vir P HBM
2 pCn{{GLnq.

It arises because Cn Ă glnpCq2 is given by a system of n2 equations, the matrix elements of the commutator
rA,Bs. More invariantly, consider the GLn-equivariant vector bundle ad on glnpCq2 of rank n2 which, as
a vector bundle, is trivial with fiber slnpCq and with GLn-action being the adjoint representation. The
commutator can be considered as a GLn-invariant section s of ad, so that spA,Bq “ rA,Bs, and the zero
locus of s is Cn. Thus we have a class (virtual pullback of the equivariant fundamental class of glnpCq2)

rCns
vir “ s!rglnpCq2s P HBM

2 pCn{{GLnq.

As before, we denote

ηvir
n,i “ rCns

vir X c1pEnqi, n ě 1, i ě 0, ηvir
0,0 “ 1, ηvir

0,i “ 0, i ą 0.

Proposition 6.5.1. We have

∆pηn,iq “
ÿ

n1`n2“n
i1`i2“i

ηn1,i1 b ηn2,i2 , ∆pηvir
n,iq “

ÿ

n1`n2“n
i1`i2“i

ηvir
n1,i1 b η

vir
n2,i2 .

Proof. Let U1, U2 be two disjoint balls in C2, as in the definition of ∆. With respect to the identification
(6.3.8), we have

c1pEn,U q “
ÿ

n1`n2“n

`

c1pEn1,U1q b 1 ` 1b c1pEn2,U2q
˘

.

This implies the statement about the ηn,i’s. The statement about the ηvir
n,i is proved similarly. �

Corollary 6.5.2.

paq The formal series

ηpz, wq “ 1`
ÿ

ną0
iě0

ηn,iz
nwi, ηvirpz, wq “ 1`

ÿ

ną0
iě0

ηvir
n,iz

nwi P RpC2qrrz, wss

are group-like, i.e., we have ∆pηpz, wqq “ ηpz, wqbηpz, wq and ∆pηvirpz, wqq “ ηvirpz, wqbηvirpz, wq.
pbq The series logpηpz, wqq, logpηvirpz, wqq are primitive. In other words, all their coefficients are primi-

tive elements of RpC2q and are, therefore, linear combinations of the θn,i.

�
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7. The COHA of a surface S and factorization homology

7.1. Statement of results. Let S be an arbitrary smooth quasi-projective surface andRpSq “ HBM
‚ pCoh0pSqq

be the corresponding cohomological Hall algebra. It is Z2-graded by (length, homological degree). We
introduce a global analog of the space Θ generating the flat COHA RpA2q from §6.3. Let

S
pn
ÐÝ Coh

pnq
1 ptpSq

in
ÝÑ Coh

pnq
0 pSq

be the stack of 1-pointed, length n sheaves on S with its canonical closed embedding in into Coh
pnq
0 pSq

and projection pn to S (so pnpFq is the unique support point of F). Proposition 6.3.2 implies that pn is
a morphism with all fibers irreducible of relative dimension p´1q. Therefore we have the pullback map
p˚n given by the composition

HBM
‚ pSq “ H4´‚pSq

p˚n
ÝÑ H4´‚pCoh

pnq
1 ptpSqqÝÑH

BM
‚´2pCoh

pnq
1 ptpSqq,

where the last arrow is the cap-product with the fundamental class. Define the subspace

ΘnpSq “ in˚p
˚
nH

BM
‚ pSq Ă HBM

2´‚pCoh
pnq
0 pSqq “ RnpSq.

Let En denote also the tautological sheaf on Coh
pnq
0 pSq and further put, for i ě 0,

Θn,ipSq “ ΘnpSq X chipEnq Ă RnpSq.

Proposition 7.1.1. The canonical map HBM
‚ pSq Ñ Θn,ipSq is an isomorphism.

Proof. We consider the open subscheme FCoh
pnq
0 pSq :“ Quotpn,0qpSq of the quot-scheme formed by equiv-

alence classes of surjections φ : On Ñ F with F P Coh
pnq
0 pSq such that φ induces an isomorphism

Cn Ñ H0pS,Fq. Then, the stack Coh
pnq
0 pSq is isomorphic to the quotient stack of FCoh

pnq
0 pSq{{GLn. Let

T Ă GLn be a maximal torus. Then, the fixed points locus FCoh
pnq
0 pSqT is isomorphic to FCoh

p1q
0 pSqn “

Sn. Thus, we have a commutative diagram

HBM
‚ pSq

p˚n //
� v

a
((

HBM,GLn
‚ pFCoh

pnq
1 ptpSqqloc

in˚ // HBM,GLn
‚ pFCoh

pnq
0 pSqqloc

HBM
‚ pSq bH‚GLn,loc

� � ∆ //

b

OO

pHBM
‚ pSnq bH˚T q

Sn
loc ,

c

OO

where H‚G “ H‚pBGq and loc is the tensor product by the fraction field H‚GLn,loc
of H‚GLn

over H‚GLn
.

