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1. Introduction

The chiral multiplet of N = 1 supersymmetry[1] can be formulated on the lattice so that the
supersymmetry is preserved and the vacuum energy is cancelled in the free limit, thanks
to the bilinear nature of the free action. By using overlap (Majorana) fermion [2, 3, 4]
for the fermionic component, species doublers[5, 6, 7] are successfully removed and U(1)R

symmetry can be maintained at the same time[8, 9, 10]. With this chiral multiplet, one
may formulate lattice N = 1 Wess-Zumino model with exact U(1)R symmetry[11, 12, 13,
14, 15, 16]. A numerical study of this lattice N = 1 Wess-Zumino model has recently been
reported in [17].

The purpose of this short article is, however, to show that in this formulation of the
chiral multiplet, the reflection positivity[18, 19, 20, 21, 22] is violated in the bosonic part
of the action, although it is satisfied in the fermionic part, as shown recently in [23]. We
will also examine the spectral density of the bosonic two-point correlation function (cf.
[24]). It is found that the positivity of the spectral density is ensured only for the momenta
a|pk| . 1.72 (k = 1, 2, 3), and the mode with a negative density appears at the energy as
low as aE ≅ 0.69 for the momenta ap = (π, 0, 0), (0, π, 0), (0, 0, π).

We will then argue that in formulating the lattice N = 1 Wess-Zumino model with the
overlap (Majorana) fermion, one may adopt the simpler nearest-neighbor bosonic action,
discarding the free limit manifest supersymmetry. The model so constructed still preserves
the U(1)R symmetry and satisfies the reflection positivity.
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This paper is organized as follows. In section 2, we review briefly the N = 1 chiral
multiple on the lattice formulated with overlap Majorana fermion. In section 3, we show
that the reflection positivity is not fulfilled in the bosonic part of the action. The spectral
density of the bosonic two-point correlation function is also examined. In section 4, we
show that it is possible to formulate lattice Wess-Zumino model which possesses both
the reflection positivity and the exact U(1)R symmetry, by adopting the simpler nearest-
neighbor bosonic action. Section 5 is devoted to discussion.

2. N = 1 chiral multiple with overlap Majorana fermion

The action of the free N = 1 chiral multiplet is given by

S0 = a4
∑

x

{ 1
2
χT CD1χ + φ∗D2

1φ + F ∗F

+
1
2
χT CD2χ + FD2φ + F ∗D2φ

∗
}

. (2.1)

In this expression, we have used a decomposition of the overlap Dirac operator [2][3],
D = D1 + D2, where

D1 =
1
2
γµ(∂∗

µ + ∂µ)(A†A)−1/2, D2 =
1
a

{
1 − (1 +

1
2
a2∂∗

µ∂µ)(A†A)−1/2
}

, (2.2)

and

A = 1 − aDw, Dw =
1
2

{
γµ(∂∗

µ + ∂µ) − a∂∗
µ∂µ

}
. (2.3)

Note that D1 and D2 have different spin structures with respect to spinor space. In
particular, we have {γ5, D1} = 0 and [γ5, D2] = 0. In terms of this decomposition, the
Ginsparg-Wilson relation γ5D + Dγ5 = aDγ5D [8] is expressed as

2D2 = a(−D2
1 + D2

2), (2.4)

and as a consequence, we have relations

γ5(1 − 1
2
aD)γ5(1 − 1

2
aD) = 1 − 1

2
aD2, γ5(1 − 1

2
aD)γ5D = D1. (2.5)

It is also understood that the 4 × 4 identity matrix in operators D2
1 and D2 is omitted

when these operators are acting on bosonic fields.
It is straightforward to see that the above free action S0 is invariant under “lattice

N = 1 supersymmetry”:

