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Abstract

Motivated by applications to perverse sheaves, we study combinatorics of two cell
decompositions of the symmetric product of the complex line, refining the complex
stratification by multiplicities. Contingency matrices, appearing in classical statistics,
parametrize the cells of one such decomposition, which has the property of being quasi-
regular. The other, more economical, decomposition, goes back to the work of Fox-
Neuwirth and Fuchs on the cohomology of braid groups. We give a criterion for a sheaf
constructible with respect to the “contingency decomposition” to be constructble with
respect to the complex stratification. We also introduce a polyhedral ball called the
stochastihedron whose cells are labelled by contingency matrices.

The Appendix by P. Etingof studies enumerative aspects of contingency matrices.
In particular, it is proved that the “meta-matrix” formed by the numbers of contingency
matrices of various sizes, is totally positive.
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Introduction
The nth symmetric product Symn

pCq can be seen as the space of monic polynomials

fpxq “ xn ` a1x
n´1

` ¨ ¨ ¨ ` an, ai P C.

It has a natural stratification SC by the multiplicities of the roots of f . The topology of the
stratified spaces pSymn

pCq,SCq is of great importance in many areas, ranging from algebraic
functions, braid groups, and Galois theory [6, 7, 5]), to representation theory and Kac-Moody
algebras [1]. In particular, we showed in [13] that factorizing systems of perverse sheaves on
the pSymn

pCq,SCq correspond to braided Hopf algebras of a certain kind. However, despite
apparent simplicity of the stratification SC, direct study of perverse sheaves on it is not easy
and one has to “break the symmetry” by using various finer stratifications.

In this note we study the combinatorics of two such refinements, which are both cell
decompositions. The finest one, Scont, which we call the contingency cell decomposition,
has cells parametrized by contingency tables figuring in the title. It is obtained by taking
into account possible coincidences of both the real and imaginary parts of the roots. The
notion of a contingency table has been introduced by the great statistician Karl Pearson
in 1904, see [17]. The advantage of Scont is that it is a quasi-regular cell decomposition (a
higher-dimensional cell can approach a lower dimensional one “from one side only”), so a
constructible sheaf on it is essentially the same as a representation of the poset of cells.

The other cell decomposition SFNF, intermediate between SC and Scont, consists of what
we call Fox-Neuwirth-Fuchs (FNF) cells which generalize the cells decomposing the open
stratum in SC (the configuration space, i.e., the classifying space of the braid group) used by
Fox-Neuwirth [6] and Fuchs [7]. It is more economical than Scont but it is not quasi-regular.
It is defined in a non-symmetric way, by looking at coincidences of the imaginary parts first
and then looking at the positions of the real parts. So proceeding in the other order, we get
a different cell decompostion iSFNF. We prove that

(0.1) SFNF
^ iSFNF

“ Scont, SFNF
_ iSFNF

“ SC.

The first of these equalities means that Scont is the coarsest common refinement of SFNF and
iSFNF that has connected strata. The second one means that uniting cells of Scont which lie
in the same cells of SFNF and iSFNF gives the strata of SC. In other words, it means that a
sheaf (or complex) constructible with respect to Scont is constructible w.r.t. SC if and only
if it is constructible w.r.t. both SFNF and iSFNF. This criterion will be important for our
study (in progress) of perverse sheaves on pSymn

pCq,SCq.

Contingency tables (or contingency matrices, as we call them in the main body of the
paper) give rise to a lot of interesting combinatorics [3, 18]. We introduce a cellular ball
called the stochastihedron Stn whose cells are labelled by contingency matrices with entries
summing up to n. It has an interesting structure of a “Hodge cell complex”, so that m-cells
are subdivided into cells of type pr, sq, r` s “ m and the face inclusions are subdivided into
horizintal and vertical ones, much like the de Rham differential d on a Kähler manifold is
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decomposed into the sum of the Dolbeault differentials B and B. In a paper in preparation
we use this structure for the study of perverse sheaves, which give “mixed sheaves” on such
complexes, that is, sheaves in the horizontal direction and cosheaves in the vertical one.

An interesting combinatorial object is the contingency metamatrix Mpnq. It is the nˆ n
matrix with

Mpnqpq “ #
 

Contingency matrices of size pˆ q and sum of elements equal to n
(

,

so it describes the statistics of the ensemble of contingency matrices themselves. This matrix
has a number of remarkable properties established by P. Etingof in the Appendix to this
paper. Probably the most striking among them is total positivity: all minors of Mpnq of all
sizes are positive.

We are happy to dedicate this paper to Dmitry Borisovich Fuchs. Among several won-
derful things he has done in mathematics, he is one of the pioneers in the study of cellular
decompositions for symmetric products.

We are grateful to Pavel Etingof for valuable discussions and for agreeing to include his
work as an appendix to our paper. V.S. is grateful to the organizers of a conference in Zürich
in August 2019 where he had a chance to meet P.E. The research of M.K. was supported by
World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

1 Contingency matrices and their contractions
A. Ordered partitions. Let Set be the category of sets. For a set I, we denote by
SubpIq the set of subsets of I. For m,n P Zě0, m ď n, we write rm,ns “ tm,m` 1, ¨ ¨ ¨ , nu
and rns “ r1, ns. We denote 2n :“ Subprnsq.

An ordered partition of n is a sequence of positive integers summing up to n,

α “ pα1, . . . , αpq P Zp
ą0,

ÿ

αi “ n.

The number p is called the length of the ordered partition α and denoted `pαq.

The set of all ordered partitions of n will be denoted by OPn and the subset of ordered
partitions of length p by OPnppq. We note that OPn is in bijection with 2n´1: given α, we
write

n “ p1` . . .` 1q ` . . .` p1` . . .` 1q

the first paretheses contain α1 ones, etc. The plus signs between parentheses form a subset

I “ Ipαq Ă rn´ 1s “ the set of all pluses.

Thus
|OPnppq| “

ˆ

n´ 1

p´ 1

˙

.
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B. Semisimplicial sets. Recall, for future reference, that an augmented semisimplicial
set is a diagram

Y‚ “

"

Y´1 Y0
B0oo Y1

B0oo

B1

oo Y2

B0oo
B1oo

B2

oo ¨ ¨ ¨
oooooooo

*

consisting of sets Yr, r ě ´1 and maps Bi : Yr Ñ Yr´1, i “ 0, ¨ ¨ ¨ , r, satisfying the relations

(1.1) BiBj “ Bj´1Bi, i ă j,

A semisimplicial set is a similar diagram but consisting only of Yr, r ě 0 (i.e., Y´1 not
present). Elements of Yr are referred to as r-simplices of Y . We make the following notations:

• ∆`
inj: the category of finite, possibly empty ordinals (i.e., well ordered sets) and mono-

tone injective maps.

• ∆inj: the full subcategory formed by nonempty ordinals.

A semisimpliciial set (resp. augmented semisimplicial set) is the same as a contravariant
functor Y : ∆inj Ñ Set (resp. Y : ∆`

inj Ñ Set). The set Yr is found as the value of Y on the
ordinal r0, rs (understood as H for r “ ´1). See, e.g., [4], §1.2 for discussion and further
references.

Returning to ordered partitiona, we have the contraction maps

Bi : OPnppq ÝÑ OPnpp´ 1q, i “ 0, ¨ ¨ ¨ , p´ 2,

Bipα1, ¨ ¨ ¨ , αpq “ pα1, ¨ ¨ ¨ , αi`1 ` αi`2, ¨ ¨ ¨ , αpq.