The maps b, c are the pushforward by the closed embeddings S Ă FCoh
pnq
1 ptpSq and Sn Ă FCoh

pnq
0 pSq,

which are invertible by the localization theorem in equivariant cohomology. The map ∆ is the diagonal
embedding. It is injective. The map a is equal to Idb1, up to the cap-product by an invertible element
in H‚pSq bH‚GLn,loc

. It is injective. We deduce that the map

in˚p
˚
n : HBM

‚ pSq Ñ HBM,GLn
‚ pFCoh

pnq
1 ptpSqq

is injective as well. �

We define
ΘpSq “

à

n,i

Θn,ipSq Ă RpSq.

Thus, for S “ A2 we have that ΘpA2q is identified with the graded space Θ from (6.1.2), embedded into
R by the map α as in (6.3.4). We recall that HBM

‚ pA2q is 1-dimensional, concentrated in homological
degree 4. Thus shifting the grading by putting

Θ1 “ Θr0,´4s “ qt ¨ krq, ts,
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we have by Proposition 7.1.1, an identification of Z2-graded vector spaces

ΘpSq » HBM
‚ pSq bΘ1 » HBM

‚ pS{{Cˆq b tkrts.

We now consider the symmetrized product map σ : SympΘpSqq Ñ RpSq defined as

σ “
ÿ

ně0

σn, σn : SymnpΘpSqqÝÑRpSq, σnpv1 ‚ ¨ ¨ ¨ ‚ vnq “
1

n!

ÿ

sPSn

vsp1q ˚ ¨ ¨ ¨ ˚ vspnq. (7.1.2)

Here ‚ is the product in the symmetric algebra and ˚ is the Hall multiplication. The second main result
of this paper is a version of the Poincaré-Birkhoff-Witt theorem for RpSq which allows us to commute its
graded dimension. It is proved in the next sections.

Theorem 7.1.3. σ : SympΘpSqq Ñ RpSq is an isomorphism of Z2-graded vector spaces. �

7.2. Reminder on factorization algebras. We follow the approach of [9] and [19]. Let pC,b,1q be
a symmetric monoidal model category. In particular, it has a class W of weak equivalences. We will
consider three examples:

paq C “ Top is the category of topological spaces (homotopy equivalent to a CW-complex), b is cartesian
product, and weak equivalence have the usual topological meaning.

pbq C is the category of Artin stacks, b is the Cartesian product of stacks and weak equivalences are
equivalences of stacks.

pcq C “ dgVect is the category of cochain complexes, b is the usual tensor product and weak equivalences
are quasi-isomorphisms.

Let M be a C8 manifold of dimension n.

Definition 7.2.1. A prefactorization algebra on M valued in C is a rule A which associates

paq to any open set U ĂM an object ApUq P C, so that ApHq “ 1.

pbq to any system U1, ¨ ¨ ¨ , Up of disjoint open sets contained in an open set U0, a morphism µU0
U1,¨¨¨ ,Up

:

ApU1q b ¨ ¨ ¨ bApUpqÝÑApU0q, such that

pcq the morphisms µU0
U1,¨¨¨ ,Up

satisfy associativity.

A morphism of prefactorization algebra σ : A Ñ A1 is a datum of morphisms σU : ApUq Ñ A1pUq
compatible with the structures. It is a weak equivalence if each σU is a weak equivalence.

A prefactorization algebra is, in particular, a precosheaf via the maps µU0
U1

, i.e., it is a covariant functor
from the category of open subsets in M to C.

Definition 7.2.2. An open covering of M is called a Weiss covering if any finite subset of M is contained
in an open set of the covering.

Example 7.2.3.

paq Let D Ă Rn be the standard unit disk }x} ă 1. A disk in M is an open subset which is homeomorphic
to D. The open covering DpMq of M generated by the disks of M is a Weiss covering. By definition,
an open subset of DpMq consists of a finite disjoint union of disks.

pbq A prefactorization algebra is called locally constant, if for any inclusion of disks U0 Ă U1 the map

µU0
U1

is a weak equivalence.