δϵχ = −
√

2P+(D1φ + F )ϵ −
√

2P−(D1φ
∗ + F ∗)ϵ,

δϵφ =
√

2ϵT CP+χ, δϵφ
∗ =

√
2ϵT CP−χ,

δϵF =
√

2ϵT CD1P+χ, δϵF
∗ =

√
2ϵT CD1P−χ, (2.6)
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where ϵ is a 4 component Grassmann parameter. We also note that the free action S0

possesses three types of U(1) symmetry [10]. The first is a rather trivial one acting only
on bosonic fields and is defined by the transformation:

δαχ = 0,

δαφ = iαφ,

δαF = −iαF, (2.7)

where α is an infinitesimal real parameter. The second one is nothing but the chiral
symmetry introduced by Lüscher,

δαχ = iαγ5(1 − 1
2
aD)χ, (2.8)

Thirdly, somewhat surprisingly, the bosonic sector of S0 possesses a U(1) symmetry anal-
ogous to eq. (2.8):

δαφ = +iα{(1 − 1
2
aD2)φ − 1

2
aF ∗},

δαF = +iα{(1 − 1
2
aD2)F − 1

2
aD2

1φ
∗} (2.9)

due to the Ginsparg-Wilson relation. The lattice action S0 is not invariant under a uniform
rotation of the complex phase of bosonic fields, φ, F , due to the presence of terms FD2φ

and F ∗D2φ
∗. The above provides a lattice counterpart of this uniform phase rotation of

bosonic fields under which the free action S0 is invariant. Using a linear combination of
the above three U(1) symmetries, it is possible to define the U(1)R symmetry [10] in the
interacting system.

δαχ = +iαγ5(1 − 1
2
aD)χ,

δαφ = −3iαφ + iα{(1 − 1
2
aD2)φ − 1

2
aF ∗},

δαF = +3iαF + iα{(1 − 1
2
aD2)F − 1

2
aD2

1φ
∗}. (2.10)

3. Violation of the reflection positivity in the bosonic part

3.1 Reflection positivity condition

In this subsection, we will formulate the reflection positivity condition. It has been rigor-
ously shown that the lattice theory satisfying the reflection positivity condition corresponds
to the quantum theory with unitary time evolution [18, 19, 20]. Here we consider the generic
case in which there are both a bosonic field φ and a fermionic field ψ. Let us assume that
S(φ, ψ, ψ̄) is the action of a lattice model1 and its partition function Z is given by the path
integration

Z =
∫

[DφDφ∗][DψDψ̄] e−S(φ,ψ,ψ̄). (3.1)

1In the following, we write the bosonic field argument of a function like S(φ) instead of S(φ, φ∗) for the

notational simplicity. This notation never means that S is an analytic function of φ.
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We set the lattice spacing a to be unity, and assume the finite volume hypercubic lattice
Λ = {−L+1,−L+2, . . . , L−1, L}d ⊂ Zd. We impose the anti -periodic boundary condition
in the time direction for the fermionic field ψ, while the periodic boundary condition for
the bosonic field φ. In the spacial directions, periodic boundary conditions are imposed for
both fields.

To formulate the reflection positivity condition, we first introduce the time reflection
operator θ as follows. For each site x = (t, x) ∈ Λ, we denote θx = (−t + 1, x). This is the
time reflection with respect to the t = 1/2 plane. We define the operation of θ for bosonic
fields as

(θφ)(x) = φ(θx) (3.2)

and for functions of bosonic fields F(φ) as

(θF)(φ) = F∗(θφ), (3.3)

where * means complex conjugation. For fermionic fields, the θ reflection is defined as

(θψ̄)(x) = γ0ψ(θx), (3.4)

(θψ)(x) = ψ̄(θx)γ0. (3.5)

We extend this θ operation to the whole field algebra A. We define the field algebra
A, the algebra of observables, as the Grassmann algebra generated by the fermionic fields
with the coefficients of the continuous functions of bosonic fields which are integrable with
respect to the bosonic Gaussian functional measure. For F ,G ∈ A, the θ operation is
defined by the relations

θ(FG) = θ(G)θ(F), (3.6)

