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1 Introduction

In this article, we study the low energy effective gauge theory describing the motions of a

stack of D2-branes extended in the x0, x1, x2 directions. Our aim is to give SUSY-preserving

real masses to the fields describing the motions of the D2-branes in the directions x4, . . . , x7.

We will do so by placing the D2-branes into a closed string background corresponding to

the T-dual of a supersymmetric NS fluxbrane [1–7]. We will point out that the fluxbrane

is the string theory realization of an Ω-deformation [8–13] of flat space in the directions

x4, . . . , x7, where the deformation parameters fulfill ε1 = −ε2.
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Figure 1. Gauge and string theory interpretation of the real mass in three and four dimensions.

The reduction in gauge theory is realized as a T-duality in string theory.

direction 0 1 2 3 4 5 6 7 8 9

fluxtrap × × × × ×
D2 × × ×

Table 1. Embedding of the D2-brane with respect to the fluxtrap. The × indicates a direction

parallel to the brane (for the D2) or in which the bulk geometry is flat (for the fluxtrap).

Our strategy is as follows. The (2 + 1)-dimensional gauge theory with real mass terms

that we consider can be understood as coming from the reduction of (3 + 1)-dimensional

gauge theories with Wilson line boundary conditions for a global symmetry. This boundary

condition in turn has a natural string theory interpretation in terms of D3-branes embedded

in flat space with discrete identifications. Such backgrounds have been rediscovered a

number of times, starting from the work of Melvin [1], and have taken different names,

such as fluxbranes or Ω-deformed flat space. Since the string theory realization of the

reduction from 3+1 to 2+1 dimensions can be achieved via a T-duality in a direction

parallel to the D3-brane, we can give a string theory construction of the real mass in terms

of D2-branes living in the T-dual of the fluxbrane background, that we will refer to as a

fluxtrap. The different interpretations are summarized in figure 1. The setup we will be

using is summarized in table 1.

The fluxtrap background described in this paper serves to give twisted masses to the

chiral multiplets in a brane construction realizing the two-dimensional gauge theories in the

gauge/Bethe correspondence of Nekrasov and Shatashvili [14, 15]. The full construction

including NS5-branes and D4-branes in the fluxtrap background will be discussed briefly

here, leaving more detailed elaboration to future work.1

1In an earlier paper [16], a brane construction was discussed based on the Hanany-Hori type of configu-

ration [17], which reproduced certain aspects of the gauge theories but omitted the twisted masses. That

construction differs in certain important ways from the one of relevance here, which reproduces all terms in

the action of the gauge theories of [14, 15] precisely, twisted masses included.
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The plan of this note in as follows. In section 2, we give a detailed introduction to the

real mass deformations of (2 + 1)-dimensional gauge theory, with emphasis on points useful

to our construction in particular.

In section 3, we introduce the fluxbrane solution, which is equivalent to turning on an

Omega background, and its T-dual (fluxtrap) that will give real masses to the adjoint fields

living on a stack of D2-branes. We give the explicit supergravity solution in section 3.1.

The Killing spinors preserved by the fluxtrap solution are given in section 3.2, and the

relationship to the Ω-deformation of 4D gauge theory is discussed in section 3.3.

In section 4, we describe the three dimensional gauge theory living on the worldvolume

of D2-branes extended in the (x1, x2) directions. The action, fermionic symmetries and

preserved Killing spinors are detailed in section 4.1. In section 4.2, the bps condition

is derived and it is shown that the real mass parameter stemming from the fluxbrane

background gives exactly the physical mass of the bps states. In section 4.3, the low

energy effective action is derived to quadratic order in the fields, where the real mass terms

appear as expected. In section 5, the relation of our construction to the gauge/Bethe

correspondence of Nekrasov and Shatashvili is discussed. Section 6 gives the conclusions.

In appendix A we show how to incorporate a set of parallel of NS5 branes into the fluxtrap

solution. Finally, in appendix B, some notations and conventions are collected.

2 Supersymmetric real masses in field theory and string theory

In this section we will give an exposition of the supersymmetric real mass terms for chiral

superfields in (2 + 1) and (1 + 1)-dimensional gauge theories. The (2 + 1)-dimensional

real mass terms were first written down and used in [18], and their formal properties were

developed systematically in [19, 20].