Definition 7.2.4.

paq A prefactorization algebra A is called a (homotopy) factorization algebra if :
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pa1q For any Weiss covering U “ tUiuiPI of any open set U ĂM the natural morphism

holim
ÝÝÝÑ

N‚pU,Aq ÝÑ ApUq,

N‚pU,Aq :“

"

¨ ¨ ¨
// //////
š

i,j,kPI

ApUijkq //
////
š

i,jPI

ApUijq ////
š

iPI

ApUiq
*

,

with Uij “ Ui X Uj, etc., is a weak equivaelnce (co-descent).

pa2q µU0
U1,¨¨¨ ,Up

is a weak equivalence for any system U0, ¨ ¨ ¨ , Up of open sets with

U0 “ U1 \ ¨ ¨ ¨ \ Up (multiplicativity).
pbq The factorization homology of M with coefficients in a factorization algebra A is the object of global

cosections of A which we denote
ż

M
A “ ApMq P C.

Remark 7.2.5.

paq A multiplicative prefactorization algebra A is a factorization algebra if and only if for the particular
Weiss covering DpUq of any open subset U Ă M , the object ApUq is the homotopy colimit of the
diagram

ž

U1,U2PDpUq

ApU1 X U2q Ñ
ž

U1PDpUq

ApU1q.

In particular, we have
ż

M
A “ holim

ÝÝÝÑUPDpMq
ApUq.

See [9, §A.4.3] for details.
pbq Any locally constant prefactorization algebra has a unique extension as a locally constant factorization

algebra taking the same value on any disk, but possibly different values on other open sets, see [19,
rem. 24].

Sometimes it is convenient to use the dual language. By a (pre)factorization coalgebra B in C we will
mean a (pre)factorization algebra in Cop. Thus, we have maps

ν
U1,¨¨¨ ,Up

U0
: BpU0qÝÑBpU1q b ¨ ¨ ¨ b BpUpq

yieldding a presheaf on M . For a factorization coalgebra B we have the factorization cohomology which
we denote as

¿

M

B “ BpMq “ holim
ÐÝÝÝUPDpMq

BpUq.

Let us record the following two statements for later use.

Proposition 7.2.6. If F is a locally constant sheaf of k-dg-vector spaces, then SympFq : U ÞÑ SymkpFpUqq
is a locally constant factorization coalgebra.

Note that SympFq as we define it, is not the same as the symmetric algebra of F in the symmetric
monoidal category of sheaves of (dg-)vector spaces, in fact it is not a sheaf in the usual sense.

Proof. This is an analog of [9, thm. 5.2.1] which deals with sheaves corresponding to C8 sections of vector
bundles, and their symmetric products in the sense of bornological vector spaces. In our case the proof is
similar but easier due to the absense of analytic difficulties. That is, call a covering U an n-Weiss covering,
if each subset I Ă M of cardinality ď n is contained in one of the opens of U. Then it suffices to show
that SymnpFq : U ÞÑ Symn

kpFpUqq satisfies descent for n-Weiss coverings. This follows, as in the proof of
[9, thm. 5.2.1], from the fact that Fbn is a sheaf of Mn. �



THE COHA OF A SURFACE 41

Proposition 7.2.7. Let σ : B Ñ B1 be a morphism of factorization coalgebras. Suppose that for any
disk U Ă M the morphism σU : BpUq Ñ BpU 1q is a weak equivalence. Then σ is a weak equivalence of
factorization coalgebras, in particular, σ induces a weak equivalence σM :

ű

M B Ñ
ű

M B1.

Proof. For any open U we realize σU by descent from the Weiss cover DpUq. �

7.3. Analytic stacks. For the analytic version of the theory of algebraic stacks we follow [51] (where,
in fact, the case of higher and derived stacks is also considered).

An analytic stack is a stack of groupoids on the category of (possibly singular) Stein analytic spaces
over C, equipped with the Grothendieck topology consisting of open covers in the usual sense. Analytic
stacks form a 2-category Stan as well as a model category Stan where weak equivalences are equivalences
of stacks.

We will need only analytic stacks of special form, namely the quotient analytic stacks Z{{G, where G
is an analytic stack and G is a complex Lie group. For such stacks various concepts such as Borel-Moore
homology, etc., can be defined directly in terms of equivariant homology of the topological spaces of
C-points.