θ(αF + βG) = α∗θ(F) + β∗θ(G). (3.7)

For instance, if F has the form of

F(φ, ψ, ψ̄) = f(φ)ψ̄a1(x1) . . . ψ̄an(xn)ψb1(y1) . . . ψbm(ym), (3.8)

its θ reflection should be

θ(F)(φ, ψ, ψ̄) = f∗(θφ)(ψ̄γ0)bm(θym) . . . (ψ̄γ0)b1(θy1)(γ0ψ)an(θxn) . . . (γ0ψ)a1(θx1). (3.9)

Let Λ+ (resp. Λ−) be the set of lattice sites with positive (resp. non-positive) time
components, and A± be the subalgebras of A, which depends only upon fields on Λ±. In
this notation, θ is a map from Λ± into Λ∓ and from A± into A∓.

Reflection positivity condition is defined through this θ map. For a lattice theory with
the expectation functional 〈·〉 defined as

〈F〉 =
1
Z

∫
[DφDφ∗][DψDψ̄] e−S(φ,ψ,ψ̄)F(φ, ψ, ψ̄), F ∈ A, (3.10)

we say the theory is reflection positive with respect to θ if any function F+ ∈ A+ fulfills
the inequality

〈θ(F+)F+〉 ≥ 0. (3.11)
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3.2 Reflection positivity of the free overlap boson

In this subsection, we investigate the reflection positivity of the bosonic sector of the free
chiral multiplet (2.1). It will be shown in the following that the bosonic sector does not
satisfy the reflection positivity condition. After integrating out the auxiliary field F , we
have the overlap boson system which is defined through the lattice action on Λ

Sb(φ) =
∑
x∈Λ

φ∗(x)¤Λφ(x), (3.12)

where we have defined

¤Λ(x, y) =
∑
n∈Z4

¤(x + 2nL, y), (3.13)

D†D = ¤ · 1̂, (3.14)

with 1̂ being the unit spinor matrix. This ¤ given above is the bosonic overlap operator
on Zd and ¤Λ is that on Λ with periodic boundary conditions. The field algebra A of
this overlap boson system is defined as the set of all continuous functions of bosonic field
configulations φ = {φ(x)}x∈Λ, which are integrable with respect to the bosonic Gaussian
measure

[Dφ][Dφ∗] e−Sb(φ). (3.15)

The expectation of this theory is defined by the bosonic path integration

〈F 〉 =
1
Z

∫
[Dφ][Dφ∗] e−Sb(φ)F(φ), F ∈ A. (3.16)

The standard way of investigating the reflection positivity of lattice field theory is to
prove that the action can be written in the form of

−Sb(φ) = B(φ) + θ(B)(φ) +
∑

s

θ(Cs)(φ)Cs(φ), B,Cs ∈ A+, (3.17)

where in the third term Cs are elements of A+ parametrized by some discrete parameter s

[20]. To see that the equation (3.17) indeed implies the reflection positivity (3.11), we first
note that for an arbitrary F+ ∈ A+,

〈θ(F+)F+〉0 :=
∫

[Dφ][Dφ∗]θ(F+)F+

=
∫ ∏

x∈Λ+

dφ(x)dφ∗(x)F+(φ) ·
∫ ∏

x∈Λ−

dφ(x)dφ∗(x) θ(F+)(φ)

=

∣∣∣∣∣∣
∫ ∏

x∈Λ+

dφ(x)dφ∗(x)F+(φ)

∣∣∣∣∣∣
2

≥ 0. (3.18)
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If the action is given in the form of (3.17), we obtain for all F ∈ A+,〈
e−Sbθ(F+)F+

〉
0

=
〈
eB+θ(B)+

P

s θ(Cs)Csθ(F+)F+

〉
0

=

〈
θ(eB) eB

∞∑
n=0

1
n!

( ∑
s

θ(Cs)Cs

)n
θ(F+)F+

〉
0

=
∞∑

n=0

1
n!

