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G-minimal varieties are quantum minimal

SERGEY GALKIN

Abstract. We show that G-minimal Fano varieties are quantum minimal.

The aim of this note is to provide a conceptual explanation (theorem 15, remarks 23.24) for all discovered (so
far) phenomena of minimality in quantum cohomology. In particular we show that 8 known differential operators of
type D3 (see example 39) that do not correspond to any minimal Fano threefolds, do actually come from geometry
of G-Fano threefolds.

Let X be a smooth (n−1)-dimensional variety embedded by linear system L⊗k. Assume that X admits action of
some finite (possibly trivial) group G. Consider cohomology algebra H = H

q
(X,Q), its subalgebra Ha of algebraic

cycles, its G-invariant subalgebra HG
a , and subring HL generated by L = c1(L): HL = Q[L]/Ln ⊂ H.

Inclusions HL ⊂ HG
a ⊂ Ha ⊂ H imply inequalities

(1) n = dimHL 6 dimHG
a 6 dimHa 6 dimH.

Definition 2. Variety X is called homologically minimal (or just minimal) if its cohomology H is n-dimensional,
and algebraically G-minimal if dimHG

a = n.

Remark 3. Variety X is called G-Fano if H2(X,Q)G is 1-dimensional, i.e. H2(X,Q)G = Qc1(X) and anticanonical
line bundle is ample. Obviously, algebraically G-minimal Fano varieties are G-Fano, and G-Fano varieties of
dimension 6 3 are algebraically G-minimal.

For classes γi ∈ H
q
(X) and β ∈ H2(X,Z) let 〈γ1, γ2, γ3〉β be 3-pointed genus-0 Gromov–Witten invariant (naively

equal to number of rational curves of homology class β passing through three cycles Poincare-dual to classes γi if
β is effective class and 0 otherwise).

Definition 4. Very small (algebraic) quantum cohomology of X is a trivial Q[q] −module qHa(X) = Ha(X)[q]
with multiplication ? defined by

(5)

∫
[X]

(γ1 ? γ2) ∪ γ3 =
∑

β∈H2(X,Z)

〈γ1, γ2, γ3〉β q
c1(X)·β .

Ring qH(X) is a commutative associative unital ring, and it is homogeneous with degree of q equal to 1 and
degree of γ ⊗ 1 equal to half of usual degree of γ ∈ H q

(X).

Definition 6. Minimal quantum cohomology qHm(X) is a subring of very small quantum cohomology generated
by c1(X)⊗ 1 and q.

Definition 7. Quantum rank N(X) of X is the rank of qHm(X) as Q[q]-module.
Fano variety X is called quantum maximal if N(X) = dimHa i.e. qHm(X) = qHa(X).
Fano variety X is called quantum minimal if N(X) = n.

Some reconstruction theory for quantum minimal varieties is developed in [10].

Remark 8. Upper bound for quantum rank is obvious and congruence c1(X)?k = c1(X)∪k mod q implies that
N(X) cannot be less than n.

Example 9. Variety X is algebraically minimal ⇐⇒ it is both quantum minimal and maximal.
Grassmannian G(2, 4) is quantum minimal, but not maximal.
Grassmannian G(2, 5) is quantum maximal, but not minimal.
Grassmannian G(2, 6) is neither quantum minimal, nor quantum maximal.

Date: May 29, 2012.
This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. This work

was supported by Grant-in-Aid for Scientific Research (10554503) from Japan Society for Promotion of Science. This is an update for
the first part of my earlier SFB/TR 45 preprint [3].

1

http://sergey.ipmu.jp


More generally Grassmannians G(k, p) for prime values of p (e.g. G(2, 5)) are quantum maximal (see corollary 14)
and algebraically G-minimal varieties are quantum minimal (see theorem 15).

Definition 10 (see also [5]). Quantum characteristic polynomial of variety X is the characteristic polynomial of
the operator ?c1(X) acting on the vector space qHa(X)⊗Q(q). (Anticanonical) spectrum of variety X is the set of
roots of its quantum characteristic polynomial.

Lemma 11. Quantum rank N(X) is not less than number of distinct non-zero elements in the spectrum of X.

Proof. By definition N(X) is the degree of the minimal polynomial for operator ?c1(X) acting on qHa(X)⊗Q(q).
�

Corollary 12. If variety X is quantum minimal then number of distinct non-zero elements in its spectrum is not
more than n = dimX + 1.