7.4. The stack Coh0 and factorization algebras. Let S be a smooth connected algebraic surface
over C. We view it as a C8 manifold of dimension 4 and consider open subsets U Ă S in the analytic
topology. For any such nonempty U we have the category Coh0pUq of 0-dimensional coherent sheaves
on U (with finite support). We set Coh0pHq “ t‚u. We also have the analytic moduli stack Coh0pUq “
Ů

ně0 Coh
pnq
0 pUq parametrizing objects of Coh0pUq, with its components given by the length, as in the

algebraic case. Each component is explicitly realized as a quotient analytic stack

Coh
pnq
0 pUq “ FCoh

pnq
0 pUq{{GLnpCq,

where FCoh
pnq
0 pUq is the analytic space parametrizing pairs pF , φq, where F is a 0-dimensional coherent

sheaf on U and φ : Cn Ñ H0pU,Fq is an isomorphism. To see that FCoh
pnq
0 pUq is well defined as an

analytic space, we note that the datum of φ is equivalent to the datum of the corresponding surjection

φ : O‘nU Ñ F . Thus FCoh
pnq
0 pUq is a locally closed analytic subspace in QuotpnqpO‘nU q, the analytic analog

of the Grothendieck Quot scheme parametrizing all length n quotients of O‘nU .

If U1, . . . , Un are disjoint open sets contained in the open subset U0 Ă S, then we have an open
embedding of analytic stacks

αU0
U1,¨¨¨ ,Un

: Coh0pU1q ˆ ¨ ¨ ¨ ˆ Coh0pUnqÝÑCoh0pUq. (7.4.1)

Proposition 7.4.2. Coh0 is a factorization algebra on S with values in the category Stan.

Proof. Let U “ tUiuiPI be a Weiss open cover of U . Let us understand more explicitly the analytic
stack holim

ÝÝÝÑ
N‚pU,Coh0q, a homotopy limit in the model category Stan, or, equivalently, the 2-categorical

colimit of N‚pU,Coh0q in the 2-category Stan. It is parametrized by pairs pi P I,F P Coh0pUiqq, the
leftmost term in the diagram N‚pU,Coh0q, subject to coherent systems of identifications given by the rest
of the diagram. These identifications say that two pairs pi P I,F P Coh0pUiqq and pj P J,F P Coh0pUjqq
are identified, whenever in the second pair F is the same sheaf but living on Uj . This happens whenever F
lives in fact on Uij “ UiXUj . Further terms in the diagram N‚pU,Coh0q impose coherence conditions on
such identifications. This means that this homotopy colimit parametrizes 0-dimensional coherent sheaves
which live on some Ui. But U is a Weiss cover and every F P Coh0pUq, has finite support which, therefore,
must lie in some Ui. Thus, our homotopy colimit is identified with Coh0pUq. �
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7.5. Chain-level COHA as a factorization coalgebra. For each open set U Ă S as above we consider
the complex of Borel-Moore chains of Coh0pUq

RpUq “ CBM
‚ pCoh0pUqq :“ RΓpCoh0pUq, ωCoh0pUqq.

Proposition 7.5.1. The assignment R : U ÞÑ RpUq is a locally constant factorization coalgebra on S in
the category dgVect.

Proof. The fact that R it is a factorization algebra follows from Proposition 7.4.2. The fact that R is
locally constant is proved in the same was as Proposition 6.2.1(b). �

Next, we upgrade this statement to take into account the Hall multiplication. The relevant concept
here is that of a homotopy associative (E1-)algebra which we now recall. We will use the language of
operads, see, e.g., [9] for a brief background and additional references. An operad P is a symmetric
monoidal category pC,b,1q consisting of:

pO1q objects Pprq P C with actions of Sr, given for r ě 0.
pO2q The unit morphism 1 Ñ Pp1q.
pO3q The operadic compositions for any k, r1, ¨ ¨ ¨ , rk

Ppkq b Ppr1q b ¨ ¨ ¨ b PprkqÝÑPpr1 ` ¨ ¨ ¨ ` rkq.

These data satisfy the axioms of equivariance, associativity and unit.

We will use the case when C “ ∆˝Set and C “ Top. We will refer to these cases as simplicial operads
and topological operads. Any topological operad P gives a simplicial operad SingpPq by passing to the
singular simplicial sets of the Pprq’s.

A weak equivalence of simplicial operads is a morphism P Ñ Q of such operads such that for each r the
morphism of simplicial sets Pprq Ñ Qprq is a weak equivalence, i.e., it induces a homotopy equivalence
on the realizations.

