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Abstract

In direct gauge mediation, gaugino masses often vanish at the leading order of super-

symmetry breaking. Recently, this phenomenon is understood in connection with the global

structure of vacua in O’Raifeartigh type models. In this note, we further explore a connection

between gaugino masses and the landscape of vacua in a variety of gauge mediation models.

In particular, we present a calculable model with non-vanishing leading order gaugino masses

on the lowest energy vacuum.



1 Introduction

Gauge mediation [1] is a highly predictive and an attractive way of transmitting supersymme-

try breaking of a hidden sector to the supersymmetric standard model. Many gauge mediation

models are already known (See [2, 3] for reviews). Among them, direct gauge mediation is

the model that the flavor symmetries in a hidden SUSY breaking sector are weakly gauged

and identified as the standard model gauge symmetries. In most controllable direct gauge

mediation models, the scale of supersymmetry breaking
√

F (the square-root of the F-term

of a SUSY breaking field) is much smaller than the messenger scale M . In such models, the

leading contributions to the standard model gaugino masses in an F/M2 expansion can be

calculated by a powerful tool, analytic continuation into superspace [4, 5]. However, it often

happens in direct gauge mediation models that the leading contributions to gaugino masses

vanish even if R-symmetry is broken, firstly emphasized in [6].1 Since there are no such can-

cellations for scalar masses, this implies that the gauginos are much lighter than the scalars.2

Then, we cannot obtain order 1 TeV gaugino masses and scalar masses at the same time,

which causes the standard model hierarchy problem again. Furthermore, recent experimental

data severely contrain such a model with the light gauginos [10]. Thus, it is an interesting

challenge to generate sizable gaugino masses in direct gauge mediation. The authors of [11]

avoided this issue by exploiting a higher energy metastable state (This possibility was re-

cently emphasized in [12, 13]). However, the reason why an uplifted vacuum generates sizable

gaugino masses has remained mysterious.

Recently, Komargodski and Shih (KS) shed light on this curious feature of direct gauge

mediation and clarified that the pseudomoduli space cannot be locally stable everywhere

in order to generate sizable gaugino masses [14]. It is interesting that anomalously small

gaugino masses are closely related to the global structure of vacua. It is worth exploring this

connection further in more general situations.

In this paper, we reconsider the arguments of [14] in a variety of gauge mediation models

and provide a way to generate the leading order gaugino masses while keeping all messenger

directions stable everywhere. Furthermore, we construct a gauge mediation model with non-

vanishing leading order gaugino masses on the lowest energy vacuum.

The rest of the paper is organized as follows. In section 2, we will review a property in

O’Raifeartaigh type models with canonical Kähler potential and a connection between the

1Anomalously small gaugino mass problem also occur in another class of gauge mediation models such
as semi-direct gauge mediation [7]. In this class, sizable gaugino masses can be generated by introducing a
strongly coupled messenger sector [8].

2We can suppress the scalar masses by exploiting a superconformal dynamics [9].
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global structure of vacua and the leading order gaugino masses. In section 3, we will show how

non-canonical Kähler potential of messenger fields alters the stability of messenger directions

at a point of the pseudomoduli space. We also provide an explicit model which has non-zero

leading order gaugino masses and a pseudomoduli space that is locally stable everywhere.

In section 4, we present a calculable model with an additional U(1) gauge interaction which

generates the leading order gaugino masses on the lowest energy vacuum.