The real mass term is a mass term that cannot be thought of as a superpotential

term, but comes rather from a deformation of the susy algebra itself. A real mass

implies a deformation of the susy algebra and also vice versa: the real mass term is not

supersymmetric under the undeformed susy algebra, and the deformation of the algebra

automatically imparts a mass to the fields with non-vanishing eigenvalues under the central

charge Z by which the algebra is deformed. This connection gives a clue to the construction

of the real mass in string theory. In order to make our string theory embedding maximally

clear, we will give a construction of real mass terms in a physical and superspace-free form,

that can be thought of as involving a lift to one higher dimension.

The “twisted masses” in 1 + 1 dimensions in the sense of [17] and the “real masses” in

2+1 dimensions [18–20] are related. The principle of their relationship is that “twisted”

mass terms in 1 + 1 dimensions descend from “real” mass in (2 + 1) dimensions upon

dimensional reduction on a circle. Even though it is in general possible to switch on a

second, imaginary component for the twisted mass term, in the system of [14, 15], only one

real component of the complex mass term is ever activated, and that real component can

be taken to be the one corresponding to a local deformation in 2 + 1 dimensions. With

this restriction of the twisted mass parameter to a real value, the real mass term in 2 + 1

dimensions and twisted mass term in 1 + 1 dimensions correspond canonically, and we will

not distinguish them.

– 3 –
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2.1 Real mass deformation of the D2-brane theory

For most of this paper we will focus on a real-mass deformation of the string theory

embedding of maximally supersymmetric Yang-Mills theory in 2+1 dimensions, which

corresponds to a D2-brane in flat space. Our treatment will closely follow that of [20],

though we will keep our discussion independent of superspace, and we will emphasize the

interpretation of the real mass term via dimensional oxidation on a circle.

A D2-brane in flat space preserves 16 supercharges among the 32 of Type IIA string

theory. This is evident — the ambient space is flat and there is only one type of D-brane,

which is a bps state in flat space [21]. This configuration is invariant under SO(2, 1) rotations

in the 012 directions and SO(7) rotations in the 3456789 directions. These are inherited as

the Lorentz invariance and as the global R-symmetry group SO(7)3456789 of the D2-brane

theory. This is the theory that at low energies flows to the abjm model [22], but the strong

coupling behavior however is not relevant for the present article — we will always work in

the limit gs → 0 of weak three-dimensional gauge coupling.

The D2-brane theory has many mass deformations. For instance there are superpotential

terms as well as FI parameters one can add while preserving some amount of supersymmetry.

These are a different type of mass terms than the twisted masses we will consider, in that

the FI terms and superpotential terms leave the susy algebra undeformed. The twisted

mass in 1+1 dimensions and the real mass in 2+1 dimensions have the property that their

introduction always requires a (central) deformation of the susy algebra itself. This is

mentioned in [17] for twisted masses in 1+1 dimensions and in [18–20] for real masses in

2+1 dimensions. The presence of the central extension is a logical necessity — the mass

term amounts to a half-superspace integral of an integrand that would not be invariant

under the other two supersymmetries if the susy representations of the chiral multiplets

were undeformed. The deformation of the susy algebra by a central charge carried by the

chiral multiplets deforms the susy representations of the chiral multiplets and allows half-

superspace terms whose integrand could not otherwise be invariant under the complementary

half of the susy.

How should we think about real masses in 3D? A real mass deformation is defined by a

particular set of ingredients:

• A set of continuous Abelian global symmetries U(1)i, whose Hermitean generators

are qi. These symmetries should not be R-symmetries — they should all act trivially

on the supercharges themselves.

• More generally, if there is extended supersymmetry beyond N = 2, the abelian

symmetries should leave invariant at least one complex supercharge Qα 6= Q†α.

• A choice of real mass parameters mi, one corresponding to each of the Abelian global

symmetries.

