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Abstract

Let H be an arrangement of hyperplanes in Rn and PervpCn,Hq
be the category of perverse sheaves on Cn smooth with respect to the
stratification given by complexified flats of H. We give a description
of PervpCn,Hq in terms of “matrix diagrams”, i.e., diagrams formed
by vector spaces EA,B labelled by pairs pA,Bq of real faces of H (of
all dimensions) or, equivalently, by the cells iA ` B of a natural cell
decomposition of Cn. A matrix diagram is formally similar to a datum
describing a constructible (non-perverse) sheaf but with the direction
of one half of the arrows reversed.
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0 Introduction

Let H be a finite arrangement of linear hyperplanes in Rn. It gives rise to a
stratification Sp0q “ Sp0qH of the complex space Cn into the generic parts of the
complexified flats of H, see §1 for a precise definition. Let k be a field. We
denote by PervpCn,Hq the category of perverse sheaves (middle perversity)
of k-vector spaces on Cn which are constructible with respect to Sp0q. Such
perverse sheaves and their categories are of great importance in several areas,
including representation theory of quantum groups [2]. They also provide a
large class of nontrivial examples of categories of perverse sheaves.

In [9], we gave a description of PervpCn,Hq in terms of certain quivers,
i.e., diagrams of vector spaces EA labelled by faces A of H. We recall that
faces are the locally closed polyhedral cones (of all dimensions) into which
H decomposes Rn. They form a poset which we denote pC “ CH,ďq.

In this paper we propose an alternative description of PervpCn,Hq which
is extremely simple and appealing. It is given in terms of matrix diagrams,
see Definition 3.1, i.e., diagrams consisting of :

(0) Vector spaces EA,B labelled by arbitrary pairs of faces A,B P C.

(11) A representation of C with respect to the second argument, i.e., a tran-
sitive system of linear maps

B
1 : EA,B1 ÝÑ EA,B2 , B1 ď B2.

(12) An anti-representation of C with respect to the first argument, i.e., a
transitive system of linear maps

B
2 : EA2,B ÝÑ EA1,B, A1 ď A2.

It is required that:

(2) The maps B1 and B2 commute with each other, i.e., unite into a covariant
functor Cop ˆ C Ñ Vectk.
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(3) If the “product cells” iA ` B1 and iA ` B2, B1 ď B2, lie in the same
complex stratum, then the corresponding B1 is an isomorphism. Like-
wise, if iA1`B and iA2`B, A1 ď A2, lie in the same complex stratum,
then the corresponding B2 is an isomorphism.

Using the “Tits product” A ˝ B on real cells (see §7B below), one can
give (Remark 7.9(a)) a reformulation of the condition (3) in terms involving
only real cells.

Our main result, Theorem 3.4, says that PervpCn,Hq is equivalent to
the category of data pEA,B, B

1, B2q satsfying the above conditions. We also
present, in Theorem 7.11, a generalization to arrangements of affine hyper-
plane with real equations.

The simplest example for Theorem 3.4 is that of PervpC, 0q, the category
of perverse sheaves on C with only singularity at 0. Our description identifies
it with the category of commutative 3 ˆ 3-diagrams below with the arrows
at the outer rim being isomorphisms:

(0.1) E´,`
» // E0,` E`,`

»oo

E´,0 //

»

OO

»

��

E0,0

OO

��

E`,0oo

»

OO

»

��
E´,´ »

// E0,´ E`,´»
oo

Theorem 3.4 is strikingly similar to the much more standard description
of constructible sheaves on pCn,Sp0qq in terms of the quasi-regular cell de-
composition of Cn into the product cells iA ` B. Such a sheaf G is given
by its stalks GA,B at the iA ` B and generalization maps γ1, γ2 just like in
(11) and (12) but covariant in both cases. The condition that G is indeed
Sp0q-constructible means, just like in (3), that γ1 and γ2 are isomorphisms
whenever the source and target correspond to product cells that lie in the
same complex stratum.

Dually, an Sp0q-constructible cosheaf (i.e., from the derived category point
of view, a constructible complex Verdier dual to a sheaf) is given by a diagram
consisting of the GAB and maps δ1, δ2 contravariant in both cases, with the
same properties.
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Our result shows that perverse sheaves, occupying, intuitively, the middle
position between sheaves and cosheaves, admit a matching description that
is just as simple, by reversing one of the two sets of arrows.

Like a diagram describing a constructible sheaf, a matrix diagram has sev-
eral “layers” (corresponding to complex strata L˝C) with the property that
the arrows within each layer are isomorphisms, and therefore give a local sys-
tem on the corresponding L˝C . For a constructiible sheaf G this local system
is just the restriction of G to L˝C. For a perverse sheaf F this corresponds
to the restriction to L˝C of the hyperbolic restriction of F to the closure of
the stratum which is the complex flat LC, see [9], §5A. The arrows between
different layers describe the way such local systems are glued together.

For example, the outer rim of a diagram in (0.1) represents a local system
on Czt0u obtained by restricting the corresponding perverse sheaf from C to
Czt0u, while the full diagram can be seen as symbolically representing the
complex plane C itself. Further, the incoming and the outgoing arrows at the
middle term resemble the attractive and repulsive trajectories of a hyperbolic
vector field on C “ R2, very much in the spirit of the original philosophy of
hyperbolic localization [8, 5].

Our method of proof of Theorem 3.4 is similar to that of [9] but simplified,
stripped, so to say, to the bare bones. As in [9], the starting point is the
Cousin resolution E‚pFq of F P PervpCn,Hq associated to the system of
tube cells Rn` iA, A P C, see §4. The matrix diagram pEA,Bq corresponding
to F is the linear algebra data describing E‚pFq as a complex of cellular
sheaves on the cell decomposition formed by the cells iA ` B. That is, the
EA,B themselves are (up to sign factors) the stalks of the terms Ep “ EppFq.
The maps B1 are the generalization maps describing the sheaf structure on
each Ep. The maps B2 describe the differentials d : Ep Ñ Ep`1. The condition
(11) express the fact that each Ep is a sheaf. The condition (12) expresses the
requirement that d2 “ 0 in E‚pFq. The remaining conditions in (2) mean that
d is a morphism of cellular sheaves. Thus any datum pEA,B, B