2 Review of the KS theorem

First, we will briefly describe the existence of a pseudomoduli space discussed in [14, 15] by

exploiting a simple example. Let us consider the following Wess-Zumino model with canonical

Kähler potential presented in [16],

W = λX(φ1φ̃1 + φ2φ̃2) + mφ1φ̃2 + fX (2.1)

where X is a SUSY breaking field and φ1, φ̃1, φ2, φ̃2 are vector-like pairs of messenger fields

charged under the standard model gauge symmetries. We can choose parameters λ,m, f as

real without loss of generality. On the metastable SUSY breaking vacuum, 〈φ1〉 = 〈φ̃1〉 =

〈φ2〉 = 〈φ̃2〉 = 0 and 〈X〉 is the pseudomoduli space of vacua. That is, it takes an arbitrary

value at the classical level, but takes a definite value by quantum effects. In this model,

as discussed in [16], the vev 〈X〉 takes a non-zero value, so R-symmetry is spontaneously

broken. As this example, every O’Raifeartaigh type model with canonical Kähler potential

has a pseudomoduli space on every SUSY breaking vacuum.

Next, we will see a connection between the global structure of vacua and the leading order

gaugino masses by dealing with the same example as above. The leading order gaugino masses

are calculated by analytic continuation into superspace technique such as,

mg̃ ∼ f
∂

∂X
log detMF , (2.2)

where MF is the fermion mass matrix of messengers. In this model, the determinant of the

fermion mass matrix is given by detMF = λ2X2 and has an X dependence, so gaugino masses

are generated at the leading order of the SUSY breaking f ,

mg̃ ∼ f

〈X〉
. (2.3)

On the other hand, in this model, there is a zero eigenvalue in the fermion mass matrix at

〈X〉 = 0. Here, the eigenvalues of the scalar mass matrix are
(
m2 ±

√
m4 + 4λ2f2

)
/2, so

there is a tachyonic direction. As this example, there is always at least one tachyonic direction
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on the pseudomoduli space of vacua when gaugino masses are generated at the leading order.

Otherwise, the leading order gaugino masses vanish. For general arguments, see the original

paper [14].

3 General cases

As we reviewed in the previous section, in every renormalizable O’Raifeartigh type model,

the pseudomoduli space cannot be stable everywhere to generate gaugino masses. However,

a renormalizable model is not always a good description of dynamical SUSY breaking at

low-energy. In many SUSY breaking models, correction terms in Kähler potential are not

negligible. In this section, we emphasize that such terms affect crucially the connection

between gaugino masses and the landscape of vacua.

3.1 Stability of messenger directions

Let us start with a general argument for the stability of messenger directions. Suppose we

have a superpotential interaction,

W = MF (X)abφ̃
aφb + f(X), (3.1)

where X is a chiral superfield which is responsible of SUSY breaking and φ, φ̃ are messengers.

The lower indecies of the messenger mass matrix MF denote the derivatives with respect to

messenger fields. When we turn on a generic non-canonical Kähler potential, X direction

is not necessarily pseudo-flat as discussed in [15].3 Nevertheless, in order to focus on the

stability of messenger directions at a point of the pseudomoduli space like [14], we can keep

a flat direction by imposing the following condition on the metric [17],

∂XgXX̄
∣∣
0

= 0, (3.2)

where |0 denotes 〈φa〉 = 〈φ̃a〉 = 0. It is easy to check that the scalar potential with this

condition keeps X direction flat.

In this setup, the boson mass-squared matrix of the messengers is given by

M2
B =

(
(M∗

FMF )ab̄ −Aab̄ F∗
ab

Fāb̄ (MFM∗
F )āb −Aāb

)
. (3.3)

Here,

Fab = F ∗
X(∂XMF )ab, Aab̄ = Rab̄

XX̄ |FX |2, (3.4)

3Also, D-term SUSY breaking models do not always have pseudomoduli spaces.
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where Rab̄
XX̄ are components of the Riemann tensor. We simply assumed gXX̄ = 1 at

φ̃a = φb = 0. Suppose va is a unit vector satisfying (MF )abvb = 0. Then, a bosonic mode

corresponding to this direction has a mass,(
v† vT

)
M2

B

(
v
v∗

)
= vTFv − v†Av + c.c.. (3.5)

If Av = 0 or simply if A = 0, then the bosonic mode must be massless in order to have a

consistent vacuum, or we have to allow the vacuum to have a tachyonic direction. However,

in general, this does not true. As we will demonstrate below, one can easily lift a tachyonic

direction and make the pseudomoduli space stable everywhere by using the contribution from

the non-canonical part of Kähler potential A.