If the symmetry generators q̂i are indeed exact symmetries of the dynamics, then the mass

parameters mi can be chosen arbitrarily. It may at times be useful to consider an enlarged

set of approximate symmetries U(1)i that are not exact symmetries of the dynamics but

– 4 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
8

are broken by specific terms, e.g. by the superpotential. If only some linear combinations

of the q̂i are exactly preserved, then this imposes a consistency condition relating the

superpotential to the mi: they must be chosen such that a certain linear combination

Z ≡ miq̂i of U(1) symmetries (summation over i is implied) leaves the superpotential

invariant. This Z is identical with the central term that deforms of the susy algebra.

The invariance of the action, including the superpotential, under Z is a necessary and

sufficient condition for consistently combining superpotential terms with a twisted mass

deformation. In the gauge theories of Nekrasov and Shatashvili, which we consider in

section 5, this principle constrains the matter in the fundamental and antifundamental

representations to carry exactly −1
2 the Z-charge of the matter in the adjoint representation,

in order to accommodate the superpotential

W = Q̃φQ , (2.1)

where Q, φ and Q̃ are the fundamental, adjoint and antifundamental chiral multiplets,

respectively.

Given these two ingredients — the symmetries q̂i and the mass parameters mi satisfying

the consistency condition — we can define a “real mass” deformation for a (2+1)-dimensional

susy theory with N = 2 susy, in a canonical way. To describe the deformation, introduce a

set of spurious, non-dynamical N = 2 Abelian vector multiplets, one for each of the global

symmetries U(1)i. Then minimally couple these non-dynamical vector multiplets to the rest

of the theory as dictated by gauge invariance and N = 2 supersymmetry. Note that the

“complex masses” (i.e. the quadratic terms in the superpotential) need not vanish in order

for the supersymmetric minimal coupling to be well defined, nor even for the quadratic

terms nor the superpotential as a whole to respect the symmetries U(1)i separately. All

that is needed is for the superpotential (and the rest of the action) to be invariant under

the combination Z = miq̂i, which is a weaker condition.

Now we give the prescription for defining the full deformation of the action. In three

dimensions, an N = 2 vector multiplet contains a single real scalar σ = σ∗, as well as a

gauge field and a Dirac fermion. Let them be normalized such that the kinetic term for the

gauge field would be

− 1

4 g2
3

FµνF
µν (2.2)

and the kinetic term for the scalar would be

− 1

2 g2
3

(∂µσ)(∂µσ) (2.3)

With these normalizations, the gauge field and the scalar have mass dimension 1, and

the susy transformations are coupling independent. Keeping only the space- and time-

independent vevs 〈σi〉 of the real scalars σi and setting them equal to the mass parameters,

〈σi〉 = mi , (2.4)

we obtain a deformation of the action for the dynamical degrees of freedom.

– 5 –
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Define the normalizations of the charges qi to be coupling-independent. That is to say,

under a constant gauge transformation χ = θ = const., normalized such that θ = 2π is the

smallest nonzero value of θ that defines a trivial gauge transformation, each chiral multiplet

with charges gets a phase of exp[iqiθ
i]. Then the real mass terms are such that each chiral

multiplet with charges qi gets a mass qim
i.

In order for this to be consistent, the susy algebra must be deformed by a real central

charge Z = miqi. Suppose the undeformed susy algebra is

{Qa, Q†b} = −2(ΓµΓ0)ab P
µ , (2.5)

where we use the standard sign convention 0 < H = +P 0 = −P0, and µ runs from 0 to 2.

Then when the masses are turned on, the central charge Z, normalized as defined above,

enters as

{Qa, Q†b} = −2(ΓµΓ0)ab P
µ − 2i Z (Γ0)ab . (2.6)

This description of the real mass deformation is completely equivalent to the description

in [17, 20]. The exact same construction applies to construct “twisted mass” deformations

in 2+1 dimensions, the difference being that the vev of the spurious vector multiplet scalars

σi are now complex σ 6= σ†, and so the twisted mass parameters mi can be complex instead

of real.

2.2 Lift to N = 1 theories in 3+1 dimensions on a circle

For (2 + 1)-dimensional N = 2 theories that lift to (3 + 1)-dimensional N = 1 theories by

dimensional oxidation on a circle, there is a simpler way of understanding the real mass

deformation, including the normalizations. For the construction of the real mass deformation

to lift correctly, it’s important that the U(1) symmetries q̂i that enter the central charge Z

should lift to exact symmetries in four dimensions, rather than just emerging as accidental

symmetries upon compactification to 2+1 dimensions and integrating out of Kaluza-Klein

modes.