Recall (A.1.1) that the category dgVect is enriched in the category ∆˝Set of simplicial sets. Thus, for
any simplicial operad P we can speak about P-algebras in dgVect. Such an algebra is a cochain complex
A together with morphisms of simplicial sets

PprqÝÑMappAbr, Aq

compatible with the Sr-actions and operadic compositions. It sends the image of 1 “ pt to the identity
map. Dually, a P-coalgebra in dgVect is a complex B with morphisms of simplicial sets

PprqÝÑMappB,Bbrq

satisfying similar compatibilities. If P is a topological operad, its (co)algebras in dgVect are understood
as (co)algebras over the simplicial operad SingpPq.

Let m ě 1. Let Dm the topological operad of little m-disks. The space Dmprq parametrizes families
pB1, ¨ ¨ ¨ , Brq of round m-dimensional open balls disjointly embedded into the standard unit ball B “

t|x| ă 1u of Rm, see, e.g., [9] for more details including the definition of the operadic compositions.

Definition 7.5.2. An Em-(co)algebra in dgVect is a (co)algebra over a simplicial operad weakly equivalent
to Dm.

Example 7.5.3. Consider the case m “ 1. An embedding of a unit disk is determined by the midpoints
and radii of the image disks. For each choice of distinct points as midpoints of images, the choice of
acceptable radii is contractible. Thus the space D1prq is homotopy equivalent to a configuration space
of points in the interval. These spaces break apart into r! connected components depending on the
ordering of the points and each connected component is contractible. Hence E1 is homotopy equivalent
to the associative operad. More precisely, an E1-algebra structure on a cochain complex A is given by
a morphism of complexes µr : Abr Ñ A, for each r, defined up to a contractible space of choices in the
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sense of Definition A.3.1, so that any superposition µkpµr1 , ¨ ¨ ¨ , µrkq of the µr’s lies in the space of choices
for µr1`¨¨¨`rk . A E1-algebra in this sense is essentially the same as an A8-algebra, or an associative
dg-algebra, by the results of Hinich [27, Th. 4.7.4], on invariance of the homotopy categories of algebras
under quasi-isomorphisms of dg-operads.

We can now formulate our upgrade of the chain level COHA.

Proposition 7.5.4. R is a locally constant factorization coalgebra on S in the category of E1-algebras.

Proof. For r ě 1, we define

µr,U “ µr : RpUqbr “ CBM
‚ pCoh0pUqq

brÝÑCBM
‚ pCoh0pUqq “ RpUq (7.5.5)

using the stack FILTprq parametrizing flags of objects of Coh0pUq

E01 Ă E02 Ă ¨ ¨ ¨ Ă E0r.

This stack comes with the projections

FILTprq
ρ //

q

��

Coh0pUq

Coh0pUq
r

ρpE01 Ă E02 Ă ¨ ¨ ¨ Ă E0rq “ E0r,

qpE01 Ă E02 Ă ¨ ¨ ¨ Ă E0rq “ pE01, E02{E01, ¨ ¨ ¨ , E0r{E0,r´1qq.

Let E01 Ă ¨ ¨ ¨ Ă E0r be the tautological flag of sheaves on FILTprq ˆ S and put Eij “ E0j{E0i, i ă j. Let

p : FILTprq ˆ S Ñ FILTprq be the projection.

Similarly to §2.5, we form the sheaf of associative dg-algebras (and, passing to the super-commutator,
of dg-Lie algebras)

G “
à

0ďiăjďr´1

Rp˚HompEj,j`1, Ei,i`1q

and find that FILTprq “ MCpGq. Therefore we have the diagram

Coh0pUq
r π
ÐÝ TotpGď1q

i
ÐÝ FILTprq

ρ
ÐÝ Coh0pUq, (7.5.6)

in which the map i realizes FILTprq as the zero locus of the section of π˚Gp2q given by the curvature map.
This gives a virtual pullback i! on Borel-Moore homology. We get, so far at the level of BM-homology,
the map

mr “ ρ˚ ˝ i
! ˝ π˚ : RpUqbrÝÑRpUq, RpUq “ HBM

‚ pCoh0pUqq.

As in §4.5, we see that mr is the r-fold product in the (associative) COHA RpUq.