1, B2q satisfying
(1)-(2) always gives a cellular complex E‚. The nontrivial part of Theorem
3.4 is that the condition (3) precisely guarantees that this complex is in fact a
perverse sheaf lying in PervpCn,Hq, in particular, that it is constructible with
respect to Sp0q. A crucial step here is a direct combinatorial identification of
the Verdier dual to E‚ (Proposition 4.6 and §5). The proof of Theorem 3.4
is finished in §6.
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We would also like to emphasize an important difference between the
present description and that of [9]. While the approach of [9] is centered
around the “real skeleton” Rn Ă Cn, the linear algebra data in the present
description are directly tied to all the cells of a cell decomposition of the un-
derlying stratified space. Therefore the new approach can be viewed as some-
what bridging the gap between the geometric definition of perverse sheaves
(via the t-structure on the derived category) and various combinatorial de-
scriptions (usually obtained by a judicious choice of extra data). Because of
its “local” nature, it may be applicable in a wider range of situations than
just hyperplane arrangements. A different “bridging” approach, close to the
ideas of MacPherson [11], is developed in [6].

The research of M.K. was supported by World Premier International Re-
search Center Initiative (WPI Initiative), MEXT, Japan.

1 Generalities on arrangements

We keep the notations and conventions of [9] which we recall for the reader’s
convenience. Thus:

H is a finite arrangement of linear hyperplanes in Rn, assumed central, i.e.,
Ş

HPHH “ t0u. We choose, once and for all, a linear equation fH : Rn Ñ R
for any H P H. We denote

sgn : R ÝÑ t`,´, 0u

the standard sign function.

pC “ CH,ďq is the poset of faces ofH, ordered by inclusion of the closures.
By definition, x, y P Rn lie in the same face iff sgn fHpxq “ sgn fHpyq for each
H P H. For a face C and H P H we denote

sHpCq “ sgn
`

fH |C
˘

.

The faces are locally closed polyhedral subsets of Rn forming a disjoint union
(stratification) of Rn. Each face is a topological cell, i.e., is homeomorphic
to Rp for some p.

If A,B P C, and p ą 0, the notation A ăp B means that A ď B and
dimpBq “ dimpAq ` p.
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A flat of H is any intersection of hyperplanes from H. This is understood
to include Rn itself (the intersection of the empty set of hyperplanes).

For any subset A Ă Rn we denote by LpAq the R-linear span of A and
denote

πA : Rn
ÝÑ Rn

{LpAq
the projection.

For any subspace L Ă Rn we denote LC “ LbR C Ă Cn its complexifica-
tion. In particular we have the complexified arrangement HC “ tHC, H P Hu
in Cn.

The space Cn is equipped with the complex stratification (C-stratification
for short) Sp0q whose strata are the generic parts of complexified flats, i.e.,
the locally closed subvarieties (C-strata)

L˝C “ LCz
ď

HČL

HC,

where L is a flat of H. It also has the stratification (decomposition) Sp2q into
the product cells C ` iD, C,D P C. This decomposition refines Sp0q.

We will also use the intermediate (or Björner-Ziegler) stratification Sp1q
of Cn into strata rC,Ds parametrized by intervals C ď D in C. By definition
(see [4] and [9] §2D), x` iy P Cn lies in rC,Ds, if:

(1.1) y P C, x P π´1
C pπCpDqq.

We consider each Spiq, i “ 0, 1, 2, as a poset of strata ordered by inclusion of
closures.

Ir is known (see [9] Prop. 2.10) that, denoting by ă the relation of
refinement of stratifications, we have

Sp2q ă Sp1q ă Sp0q.

In particular, we have the equivalence relations”Sp0q and”Sp1q on Sp2q “ CˆC
describing when the two product cells lie in one Sp0-stratum (i.e., C-stratum)
or in one Sp1q-stratum. For simplicity we write ” for ”Sp0q . We now describe
these equivalence relations more explicitly, starting with ”.

For a face C P C we denote

(1.2) HC
“

 

H P H|H Ą Cu

the set of hyperplanes from H containing H.
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Proposition 1.3. We have A` iB ” C ` iD, if and only if

HA
XHB

“ HC
XHD.

Proof: Let
HA`iB

C “
 

HC P HC|HC Ą A` iB
(

.

Then A ` iB ” C ` iD if and only if HA`iB
C “ HC`iD

C . But for H P H, we
have HC P HA`iB

C if and only if H P HA XHB. Indeed, let f “ fH : Rn Ñ R
be the linear equaltion of H. Then

fC : Cn
ÝÑ C, fC

px` iyq “ fpxq ` ifpyq, x, y P Rn,

is a C-linear equaltion of HC. So if x, y P Rn and fCpx ` iyq “ 0, the
fpxq “ fpyq “ 0.

We now describe more explicitly the relation ”Sp1q , i.e., the way how an
Sp1q-stratum is decomposed into product cells.

Proposition 1.4. Let C P C. Introduce an equivalence relation „C as the
equivalence closure of the following relation «C:

B1 «C B2 iff B1 ď B2 and B1 ` iC ” B2 ` iC.

Then, equivalence classes B of „C are on bijection with Sp1q-strata rC,Ds,
D ě C. More precisely, each such stratum consists of product cells B ` iC,
B P B for some „C-class B.

Proof: By definition (the first condition in (1.1)), each rC,Ds is the union
of the B ` iC where B runs over some subset B Ă C. We prove that B is in
fact an equivalence class of „C .

We first prove that each such B is a union of equivalence classes of „C .
For this it suffices to show that

B1 «C B2 ñ B1 ` iC ”Sp1q B2 ` iC.

Indeed, suppose B1 ď B2 and B1 ` iC ” B2 ` iC. Then, in the notation of
(1.2),

(1.5) HB1 Ą HB2 and HB1 XHC
“ HB2 XHC .
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The condition B1 ` iC ”Sp1q B2 ` iC that we need to prove, means that B1

and B2 lie in the same region of the form π´1
C pπCpDqq, i.e., that

(1.6) sHpB1q “ sHpB2q for each H P HC .

By (1.5), for H P HC we have sHpB1q “ 0 iff sHpB2q “ 0. On the other
hand, since B1 ď B2, the difference between sHpB1q and sHpB2q can only be
that sHpB2q P t˘u while sHpB1q “ 0. But this is impossible by (1.5). So
B1 ` iC ”Sp1q B2 ` iC as claimed.