Generic N = 2 theories in 2+1 dimensions do not have a lift to four dimensions, but

many do, including the theories of present interest to us, namely maximally supersymmetric

gauge theory. From the point of view of string theory, this dimensional oxidation to 3+1

dimensions is a T-duality on a coordinate x8 transverse to the D2-brane, to a T-dual

coordinate x̃8 longitudinal to the a D3-brane. The size of the coordinate is of course

fixed by consistency of the relation between gauge couplings. If the radius of the circle of

compactification is R̃, and the four dimensional gauge coupling is g4, then the relationship is

2πR̃

g2
4

=
1

g2
3

. (2.7)

How do we think of the real mass deformation in 4-dimensional terms? We simply lift

the three-dimensional N = 2 vector multiplet in the obvious way to a four-dimensional

N = 1 vector multiplet, which contains a gauge field A0,1,2,8̃, a Weyl gluino, and no scalars.

With the normalizations in equation (2.3) and (2.2) for the real scalar σ and gauge field

in the non-dynamical three-dimensional vector multiplet, the field σ is identified with the

– 6 –
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zero mode piece of the x8̃ component A8̃ of the non-dynamical four-dimensional gauge field,

with unit coefficient: taking A8̃ to be constant in the x8̃ direction, then

σ = 1 ·A8̃ . (2.8)

The coefficient of proportionality can be determined from the relative normalizations of

the kinetic terms for the (spurious, non-dynamical) fields σ and Aµ that we have coupled

minimally to the (2 + 1)-dimensional theory. So when we set the fictional vector multiplet

scalar σi equal to the corresponding mass parameter mi, this is the same thing as setting

Ai
8̃

to mi in the four-dimensional lift. In other words, this is a compactification with a

Wilson line boundary condition for fields charged under the symmetries U(1)i such that,

when parallel transported around the circle, every field transforms to itself up to the action

of the monodromy

Û8 ≡ exp

[
i
∑
i

αiĝi

]
, (2.9)

where

αi ≡
∮ 2πR̃

0
dx8̃Ai

8̃
= 2πR̃ σi . (2.10)

We are setting σi to mi, which means

αi = 2πR̃mi . (2.11)

Therefore in the cases where the three-dimensional theory lifts to four dimensions (with the

appropriate symmetries intact), the real mass term in the three-dimensional theory can be

obtained by starting with the undeformed four-dimensional theory and compactifying down

to three dimensions on a circle of radius R̃ with monodromy

Û8 ≡ exp

[
2πiR̃

∑
i

miĝi

]
(2.12)

around the x8̃ direction, in the limit where R̃→ 0.

In this language the consistency conditions for twisted mass deformations are particularly

transparent. It’s clear that one can pick any symmetries ĝi and mass parameters mi that

one likes, as long as the Wilson line compactification preserves at least N = 2 susy in

2+1 dimensions, the criterion for which is that Z ≡
∑
miq̂

i is a non-R symmetry with

respect to at least one four-dimensional Weyl doublet of supercharges Qα. So if the four

dimensional theory has only N = 1 and no extended supersymmetry, then this just means

the combination Z must be a non-R global symmetry. If there is extended susy in four

dimensions, then the condition is that the action of Z on supercharges must have at least

one element in its kernel.

In the case of interest, the four dimensional theory is N = 4 super-Yang-Mills in 3+1

dimensions. Its only continuous global symmetries are the SO(6) ' SU(4) R-symmetry

group. This group acts on (3 + 1)-dimensional Weyl supercharges QAα in the fundamental

representation 4 of SU(4). We are only interested in symmetries that preserve at least one

– 7 –
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of the four Weyl doublets, say the fourth one A = 4. Then we will restrict the generators