∑
s1

· · ·
∑
sn

〈
θ(eB) eB θ(Cs1)Cs1 . . . θ(Csn)Csn θ(F+)F+

〉
0

=
∞∑

n=0

1
n!

∑
s1

· · ·
∑
sn

〈
θ
(
eBCs1 . . . CsnF+

)
eBCs1 . . . CsnF+

)〉
0
. (3.19)

This last expression is clearly positive from (3.18). This immediately implies the reflection
positivity because

〈θ(F+)F+〉 =

〈
e−Sbθ(F+)F+

〉
0

〈e−Sb〉0
≥ 0, F+ ∈ A+. (3.20)

We note that the third term in (3.17) may be given by an integration over a continuous
parameter s as ∫

ds θ(Cs)(φ)Cs(φ), Cs ∈ A+. (3.21)

This type of the action appears in the case of overlap fermions. See Ref.[23] for detail.
Therefore, to prove the reflection positivity of the ‘overlap boson’ system reduces to

find the decomposition of the action (3.12) into (3.17). We first note that Sb can be written
as

Sb =
∑

x,y∈Λ+

φ∗(x)¤(x, y)φ(y) +
∑

x,y∈Λ−

φ∗(x)¤(x, y)φ(y)

+ 2
∑

x∈Λ+,y∈Λ−

φ∗(x)¤(x, y)φ(y), (3.22)

where ¤(x, y) is the kernel of the operator ¤ on Λ. To establish the decomposition (3.17),
we should find that (i) the second term is the θ reflection of the first term, and that (ii)
the last term is written in the form of

−
∫

θ(Cs)Cs ds (3.23)

for some Cs ∈ A+ parametrized by some parameter s. Note that this second condition is
equivalent to say that

−
∑

x∈Λ+,y∈Λ−

φ∗(x)¤(x, y)φ(y) =
∫

f(s) θ(Cs)(φ) Cs(φ) ds (3.24)
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for some non-negative function f(s). In this bosonic system, while (i) holds true, the
property (ii) breaks down, as will be shown below.

To show this, we will derive the spectral representation of the kernel ¤(x, y). First,
the Fourier transformation ¤(p) is given by:

¤(p) = 1 −
1 −

∑
µ(1 − cos pµ)∑

µ sin2 pµ +
[
1 −

∑
µ(1 − cos pµ)

]2

= 1 +
b(p) − cos p0√

a(p) − 2b(p) cos p0

, (3.25)

where

a(p) = 1 +
∑

j

sin2 pj + b(p)2, (3.26)

b(p) =
∑

j

(1 − cos pj). (3.27)

From this formula we obtain the following representation of the kernel ¤(x, y),

¤(x, y)
∣∣∣
x0 ̸=y0

=
∫

d3p

(2π)3
eip·(x−y)I(x0 − y0), (3.28)

where we have defined

I(x0 − y0) =
∫

dp0

2π
eip0(x0−y0) b(p) − cos p0√

a(p) − 2b(p) cos p0

. (3.29)

Furthermore, by Cauchy’s integration theorem, I(x) defined above can be estimated as

I(x0)
∣∣∣
x0 ̸=0

=
∫

dp0

2π
eip0x0

b(p) − cos p0√
a(p) − 2b(p) cos p0

=
∫ ∞

E1

dE

π
e−|E|x0

b(p) − cosh E√
2b(p) cosh E − a(p)

, (3.30)

where E1 is the positive solution of

2b(p) cosh E1 − a(p) = 0. (3.31)

Since the kernel of the operator on the finite lattice ¤Λ(x, y) is defined as (3.13), it is
straightforward to derive the following spectral representation of ¤Λ,

¤Λ(x, y)
∣∣∣
x0>y0

=
1

(2L)3
∑

p

eip(x−y)
∑
n0∈Z

I(x0 + 2n0L − y0)

=
1

(2L)3
∑

p

eip(x−y)