Corollary 13. If the spectrum of variety X is simple i.e. all eigenvalues of ?c1(X) are distinct and non-zero, then
variety X is quantum maximal.

Corollary 14. Grassmannians G(k, p) are quantum maximal for prime values of p.

Proof. By [4] roots of quantum characteristic polynomial of G(k, p) are proportional to sums of the elements in all
different k-tuples of distinct p-th roots of unity. For prime values of p all these numbers are distinct, so previous
corollary 13 implies G(k, p) is quantum maximal. �

Theorem 15. If Fano variety X is algebraically G-minimal then X is quantum minimal.

This theorem holds because quantum multiplication respects the group action:

Lemma 16. For any g ∈ G, γ1, γ2 ∈ qHa(X) we have g∗γ1 ? g
∗γ2 = g∗(γ1 ? γ2), where action of G on Ha[q] is

defined by the base change i.e. g∗q = q.

Corollary 17. Vector space HG
a [q] is closed with respect to ?-multiplication.

Proof of the corollary 17. If g∗γ1 = γ1 and g∗γ2 = γ2 then g∗(γ1 ? γ2) = g∗γ1 ? g
∗γ2 = γ1 ? γ2. �

Corollary 18. Minimal quantum cohomology qHm(X) is a subring of HG
a [q].

Proof. Anticanonical class is algebraic and G-invariant, so c1(X) ∈ HG
a [q] and by corollary 17 the whole subring

qHm(X) generated by c1(X) lies in HG
a [q]. �

Proof of the lemma 16. Since Gromov–Witten invariants are well defined and are indeed invariant with respect to
the isomorphims for all classes β ∈ H2(X) and γi ∈ H

q
(X). one has

(19) 〈g∗γ1, ..., g∗γn〉β = 〈γ1, . . . , γn〉g∗β
Anticanonical class c1(X) is G-invariant, so any automorphism preserves anticanonical degrees:

g∗c1(X) = c1(X)(20)

c1(X) · β = (g−1)∗c1(X) · β = c1(X) · g∗β(21)

For fixed γ1, γ2 and arbitrary γ3 using equalities 19, 20, 21 we derive:

(22)

∫
[X]

(g∗γ1 ? g
∗γ2) ∪ γ3 =

∑
β

〈g∗γ1, g∗γ2, γ3〉β q
c1(X)·β =

∑
β

〈
γ1, γ2, (g

−1)∗γ3
〉
g∗β

qc1(X)·g∗β =

=

∫
[X]

(γ1 ? γ2) ∪ g−1)∗γ3 =

∫
[X]

(g∗(γ1 ? γ2)) ∪ γ3

This proves the lemma. �

Proof of the theorem 15. By corollary 18 minimal quantum cohomology qHm(X) is contained inside HG
a [q]. That

implies N(X) 6 dimHG
a , but by definition of algebraic G-minimality dimHG

a = n, so N(X) 6 n i.e. X is quantum
minimal. �

Remark 23. Actually theorem 15 can be considered as a particular manifestation of monodromy action for family
[X/G] → [pt/G] over stack [pt/G] with fibers X. Geometrically deformation invariance of Gromov–Witten is
invariance of correlators with respect to Gauss-Manin connection.
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Remark 24. There are two frameworks for quantum cohomology — symplectic and algebraic. One may notice
neither of these definitions were used in the proof. Geometrical part is hidden behind the equalities 19, 20, 21 and
the fact that correlators are invariant with respect to algebraic or symplectic isomorphisms.

Moreover, one can even apply the theorem in the case of non-geometric action of the Galois group (or mixed
geometric and Galois action) on variety X and it’s cohomologies (e.g. Het(X,Ql)) if X is defined over Q (or over
some number field). This is true since in algebraic framework is motivic and everything is defined over the base
field of X: Mg,n(X,β), evaluation map ev : Mg,n(X,β)→ Xn, ψ-classes and the virtual fundamental class.

Remark 25. Since quantum cohomology is deformation-invariant we deduce from corollary 18 that minimal quantum
cohomology qHm(X) is contained in the intersection of all G-invariant algebraic cycles for all possible complex
structures and actions of groups on X.