These maps satisfy the simplicial identities (1.1) and so give an augmented semisimplicial
set

OPnp‚ ` 2q “

"

OPnp1q OPnp2q
B0oo OPnp3q

B0oo

B1

oo OPnp4q

B0oo
B1oo

B2

oo ¨ ¨ ¨
oooooooo

*

,

whose set of r-simplices is OPnpr ` 2q. This is nothing but the set of all geometric faces of
the pn´ 2q-dimensional simplex, including the empty face.

A more standard concept is that of a simplicial set, see, e.g., [8, 10], where we have both
face maps Bi : Yr Ñ Yr´1 and degeneracy maps si;Yr Ñ Yr`1. In this paper we assume
familiarity with this concept. It is easy to realize OPnp‚ ` 2q as the set of nondegenerate
simplices of an appropriate augmented simplicial set (by allowing pα1, ¨ ¨ ¨ , αpq with some of
the intermediate αi being 0). The same holds for more complicated examples below, and we
wil not mention it explicitly.
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C. Contingency matrices and their bi-semisimplicial structure. We now intro-
duce the “two-dimensional analog” of the trivial considerations above.

Let us call a contingency matrix a rectangular matrix M “ }mij}
j“1,¨¨¨ ,q
i“1,¨¨¨ ,p of non-negative

integers such that each row and each column contain at least one non-zero entry. The weight
of M is defined as

ΣM “
ÿ

i,j

mij P Zą0.

The horizontal and vertical margins ofM are ordered partitions σhorpMq, σverpMq of n “ ΣM
defined by

σhorpMqi “
ÿ

j

mij, σverpMqj “
ÿ

i

mij.

We make the following notations:

• CMn: the set of all contingency matrices of weight n.

• CMpp, qq: the set of all contingency matrices of size pˆ q.

• CMnpp, qq :“ CMn X CMpp, qq.

• CMpα, βq: the set of all contingency matrices with horizontal margin α and vertical
margin β. Here α, β P OPn for some n.

• Sn: the symmetric group of order n.

Remark 1.2.The original setting for contingency tables given by Pearson [17] was (in mod-
ern terminology) this. We have two random variables x, y taking values in abstract sets I, J
of cardinalities p, q respectively. Pearson emphasizes that in many cases fixing an embedding
of I or J into R or even choosing an order on them, is unnatural. The contingency matrix
M “ }mij}

jPJ
iPI is the (un-normalized) approximation to the joint probability distribution of x

and y, taken from a sample of n trials. Thus, independence of x and y means thatM is close
to the product matrix: mij « xiyj. In general, various invariants of M measure deviation
from independence (“contingency”).

Example 1.3.The set CMnpn, nq consists of n! permutation matrices

Mσ, σ P Sn, pMσqij “

#

1, if j “ σpiq,

0, otherwise.

By a bi-semisimplicial set (resp, an augmented bi-semisimplicial set we will mean a con-
travariant functor Y : ∆inj ˆ∆inj Ñ Set (resp. Y : ∆`

inj ˆ∆`
inj Ñ Set). the datum of such

a functor is equivalent to the datum of the sets Yr,s for r, s ě 0 (resp. r, s ě ´1) and two
kinds of face maps: the horizontal ones

B
1
i : Yr,a ÝÑ Yr´1,s, i “ 0, ¨ ¨ ¨ , r,
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and the vertical ones
B
2
j : Yr,s ÝÑ Yr,s´1, j “ 0, ¨ ¨ ¨ , s,

so that each group (the B1i as well as the B2j ) satisfies the relations (1.1) and the horizontal
maps commute with the vertical ones. Elements of Yr,a are called the pr, sq-bisimplices of Y .

In our particular case of contingency matrices, we have the horizontal and vertical con-
tractions

B
1
i : CMnpp, qq ÝÑ CMnpp´ 1, qq, i “ 0, ¨ ¨ ¨ , p´ 2,

B
2
j : CMnpp, qq ÝÑ CMnpp, q ´ 1q, j “ 0, ¨ ¨ ¨ .q ´ 2,

which add up the pi ` 1qst and the pi ` 2qnd column (resp. pj ` 1qst and pj ` 2qnd row).
The following is clear.

Proposition 1.4. the maps B1i, B2j define an augmented bi-semisimplicial set CM‚p‚`2, ‚`2q
whose pr, sq-bisimplices are elements of CMnpr ` 2, s` 2q.

D. Contingency matrices as a (bi-)poset. We make CMn into a poset by putting
M ď N , if N can be obtained from M by a series of contractions (of both kinds). Thus, the
1ˆ1 matrix pnq is the maximal element of CMn, while the minimal elements are precisely the
monomial matricesMσ, σ P Sn. It is convenient to arrange the poset CMn into a “contingency
square” to indicate the order and the contractions. This square is itself an n ˆ n “matrix”
Mn where, in the position pp, qq, we put all the elements of the set CMnpp, qq.

In fact, the partial order ď can be split into two partial orders: the horizontal one ď1
and and the vertical one ď2. That is, M ď1 N , if N can be obtained from M by a series of
horizontal contractions B1i andM ď2 N , if N can be obtained fromM by a series of horizontal
contractions B2j . So pCMn,ď

1,ď2q becomes a bi-poset (a set with two partial orders), and ď
is the order generated by pď1,ď2q.

It is convenient to arrange the bi-poset CMn into a “contingency meta-square” to indicate
the orders and the contractions. This square is itself an nˆ n “matrix” Mpnq where, in the
position pp, qq, we put all the elements of the set CMnpp, qq.

Example 1.5.The 2ˆ 2 contingency meta-squareMp2q has the form
ˆ

1
1

˙

ÐÝ

ˆ

1 0
0 1

˙ˆ

0 1
1 0

˙

Ó Ó

p2q ÐÝ
`

1 1
˘

The arrows denote the contraction operations.
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Example 1.6.The 3ˆ 3 contingency meta-squareMp3q has the form

¨

˝

1
1
1

˛

‚

��

¨

˝

0 1
1 0
1 0

˛

‚

¨

˝

1 0
0 1
0 1

˛

‚

¨

˝

1 0
0 1
1 0

˛

‚

¨

˝

0 1
1 0
0 1

˛

‚

¨

˝

1 0
1 0
0 1

˛

‚

¨

˝

0 1
0 1
1 0

˛

‚

oo

��

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

¨

˝

1 0 0
0 0 1
1 0 0

˛

‚

¨

˝

0 0 1
0 1 0
1 0 0

˛

‚,

¨

˝

0 0 1
1 0 0
0 1 0

˛

‚

oo

��

ˆ

2
1

˙

ˆ

1
2

˙

��

ˆ

1 1
0 1

˙ ˆ

1 1
1 0

˙

ˆ

0 1
1 1

˙ ˆ

1 0
1 1

˙

ˆ

2 0
0 1

˙ ˆ

0 2
1 0

˙

ˆ

0 1
2 0

˙ ˆ

1 0
0 2

˙

oo

��

ˆ

0 1 1
1 0 0

˙ ˆ

1 0 1
0 1 0

˙

ˆ

1 1 0
0 0 1

˙ ˆ

1 0 0
0 1 1

˙

ˆ

0 1 0
1 0 1

˙ ˆ

0 0 1
1 1 0

˙

oo

��
p3q

`

2 1
˘ `

1 2
˘

oo
`

1 1 1
˘

oo

E. Relation to the symmetric groups. Higher-dimensional analogs. Let α “
pα1, ¨ ¨ ¨ , αpq P OPn. We have then the parabolic subgroup in the symmetric group

Sα “ Sα1 ˆ ¨ ¨ ¨ ˆ Sαp Ă Sn.