3.2 A model with non-canonical Kähler potential

In the rest of this section, we will try to construct the model which has non-zero leading

order gaugino masses and a pseudomoduli space that is locally stable everywhere. Let us

consider the model discussed in section 2 with non-canonical Kähler potential, that is, its

superpotential is given by

W = λX(φ1φ̃1 + φ2φ̃2) + mφ1φ̃2 + fX. (3.6)

Notation is explained in the previous section. This model with canonical Kähler potential

has a tachyonic direction around 〈X〉 = 0, so we will try to lift this direction by introducing

non-canonical Kähler potential,4

K = |X|2 +

(
1 +

|X|2

M2

) (
|φ1|2 + |φ̃2|2

)
+

(
1 − |X|2

M2

) (
|φ̃1|2 + |φ2|2

)
, (3.7)

where M is a large cut-off scale of the theory and we have required vanishing messenger mass

supertrace so that our model is UV insensitive [18, 19]. Since the above Kähler potential

satisfies the condition (3.2) given in the previous subsection, the pseudo flat-direction of X

is kept. There is a zero eigenvalue in the fermion mass matrix at 〈X〉 = 0, and here the

eigenvalues of the boson mass-squared matrix of messengers are

1

2

(
m2 ±

√
m4 + 4 λ2f2 − 4 (f/M)2m2 + 4 (f/M)4

)
. (3.8)

We can impose a condition between parameters of the model such as λ2f 2 − (f/M)2m2 +

(f/M)4 < 0 so as not to have any tachyonic direction. Since non-canonical Kähler potential
4When the sign of non-canonical part of Kähler potential is positive, it is possible to find a UV completion

of this theory with extra massive chiral superfields. On the other hand, when the sign is negative, we need
other ingredients such as a massive vector boson for a UV completion [19].
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of messengers does not contribute to the gaugino mass at the leading order, known as gaugino

screening [5], the leading order gaugino mass is given in the same fashion as the case with

canonical Kähler potential,5

mg̃ ∼ f

〈X〉
. (3.9)

Here, the expectation value of X can be estimated by stabilizing the one-loop effective po-

tential. The Coleman-Weinberg potential in this kind of models has been calculated in [17],

which claims that X does not stabilize at the origin and so R-symmetry is spontaneously bro-

ken even in the case with non-canonical Kähler potential. Therefore, we can obtain non-zero

leading order gaugino masses in the model with a pseudomoduli space that is locally stable

everywhere.

While we have considered a model with a pseudo-flat direction, as we have seen in the

previous subsection, the existence of pseudomoduli is not guaranteed in models with non-

canonical Kähler potential. In the next section, we will see the relation between this kind of

models and the landscape of vacua.

4 Sizable gaugino mass on the global minimum

When we consider the case where there is no pseudomoduli space, it becomes unclear how we

can generalize the statement of the KS theorem. We are interested in a connection between

the leading order gaugino masses and metastability of the vacuum. Then, we will try to solve

the question whether we can obtain non-vanishing gaugino masses on the global minimum or

not. The answer is yes. In [20], the authors obtained non-vanishing leading order gaugino

masses on the global minimum (See also [21] for a related work on this avenue realizing the

ultra-light gravitino mass). However, they used a dynamical SUSY breaking model and the

resulting model is incalculable. Then, for our current purpose, we do not need to focus on

dynamical SUSY breaking, so we can take our familiar O’Raifeartaigh model.

The explicit model of the SUSY breaking sector is a U(1) gauge theory6 whose superpo-

tential is given by

W = X0(f + λϕ1ϕ2) + m(X1ϕ1 + X2ϕ2). (4.1)

The U(1) charge assignments of X0, X1, X2, ϕ1 and ϕ2 are 0, −1, 1, 1 and −1 respectively.