We’d like to note that since quantum rank N(X) doesn’t depend on any action of group G, corollary 18 says
that knowledge of quantum cohomology provides us with a lower bound for dimension of G-invariant cohomology
for any G. In small dimensions this gives bound for G-invariant Picard number ρG = dimH2(X,Q)G. In particular

Lemma 26. For any action G : X we have lower bound dimHa(X)G > N(X).
For any action G : S of group on del Pezzo surface we have lower bound ρG(S) > N(X)− 2

For any action G : V of group on Fano threefold we have lower bound ρG(V ) > N(X)
2 − 1.

In practice bound of lemma 26 is sharp in a sense that there exists some deformation and action of some group
G : X ′ with inequality becoming equality. Manin argues 1 that quantum cohomology should be promoted to
quantum motive and this promotion turns every algebraic variety into a sort of homogeneous space (over operad of
motives of moduli stacks of curves). Motivated by this insight we propose the following conjecture (which should
be a “consequence of quantum Torelli”):

Conjecture 27. For any deformation class of Fano threefolds the bounds 26 are sharp i.e. there exists some family
of threefolds in this class over some base such that monodromy-invariant part of cohomology coincides with minimal
quantum cohomology (after change of scalars).

In collaboration [1] we compute minimal quantum cohomology of Fano threefolds and, in particular, verify the
conjecture 27.

Quantum differential equation and its solution.
Let t be a coordinate on Gm = Spec C[t, t−1] and D = t ddt .

Definition 28. Quantum differential equation (QDE) is a trivial vector bundle over Gm with fibreH and connection

(29) DΦ = L ? Φ

where Φ ∈ H[[t]].

Definition 30. Let GX(t) = [pt] +
∑
n>1 Gn(X)tn be the unique analytic solution of 29 with initial condition

GX(0) = [pt]. Define G-series as

(31) GX(t) =

∫
[X]

GX(t) = 1 +
∑
n>1

gn(X)tn

Define regularized G-series as Fourier-Laplace transform of G-series:

(32) ĜX(t) = 1 +
∑
n>1

n! · gn(X)tn

Definition 33. Scalar QDE is a differential operator of minimal degree (in D) annihilating GX(t), and scalar

RQDE (scalar regularized QDE) is a differential operator of minimal degree annihilating ĜX).

Proposition 34. Degree of scalar QDE(X) equals to quantum rank N(X).

Examples.
Let Sd be a del Pezzo surface of degree d = 1, . . . , 9 which is a blowup of projective plane in (9 − d) points in

generic position, and Q = P1 × P1 ⊂ P3 — a smooth quadric surface. Anticanonical linear system maps Sd to Pd
and for d > 3 this map is embedding. (−1)-curves are exceptional curves of blowups and strict transforms of lines
passing through 2 points of blowup, conics passing through 5 points of blowup, etc

1in his lecture at IHES dedicated to Grothendieck’s anniversary
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Example 35. Surface S8 = PP1(OP1 ⊕OP1(1)) has unique (−1)-curve C. Uniqueness implies C is G-invariant for
any action G : S8, hence space H2(S8,Q)G is two-dimensional since it contains two linearly independent elements
c1(S8) and C.

Example 36. Similarly, intersection graph for (−1)-curves on S7 is A3 and so the middle (−1)-curve C (one
that intersects other two (−1)-curves) is G-invariant for any action G : S7, and space H2(S7,Q)G contains two-
dimensional space generated by KS7

and C. Action of Z/2Z on S7 induced from line-interchanging involution on
P1 × P1 swaps two (−1)-curves different from C, so dimHZ/2Z(S7) = 4.

Theorem 37 (see [2]). Del Pezzo surface Sd of degree d is G-Fano ⇐⇒ S is P2, Q or d 6 6.

Corollary 38. Del Pezzo surfaces S1, S2, S3, S4, S5, S6, P1 × P1 and P2 are quantum minimal.

Example 39. There are 8 deformation classes of G-Fano threefolds Y with dimH2(Y,Q) > 1, 6 has index one:
Y20 of degree 20, Y24 of degree 24, Y28 of degree 28, Y30 of degree 30, U12 and V12 of degree 12. and two has index
equal to two: P1 × P1 × P1 and W ⊂ P2 × P2 of degree 48.

They produce 8 equations of type D3 [6].

Let t be a coordinate on Gm = Spec C[t, t−1] and D = t ddt .
Scalar RQDE(Y20) has the form

(40) DY20
= D3 − t · 2D(D + 1)(2D + 1)− t2 · 112(D + 1)3−

− t3 · 184(D + 1)(D + 2)(2D + 3)− t4 · 336(D + 1)(D + 2)(D + 3)
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