Proposition 1.7. For any α, β P OPn we have a bijection

CMnpα, βq » SαzSn{Sβ.

This is shown in [3], Lemma 3.3. For convenience of the reader we give a proof in the
form that will be used later.

First of all, recall that for any group G and subgroups H,K Ă G we have an identification

(1.8) G
H`

pG{Hq ˆ pG{Kq
˘

ÝÑ KzG{H, Gpg1H, g2Kq ÞÑ Kg´12 g1H.

So we will construct a bijection

(1.9) Sn
H`

pSn{Sαq ˆ pSn{Sβq
˘

ÝÑ CMnpα, βq.
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Definition 1.10. (a) A colored ordered partition of rns is a vector A “ pA1, ¨ ¨ ¨ , Apq formed
by nonempty subsets Ai Ă rns which make a disjoint decomposition of rns. The number p is
called the length of A and denoted `pAq.

(b) A colored contingency matrix of weight n is a matrix K “ }Kij} formed by subsets
Kij Ă rns which make a disjoint decomposition of rns and are such that each row and each
column contains at least one nonempty subset.

A colored ordered patition A (resp. colored contingency matrix K) gives a usual ordered
partition α (resp. a usual contingency matrix M) with αi “ |Ai| (resp. mij “ |Kij|).
We denote ĄCMnpα, βq the set of colored contingency matrices K fo weight n for which the
corresponding M lies in CMnpα, βq. The identification (1.9) would follow from the next
claim.

Proposition 1.11. (a) We have an identification

pSn{Sαq ˆ pSn{Sβq » ĄCMnpα, βq.

(b) We further have an identification

CMnpα, βq » SnzĄCMnpα, βq.

Proof: (a) Note that Sn{Sα can be seen as the set of colored ordered partitions pA1, ¨ ¨ ¨ , Apq
of rns such that |Ai| “ αi. Similarly, if β “ pβ1, ¨ ¨ ¨ , βqq, then Sn{Sβ can be seen as the set of
colored ordered partitiona pB1, ¨ ¨ ¨ , Bqq such that |Bj| “ βj. Now, the bijection as claimed
in (a), is obtained by sending

`

pA1, ¨ ¨ ¨ , Apq, pB1, ¨ ¨ ¨ , Bqq
˘

ÞÑ K, Kij “ Ai XBj.

(b) This is obvious: to lift a given contingency matrix M “ }mij} to a colored one K, we
need tyo replace each entry mij by a set of mij elements of rns, in a disjoint way. The group
Sn acts on the set of such lifts simply transitively.

Remark 1.12.One can continue the pattern
`

ordered partitions, contingency matrices, ¨ ¨ ¨
˘

by considering, for any d ě 1, d-valent contingency tensors M “ }mi1,¨¨¨ ,id} of some format
p1 ˆ ¨ ¨ ¨ ˆ pd. Such an M has a weight n “

ř

i1,¨¨¨ip
mi1,¨¨¨ ,ip and d margins σνpMq P OPn,

ν “ 1, ¨ ¨ ¨ , d, obtained by summation in all directions other than some given ν. The set of
contingency tensors with given margins αp1q, ¨ ¨ ¨ , αpdq is identifed with

Sn
H`

pSn{Sαp1qq ˆ ¨ ¨ ¨ ˆ pSn{Sαpdqq
˘

.

As in Remark 1.2, d-valent contingency tensors describe joint distributions of d-tuples of
discrete random variables. In this paper we focus on the case d “ 2 which presents special
nice features absent for d ą 2.
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2 The stochastihedron
A. The stochastihedron and its properties. Let pT,ďq be a poset. For t P T we
denote

Tăt “ tt1 P T : t1 ă tu, Tďt “ tt1 P T : t1 ď tu

the strict and non-strict lower intervals bounded by t.
We also denote by Nerv‚pSq the nerve of T , i.e., the simplicial set whose r-simplices

correspond to chains t0 ď t1 ď ¨ ¨ ¨ ď tr of inequalities in T . Nondegenerate simplices
correspond to chains of strict inequalities. We denote by NpSq the geometric realization of
the simplicial set Nerv‚pT q, i.e., the topological space obtained by gluing the above simplices
together, see [8, 10]. The dimension of NpT q, if finite, is equal to the maximal length of a
chain of strict inequalities. Sometimes we will, by abuse of terminology, refer to NpT q as the
nerve of T .

We apply this to T “ pCMn,ďq. The spaceNpCMnq will be called the nth stochastihedron
and denote Stn. We have dimStn “ 2n´ 2.

We next show that Stn has a cellular structure of a particular kind, similar to the de-
composition of a convex polytope given by its faces. Let us fix the following terminology.

• An m-cell is a topological space homeomorphic to the open m-ball B˝m “ tx P Rn :
}x} ă 1u.

• A closed m-cell is a topological space homeomorphic to the closed m-ball Bm “ tx P
Rn : }x} ď 1u.

• A cell decomposition of a topological space X is a filtration

X0 Ă X1 Ă ¨ ¨ ¨ Ă X “
ď

mě0

Xm

by closed subspaces such that each XmzXm´1 is a disjoint union of m-cells.

• A cell decomposition is called regular, if for each cell (connected component) σ Ă
XmzXm´1 the closure σ is a closed m-cell whose boundary is a union of cells.

• A (regular) cellular space is a space with a (regular) cell decomposition.

• For future use, a cell decomposition of X is called quasi-regular, if X can be represented
as Y zZ, where Y is a regular cellular space and Z Ă Y a closed cellular subspace.

• For a quasi-regular cellular space X we denote pCX ,ďq the poset formed by its cells
with the order given by inclusion of the closures.

The following is classical.
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Proposition 2.1. Let X be a regular cellular space. Then NpCXq is homeomorphic to X,
being the baricentric subdivision of X. Further, for each m-cell σ P CX the nerve NpCďσX q is
homeomorphic to σ, i.e., is a closed m-cell, and NpCăσX q is homeomorphic to the boundary
of σ, i.e., is, topologically, Sm´1.

We return to the poset CMn and show that it can be realized as CX for an appropriate
regular cellular space X. By the above X must be homeomorphic to Stn, so the question
is to construct an appropriate cell decomposition of Stn or, rather, to prove that certain
simplicial subcomplexes in Stn are closed cells.

For any M P CMn denote by F 1pMq “ NpCMăM
n q and F pMq “ NpCMďM

n q. They are
closed subspaces of Stn. Let also F ˝pMq “ F pMqzF 1pMq, a locally closed subspace of
Stn. For example since the 1 ˆ 1 matrix }n} is the maximal element of CMn, we have that
F p}n}q “ Stn is the full stochastihedron, and it is the cone over F 1p}n}q.

Theorem 2.2. Each F pMq, M P CMnpp, qq, is a closed cell of dimension 2n ´ pp ` qq,
and F 1pMq is homeomorphic to the sphere S2n´pp`qq´1. Therefore Stn has a regular cell
decomposition into the cells F ˝pMq, and CMn is the poset of these cells with order given by
inclusion of the closures.

An analog of this result for contingency tensors of valency d ą 2, see Remark 1.12, does
not hold.