To lift mr to the chain level we examine the choices that are made in its definition. The only nontrivial
choice is in the definition of the virtual pullback i!. That definition, see Example 3.1.4 depends on the
construction, for a vector bundle E of rank m on a scheme T and a section s P H0pT, Eq, of the class
cmpE , sq P H2m

Ts
pT,kq. We now note that at the cochain level, cmpE , sq is defined canonically up to

a contractible space of choices (Proposition A.3.5). This means that we have a morphism of cochain
complexes µr as in (7.5.5), defined canonically up to a contractible space of choices and lifting mr.

Any superposition µkpµr1 , ¨ ¨ ¨ , µrkq will, by the same argument as in §4.5, belong to the (contractible)
space of determinations of µr1`¨¨¨`rk . This means that RpUq is an E1-algebra.

As U runs over the open subsets of S in the complex topology, the maps µr,U are compatible with the
cosheaf structure on Coh0. This finishes the proof. �
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By [19], [41], locally constant factorization (co)algebras on Rm with values in a symmetric model
category C can be identified with Em-(co)-algebras in C, the identification associating to a (co)algebra B
the object BpBq where B Ă Rm is the standard unit m-ball. Note that BpBq is weak equivalent to BpRdq.

Let us specialize this to the case when B “ R and m “ 4, since C2 » R4. In this case we form the
cochain complex RpBq » RpC2q whose cohomology is the flat Hecke algebra RpBq » RpC2q studied in
§6. The general results above, applied to the category C of E1-algebras, imply:

Corollary 7.5.7. RpC2q is E1-algebra in the category of E4-coalgebras. �

Remarks 7.5.8.

paq The E4-coalgebra structure on RpC2q is a cochain level refinement of the comultiplication ∆ on
RpC2q, see §6.2. While ∆ is cocommutative, because it is independent on the choice of two distinct
disks U1, U2 Ă C2, at the cochain level we do not seem to have cocommutativity since the space of
choices of such pairs of disks is not contractible (it is precisely the space of binary operations in the
operad D4).

pbq By forming the Koszul dual to the E1-algebra structure on RpC2q, we obtain an E1-coalgebra in
the category of E4-coalgebras, i.e., an E5-coalgebra. Alternatively, forming the Koszul dual to the
E4-algebra structure, we obtain an E5-algebra. This suggest that some 5-dimensional field theory
may be relevant to this picture.

7.6. Proof of Theorem 7.1.3. Note that all the construction leading to, as well as the statement of,
the theorem make sense for an arbitrary complex analytic surface. So, for any open subset U Ă S in the
complex topology we have the Z2-graded space ΘpUq and the symmetrized product map SympΘpUqq Ñ
RpUq. If U is a disk, this map is an isomorphism by Theorem 6.1.4. We will deduce the global statement
(for U “ S) from these local ones.

For this, we upgrade the correspondence U ÞÑ ΘpUq to a complex of sheaves V on S so that ΘpUq “
H´‚pU,Vq is the hypercohomology of U with coefficients in V. That is, write

V “ ωS bk Θ1.

The sheaf V and the factorization coalgebra R are both presheaves with values in the category of cochain
complexes. We define a morphism of presheaves rα : VÝÑR by

rα : RΓpU, ωSq b t
nqi´1ÝÑRpn˚

`

p˚nωS X c1pOnq
i
˘

ÝÑRΓpCoh
pnq
1 ptpUq, ωCoh

pnq
1 ptpUq

qÝÑ

ÝÑRΓpCoh
pnq
0 pUq, ω

Coh
pnq
0 pUq

q “ RpUqpnq.

Since V is a sheaf with values in the category of cochain complexes, its symmetric algebra SympVq is
a factorization coalgebra with values in this category, by Proposition 7.2.6. Since R is a factorization
algebra in the category of E1-algebras, we can define the symmetrized product rσ : SympVq Ñ R by setting
rσ “

ř

ně0 rσn, where

rσn : SymnpVqÝÑR, rσnpv1 ‚ ¨ ¨ ¨ ‚ vnq “
1

n!

ÿ

sPSn

µnprαpvsp1qq b ¨ ¨ ¨ b rαpvspnqqq, (7.6.1)

lifting the map σ from (7.1.2). The map rσ is a morphism of factorization coalgebras in the category of
cochain complexes. By the above, rσU is a weak equivalence for any U which is, topologically, a disk.
Therefore rσ is a weak equivalence of factorization coalgebras by Proposition 7.2.7. Taking U “ S we
obtain Theorem 7.1.3.
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Appendix A. Basics on 8-categories, orientations and Chern classes

A.1. 8-categories. Let k be a field of characteristic 0. By dgVect “ dgVectk we denote the category
of cochain complexes over k. By ∆˝Set we denote the category of simplicial sets. For a simplicial set Y
we denote by |Y | the geometric realization of Y . We say that Y is contractible, if |Y | is a contractible
topological space. For a topological space T we denote by SingpT q the singular simplicilal set of T .