We now prove that B is a single equivalence class of „C . For this we
note that the equivalence relation on B generated by ď (inclusion of closure
of faces) has a single equivalence class. Indeed, rC,Ds is known to be a cell
(in particular, connected) decomposed into product cells B ` iC, B P B.
So the relation of inclusion of closures on these cells generates but a single
equvalence class.

But if B1 ď B2 and B1 ` iC ”Sp1q B2 ` iC, then we have (1.6) and so
(1.5) so B1 «C B2.

2 Generalities on cellular sheaves and per-

verse sheaves

We fix a base field k and denote Vectk the category of k-vector spaces. By a
sheaf we always mean a sheaf of k-vector spaces. For a topological space X
we denote by ShX the category of sheaves on X and by Db ShX the bounded
derived category of ShX . For V P Vectk we denote by V X the constant sheaf
on X with stalk V .

If pX,Sq is a stratified space, then we denote ShX,S the category of S-
constructible sheaves on X, i.e., sheaves F which are locally constant, with
finite-dimensional stalks, on each stratum of S. We denote by Db

S ShX Ă

Db ShX the full subcategory of S-constructible complexes, i.e., of complexes
F such that each cohomology sheaf H i

pFq lies in ShX,S . The triangulated
category Db

S ShX has a perfect dualty, the Verdier duality, denoted F ÞÑ

DpFq.
By a cell we mean a topological space σ homeomorphic to Rd for some

d. A cellular space is a stratified space pX.Sq such that each stratum is a
cell. We consider S as the poset of cells with the order ď given bu inclusion
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of the closures. A cellular sheaf, resp. cellular complex on a cellular space
pX,Sq is an S-constructible sheaf, resp. complex on X. For such a sheaf,
resp. complex F and a cell jσ : σ ãÑ X we denote by

F‖|σ “ RΓpσ, j˚σFq

the stalk of F at σ. We recall from [9] §1D the concept of a quasi-regular
cellular space as well as the following fact.

Proposition 2.1. Let pX,Sq be a quasi-regular cellular space. Then ShpX,Sq
is equivalent to the category of representations of the poset pS,ďq, i.e., of data
formed by:

(0) Vector spaces Gσ, σ P S.

(1) Linear maps γσ,σ1 : Gσ Ñ Gσ1 given for each σ ď σ1 and satisfying the
transitivity relations:

(2) γσ,σ2 “ γσ1,σ2 ˝ γσ,σ1 for any σ ď σ1 ď σ2.

Explicitly, to a sheaf G P ShpX,Sq there corresponds the datum formed by
the stalks Gσ “ G‖σ and the generalization maps γσ,σ1 : G‖σ Ñ G‖σ1.

We specialise to the situation of §1 and take X “ Cn. The stratifications
Sp1q and Sp2q are quasi-regular cell decompositions of Cn, while Sp0q is not.

We will use the involution

(2.2) τ : Cn
Ñ Cn, px` iyq ÞÑ py ` ixq.

This involution is not C-linear but it preserves H and the stratifications Sp0q
(stratum by stratum, i.e., τ preserves each stratum) and Sp2q (as a whole,
i.e., τ takes each stratum to another stratum). But it does not preserve Sp1q.
We denote by τSp1q the new stratification of Cn whose strata are obtained
by applying τ to the strata of Sp1q.

Proposition 2.3. Let F P ShpCn,Sp2qq. Suppose that F is both Sp1q-constructible
and τSp1q-constructible. Then F is Sp0q-constructible.

Proof: By definition, being Sp0q-construcible means that for inclusion B1 `

iC1 ď B2 ` iC2 of (closures of) product cells such that B1 ` iC1 ” B2 ` iC2,
the corresponding generalization map

γB1`iC1,B2`iC2 : F‖B1`iC1
ÝÑ F‖B2`iC2
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is an isomorphism. Now, Sp2q “ C ˆ C is the product stratification, and,
moreover, the stratification of each complexified flat of H into Sp2q-strata
is also a product stratification. So it suffices to prove the isomorphicity of
γB1`iC1,B2`iC2 in two separate cases, horizontal and vertical:

(1) B1 ď B2, C1 “ C2 “ C, and B1 ` iC ” B2 ` iC.

(2) B1 “ B2 “ B, C1 ď C2 and B ` iC1 ” B ` iC2.

Now, inclusions of type (1) generate, by Proposition 1.4, inclusions of Sp2q-
cells within the same Sp1q-cell. Similarly, inclusions of type (2) generate inclu-
sions of Sp2q-cells within the same τSp1q-cell. So if F is both Sp1q-constructible
and τSp1q-constructible, then the generalization maps corresponding to (1)
and (2) are all isomorphisms hence F is Sp0q-constructible.

We denote by PervpCn,Hq Ă Db
Sp0q ShCn the category of perverse sheaves

(with respect to the middle perversity), which are are Sp0q-constructible. Ex-
plicitly, we normalize the perversity conditions by saying that F is perverse,
if:

(P´) The sheaf Hp
pFq is supported on a subvariety of complex codimension

ě p.

(P`) If S is a stratum of Sp0q of complex codimension p, then the sheaves
Hi
SpFq of hypercohomology with support in S, are zero for i ă p.

In this normalization, a perverse sheaf reduces, on the open stratum, to
a local system in degree 0. As well known , the condition (P`) for F is
equivalent to (P´) for the shifted Verdier dual

F˚ “ DpFqr´2ns.

The functor F ÞÑ F˚ is thus a perfect duality on PervpCn,Hq. Since the
involution τ preserves Sp0q, the pullback functor τ´1 preserves the category
PervpCn,Hq and so this category has another perfect duality

(2.4) F ÞÑ F τ :“ τ´1F˚.

3 Matrix diagrams and the main result

Definition 3.1. A matrix diagram of typeH is a collection E of the following
data:

10



(M0) Finite-dimensional k-vector spaces EA,B given for any two faces A,B P
C.