∫ ∞

E1

dE

π

1
1 − e−2EL

×

×
[
e−E(x0−y0) + e−E(2L−x0+y0)

] b(p) − cos p0√
a(p) − 2b(p) cos p0

. (3.32)

– 7 –



The second term represents a finite volume effect.
Now we can see the property (3.24) does not hold. From eq.(3.32), we obtain

−
∑

x∈Λ+,y∈Λ−

φ∗(x)¤Λ(x, y)φ(y)

=
1

(2L)3
∑

p

∫ ∞

E1

dE

π

1
1 − e−2EL

cosh E − b(p)√
2b(p) cosh E − a(p)

×

×
∑

x∈Λ+,y∈Λ−

{
e−E(x0−y0)eip·(x−y)φ∗(x)φ(y) + e−2ELe+E(x0−y0)eip·(x−y)φ∗(x)φ(y)

}
=

1
(2L)3

∑
p

∫ ∞

E1

dE

π

1
1 − e−2EL

cosh E − b(p)√
2b(p) cosh E − a(p)

×

×
{

θ
(
CE,p

)
(φ)

(
CE,p

)
(φ) + θ

(
e−ELC−E,p

)
(φ)

(
e−ELC−E,p

)
(φ)

}
, (3.33)

where we define

CE,p(φ) =
∑

x∈Λ+

e−Ex0eip·xφ∗(x) ∈ A+. (3.34)

In this case, (E, p) plays a role of the parameter s in (3.24). For the condition (3.24)
to be satisfied, the coefficient factor cosh E − b(p) should be non-negative for any (E, p)
satisfying E1 ≤ E, but this is not the case. In fact, cosh E − b(p) can become both positive
and negative in general, which prevents us from proving the reflection positivity.

3.3 Källén-Lehmann representation of the free overlap boson propagator

Another way to see the violation of unitarity of the overlap boson system is to study
the Källén-Lehmann representation of the propagator, (¤)−1, which should carry all the
information of Hilbert space of state vectors and the spectrum of Hamiltonian [24]. It is
sufficient to consider the infinite volume propagator,

∆+(x, y) =
1
¤(x, y)

∣∣∣
x0>y0

=
∫

d4p

(2π)4
eip(x−y) 1

¤(p)
. (3.35)

It is possible to evaluate this propagator explicitly to obtain the spectral representation

∆+(x, y) =
∫ ∞

0

dE

π

∫
d3p

(2π)3
e−E(x0−y0)eip(x−y)ρ(E, p). (3.36)

The spectral density ρ(E, p) is given by

ρ(E, p) = (isolated poles) +
(cosh E − b(p))

√
2b(p) cosh E − a(p)

cosh2 E − a(p) + b(p)2
θ(E − E1). (3.37)

In the second term, there appears the factor cosh E − b(p) which is not positive definite
and this violates the positivity of ρ(E, p).
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3.4 Estimation of the violation in the momentum space

From the explicit form of the spectral density (3.37), we can find where in the Brillouin
zone the reflection positivity is violated. One notes that there is the region in the spacial
Brillouin zone where the spectral density ρ(E, p) can not become negative. Let us call
this region S. The region S is characterized by the condition that the negative value of
cosh E − b(p) be avoided. The necessary and sufficient condition on spacial momenta p to
avoid negative coshE − b(p) is that

cosh E − b(p) ≥ 0, ∀E ≥ E1, (3.38)

which is equivalent to the condition

cosh E1 ≥ b(p) i.e.
1 +

∑
k sin2 pk − (

∑
k(1 − cos pk))2

2
∑

k(1 − cos pk)
≥ 0. (3.39)

By using the identity sin2 pk +cos2 pk = 1 and completing the square with respect to cos pk,
the ‘safe’ region S is given by