B. The stochastihedron and the permutohedron Here we prove Theorem 2.2. We
recall that the nth permutohedron Pn is the convex polytope in Rn defined as the convex hull
of the n! points

rss “ psp1q, ¨ ¨ ¨ , spnqq, s P Sn.

By construction, the symmetric group Sn acts by automorphisms of Pn. The following is
well known.

Proposition 2.3. (a) dimpPnq “ n´ 1 and each rss is in fact a vertex of Pn.

(b) Faces of Pn are in bijection with colored ordered partitions A “ pA1, ¨ ¨ ¨ , Apq of n,
see Definition 1.10(a). The face corresponding to A is denoted rAs. It is the convex hull of
the points rss corresponding to permutations s obtained by all possible ways of ordering the
elements inside each Ai. Thus

rAs »
p
ź

i“1

P|Ai|, dimrAs “ n´ p.

Consider now the product Pn ˆ Pn. with the diagonal action of Sn. Theorem 2.2 will
follow (in virtue of Proposition 2.1) from the next claim.

Proposition 2.4. The quotient SnzpPn ˆ Pnq, stratified by the images of the open faces, is
a regular cellular space with the poset of cells isomorphic to CMn.
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Proof: The (closed) faces of Pn ˆ Pn are the products rA|Bs :“ rAs ˆ rBs for all pairs A “
pA1, ¨ ¨ ¨ , Apq, B “ pB1, ¨ ¨ ¨ , Bqq of colored ordered partitions of n. Therefore Proposition
1.11 implies that the poset formed by the images of closed faces and their inclusions, is
identified with CMn.

It remains to show that each image of a closed face rA|Bs of PnˆPn is a closed cell, i.e., is
homeomorphic to a closed ball. This image is the quotient SrA|BszrA|Bs, where SrA|Bs Ă Sm is
the subgroup preserving rA|Bs as a set.. For a set I let us denote SI “ AutpIq the symmetric
group of automorpisms of I. Then it is immediate that

SrA|Bs “
p
ź

i“1

q
ź

j“1

SAiXBj Ă Sn.

Further, let us denote, for a finite set I

RI0 “
!

pxkqkPI P RI :
ÿ

xk “ 0
)

and write Rn0 “ Rrns0 . Thus, Pn is parallel to Rn0 and each face rAs is parallel to
ś

RAi0 .
Let rA|Bs˝ be the interior of the face rA|Bs. By the above, it is a translation of an open

set in
`

ź

i

RAi0

˘

ˆ
`

ź

i

RBj0

˘

Ă Rn ˆ Rn,

a translation, moreover, by a vector invariant with respect to SrA|Bs. So to prove that each
rA|Bs is a closed cell (and each rA|Bs˝ is an open cell), it suffices to establish the following.

Lemma 2.5. For each A,B as above, the quotient

ź

i,j

SAIXBj

Jˆ

`

ź

i

RAi0

˘

ˆ
`

ź

i

RBj0

˘

˙

is homeomorphic to the Euclidean space (of dimension 2n´ p´ q).

Proof of the lemma: Denote the quotient in question by Q. Consider first the bigger space

Q1 “
ź

i,j

SAIXBj

Jˆ

`

ź

i

RAi
˘

ˆ
`

ź

i

RBj
˘

˙

which contains Q as a closed subset. We note that

Q1 “
ź

i,j

SAIXBj
H

pRn ˆ Rnq “
ź

i,j

SAIXBj
H

pR2
q
n
“

ź

i,j

`

SAiXBjzpR
2
q
AiXBjq.

Now, for any finite set I, the quotient

SIzpR
2
q
I
“ SIzC

I
“ Sym|I|

pCq » C|I|
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is the |I|th symmetric product of C and so is identified (as an algebraic variety and hence
as a topological space) with C|I|. The coordinates in this new C|I| are the elementary sym-
metric functions of the coordinates xk, i P I, in the original CI . In particular, one of these
coordinates is σ1,I “

ř

kPI xk, the sum of the original coordinates.
Applying this remark to I “ Ai XBj for all i, j, we see, first of all, that

Q1 »
ź

i,j

C|AiXBj | » Cn.

Second, to identify Q inside Q1, we need to express the effect, on the quotient, of replacing
each RAi by RAi0 and each RBj by RBj0 , i.e., of imposing the zero-sum conditions throughout.
Let us view the first Rn “

ś

i R
Ai as the real part and the second Rn “

ś

j RBj as the
imaginary part of Cn. Then the zero-sum condition on an element of RAi is expressed by
vanishing of

ř

j σ1,AiXBj applied to the real part of a point of
ś

i,j Sym|AiXBj |pCq. Similarly,
the zero sum condition on an element of RBj is expressed by vanishing of

ř

i σ1,AiXBj applied
to the imaginary part a point of

ś

i,j Sym|AiXBj |pCq. So Q is specified, inside Q1 » Cn, by
vanishing of a collection of R-linear functions and so is homeomorphic to a real Euclidean
space as claimed.

This finishes the proof of Lemma 2.5, Proposition 2.4 and Theorem 2.2.

C. Examples and pictures. We illustrate the above concepts in low dimensions.

Example 2.6.The 2nd stochastihedron St2 is a bigon:

‚‚ p2q

ˆ

1 0
0 1

˙ˆ

0 1
1 0

˙

p1, 1q

ˆ

1
1

˙

Example 2.7.The 3rd stochastihedron St3 is a 4-dimensional cellular complex with 33 cells,
corresponding to the matrices in the “contingency square” A3 of Example 1.6:

• 6 vertices; they correspond to 3ˆ 3 permutation matrices in the upper right corner;

• 12 edges; they correspond to 2ˆ 3 and 3ˆ 2 matrices;

• 10 2-faces, more precisely:

12



– 4 bigons corresponding to 2ˆ 2 matrices M which contain an entry 2

– 4 squares corresponding to 2ˆ 2 matrices M which cosists of 0’s and 1’s only.
– 2 hexagons P3, corresponding to 1ˆ 3 and 3ˆ 1 matrices;

• 4 3-faces, of the shape we call hangars, see Fig. 1 below. They correspond to 2 ˆ 1
and 1ˆ 2 matrices;

• one 4-cell corresponding to the matrix p3q.

Remark 2.8.Note that the boundaries of the cells of Stn come from decontractions (acting to
the right and upwards in the contingency meta-squareMp3q, in the above example) and not
contractions. Therefore Stn is not the realization of the bi-semisimplicial set CMnp‚`2, ‚`2q
but, rather, the Poincaré dual cell complex to it. Because of this, Theorem 2.2 is non-trivial.
For the nature of the realization itself (which is a cellular space by its very construction),
see Remark 3.5(a) below.

Example 2.9.Here we describe one hangar corresponding to the matrix p2, 1qt “
ˆ

2
1

˙

(the other hangars look similarly). This particular hangar is a cellular 3-ball, whose cells
correspond to elements of the lower interval CM

ďp2,1qt

3 , which has the form

¨

˝

1
1
1

˛

‚

��

¨

˝

0 1
1 0
1 0

˛

‚

¨

˝

1 0
0 1
0 1

˛

‚

¨

˝

1 0
0 1
1 0

˛

‚

¨

˝

0 1
1 0
0 1

˛

‚

¨

˝

1 0
1 0
0 1

˛

‚

¨

˝

0 1
0 1
1 0

˛

‚

oo

��

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚

¨

˝

0 1 0
0 0 1
1 0 0

˛

‚

¨

˝

1 0 0
0 0 1
1 0 0

˛

‚

¨

˝

0 0 1
0 1 0
1 0 0

˛

‚

¨

˝

0 0 1
1 0 0
0 1 0

˛

‚

oo

��

ˆ

2
1

˙

ˆ

1 1
0 1

˙ ˆ

1 1
1 0

˙

ˆ

2 0
0 1

˙ ˆ

0 2
1 0

˙
oo

ˆ

0 1 1
1 0 0

˙ ˆ

1 0 1
0 1 0

˙

ˆ

1 1 0
0 0 1

˙
oo

The boundary (2-dimensional) cells are as follows:

• one hexagon corresponding to

¨

˝

1
1
1

˛

‚;

• 2 squares corresponding to
ˆ

1 1
0 1

˙

,

ˆ

1 1
1 0

˙

;

13



• and 2 bigons corresponding to
ˆ

2 0
0 1

˙

,

ˆ

0 2
1 0

˙

.