(M1) Linear maps

B
1
“ B

1
pA|B1,B2q

: EA,B1 ÝÑ EA,B2 , given for any faces A and B1 ď B2,

B
2
“ B

2
pA2,A1|Bq

: EA2,B ÝÑ EA1,B, given for any faces A1 ď A2 and B,

satisfying the following conditions:

(M2) The maps B1, B2 define a representation of the poset Cop ˆ C in Vectk.
That is, we have

B
1
pA|B2,B3q

˝ B
1
pA|B1,B2q

“ B
1
pA|B1,B3q

, @ A and B1 ď B2 ď B3;

B
2
pA2,A1|Bq

˝ B
2
pA3,A2|Bq

“ B
2
pA3,A1|Bq

, @ A1 ď A2 ď A3 and B;

B
1
pA2,A1|B2q

˝ B
2
pA2|B1,B2q

“ B
2
pA1|B1,B2q

˝ B
1
pA2,A1|Bq

, @ A1 ď A2 and B1 ď B2.

(M31) If A and B1 ď B2 are such B1`iA ” B2`iA (that is, these product cells
lie in the same complex stratum), then B1

pA|B1,B2q
is an isomorphism.

(M32) Similarly, if A1 ď A2 and B are such that B ` iA1 ” B ` iA2, then
B2
pA2,A1|Bq

is an isomorphism.

We denote by MH the category of matrix diagrams of type H. This
category is abelian and has a perfect duality

(3.2) E ÞÑ E˚, pE˚qA,B “ pEB,Aq
˚

(“hermitian conjugation”) with the maps B1 for E˚ being the dual of the B2

for E and the B2 for E˚ being dual to the B1 for E.

Remark 3.3. We note that any matrix diagram is “symmetric” in the fol-
lowing weak sense. Since B` iA and A` iB lie in the same complex stratum
by Proposition 1.3, we have an isomorphism (non-canonical) EA,B » EB,A. It
is given by the monodromy of the “layer” (system of isomorphic maps B1, B2)
of the matrix diagram corresponding to this complex stratum.

Our main result is as follows.

Theorem 3.4. We have mutually quasi-inverse equivalences of categories

PervpCn,Hq
E //MH
G
oo

taking the twisted Verdier duality F ÞÑ F τ to the duality (3.2).
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4 From a perverse sheaf to a matrix diagram:

the Cousin complex

Here we construct a functor E : PervpCn,Hq Ñ MH. We use the general
analysis of perverse sheaves on pCn,Hq in terms of their Cousin complexes
[9].

For a face A P C we denote λA : Rn ` iA ãÑ Cn the embedding of the
corresponding “tube cell”.

Proposition 4.1. Let F P PervpCn,Hq. Then:

(a) The complex λ!
AF reduces to a single sheaf rEA “ rEApFq in degree

codimpAq.

(b) The complex λA˚ rEApFq also reduces to a single sheaf EA “ EApFq
supported on Rn ` iA.

(c) EApFq, considered as a sheaf on Rn` iA, is the pullback, with respect
to the projection to Rn, of a sheaf on Rn, constructible with respect to the
stratification C.

Proof: For A “ t0u, this is Prop. 4.9(a) of [9]. For an arbitrary A this follows
by further applying Prop. 3.10 and Cor. 3.22 from [9].

Further, the standard coboundary maps on the sheaves of cohomology
with support give the Cousin complex

(4.2) E‚pFq “
"

à

codimpAq“0

EApFq
δ
Ñ

à

codimpAq“1

EApFq
δ
Ñ ¨ ¨ ¨

δ
Ñ E0pFq

*

which is a complex of sheaves on Cn canonically isomorphic to F in Db ShCn ,
see [9], Cor. 4.11. The grading in E‚pFq is by codimpAq.

Further, the matrix elements of δ which are morphisms of sheaves

δA2,A1 : EA2pFq ÝÑ EA1pFq, codimpA2q “ codimpA1q ´ 1,

are nonzero only if A1 ă1 A2. The condition δ2 “ 0 means that the δA2,A1

anticommute with each other. That is, for any faces A1, A2 ‰ A12, A3 such
that A1 ď1 A2, A

1
2 ď1 A3 (a commutative square in C as a category), we have

δA2,A1 ˝ δA3,A2 “ ´δA12,A1
˝ δA3,A12

: EA3pFq ÝÑ EA1pFq.
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This anticommutativity can be converted to commutativity in a standard
way by “introducing signs”. More precisely, for any cell σ let

orpσq “ Hdimpσq
c pσ,kq

be the 1-dimensional orientation vector space of σ. Note that orpσqb2 is
canonically identified with k. In particular, every face A being a cell, we
have the space orpAq. For any A1 ă1 A2 we have a canonical isomorphism

ψA1,A2 : orpA1q ÝÑ orpA2q

which is the matrix element of the differential in the cellular cochain com-
plex of A2 with coefficients in k. For A1 ď1 A2, A

1
2 ď1 A3 as above, the

isomorphisms ψ anticommute. So we get the following:

Proposition 4.3. (a) The morphisms

BA2,A1 “ δA2,A1 b ψ
´1
A1,A2

: EA2pFq bk orpA2q ÝÑ EA1pFq bk orpA1q

satisfy the commutativity constraints. That is, for any A1 ď1 A2, A
1
2 ď1 A3

as above,
BA2,A1 ˝ BA3,A2 “ BA12,A1

˝ BA3,A12
.

(b) The maps BA2,A1, A1 ă1 A2 extend to a representation of the poset Cop

in ShCn which takes A to EApFq b orpAq. In other words, for any A1 ăp A2,
p ě 1, we have a morphism of sheaves

BA2,A1 : EA2pFq b orpA2q ÝÑ EA1pFq b orpA1q

defined as
BA2,A1 “ BA11,A1

˝ BA12,A
1
1
˝ ¨ ¨ ¨ ˝ BA2,A1p´1

,

for any chain A1 ă1 A
1
1 ă1 ¨ ¨ ¨ ă1 A

1
p´1 ă1 A2, the result being indepen-

dent on the choice of such chain. These morphisms satisfy the transitivity
condition for any A1 ăp A2 ăq A3.

Let now A,B P C be two faces. We associate to F P PervpCn,Hq the
vector space

EA,B “ EA,BpFq :“ pEApFq b orpAqqB`i0,

the stalk of EApFqborpAq at the cell B`i0 Ă Rn`iA. Because of Proposition
4.1(c), we have a canonical identification

(4.4) EA,BpFq » pEApFq b orpAqqB`iA1 , A1 ď A
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with the stalk at B ` iA1 for any A1 ď A.