S =

{
p ∈ [−π, π]d−1 :

d−1∑
k=1

(cos pk − 1
2
)2 ≤ d + 1

4

}
, (3.40)

where d is the spacetime dimension.
Now let us estimate the size of S to investigate whether we can ignore the violation

of the reflection positivity or not. In the case of d = 4, there are three spacial momentum
components. First, we consider the case in which p1 = p2 = p3 =: p. In this direction, the
safe momentum region has the extent

−1.72 ≤ p ≤ 1.72. (3.41)

Second, we consider another direction p1 = p, p2 = p3 = 0. In this case, in the safe region
S, p is restricted by 2

−1.95 ≤ p ≤ 1.95. (3.43)

These regions are a little bit lager than or the same as [−π/2, π/2]d−1.
When the spacial momenta p does not belong to S, the spectral density ρ(E, p) has

to become negative on the energy interval E1 ≤ E < Ec, where E1 and Ec are determined
by

cosh E1 =
a(p)
2b(p)

, cosh Ec = b(p), (3.44)

2This restriction value of spacial momenta p is exactly the same as for the two dimensional case. In the

case of d = 2, the spacial momenta has only one component and S is given as

S = {−1.95 ≤ p ≤ 1.95}. (3.42)
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since ρ(E, p) < 0 is equivalent to a(p)/2b(p) ≤ cosh E < b(p) when p ̸∈ S. We will
numerically estimate E1 and Ec, the lower and upper bound of the energy interval on
which the spectral density become negative. For instance, if d = 4, these energy values are
computed as shown in the following table:

p b(p) a(p) a(p)/2b(p) E1 = cosh−1 a(p)/2b(p) Ec = cosh−1 b(p)
(π, π, π) 6 37 37/12 1.79 . . . 2.48 . . .

(π, π, 0) 4 17 17/8 1.39 . . . 2.06 . . .

(π, 0, 0) 2 5 5/4 0.69 . . . 1.32 . . .

Whether these values are large enough or not should depend on the physics one wants to
see through the overlap boson.

4. Refletion positivity of lattice Wess-Zumino model

To remedy the violation of the reflection positivity, one may adopt the simpler nearest-
neighbor action for the boson fields, φ and F as follows3:

S′
0 = a4

∑
x

{
−1

2
χT CDχ + φ∗(−∂∗

µ∂µ)φ + F ∗F
}

. (4.1)

This action still possesses three types of U(1) symmetry, Eq. (2.7), (2.8) and

δαφ = +iαφ,

δαF = +iαF, (4.2)

instead of Eq. (2.9).
In this formulation of the chiral multiplet, the action of the lattice N = 1 Wess-Zumino

model may be given as follows:

S = a4
∑

x

{
−1

2
χT CDχ + φ∗(−∂∗

µ∂µ)φ + F ∗F +
1
a
XT CX

−gχ̃T CφP+χ̃ − g∗χ̃T Cφ∗P−χ̃ + gFφ2 + g∗F ∗φ∗2
}

, (4.3)

where X(x) is an auxiliary Majorana fermion field and χ̃(x) = χ(x) + X(x). Then one
may define the U(1)R symmetry as follows:

δαχ = +iαγ5(1 − 1
2
aD)χ,

δαφ = −2iαφ,

δαF = +4iαF (4.4)

3Here, we have changed the sign convention of the fermionic action by introducing new Majorana field

χ′ = iχ. Of course this does not change any physical results. It is simply because this convention has been

used in the proof of the reflection positivity for the overlap fermions in our previous work [23].
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The reflection positivity is now satisfied in this formulation of the Wess-Zumino model.
The θ-reflection is defined for the bosonic fields χ, F in the same way as in the generic case
(3.3),

θφ(x) = φ(θx) (4.5)

θF (x) = F (θx) (4.6)

and for the fermionic fields χ,X as in (3.4),

(θχ̄)(x) = γ0χ(θx), (θχ)(x) = χ̄(θx)γ0, (4.7)

(θX̄)(x) = γ0X(θx), (θX)(x) = X̄(θx)γ0. (4.8)

Note that this definition of θ reflection does not contradict to the Majorana conditions
χ̄ = χT C and X̄ = XT C. Our field algebra A here is that of the polynomial algebra of
fermionic fields whose coefficients are the well-behaved functions of the bosonic fields. We
extend θ operation to whole algebra A, by the relations (3.6) and (3.7).