Figure 1: A hangar having 2 bigons, 2 (curved) squares and a hexagon in the boundary.

3 The stochastihedron and symmetric products
A. The symmetric product and its complex stratification SC. Let Pn be the set
of (unordered) partitions α “ pα1 ě ¨ ¨ ¨ ě αpq,

ř

αi “ n of n. For any ordered partition
β P OPn let β P Pn be the corresponding unordered partition (we put the parts of β in the
non-increasing order).

We consider the symmetric product Symn
pCq “ SnzCn with the natural projection

(3.1) π : Cn
ÝÑ Symn

pCq.

It is classical that Symn
pCq » Cn, the isomorphism given by the elementary symmetric

functions. We can view points z of Symn
pCq in either of two ways:

• As effective divisors z “
ř

zPC αz ¨ z with αz P Zě0, of degree n, that is,
ř

z αz “ n.

• As unordered collections z “ tz1, ¨ ¨ ¨ , znu of n points in C, possibly with repetitions.

Viewing z as a divisor, we have an ordered partition Multpzq “ pα1 ě ¨ ¨ ¨ ě αpq, called
the multiplicity partition of z, which is obtained by arranging the αz in a non-increasing way.
For a given α P Pn the complex stratum XC

α is formed by all z with Multpzq “ α. These
strata are smooth complex varieties forming the complex stratification SC of Symn

pCq.

Our eventual interest is in constructible sheaves and perverse sheaves on Symn
pCq which

are smooth with respect to the stratification SC. We now review various refinements of the
stratification SC obtained by taking into account the real and imaginary parts of the points
zν P C forming a point z P Symn

pCq.

14



B. The contingency cell decomposition. Let z “ tz1, ¨ ¨ ¨ , znu P Symn
pCq. Among

the numbers Repz1q, ¨ ¨ ¨ ,Repznq there may be some coincidences. Let x1 ă ¨ ¨ ¨ ă xp be all
the values of Repzνq in the increasing order (ignoring possible repetitions). Similarly for the
imaginary parts: let y1 ă ¨ ¨ ¨ ă yq be all the values of Impzνq in the increasing order, see
Fig. 2. We get a contingency matrix

µpzq “ }µijpzq}
j“1,¨¨¨ ,q
i“1,¨¨¨ ,p P CMnpp, qq, µijpzq “ |tν : Repzνq “ xi and Impzνq “ yqu|.

y1

y2

...

yq ‚

‚ ‚

‚

‚

‚

x1 x2 xp¨ ¨ ¨

µ11

µ1q

µ22

µp1

µp2

µpq

Figure 2: The contingency matrix µpzq associated to z P Symn
pCq.

For a contingency matrix M P CMn let Xcont
M Ă Symn

pCq be the set of z with µpzq “M .

To describe the nature of Xcont
M and of its closure Xcont

M , we start with some elementary
remarks. For r ě 0 let e0, ¨ ¨ ¨ , er be the standard basis of Rr`1. The standard r-simplex ∆r

is the set

∆r
“ Convte0, ¨ ¨ ¨ , eru “

!

px0, ¨ ¨ ¨ , xrq P Rr`1
ˇ

ˇxi ě 0,
ÿ

xi “ 1
)

.

The codimension 1 faces of ∆r are

Bi∆
r
“ Convtej, j ‰ iu “ ∆r

X txi “ 0u.

Note that we have the identification

(3.2) ∆r
» t0 ď t1 ď ¨ ¨ ¨ ď tr ď 1u, x0 “ t1, x1 “ t2 ´ t1, ¨ ¨ ¨ , xr “ 1´ tr.

We denote
˝

∆r
“ ∆r

z

r
ď

i“0

Bi∆
r, ∆r

ă “ ∆r
zBr∆

r

the open r-simplex and the m-simplex with just the rth face removed. In other words, ∆r
ă

is a cone over ∆r´1 but with the foundation of the cone removed. Note that under (3.2)

(3.3)
˝

∆r
» t0 ă t1 ¨ ¨ ¨ ă tr ă 1u, ∆r

ă » t0 ď t1 ¨ ¨ ¨ ď tr ă 1u.

For i “ 0, ¨ ¨ ¨ , r ´ 1 we can speak about the ith face Bi∆r
ă which is homeomorphic to ∆r´1

ă .
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Proposition 3.4. (a) Each Xcont
M , M P CMnpp, qq is a cell of dimension p ` q. More

precisely, Xcont
M » Cˆ

˝

∆p´1 ˆ
˝

∆q´1.

(b) The closure Xcont
M is homeomorphic to Cˆ∆p´1

ă ˆ∆q´1
ă , and the cells lying there are

given by the faces of ∆p´1
ă ˆ∆q´1

ă . That is, codimension 1 closed cells lying in Xcont
M are

Xcont
B1iM

» Cˆ Bi∆
p´1
ă ˆ∆q´1

ă , i “ 0, ¨ ¨ ¨ p´ 2,

Xcont
B2jM

» Cˆ∆p´1
ă ˆ Bj∆

q´1
ă , j “ 0, ¨ ¨ ¨ q ´ 2.

In particular, the collection of the Xcont
M forms a quasi-regular cell decomposition of Symn

pCq
refining the stratification SC.

We denote the collection of the Xcont
M the contingency cell decomposition of Symn

pCq and
denote Scont. The Xcont

M themselves will be called the contingency cells.

Remarks 3.5. (a) It is useful to compare the above with the concept of the geometric
realization of a bi-semisimplicial set. That is, given a bi-semisimplicial set Y‚,‚, its geometric
realization is

|Y‚‚| “

˜

ğ

r,sě0

Yr,s ˆ∆r
ˆ∆s

¸

N

„

where „ is the equivalence relation which, for y P Yrs, matches B1iy with Bi∆r ˆ ∆s and
B2j y with ∆r ˆ Bj∆

s. This is completely analogous to the classical concept of the geometric
realization of a simplicial set [8, 10].

In our case we have an augmented bi-semisimplicial set Y‚‚ with Yr,s “ CMnpr` 2, s` 2q,
so the standard concept of realization is not applicable (as we cannot attach a product
containing ∆´1 “ H). Instead, Proposition 3.4 says that

Symn
pCq » Cˆ

˜

ğ

r,sě´1

Yr,s ˆ∆r`1
ă ˆ∆s`1

ă

¸

N

„

so we replace each r-simplex by the cone over it, which for r “ ´1 is taken to be just the
point.