If we have faces A and B1 ď B2, then we define

B
1
pA|B1,B2q

: EA,B1pFq ÝÑ EA,B2pFq

to be the generalization map of the cellular sheaf EApFqborpAq from B1` i0
to B2 ` i0.

If we have faces A1 ď A2 and B, then we define

B
2
pA1,A2|Bq

: EA2,BpFq ÝÑ EA1,BpFq

to be the map of stalks at B` i0 induced by the morphism of sheaves BA2,A1 .

Proposition 4.5. The system EpFq “ pEA,BpFq, B1, B2q is a matrix diagram
of type H. We have therefore a functor

E : PervpCn,Hq ÝÑMH, F ÞÑ EpFq.

Proof: We first prove the conditions (M2) of Definition 3.1 of a matrix dia-
gram. The first condition in (M2) follows from the fact that EApFq b orpAq
is a cellular sheaf amd so its generalization maps are transitive. The sec-
ond condition in (M2) follows from Proposition 4.3(b). Finally, the third
condition in (M2) follows from the fact that BA2,A1 is a morphism of cel-
lular sheaves and so the maps it induces on the stalks, commute with the
generalization maps.

Let us prove the condition (M31) of Definition 3.1. By construction,
EA “ EApFq is locally constant on the intersection of each stratum of Rn` iA
(i.e., of each Rn` iA1, A1 ď A with each C-stratum. So if B1` iA ” B2` iA
and B1 ď B2, then the generalization map on the stalks

γB1`iA,B2`iA : pEAqB1`iA ÝÑ pEAqB2`iA

is an isomorphism. But in virtue of (4.4), this map is identified with

B
1
pA|B1,B2q

: EA,B1 ÝÑ EA,B2

and so the latter map is an isomorphism, proving (31).

The property (M32) for EpFq will follow from (M31) for EpF τ q if we
prove the following fact.
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Proposition 4.6. The system EpF τ q is identified with the dual system to
EpFq, that is, EA,BpF τ q is identified with pEB,ApFqq˚ so that the maps B1

(resp. B2) for EpF τ q are identified with the duals to the B2 (resp. B1) for
EpFq.

This will be done in the next section.

5 Verdier duality and the Cousin complex

In this section we rewrite the Cousin complex E‚pFq in a way manifestly
compatible with Verdier duality. We start by one more general remark on
cellular sheaves. .

Let pX,Sq be a quasi-regular cellular space with cell embeddings denoted
jσ : σ ãÑ X. Let G be a cellular sheaf on X given by the linear algebra data
pGσ, γσ,σ1q of Proposition 2.1. Then, these data give a complex in the derived
category Db ShX :

(5.1)
à

dimpσq“0

jσ!Gσσ
ÝÑ

à

dimpσq“1

jσ!Gσσ
r1s ÝÑ ¨ ¨ ¨

whose total object is G, see [9] (1.12). We say that (5.1) is a resolution of
G. Note that given just vector spaces Gσ, the datum of such a complex is
equivalent to the datum of transitive γσ,σ1 , i.e., of a cellular sheaf with these
stalks.

We apply this to the sheaf EApFq on the cellular space formed by Cn with
the stratification Sp2q into product cells B` iA. Given any such cell, we have
a commutative diagram of embeddings

B ` iA
εBA

&&
lBA

��

kBA
// Rn ` iA

λA
��

B ` iRn
κB

// Cn.

Proposition 5.2. let V be a k-vector space. Then we have a canonical
identification

λA˚ k
BA
! V B`iA » κB! l

BA
˚ V B`iA.

15



Proof: The stalk of either of these sheaves at x` iy P Cn is

#

V, if x P B and y P A,

0, otherwise.

We will denote the sheaf in the proposition by εBA!˚ V B`iA and refer to it
as a 1-cell sheaf of p!˚q-type. We similarly denote 1-cell sheaves of p˚!q-type
as

εBA˚! V B`iA “ λA! k
BA
˚ V B`iA » κB˚ l

BA
! V B`iA.

Proposition 5.3. Let F P PervpCn,Hq and A P C. Then the sheaf EApFq
has a resolution (in Db ShCn) of the form

à

dimpBq“0

εBA!˚ EABB`iA ÝÑ
à

dimpBq“1

εBA!˚ EABB`iAr1s ÝÑ ¨ ¨ ¨

with the differentials given by the maps B1.

Proof: This is an instance of (5.1). It simply reflects the fact that EA is the
sheaf on Cn coming from the sheaf on Rn` iA which is pulled back from the
C-constrructible (cellular) sheaf on Rn with stalks EAB and generalization
maps B1.

Corollary 5.4. Any F P PervpCn,Hq has a canonical resolution (in Db ShCn)
in the form of the double complex

À

codimpAq“0
dimpBq“0

εBA!˚ EAB b orpAq
B`iA

��

//
À

codimpAq“0
dimpBq“1

εBA!˚ EAB b orpAq
B`iA

r1s

��

// ¨ ¨ ¨

À

codimpAq“1
dimpBq“0

εBA!˚ EAB b orpAq
B`iA

//

��

À

codimpAq“1
dimpBq“1

εBA!˚ EAB b orpAq
B`iA

r1s //

��

¨ ¨ ¨

...
...

with the horizontal differentials given by the maps B1 and the vertical differ-
entials given by the B2.
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Proof: This is just the Cousin complex written in terms of 1-cell sheaves (of
p!˚q-type).

We now prove Proposition 4.6. For this, we apply the shifted Verdier
duality to the double complex in Corollary 5.4 and note the three standard
facts:

• D interchanges f! and f˚.

• For a cell σ of real dimension d and a finite-dimensional k-vector space
V , we have DpV σq “ V ˚ b orpσq

σ
rds.

• orpσqb2 » k canonically.