To prove the reflection positivity of the Wess-Zumino model, it is sufficient to show
that the action (4.3) can be rewritten in the form of (3.17)

−S = B + θ(B) +
∑

s

θ(Cs)Cs, B,Cs ∈ A+, (4.9)

[23]. Let us first consider the free part of (4.3). The first term in (4.3), the overlap Majorana
fermion, can be written in the form of (3.17) as is shown in ref [23]. On the other hand,
the second term can be written in the form of (4.9), as is well-known. Furthermore, the
third and fourth terms in (4.3) is θ reflection of themselves and do not contain any ‘time
hopping terms’. Therefore, these terms can be written in the form of

a4
∑
x∈Λ

{
F ∗F +

1
a
XT CX

}
= a4

∑
x∈Λ+

{
F ∗F +

1
a
XT CX

}
+ θ

[
a4

∑
x∈Λ+

{
F ∗F +

1
a
XT CX

}]
. (4.10)

The rest of the terms in (4.3) are interaction terms,

Sint := a4
∑

x

{
−gχ̃T CφP+χ̃ − g∗χ̃T Cφ∗P−χ̃ + gFφ2 + g∗F ∗φ∗2

}
, (4.11)

which are all strictly local. They are equal to theta-reflection of themselves again, and do
not contain any nonlocal ‘time hopping’ terms either. This means that Sint can also be
written as

Sint = B + θ(B) (4.12)

with

B =
∑

x∈Λ+

{
−gχ̃T CφP+χ̃ − g∗χ̃T Cφ∗P−χ̃ + gFφ2 + g∗F ∗φ∗2,

}
(4.13)

which obviously belongs to A+. Therefore, one concludes that this lattice Wess-Zumino
model satisfies the reflection positivity condition.
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5. Discussion

Preserving R symmetry exactly is a useful way in formulating supersymmetric field theories
on the lattice. This point has been emphasized by Elliot, Giedt and Moore [25] in their
formulation of four-dimensional N = 4 super Yang-Mills theory. The discrete R symmetry
in the two-dimensional N = 2 Wess-Zumino model [26] has played an important role in
the numerical study of the correspondence to N = 2 conformal field theories[27].

In formulating the exact R symmetry on the lattice, however, there is a freedom in
the choice of the bosonic part of the action. When one can preserve some part of the
extended supersymmetries in the theories with N ≥ 2 [26, 28], it seems useful to adopt
the bosonic actions to preserve the supersymmetries, although one should take into care a
possible effect of the violation of the reflection positivity. But, for the theories of N = 1, it
seems difficult to preserve the supersymmetry in general[29]. The free limit supersymmetry
may still help in the convergence to the supersymmetric limit in the interacting models.
Otherwise, the reflection positivity condition may give a possible guideline to choose a
bosonic action.

It would be interesting to examine further the inter-relation among the reflection pos-
itivity, the vacuum energy cancellation(the exact supersymmetry) and the exact U(1)R

symmetry of free chiral multiplet on the lattice. If one adopts the Majorana Wilson fermion
for the fermionic component of the chiral multiplet, one can show that the bosonic part
of the supersymmetric action now fulfills the reflection positivity condition. In this case,
the U(1)R symmetry is not manifest. But, through the block spin transformation, it is
recovered in the fixed point action [8]. In this course of the renormalization group trans-
formatons, it seems possible to maintain the vacuum energy cancellation by adjusting the
parameters in the block-spin kernels and the normalization factors. Then, if the reflection
positivity could also be maintained through the block-spin transformation, all the three
conditions could be fulfills in the fixed point approach[30, 31, 32, 33, 34].
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A. Spectral density ρ