(b) Proposition 3.4 also shows that the stochastihedron Stn is simply the cell complex
Poincaré dual to the quasi-regular cell decomposition Scont of Symn

pCq. The fact that it is
indeed a cellular ball (Theorem 2.2) reflects the property that Symn

pCq is smooth (homeo-
morphic to a Euclidean space). This also shows that contingency tensors of valency d ą 2
(see Remark 1.12) do not lead to a cellular complex analogous to Stn, since Symn

pRdq is
singular for d ą 2.

Proof of Proposition 3.4: (a) If the matrix M “ µpzq, i.e., the integers µijpzq, are fixed,
then the only data parametrizing z are the real numbers x1 ă ¨ ¨ ¨ , xp and y1 ă ¨ ¨ ¨ ă yq.
Subtracting the first elements of these sequences we get

tx1 ă ¨ ¨ ¨ ă xpu » Rˆ t0 ă x12 ă ¨ ¨ ¨ ă x1pu, x1i “ xi ´ x0.
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But the interval r0,8q is identified, in a monotone way, with r0, 1q, so

Rˆ t0 ă x12 ă ¨ ¨ ¨ ă x1pu » Rˆ t0 ă x12 ă ¨ ¨ ¨ ă x1p ă 1u » Rˆ
˝

∆p´1,

and similarly
ty1 ă ¨ ¨ ¨ ă yqu » Rˆ

˝

∆q´1.

(b) The closure Xcont
M is obtained by adding all the limit points of Xcont

M . Such points
are obtained when some of the xi or the yj merge together, and in view of the second
identification in (3.3), such mergers correspond to the faces of ∆p´1

ă ˆ∆q´1
ă .

C. Imaginary strata and Fox-Neuwirth-Fuchs cells. We recall some constructions
from [13]. Consider the symmetric product Symn

pRq, viewed either as the space of effective
divisors y “

ř

nν ¨ yν , yν P R, of degree n or as unordered collections y “ ty1, ¨ ¨ ¨ , ynu
possibly with repetitions. It has a quasi-regular cell decomposition into cells Kβ, β P OPn.
Explicitly, if β “ pβ1, ¨ ¨ ¨ , βqq, then Kβ consists of divisors β1 ¨ ¨ ¨ y1 ` ¨ ¨ ¨ ` βq ¨ yq with
y1 ă ¨ ¨ ¨ ă yq.

Next, the imaginary part map Im : C Ñ R gives a map I : Symn
pCq Ñ Symn

pRq. The
preimages XI

β “ I´1pKβq will be called the imaginary strata of Symn
pCq. They are not

necessarily cells: for instance, for β “ pnq we have that Kpnq “ Symn
pRq ˆ iR is the set of

y “ ty1, ¨ ¨ ¨ , ynu with Impy1q “ ¨ ¨ ¨ “ Impynq. In general, to say that z “ tz1, ¨ ¨ ¨ , znu lies
in Kβ means that there are exacty q distinct values of the Impzνq, and if we denote these
values among y1 ă ¨ ¨ ¨ ă yq, then yj is achieved exactly βj times. Geometrically, we require
that the zν lie on q horizontal lines, see Fig. 3, but we do not prescribe the nature of the
coincidences that happen on these lines.

‚
γ
p1q
1

‚
γ
p1q
2 ¨ ¨ ¨

‚

γ
p1q
p1

‚
γ
p2q
1 ¨ ¨ ¨

‚

γ
p2q
p2

‚
γ
pqq
1

‚
γ
pqq
2

‚
¨ ¨ ¨

‚
γ
pqq
pq

¨ ¨ ¨ ¨ ¨ ¨

y1

y2

yq
...

Figure 3: A point z in a Fox-Neuwirth-Fuchs cell.

To subdivide XI
β further, we specify such coincidences. That is, fix a sequence of ordered

partitions γ “ pγp1q, ¨ ¨ ¨ , γpqqq with γpjq P OPβj . Let Xrβ:γs consist of z P XI
β such that, for

any j “ 1, ¨ ¨ ¨ , q, the points of z lying of the jth horizotnal line Im´1
pyjq » R belong to

Kγpjq Ă SymβjpRq. See Fig. 3.
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In other words, we prescribe the number of the zν with given imaginary parts, as well as
coincidences within each value of the imaginary part. But, unlike in forming the contingency
cells, we do not pay attention to possible concidences of the real parts of points with different
imaginary parts. Therefore our construction is not symmetric: the imaginary part has
priority over the real part.

Given β “ pβ1, ¨ ¨ ¨ , βqq P OPnpqq, a datum of a sequence pγp1q, ¨ ¨ ¨ , γpqqq, γpjq P OPβj , is
equivalent to a single ordered partition γ refining β, i.e., β ď γ. Indeed, such a partition γ
is obtained by writing all the parts of all the γpjq lexicographically: first the parts of γp1q,
then the parts of γp2q etc. So we will consider such pair β ď γ as a label for Xrβ:γs.

We call the Xrβ:γs the Fox-Neuwirth-Fuchs (FNF) cells. The name “cells” is justified by
the following fact, proved in [13], Prop. 2.2.5.

Proposition 3.6. (a) Each Xrβ:γs is a cell of dimension `pβq ` `pγq.

(b) The collection of the Xrβ:γs, β ď γ, forms a cell decomposition SFNF of Symn
pCq

refining the complex stratification SC. More precisely, let λ P Pn be an unordered partition
of n. Then

XC
λ “

ğ

βďγ
γ“λ

Xrβ:γs.

(c) We have Xrβ:γs Ă Xrβ1:γ1s if and only if β ď β1 and γ ď γ1 in OPn.

Examples 3.7. (a) Let n “ 2 and let Sym2
0pCq Ă Sym2

pCq be the subvariety formed by
tz1, z2u with z1 ` z2 “ 0. The function tz1, z2u ÞÑ w “ z21 identifies Sym2

0pCq with C. The
cell decomposition SFNF induces the decomposition of this C into the following three cells:

Xrp2q:p2qs X Sym2
0pCq “ t0u, Xrp2q:p1,1qs X Sym2

0pCq “ Rą0, Xrp1,1q:p1,1qs X Sym2
0pCq “ C zRě0.

(b) The cells Xrβ,p1,¨¨¨ ,1qs form the cell decomposition of the open complex stratum XC
p1,¨¨¨ ,1q

used by Fox-Neuwirth [6] and Fuchs [7] for the study of the cohomology of the braid group
π1pX

C
p1,¨¨¨ ,1qq.

Let r “ pr1, ¨ ¨ ¨ , rpq P Zp
ě0 be a vector with non-negative (possibly zero) integer com-

ponents and ρ “
ř

ri. We denote by opprq P OPρ the ordered partition of ρ obtained by
“compressing” r, i.e., removing the zero components. For example

(3.8) opp2, 0, 1, 3, 0, 0q “, p2, 1, 3q.

We complement Proposition 3.6 by:

Proposition 3.9. The cell decomposition Scont refines SFNF. More precisely, let M “

}mij} P CMnpp, qq. Then Xcont
M Ă Xrβ:γs, where:

• β “ σverpMq is the vertical margin of M .

• γ, viewed as a sequence of ordered partitions pγp1q, γpqqq, γpνq P OPβν , has

γpνq “ oppm‚,νq, m‚,ν “ pm1,ν , ¨ ¨ ¨ ,mp,νq.