We conclude that F˚ has a resolution in Db ShCn in the form of the double
complex
(5.5)

À

dimpAq“0
codimpBq“0

εBA˚! E˚AB b orpBq
B`iA

��

//
À

dimpAq“0
codimpBq“1

εBA˚! E˚AB b orpBq
B`iA

��

// ¨ ¨ ¨

À

dimpAq“1
codimpBq“0

εBA˚! E˚AB b orpBq
B`iA

r1s //

��

À

codimpAq“1
dimpBq“1

εBA!˚ EAB b orpAq
B`iA

r1s //

��

¨ ¨ ¨

...
...

with the horizontal differentials given by the duals to the B2 for EpFq and the
vertical differentials given by the duals of the B1 for EpFq. It corresponds,
therefore, to the dual system EpFq˚.

On the other hand, we can form the Cousin resolution of F˚ but using
the real, not imaginary tube cells κB : B` iRn ãÑ Cn. This gives the sheaves

qEBpF˚q “ κB˚ κ
!
B F˚rcodimpBqs

and the resolution

qE‚pF˚q “
"

à

codimpBq“0

qEBpF˚q ÝÑ
à

codimpBq“1

qEBpF˚q ÝÑ ¨ ¨ ¨

*
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of F˚. Writing out each EBpF˚q in terms of 1-cell sheaves of type p˚!q, we
get a double complex of the form (5.5) which is a resolution of F˚. But
the Cousin resolution of F˚ with respect to the cells B ` iRn is the same
as the Cousin resolution of τ´1F˚ with respect to the the cells Rn ` iA.
We conclude that the complex (5.5), associated to EpFq˚ must reduce, after
applying τ , to the complex of Corollary 5.4 describing EpF˚q. This means
that the linear algebra data underlying the two complexes must be identified,
i.e., EpFq˚ » EpF τ q.

This finishes the proof of Propositions 4.6 and 4.5.

6 From a matrix diagram to a perverse sheaf

We now construct a functor

G :MH ÝÑ PervpCn,Hq

by reversing the procedure used to extract the matrix diagram EpFq from
the Cousin complex E‚pFq.

Let E “ pEA,B, B
1, B2q PMH be given. For each face A P C we form the

cellular shef EA “ EApEq on pCn,Sp2qq which is supported on Rn ` iA and
pulled there from the cellular sheaf on pRn, Cq with stalks EA,B b orpAq and
generalization maps B1 b Id. In other words, EA is constant on each B ` iA
and

(6.1) EA|B`iA “ EA,B b orpAq
B`iA

Further, the commuting maps B2 in E give, after tensoring with the orpAq,
anticommuting morphisms of sheaves

δA2,A1 : EA2pEq ÝÑ EA1pEq, A1 ă1 A2,

and so we can form the complex of sheaves

E‚pEq “
"

à

codimpAq“0

EApEq
δ
ÝÑ

à

codimpAq“1

EApEq
δ
ÝÑ ¨ ¨ ¨

*

.

Proposition 6.2. The complex E‚pEq is Sp0q-constructible.
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Proof: By definition, E‚ “ E‚pEq is Sp2q-constructible. By Proposition 2.3,
it suffices to prove that it is both S1q-constructible and τSp1q-constructible.

Let us first prove that E‚ is S1q-constructible. By Proposition 1.4 this is
equivalent to the following condition:

(Q) If C1 ď C2 and D are such that C1 ` iD ” C2 ` iD, then the general-
ization map

γC1`iD,C2`iD : E‚‖C1`iD
ÝÑ E‚‖C2`iD

is a quasi-isomorphism of complexes.

We claim that γC1`iD,C2`iD is in fact an isomorphism, not just a quasi-
isomorphism of complexes. More precisely, we claim that for any summand
EA of E‚, the corresponding generalization map

γEAC1`iD,C2`iD
: EA‖C1`iD

ÝÑ EA‖C2`iD

is an isomorphism of vector spaces. To see this, note that by construction,
see (6.1), we have for any C,D:

(6.3) EA‖C`iD “

#

EA,C b orpAq, if D ď A,

0, otherwise.

So

γEAC1`iD,C2`iD
“

#

B1 b Id : EA,C1 b orpAq Ñ EA,C2 b orpAq, if D ď D,

0 : 0 ÝÑ 0, otherwise.

So the fact that it is an isomorphism, follows from condition (3’) of Definition
3.1 of matrix diagram and the next lemma.

Lemma 6.4. Let C1, C2 and D be such that C1 ` iD ” C2 ` iD lie in the
same complex stratum. Let A ě D. Then C1 ` iA ” C2 ` iA.

Proof: By Proposition 1.3 we have

(6.5) HC1 XHD
“ HC2 XHD.

If A ě D, then HA Ă HD, so intersecting (6.5) with HA, we get HC1XHA “

HC2 X HA, i.e., that C1 ` iA ” C2 ` iA. This proves Lemma 6.4 and the
condition (Q).
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We now prove that E‚pEq is τSp1q-constructible. For this it suffices to
prove that the shifted Verdier dual E‚pEq˚ is τSp1q-constructible. But writing
E‚pEq as the total object of the double complex as in Corollary 5.4, and
applying the duality term by term, we find that E‚pEq˚ is the total object
of a double complex as in (5.5) which is the same as the complex of sheaves
qE‚pE˚q corresponding to the dual matrix diagram E˚ and the system of tube
cells B ` iRn obtained from the system of the Rn ` iA by applying τ . So

(6.6) E‚pEq˚ » qE‚pE˚q “ τ´1E‚pE˚q

is τSp1q-constructible because E‚pE˚q is Sp1q-constructible by the above. This
finishes the proof of Proposition 6.2.

Proposition 6.7. The complex E‚pEq is perverse. We have therefore a func-
tor

G :MH ÝÑ PervpCn,Hq, E ÞÑ E‚pEq.

Proof: We first prove the condition pP´q of perversity: that Hp
pE‚pEqq

is supported on a complex submanifold of complex codimension ě p. By
construction, the pth term EppEq “

À

codimpAq“p EApEq is supported on the

union of the Rn `A where A runs over faces of H of real codimension p. So
EppEq and therefore Hp

pE‚pEqq is supported on the union of Rn ` iL where
L runs over flats of H of real codimension p. But since, by Proposition 6.2,
E‚pEq is Sp0q-constructible, SuppHp

pE‚pAqq is a complex manifold, in fact, a
finite-union of C-linear subspaces M Ă Cn. But if such an M lies in Rn` iL,
it must lie in L ` iL “ LC which has complex codimension p. This proves
pP´q for E‚pEq.