ĝ to lie in an SU(3) subgroup that acts nontrivially on the first three elements of the 4

only. So our Wilson line compactification is defined by some mass parameters mi, one for

each appropriately normalized generator ĝi of the SU(3) ⊂ SO(6) inside the R-symmetry

group of N = 4 of super-Yang-Mills theory in 3+1 dimensions. Then each massless four-

dimensional chiral multiplet with eigenvalues qi under the generators ĝi gets a mass in three

dimensions that is equal to |Z| =
∣∣∑ qim

i
∣∣. For chiral multiplets that are not massless in

four dimensions — if for instance they have D-term or F-term masses given by M4 in four

dimensions — then the construction makes it quite clear what their masses must be in three

dimensions, since Z is a generalized momentum in the x8-direction. The mass formula at

tree-level is

M3 =
√
M2

4 + Z2 , Z ≡
∑
i

miqi . (2.13)

The mass M4 is the same as the three-dimensional mass that comes from F-term and D-term

potentials. So in strictly three-dimensional terms we can write

Mfull, tree-level =
√
M2
F+D + Z2 , Z ≡

∑
i

miqi . (2.14)

The full mass was computed from a classical four-dimensional dispersion relation so of course

it will be modified by perturbative quantum corrections in general when M4 = MF+D is

nonzero. However when M4 = MF+D vanishes, then the state is massless from the four-

dimensional perspective and bps from a three-dimensional perspective, and the quantum

corrections to its mass should be under control — vanishing perturbatively and perhaps

calculable nonperturbatively, as in [17].

So the data specifying a real mass in 2+1 dimensions in the 16-supercharge D2-

brane theory are clear — for each SU(3) generator ĝa pick a parameter ma, and the real

masses in the three-dimensional sense are equal to eigenvalues of the operator Z ≡ maĝa
acting on chiral multiplets. The deformed theory can be thought of as coming from the

compactification on the D3-brane theory on a circle of radius R̃, with a monodromy given

by Û8 ≡ exp[2πiR̃Z]. Having noticed that the real mass can be realized by dimensional

reduction with monodromy, let us use that description to find a string embedding of the

D2-brane theory with a twisted mass.

2.3 String embedding of the twisted mass for N = 8 SYM in D = 3

Consider an isolated D2-brane (we could equally well consider a set of N D2-branes) whose

gauge coupling is g3. We want to lift to a D3-brane theory on a circle of radius R̃. The

relation between gauge couplings is simply

2πR̃

g2
4

=
1

g2
3

, (2.15)

so

g4 = g3 ·
√

2πR̃ . (2.16)
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So now let us consider a D3-brane extended in directions 0128̃ in flat spacetime with line

element

d̃s
2

= d~x2
0...2 + dx̃2

8 + d~y2
1...6 , (2.17)

where

d~x2
0...m = −dx2

0 + dx2
1 + · · ·+ dx2

m and d~y2
1...m = dy2

1 + · · ·+ y2
m . (2.18)

The tilde denotes that the direction x̃8 is going to be the T-dual of the x8 direction transverse

to the twobrane that will be the object of our ultimate interest. The threebrane in type IIB

string theory is a bps state that preserves sixteen supercharges. We wish to compactify the

x̃8 direction with radius R̃. However a straightforward identification x̃8 ' x̃8 + 2πR̃ would

leave all sixteen supercharges unbroken and would not generate a mass term. It also would

impose periodic boundary conditions on the fields living on the D3-brane, whereas we want

to impose boundary conditions twisted by the monodromy Û8 given in equation (2.12).

The only consistent way to do that in string theory is just to impose that same

monodromy on the compactification of spacetime as a whole. From the point of view of

the spacetime as a whole, the SO(6) generators of the D3-brane gauge theory are rotations

of the six directions transverse to the threebrane, which in this case are y1, . . . , y6. So the

SO(6) of the gauge theory just acts on the coordinates yi in the vector representation in

an obvious way. We are interested in preserving at least N = 2 supersymmetry in three

dimensions, which forces us to restrict ourselves to an SU(3) subgroup of SO(6), which

imposes a choice of complex structure on yi-space. To focus on the more constrained case

of N = 4 supersymmetry in three dimensions, we can restrict the rotation to an SU(2)

subgroup, in which case there are a triplet of such complex structures, but we will just

focus on one for simplicity.