The proof is obvious and left to the reader.
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4 From contingency cells to complex strata
A. Four stratifications. Equivalences of contingency cells. The stratifications
of Symn

pCq that we constructed, can be represented by the following picture, with arrows
indicating refinement:

(4.1) SC

SFNF

;;

iSFNF.

dd

Scont

::dd

Here iSFNF is the “dual Fox-Neuwirth-Fuchs” cell decomposition, obtained from SFNF by
applying either of the two the automomorphism of Symn

pCq (they give the same stratification
up to relabeling):

• The holomorphic automorphism induced by i : C Ñ C (multiplication by i).

• The non-holomorphic automorphism induced by σ : C Ñ C, x` iy ÞÑ y ` ix.

Remark 4.2.Any real hyperplane arrangement H Ă Rn gives three stratifications Sp0q,Sp1q
and Sp2q of Cn, see [12] §2. For example, Sp0q consists of generic parts of the complex flats of
H and Sp2q consists of “product cells” C`iD where C,D are faces of H Taking for H the root
arrangement in Rn, i.e., the system of hyperplanes txi “ xju, we obtain our stratifications
SC,SFNF and Scont as the images of Sp0q,Sp1q and Sp2q under the projection π of (3.1).

We are interested in the way the complex strata (from SC) are assembled out of the cells
of Scont. Recall that the partial order ď on CMn is the “envelope” of two partial orders
ď1 and ď2 given by the horizontal and vertical contractions B1i, B2j , so that B1iM ď1 M and
B2jM ď2 M .

Definition 4.3.We say that an inclusion N ď M in CMn is an equivalence, if Xcont
N and

Xcont
M lie in the same complex stratum. Similarly, we say that N ď1 M , resp. N ď2 M

is a horizontal equivalence, resp. a vertical equivalence, if Xcont
N and Xcont

M lie in the same
complex stratum.

It is enough to describe “elementary” horizontal and vertical equvialences. That is, we
call the contraction B1i anodyne forM , if B1iM ď1 M is a horizontal equvialence. Similarly, the
vertical contraction B2j is called anodyne for M , if B2jM ď2 M is a vertical equivalence. Thus
arbitrary horizontal (resp. vertical) equivalences are given by chains of anodyne horizontal
(resp. vertical) contractions.

Given two integer vectors r “ pr1, ¨ ¨ ¨ , rqq, s “ ps1, ¨ ¨ ¨ sqq P Zq
ě0, we say that they are

disjoint, if rjsj “ 0 for each j “ 1, ¨ ¨ ¨ , q, i.e., in each position at least one of the components
of r and s is zero.
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Proposition 4.4. Let M P CMnpp, qq be given.

(a) B1i is anodyne for M if and only if the pi` 1qst and the pi` 2qnd columns of M (that
are added together under B1i)are disjoint.

(b) Similarly, B2j is anodyne for M , if and only if the pj ` 1q st and pj ` 2qnd rows of M
are dosjoint.

Proof: This is clear, as, say, columns being disjoint means precisely that the multiplicities
(considered as an unordered collection) do not change after adding the columns.

B. The upper and lower bound of SFNF and iSFNF. The relation between the four
stratifications in (4.1) can be expressed as follows.

Proposition 4.5. (a) We have

SFNF
^ iSFNF

“ Scont.

More precisely, Scont is the coarsest stratification with connected strata that refines both SFNF

and iSFNF.

(b) We also have
SFNF

_ iSFNF
“ SC.

More precisely, SC is the finest stratification of which both SFNF and iSFNF are refinements.

We first prove part (b) of the proposition. Let W , resp. W 1, resp. W 2 Ă CMnˆCMn be
the set of pairs pN,Mq such that N ďM and the inclusion is an equivalence, resp. N ď1 M
and the inclusion is a horizontal equivalence, resp. N ď2 M and the inclusion is a vertical
equivalence. Let R,R1, R2 be the equivalence relations generated by W,W 1,W 2. Since the
strata of SC are connected, we have, first of all:

Lemma 4.6. N „R M if and only if Xcont
N and Xcont

M lie in the same complex stratum.

Proposition 4.5(b) will follow from this lemma and the next statement.

Proposition 4.7. (a) N „R1 M if and only if Xcont
N and Xcont

M lie in the same cell of SFNF.

(b) N „R2 M if and only if Xcont
N and Xcont

M lie in the same cell of iSFNF.

Proof: It is enough to show (a), since (b) is similar. We first prove the “only if” part, that is,
whenever B1i is anodyne for M , the cells Xcont

B1iM
and Xcont

M lie in the same Fox-Neuwirth-Fuchs
cell. But this is obvious from comparing Figures 2 and 3: if the pi`1qst and pi`2qnd columns
of M are disjoint, then the multiplicity structure on each horizontal line is unchanged after
a generation resulting in adding these columns.

Let us now prove the “if” part. Since each FNF cell is connected (being a cell), it suffices
to prove the following: whenever Xcont

|del1iM
and Xcont

M lie in the same FNF cell, the contraction
B1i is anodyne for M . But this is again obvious, since a non-anodyne contraction will change
the multiplicity structure on some horizontal line. Propositions 4.7 and 4.5(b) are proved.
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We now prove part (a) of 4.5. Let M P CMnpp, qq. By Proposition 3.9,

Xcont
M Ă Xrβ:γs X iXrα:δs,

where α “ σhorpMq and β “ σverpMq are the margins of M and γ, resp.δ is obtained by
compressing, cf. (3.8), the rows, resp. columns of M . In particular, the size p ˆ q of M is
determined as p “ `pαq, q “ `pβq from the unique cells Xrβ:γs and iXrα:δs containing Xcont

M .
Note that dimXcont

M “ p ` q. This means the following: given any two cells Xrβ:γs P SFNF

and iXrα:δs P iSFNF, all contingency cells contained in their intersection, have the same
dimension. Since, the union of such cells is the intersection Xrβ:γs X iXrα:δs, we conclude
that by taking the connected components of all the Xrβ:γs X iXrα:δs, we get precisely all the
contingency cells.

C. Corollaries for constructible sheaves. Fix a base field k. For a stratified space
pX,Sq we denote by ShpX,Sq the category formed by sheaves F of k-vector spaces which
are constructible with respect to S, i.e., such that restriction of F to each stratum is locally
constant. The following is standard, see, e.g., [12], Prop. 1.8.

Proposition 4.8. Suppose that pX,Sq be a quasi-regular cellular space with the poset pC,ďq
of cells. Then ShpX,Sq is identified with ReppCq, the category of representations of pC,ďq
in k-vector spaces.

We recall that a representation of pC,ďq is a datum, consisting of:

(0) k-vector spaces Fσ, given for any σ P C.

(1) Linear maps γσ,σ1 : Fσ Ñ Fσ1 given for any σ ď σ1 and satisfying

(2) γσ,σ “ Id, and γσ,σ2 “ γσ1,σ2 ˝ γσ,σ1 for any σ ď σ1 ď σ2.

For F P ShpX,Sq, the corresponding representation has Fσ “ Γpσ,F |σq, the space of
sections of F on σ (or, what is canonically the same, the stalk at any point of σ). The map
γσ,σ1 is the generalization map of F , see [12] §1D and references therein.

Corollary 4.9. (a) The category ShpSymn
pCq,Scontq is equivalent to ReppCMn,ďq.

(a) The category ShpSymn
pCq,SCq is equivalent to the full subcategory formed by repre-

sentations pFM , pγN,MqNďMq, such that γB1iM,M , resp. γB2jM,M is an isomorphism whenever
the contraction B1i, resp. B2j is anodyne.

Proposition 4.5 implies the following.