Now, pP`q is equivalent to pP´q for E‚pEq˚. By (6.6), we have E‚pEq˚ “
τ´1EpE˚q, and pP´q for EpE˚q has just been proved.

Proposition 6.8. The functors E and G are quasi-inverse to each other and
so are equvalences of categories.

Proof: That G ˝E » Id is clear: the Cousin complex of F is a representatve
of F . Conversely, suppose we start from a matrix diagram E “ pEA,B, B

1, B2q
and form the complex E‚ “ E‚pEq whose data, as a complex of cellular
sheaves, is completely equivalent to the bicomplex as in Corollary 5.4, i.e.,
yo E. We need to prove that the “intrinsic Cousin complex” associated to
E‚, is E‚ itself. This argument is elementary and similar to [9], §6.
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More precisely, for a face D let λD : Rn ` iD ãÑ Cn be, as before, the
embedding. It is enough to prove that for any k-vector space V (we will need
V “ EAB)

λD˚ λ
!
D

`

εBA!˚ V B`iA

˘

“

#

0, if D ‰ A,

εBD!˚ V B`iD, if D “ A.

This reduces to the case V “ k which is a Cartesian product situation. So
we reduce to a statement about the second factor only, that is, denoting by
jC : C Ñ Rn the embedding of a face C P C, that

j!
D jA˚ kA “ 0, if D ‰ A.

(of course, the LHS is equal to kD, of D “ A). But this claim is clear: by
Verdier duality, it is equivalent to

j˚D jA! kA “ 0, if D ‰ A,

which is completely obvious, as jA! kA is just the extension of the constant
sheaf by 0 from A to A and then to Rn.

This finishes the proof of Theorem 3.4.

7 Examples and complements

A. The 1-dimensional case. Let n “ 1 and let H consist of the “hy-
perplane” 0 P R. The corresponding category PervpC, 0q consists of perverse
sheaves on C with the possible singularity at 0.

The poset C of faces has 3 elements: R´, t0u and R`, so a matrix diagram
has the form (0.1) or, with the notations for the arrows spelled out,

(7.1) E´,`
»

B2
// E0,` E`,`

»

B2
oo

E´,0
B2 //

» B1

OO

» B1

��

E0,0

B1

OO

B1

��

E`,0
B2oo

»B1

OO

»B1

��
E´,´ »

B2 // E0,´ E`,´»

B2oo
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Theorem 3.4 says therefore that PervpC, 0q is equivalent to the category of
diagrams (7.1). Let us compare this with other known descriptioms. The
most classical description [1, 7] is in terms of diagrams of vector spaces

(7.2) Φ
a //

Ψ
b

oo , IdΨ´ab is invertible.

The approach of [9] gives rise to another description, in terms of diagrams of
vector spaces

(7.3)

E´
δ´
// E0

γ´oo γ` //
E`

δ`
oo

γ´δ´ “ IdE´ , γ`δ` “ IdE` ,

γ´δ` : E` Ñ E´, γ`δ´ : E´ Ñ E` are invertible.

See [9] §9A for a direct constriction of an equivalence between the categories
of diagrams (7.2) and (7.3). Let us explain an equivalence between the cate-
gories of diagrams (7.1) and (7.3). Given a diagram as in (7.1), we consider
first its middle horizontal part (the 0th row) which gives the straight arrows
δ`, δ´ in

(7.4) E´,0
δ´“B2

// E0,0

γ´

��

γ`

DD
E`,0

δ`“B2oo

The curved arrows γ˘ are defined as the compositions along the correspond-
ing squares in (7.1). That is, γ´ is the composition

E0,0
B1

ÝÑ E0,`
pB2q´1

ÝÑ E´,`
pB1q´1

ÝÑ E´,0,

while γ` is the composition

E0,0
B1

ÝÑ E0,´
pB2q´1

ÝÑ E`,´
pB1q´1

ÝÑ E`,0.

The commutativity of (7.1) and invertibility of the arrows at its outer rim
implies easily that the diagram (7.4) is of the type (7.3). Further, this proce-
dure gives an equvialence between the categories of diagrams (7.1) and (7.3).
We leave the verifications to the reader.
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B. Comparison with [9]. For a general arrangement H of linear hy-
perlplanes in Rn we gave, in [9], a description of PervpCn,Hq in terms of
“single-indexed” diagrams

Q “
`

pEAqAPC, pγA1,A2 , δA2,A1qA1ďA2

˘

,

where:

• EA are finite-dimensional k-vector spaces given for any A P C.

• γA1,A2 : EA1 Ñ EA2 , resp. δA2,A1 : EA2 Ñ EA1 are linear maps forming
a representation, resp. an anti-representation of C on pEAq and satis-
fying the axioms of monotonicity (γA1,A2δA2,A1 “ Id), transitivity and
invertibility, see [9].

Let us compare this with the “matrix” description given by Theorem 3.4.
By the construction of [9], the partial data pEA, γA1,A2q are just the linear
algebra data describing the cellular sheaf i!RFrns on Rn, where iR : Rn ãÑ Cn

is the embedding. Therefore

EA “ E0,A, γA1,A2 “ B
2

is just one column of the matrix diagram pEA,B, B
1, B2q corresponding to F .

Further, any EA,B is, by our construction, the stalk at B` iA of the sheaf
jA˚j

!
AborpAqrcodimpAqs, where jA : Rn` iA ãÑ Cn is the embedding. There

stalks were described in [9], Cor. 3.22, and we get

(7.5) EA,B “ EB˝A,

where B˝A is “the first cell in the direction A visible from B. More precisely,
(see [9] Prop. 2.3) B ˝ A is the (uniquely defined) cell containing the points

(7.6) p1´ εqb` εa, b P B, a P A, 0 ă ε ! 1.

In particular, EA,0 is also identified with EA, and the maps B1 connecting
different EA,0, are precisely the δA2,A1 , as both appear from the differential
in the Cousin complex. So the partial data pEA, δA2,A1q is just the 0th row
of pEA,Bq.

The operation ˝ was introduced by Tits [12] in 1974 in the context of
buildings (which includes arrangements of root hyperplanes) and later, in-
dependently, by Björner, Las Vergnas, Sturmfels, White and Ziegler [3] for
oriented matroids (which includes all hyperplane arrangements). For simplic-
ity, we will refer to ˝ as the Tits product. Let us list some of its properties.
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Proposition 7.7. (a) The Tits product ˝ is associative (but not commu-
tative).