In this appendix, we derive eq.(3.37). Define a function f(z) as

f(z) =
1
¤(p0 = z, p). (A.1)
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It is straightforward to find the explicit form

f(z) =

√
a(p) − 2b(p) cos z

(√
a(p) − 2b(p) cos z − (b(p) − cos z)

)
a(p) − b(p)2 − cos2 z

. (A.2)

f has a branch cut where inside the square root becomes negative,

a(p) − 2b(p) cos z < 0 ⇐⇒ cos z >
a(p)
2b(p)

=
1 +

∑
j sin2 pj + b(p)2

2b(p)
. (A.3)

Since

1 +
∑

j sin2 pj + b(p)2

2b(p)
≥

√
1 +

∑
j

sin2 pj ≥ 1, (A.4)

Equation a(p) − 2b(p) cos z = 0 has two pure imaginary solutions ±iE1 (E1 > 0) :

E1 = cosh−1

(
a(p)
2b(p)

)
, E1 > 0. (A.5)

f has isolated poles where the denominator vanishes,

cos2 z = a(p) − b(p)2 = 1 +
∑

j

sin2 pj (A.6)

To solve this equation, put z = x + iy, x, y ∈ R and it becomes

cos2 x cosh2 y + sin2 x sinh2 y − 2i cos x cosh y sinx sinh y = a(p) − b(p)2 ≥ 1. (A.7)

Noting that the imaginary part must vanish, one finds that (A.7) is equivalent to{
cos x = 0

sinh2 y = a(p) − b(p)2
or

{
sinx = 0

cosh2 y = a(p) − b(p)2.
(A.8)

The solution of these equations are :

z = x + iy = kπ ± iE0 or z = x + iy = (
1
2

+ l)π ± iE2 (k, l ∈ Z), (A.9)

where E0 and E2 are defined as the unique positive solution of coshE0 = a(p)− b(p)2 and
sinhE2 = a(p) − b(p)2 respectively.

From these observations, the analytic structure of the function f can be drawn in the
complex z-plane as in the figure below. The application of Cauchy’s integration theorem
to the contour drawn in the figure tells us that∫ π

−π

dp0

2π
eip0(x0−y0)f(p0) = 2πi × (residue from poles) +

∫ ∞

E1

idE

2π
(f+(iE) − f−(iE)),

(A.10)

where in f+ one chooses the branch in which
√
−1 = i, in f− the branch in which

√
−1 = −i.
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It is not difficult to see that only the pole z = ±iE1 has a non-zero residue and therefore
contributes the first term of eq (A.10). The other poles are removable singularities. The
contributing residue coming from z = iE1 can be computed to give the result

Res (f, z = iE1) =

√
a(p) − 2b(p) cosh E1(

√
a(p) − 2b(p) cosh E1 − (b(p) − cosh E1))

4πi cosh E1 sinhE1
χS(p)

(A.11)

where χS is a characteristic function of S defined as

χS(p) =

{
1 (p ∈ S)

0 (p ̸∈ S).
(A.12)

The second term in (A.10) is also easily calculated as∫ ∞

E1

idE

2π
(f+(iE) − f−(iE)) =

∫ ∞

0

dE

π

(cosh E − b(p))
√

2b(p) cosh E − a(p)
cosh2 E − a(p) + b(p)2

θ(E − E1)

(A.13)

Substituting (A.11) and (A.13) into (A.10), we get the spectral density ρ

ρ(E, p) =

√
a(p) − 2b(p) cosh E(

√
a(p) − 2b(p) cosh E − (b(p) − cosh E))
2 cosh E sinh E

πχS(p)δ(E − E1)

+
(cosh E − b(p))

√
2b(p) cosh E − a(p)

cosh2 E − a(p) + b(p)2
θ(E − E1). (A.14)
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Figure 1: Integration contour of f . Only the z = iE0 pole has non-vanishing residue.
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