Corollary 4.10. An Scont-constructible sheaf on Symn
pCq is SC-constructible, if and only if

it is constructible for both SFNF and iSFNF.
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A Counting contingency matrices. Appendix by Pavel
Etingof

Definition A.1.A generalized contingency matrix is a rectangular matrix M whose entries
mij are nonnegative integers. The weight of a generalized contingency matrix is

ř

mij.

Thus, a contingency matrix is a generalized contingency matrix without zero rows or
columns. The following is obvious.

Lemma A.2. The number of generalized contingency matrices of size pˆ q and of weight n
is
`

n`pq´1
n

˘

.

Let mpqpnq be the number of contingency matrices of this size and weight and Mpnq “
}mpqpnq}p,q“1,¨¨¨ ,n.

Lemma A.3. We have

ÿ

iďp,gďq

ˆ

p

i

˙ˆ

q

j

˙

mijpnq “

ˆ

n` pq ´ 1

n

˙

.

Proof: Every generalized contingency matrix M of weight n defines subsets S Ă r1, ps, T Ă
r1, qs (corresponding to zero rows and zero columns of A) and a contingency matrix M` of
size pp´ |S|q ˆ pq ´ |T |q and weight n obtained by deleting the zero rows and columns from
A. Clearly, the assignment M ÞÑ pS, T,M`q is a bijection. This implies the statement.

Let P pnq be the unipotent lower triangular matrix such that P pnqpi “
`

p
i

˘

. The following
corollary of Lemma A.3 is immediate.

Corollary A.4. We have P pnqMpnqP pnqt “ Bpnq, where Bpnqpq “
`

n`pq´1
n

˘

. Thus Mpnq “
P pnq´1BpnqpP pnq´1qt. In particular, detMpnq “ detBpnq.

Note also that
pP pnq´1qpi “ p´1qp´i

ˆ

p

i

˙

.

Indeed, denote the matrix in the RHS by P˚pnq. Then

ÿ

pP pnqP˚pnqqpj “
ÿ

pěiěj

p´1qi´j
ˆ

p

i

˙ˆ

i

j

˙

“

ˆ

p

j

˙

ÿ

pěiěj

p´1qi´j
ˆ

p´ j

i´ j

˙

“ δpj.

Thus we get

Corollary A.5.

mpqpnq “
ÿ

i,j

p´1qi`j
ˆ

p

i

˙ˆ

q

j

˙ˆ

n` ij ´ 1

n

˙

.
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Recall [19] that the (unsigned) Stirling numbers of the first kind cpn, kq are defined by
the generating function

xpx` 1qpx` 2q...px` n´ 1q “
n
ÿ

k“1

cpn, kqxk.

Proposition A.6. We have

Bpnq “
1

n!
V pnq ¨ diagpcpn, 1q, ..., cpn, nqq ¨ V pnqt

where V pnq is the (modified) Vandermonde matrix, V pnqik “ ik. Hence

Mpnq “
1

n!
Qpnq ¨ diagpcpn, 1q, ..., cpn, nqq ¨Qpnqt,

where Qpnq :“ P pnq´1V pnq.

Proof: We have
Bpnqpq “

1

n!

ÿ

k

cpn, kq ikjk,

which implies the first statement. The second statement follows from the first one and
Corollary A.4.

Proposition A.7. We have

dn :“ detMpnq “
n!
śn´1

i“1 cpn, iq
śn´1

i“1

`

n
i

˘ .

In particular, the fraction in the RHS is an integer.

Proof: We have detV pnq “ n!
ś

1ďjăiďnpi ´ jq (the Vandermonde determinant). This, to-
gether with Proposition A.6, implies the statement after simplifications (using that cpn, nq “
1).

Example A.8.We have d2 “ 1, d2 “ 4, d4 “ 99.

Thus by summing over p, q we get:

Corollary A.9.

n
ÿ

p,q“1

mpqpnq “
ÿ

i,j

p´1qi`j
ˆ

n` 1

i` 1

˙ˆ

n` 1

j ` 1

˙ˆ

n` ij ´ 1

n

˙

.

Proposition A.10. The matrix Qpnq is upper triangular, and its entries are p!Spk, pq, where
Spk, pq are the Stirling numbers of the second kind [19]. In particular, the diagonal entries
of Qpnq are k!.
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Proof: We have Qpnq “ P pnq´1V pnq. Thus

Qpnqpk “
ÿ

p´1qp´i
ˆ

p

i

˙

ik “ Spk, pqp!,

the last equality being the definition of Spk, pq. It is well known that Spk, pq “ 0 if p ą k,
which implies the statement.

Corollary A.11. The Gauss decomposition of V pnq is given by

V pnq “ P pnqdiagp1!, 2!, ..., n!qSpnq,

where Spnq is the unipotent upper triangular matrix whose entries are Spnqpk “ Spk, pq for
k, p ď n.

Proof: This follows from Proposition A.10 since Qpnq “ diagp1!, 2!, ..., n!qSpnq.

Corollary A.12. The (opposite) Gauss decomposition of Mpnq is

Mpnq “
1

n!
S˚pnq ¨ diagpp1!q2cpn, 1q, ¨ ¨ ¨ , pn!q2cpn, nqq ¨ S˚pnq

t.

where S˚pnqpk :“ p!Spk, pq{k!.

Proof: This follows from Proposition A.6.

Corollary A.13. The matrix Mpnq is totally positive, i.e., all of its determinants of all
sizes are positive.

Proof: Let G “ GLnpRq. Let U`, U´ Ă G be the subgroups of unipotent upper and lower
triangular matrices, and T be the torus of diagonal matrices. Let also Gą0 Ă G be the set of
totally positive matrices. For distinct i, j P t1, ¨ ¨ ¨ , nu and a P R let eijpaq be the elementary
matrix which has 1’s on the diagonal, a in the position pi, jq and 0 elsewhere. Recall [15, 16]
that

Gą0 “ U`ą0Tą0U
´
ą0 “ U´ą0Tą0U

`
ą0,

where:

• Tą0 Ă T is the subset of diagonal matrices with all the diagonal entries positive.

• U`ą0 Ă U` is the subset of matrices of the form
ś

iăj eijpaijq where all aij ą 0 and the
product is taken in the order of a reduced decomposition of the maximal element in
Sn. Alternatively. U`ą0 can be defined as the interior of the closed subset in U` formed
by matrices with all minors non-negative.

• U´ą0 is defined similarly using eijpaijq with i ą j and aij ą 0 or, equivalently, as the
interior of the subset in U´ formed by matrices with all minors non-negative.

24



It is well known [9] that the matrix V pnq is totally positive (it follows from the fact that the
Schur polynomials have positive coefficients). Thus it follows from Corollary A.11 that Spnq
is totally positive. But then by Corollary A.12 we get that Mpnq is totally positive.

We also obtain:

Corollary A.14. We have

ÿ

p,q

mpqpnq “
1

n!

ÿ

p,q,k

cpn, kq p!Spk, pq q!Spk, qq.

Since
ř

p p!Spk, pq “ F pkq, the Fubini numbers (=ordered Bell numbers [19]), we get

Corollary A.15. We have

mpnq :“
ÿ

p,q

mpqpnq “
1

n!

ÿ

k

cpn, kqF pkq2.

Example A.16.The Fubini numbers are 1, 3, 13, .., and cp3, iq are 2, 3, 1, 0, ..., so mp3q “
p2 ¨ 12` 3 ¨ 32` 1 ¨ 132q{6 “ 33. This is the total number of faces in the stochastihedron St3,
see Example 2.7.
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