We call this U(1) gauge interaction as the messenger gauge interaction. We can take all

5Unlike the gaugino mass, non-canonical Kähler potential of messengers contributes to the scalar mass at
the leading order.

6The U(1) gauge coupling becomes strong at high energy. As a logical possibility, there may be a state
which has lower energy than the state we now consider by non-perturbative effects. Then, for more rigorous
statement, we try to construct a gauge mediation model with the global minimum at least perturbatively.
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couplings, λ,m, f as real without loss of generality and assume f � m2. On the SUSY

breaking vacuum, 〈X1〉 = 〈X2〉 = 〈ϕ1〉 = 〈ϕ2〉 = 0 and X0 has a non-zero F-term.

Next, consider the messenger sector. The simplest possibility for our purpose would be

the following,

Wmess = yfSff̃ + yESEẼ +
κ

3
S3, (4.2)

where f and f̃ are messengers charged under the standard model gauge symmetries and

S,E, Ẽ are the standard model gauge singlets. Only E, Ẽ have charges 1,−1 under the

messenger U(1) gauge interaction. We also take couplings yf , yE, κ as real. When we integrate

out the SUSY breaking sector, two-loop correction generates positive scalar masses for fields

E and Ẽ like usual gauge mediation, which is given by

m2
E = m2

Ẽ
∼

(
g2

mess

16π2

)2 (
λf

m

)2

, (4.3)

where gmess is the coupling of the messenger gauge interaction. As pointed out in [20], these

positive scalar masses generate negative mass squared by one-loop effects of E and Ẽ such as

−m2
S ' 4

16π2
y2

Em2
E ln

Λ

mE

, (4.4)

where Λ is the cut-off scale and we assume yE . 1 so that m2
E � |m2

S| is satisfied. Then, the

effective scalar potential of the messenger sector including these corrections is given by

Vmess =
∣∣yESẼ

∣∣2 +
∣∣yESE

∣∣2 +
∣∣yfSf̃

∣∣2 +
∣∣yfSf

∣∣2 +
∣∣yEEẼ + yfff̃ + κS2

∣∣2
+m2

E|E|2 + m2
E|Ẽ|2 + m2

S|S|2. (4.5)

This potential is minimized at

〈|S|2〉 =
|m2

S|
2κ2

, 〈f〉 = 〈f̃〉 = 〈E〉 = 〈Ẽ〉 = 0. (4.6)

The contribution to the vacuum energy is given by

V0 = −m4
S

4κ2
. (4.7)

This vacuum is the global minimum in certain parameter range. The standard model gaugino

mass can be calculated as

mg̃ ∼ 〈|FS|〉
〈S〉

=
|mS|√

2
. (4.8)

Therefore, we can obtain the leading order gaugino mass on the global minimum of the

potential, unlike direct gauge mediation without additional gauge interactions.
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While constructing a model with no phenomenological problem is not the purpose of this

paper, we finally comment on some points. Although the messenger U(1) gauge boson is

massless, it may cause no problem, since the standard model quarks and leptons do not have

the messenger U(1) charges. However, if we want to avoid the existence of additional massless

gauge bosons, we can higgs the gauge symmetry by adding the following superpotential,

W = hT (ΨΨ̃ − v2), (4.9)

where Ψ, Ψ̃ are a vector-like pair of chiral superfields charged under the messenger U(1) gauge

interaction and T is a Lagrange multiplier field. h is a coupling constant. This term does not

restore SUSY, so our argument in this section remains true even if we add this term to the

above model. Furthermore, in the SUSY breaking sector, there is a parity given by

X1 ↔ X2, ϕ1 ↔ ϕ2, E ↔ Ẽ, V ↔ −V, (4.10)

and so the problematic FI term of the messenger U(1) gauge field is forbidden.
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