An 8-category C is a simplicial set pCnqně0 satisfying the partial Kan condition, with elements of C0

called objects and elements of C1 called morphisms. Every 8-category C contains the maximal Kan
simplicial subset CKan with CKan

0 “ C0, having the meaning of the subgroupoid of (weakly) invertible
morphisms. We refer to [42] for more details.

A simplicial category is a category C enriched in ∆˝Set, so that for any two objects x, y P C we are
given a simplicial set MapCpx, yq with standard properties. A simplicial category C gives an 8-category
NpCq with ObpCq as a set of objects, as explained in [42].

A dg-category is a category C enriched in dgVect, so that for any two objects x, y P C we are given a
cochain complex Hom‚

Cpx, yq with standard properties. Any dg-category C can be made into a simplicial
category by

Mappx, yq “ DK
`

τď0 Hom‚
Cpx, yq

˘

(A.1.1)

where DK is the Dold-Kan simplicial set associated to a Zď0-graded complex, see [60, §8.4.1] and a
discussion in Example 1.1.4. So it gives rise to an 8-category denoted NdgpCq, see [41].

A.2. Enhanced derived categories. Let A be a k-linear abelian category. We denote by CpAq the
category of complexes over A bounded below, with morphisms being morphisms of complexes. By CpAqdg

we denote the dg-category with the same objects as CpAq. For any two objects of CpAqdg, the complex
HomCpAqdgpF ,Gq is the graded k-vector space HomApF ,Gq with the differential given by the commutation

with dF and dG . By DpAq “ CpAqrQis´1s we denote the bounded below derived category of A, i.e., the
localization of CpAq by the class Qis of quasi-isomorphisms. There are three closely related enhancements
of DpAq with the same objects:

(a) If A has canonical injective resolutions A ÞÑ IpAq, then we have DpAqdg “the dg-category with
morphisms given as follows, see [7],

HomDpAqpF ,Gq “ H0pRHom‚pF ,Gqq, RHom‚pF ,Gq “ Hom‚
CpAqdgpIpFq, IpGqq.

(b) DpAq∆ “the simplicial category with morphisms given by HomDpAqpF ,Gq “ π0Map‚pF ,Gq with
appropriate simplicial sets Map‚pF ,Gq. There are two homotopy equivalent ways of constructing
these:
(b1) Given the data in (a), we can define, as in (A.1.1),

Map‚pF ,Gq “ DK
`

τď0 RHom‚pF ,Gq
˘

.

(b2) The Dwyer-Kan simplicial localization procedure [12],[13] produces simplicial sets Map‚pF ,Gq,
starting from the category CpAq and the class of morphisms Qis. Using these Map‚pF ,Gq,
we can get an intrinsic definition of the RHom‚pF ,Gq in (a) by taking the normalized chain
complexes and stabilizing with respect to the shift.

(c) DpAq8 “the 8-category obtained from DpAq∆ in the standard way. As in (b2), it can be defined
intrinsically, as the 8-categorical localization of CpAq by Qis, see [41]

A.3. Homotopy canonical Chern classes and orientations. The concept of coherent homotopy
uniqueness of objects, morphisms, cohomology classes, etc., is implicit in the formalism of 8-categories,
as well as in homotopical algebra in general. In this appendix we spell out some instances of this concept
which we use in the main text.

Definition A.3.1.
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paq Let C be a 8-category. An object of C defined up to a contractible set of choices is a datum of a
contractible simplicial set K and a morphism of simplicial sets K Ñ CKan. Suppose x, y are objects
of C. A morphism x Ñ y defined up to a contractible set of choices is an object of the 8-category
HomCpx, yq defined up to a contractible set of choices.

pbq Let C be a simplicial or dg-category. An object of C defined up to a contractible set of choices is
defined by applying paq to the 8-category NpCq or NdgpCq.

Examples A.3.2.

paq The representing (resp. co-representing) object of a contravariant (resp. covariant) 8-functor C Ñ
∆˝Set is, when it exists, defined uniquely up to a contractible set of choices, see [42].

pbq The value of the adjoint (left or right) of an 8-functor f : C Ñ D on an object of D, being a
(co)representing object, is defined uniquely up to a contractible set of choices.

pcq The direct images of complexes of sheaves, the cochain complexes RΓpB,Fq of derived global sections,
etc., are defined uniquely up to a contractible set of choices.