(b) Further, ˝ is monotone in the second argument (but not in the first
one). That is, if A1 ď A2, then B ˝ A1 ď B ˝ A2 for any B.

(c) In the notation of (1.2) we have

HB˝A
“ HB

XHA.

In particular (by Proposition 1.3), B ˝ A and A ˝ B lie in the same
complex stratum.

(d) Let B,A1, A2 P C be such that A1 ď A2. Then the following are equiv-
alent:

(di) B ` iA1 and B ` iA2 lie in the same complex stratum.

(dii) B ˝ A1 “ B ˝ A2.

Proof: Parts (a) and (b) are well known, see, e.g., [9] Props. 2.3(a) and
2.7(a). Part (c) follows at once from (7.6). Let us prove (d). Suppose (di)
holds. Then, by Proposition 1.3,

(7.8) HB
XHA1 “ HB

XHA2 .

Since A1 ď A2, we have B ˝A1 ď B ˝A2 by (b). But (7.8) means, in virtue of
(c), that HB˝A1 “ HB˝A2 , and this implies that dimpB ˝A1q “ dimpB ˝A2q.
Therefore we must have B ˝ A1 “ B ˝ A2, that is, (dii) holds.

Conversely, suppose (dii) holds. Then, by (c), we have (7.8) so B ` iA1

and B` iA2 lie in the same complex stratum by Proposition 1.3, that is, (di)
holds.

Remarks 7.9. (a) Part (c) of Proposition 7.7 can be compared, via (7.5),
with Remark 3.3. That is, even though B ˝ A ‰ A ˝ B in general, EB˝A is
isomorphic to EA˝B.

(b) Part (d) of Proposition 7.7 means that the conditions in the axioms
(M31) and (M32) of a matrix diagram can be formulated in terms of the Tits
product. More precisely, the conditions that B` iA1 ” B` iA2 (i.e., B` iA1

and B ` iA2 lie in the same complex stratum) in in (M32) directly means
that B ˝ A1 “ B ˝ A2. The condition that B1 ` iA ” B2 ` iA in (M31) is
equivalent to A` iB1 ” A` iB2, i.e., to A ˝B1 “ A ˝B2.
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To summarize, the matrix diagram pEA,Bq contains the same vector spaces
as the single-indexed one pEAq but with repetitions, being a kind of “Hankel
matrix” with respect to the Tits product ˝. It is these repetitions that allow
us to write the relations among the arrows B1, B2 of a matrix diagram in such
a simple, local form: as commutativity of elementary squares.

C. Affine arrangements. Let now H be a, possibly infinite, arrange-
ment of affine hyperplanes in Rn. For any affine hyperplane H P H with real
affine equation fHpxq “ a, where fH : Rn Ñ R is R-linear nd a P R, let
H Ă Rn be the linear hyperplane with the equation fHpxq “ 0. We denote
H the linear arrangement of the hyperplanes H, H P H (ignoring possible
repetitions) and assume that:

• H is closed (as a subset in Rn) and locally finite, i.e., any x P Rn has a
neighborhood meeting only finitely many affine hyperplanes from H.

• H is finite.

The concepts of flats of H, their complexifications and the stratification
Sp0q of Cn into generic parts of complexified flats are defined analogously to
the case of linear arrangements. We then have the category PervpCn,Hq of
perverse sheaves on Cn smooth with respect to Sp0q. Let us give a modifica-
tion of Theorem 3.4 to the case of affine arrangements as above.

We denote Sp2q the quasi-regular cell decompostion of Cn into product
cells of the form iA`B with A P C and B P C.

Proposition 7.10. The decomposition Sp2q refines Sp0q.

Proof: This is a consequence of the following obvious remark. Let f : Rn Ñ R
be an R-linear function and a P R. Denote by fC : Cn Ñ C the complexifi-
cation of f . Then, for x, y P Rn the condition fCpx ` iyq “ a is equivalent
to fpxq “ a amd fpyq “ 0.

Theorem 7.11. The category PervpCn,Hq is equivalent to the category of
diagrams of finite-dimensional k-vector spaces of the form

EA,B P Vectk, A P C, B P C,
B
1 :pA|B1,B2q: EA,B1 ÝÑ EA,B2 , B1 ď B2,

B
2
pA1,A2|Bq

: EA1,B ÝÑ EA2,B, A1 ď A2,

such that:
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(A2) The maps B1, B2 define a representation of Cop
ˆ C in Vectk.

(A3) If iA`B1 and iA`B2 lie in the same stratum of Sp0q, then B1
pA|B1,B2q

is an isomorphism. If iA1 `B and iA2 `B lie in the same stratum of
Sp0q, then B2

pA1,A2|Bq
is an isomorphism.

Proof: It can be obtained, as in [9] §9B, by an amalgamation argument
from the linear case, using the fact that perverse sheaves form a stack of
categories. Alternatively, one can perform a direct analysis of the Cousin
complex associated to F P PervpCn,Hq and formed by the sheaves

jA˚j
!
AFrcodimpAqs, A P C, jA : Rn

` iA ãÑ Cn.

Example 7.12. Consider the arrangement of two points 0, 1 in R. Then

C “ tRă0, 0, p0, 1q, 1,Rą1u, C “ tR´, 0,R`u,

The decomposition Sp2q of C into the product cells is depicted in Fig. 1.

‚ ‚
0 Rp0, 1q Rą1Ră0

1

Figure 1: Product cells for the arrangement H “ t0, 1u Ă R.

Theorem 7.11 identifies PervpC,Hq with the category of commutative
diagrams of the form

Eă0,`
» // E0,` Ep0,1q,`

»oo » // E1,` Eą1,`
»oo

Eă0,0

»

OO

»

��

// E0,0

OO

��

Ep0,1q,0oo

»

OO

»

��

// E1,0

OO

��

Eą1,`
oo

»

OO

»

��
Eă0,´ »

// E0,´ Ep0,1q,´»
oo

»
// E1,´ Eą1,´»

oo

Such a diagram can be seen as an amalgamation of two diagrams of the form
(7.1).
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