Let us note a particular case.

Definition A.3.3. Let V ‚ be a cochain complex. An r-cocycle of V ‚ defined up to a contractible set of
homotopies is an object of C “ DKpτďrV

‚r´rsq defined up to a contractible set of choices.

Such a datum consists of a contractible K P ∆˝Set plus a set of cocycles ci P V
r, one for each vertex

i P K0, plus cochains ce, one for each edge e P K1 so that dpceq “ cB0peq ´ cB1peq, and so on.

Examples A.3.4 (Chern classes).

paq Let Y be a complex manifold and E be a holomorphic vector bundle on M . The pth Chern class
cppEq P H

2ppY,Cq comes from a cocycle in the C8 de Rham complex Ω‚pMq defined canonically up
to a contractible set of choices. That is, for any m ě 0 and any Hermitian metrics h0, ¨ ¨ ¨ , hm in E,
the Bott-Chern theory of secondary characteristic forms [produces a form crph0, ¨ ¨ ¨ , hmq P Ω2p´mpXq
such that crph0q represents crpEq and

dcrph0, ¨ ¨ ¨ , hmq “
ÿ

p´1qicrph0, ¨ ¨ ¨ , phi, ¨ ¨ ¨ , hmq.

The simplicial set K is here the simplex with vertices corresponding to all the hi’s.
pbq More generally, let Y be any CW-complex and E be a topological complex vector bundle on Y of rank

p. Let BUppq be the topological classifying space of the group Uppq (the infinite Grassmannian),
with its universal rank p vector bundle Eun. Let LE be the space formed by pairs pφ, uq, where
φ : Y Ñ BUppq is a continuous map and u : φ˚Eun Ñ E is an isomorphism of topological vector
bundles. Then LE is contractible, and so KE “ SingpLEq is a contractible simplicial set. Thus,
fixing some cocycle representative of the the Chern class cppE

unq P H2rpBUppq,kq, we get a cocycle
representing cppEq defined uniquely up to a contractible set of choices. These cocycles are compatible
with pullbacks, modulo the choices.

We want to give an algebraic analog of Example A.3.4(b). For each f -Artin stack B, every vector
bundle E over B of rank r and every section s P H0pEq with zero locus is : Bs Ă B, we have a canonically
defined class crpE , sq P H2r

Bs
pB,kq. It can be seen as coming from a morphism crpE , sq : kBs

Ñ i!skBr2rs
in the triangulated category DconstrpBsq.

Proposition A.3.5. The classes crpE , sq can be lifted to cocycles, defined, for each B, E , s, canonically
up to a contractible set of choices and compatible with pullbacks, modulo the choices.

To prove this, we recall that crpE , Sq is obtained by pullback from the orientation class ηE P H
2r
B pTotpEq,kq,

in fact from the canonical isomorphism ηE : i!BkTotpEq Ñ kBr2rs in the classical derived category, i.e., in
the homotopy category of the dg-enhancement. So we reduce to the following.
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Proposition A.3.6. The isomorphisms ηE can be lifted to morphisms of complexes defined, for each B,
E, canonically up to a contractible set of choices and compatible with pullbacks, modulo the choices.

Proof. Similarly to Example A.3.4, we first consider the stack BGLr “ pt{{GLr with its tautological rank
r bundle Eun. Fix a chain level representative rηEun for the quasi-isomoprhism ηEun .

Let now B be any Artin stack and E be any rank r vector bundle on B. Let us work in the 8-category
DS of derived stacks of [59], so B can be seen as an object of DS. In this category we have the derived
stack BunrpBq of rank r vector bundles on B which is represented as the mapping stack

BunrpBq
„
ÐÝ MappB,BGLrq, (A.3.7)

see [59]. In other words, (A.3.7) is the pullback morphism which, at the level of points, sends φ : B Ñ

BGLr to φ˚Eun.

This means that our bundle E “ φ˚Eun under a morphism φ which is defined uniquely up to a con-
tractible set of choices. More precisely, the corresponding simplicial set KE is obtained by taking the
homotopy fiber of (A.3.7) over E and then taking the simplicial set of C-points. This simplicial set is
contractible since (A.3.7) is a weak equivalence of derived stacks. So the pullback of rηEun is also defined
juniquely up to a contractible set of choices as desired. The compatibility with the pullback follows by
the very construction. �
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