Either way, we choose a complex structure on yi-space. So define

w1 ≡ y1 + i y2 , w2 ≡ y3 + i y4 , w3 ≡ y5 + i y6 , (2.19)

then the condition to preserve at least N = 2 susy in 3D is that the generators ĝ of the

monodromy lie in a subgroup that acts as traceless Hermitean matrices on the three complex

coordinates wp. The condition to preserve N = 4 in 3D is that the Hermitean matrices ĝ

additionally lie in an SU(2) subgroup — that is, they have a common zero eigenvalue. It is

now to that most supersymmetric case to which we would like to turn our attention.

We take the rotation matrices to lie in the SU(2) subgroup that acts only on the

directions w1,2, and leaves w3 alone. Since we are compactifying only one dimension, we

have only one linear combination of generators to worry about, so we pick maga to be mσ3,

where σ3 is the Pauli matrix acting on the directions w1,2 and leaving w3 invariant.

According to our prescription, we should impose Û8 = exp[2πim R̃ σ3] as a monodromy

around the x̃8 direction, which we compactify with radius R̃. This is equivalent to identifying

the flat, ten-dimensional space by the combined identification (as opposed to two independent

identifications) as follows:

x̃8 ' x̃8 + 2πR̃ ,

(
w1

w2

)
' Û8 ·

(
w1

w2

)
. (2.20)
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This space, with these identifications, defines a purely closed-string background in

which the D3-brane can be thought of as a probe. So for now, let us focus on the description

of the closed string background itself.

3 Closed string fluxbrane and fluxtrap backgrounds

This type of space, obtained by taking a quotient by identifications of the form (2.20), has

been studied already very well. Spaces of this kind, defined by a simultaneous identification

by a shift of one direction and a rotation of some other directions, go by the name of

“fluxbranes” and have been studied for quite some time, starting with work in the pure

general relativity context by Melvin [1]. The “flux” in “fluxbrane” refers to the idea of

starting in 5D general relativity with one circle compactified à la Kaluza-Klein.

In the case of an S1 compactification with a monodromy Û around the S1 acting on

some other space X, it is natural to think of X as fibered over the circle, with the circle

as the base and the fibration data defined as gluing maps on the fiber, specified by the

monodromy. But the space carries a second fibration structure in which the S1 is the fiber

and X the base of the fibration.

In the picture where the S1 shift-circle is the fiber direction, the fibration structure is

nontrivial even locally, in the sense of there being a local curvature of the connection of the

bundle. In other words, there is Kaluza-Klein flux. This is not true in the original picture,

where the S1 is the base and the fibration of X over it is described by a connection that

is locally flat since the base is one-dimensional. The “fluxbrane” picture — in which the

space X is the base and the shift-circle S1 the fiber — is the more natural in one in the

Kaluza-Klein theory of 4D general relativity and electromagnetism, or any theory in which

the S1 is taken to be small. That is the picture in which these spaces are thought of in

e.g. [1–7], whence the name “fluxbrane”. For us, the shift-circle S1 is the direction x̃8 in

the type IIB string theory, and the Euclidean directions w1,2 are the space X, and indeed

when we think of X as the base, there really is Kaluza-Klein flux, as we shall now see.

3.1 Bulk fields and T-duality transformations

In the following, we specify the fluxbrane background in cylindrical coordinates. We will

then perform a T-duality along the direction x8̃ and derive the expressions for the metric,

vielbein, B-field and the dilaton for the fluxtrap. This resulting geometry will provide the

closed string background for the D2-branes in the following sections.

Fluxbrane. In cylindrical coordinates, defined by

ρ1 e
i θ1≡ w1 = y1 + i y2 ρ2 e

i θ2≡ w2 = y3 + i y4 x3 + i x9 ≡ y5 + i y6 , x̃8 = R̃ũ ,

(3.1)

our fields have the following simple form:

g̃µν dX̃µ dX̃ν = d~x2
0...3 + dρ2

1 + ρ2
1 dθ2

1 + dρ2
2 + ρ2

2 dθ2
2 + R̃2 dũ2 + dx2

9 , (3.2)

B̃µν dX̃µ dX̃ν = 0 , (3.3)

Φ̃ = log(R̃ g2
3) , (3.4)
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where X̃µ = (x0, . . . , x3, ρ1, θ1, ρ2, θ2, ũ, x9). The reason for our choice of the constant

value (3.4) for the dilaton Φ̃ will become clear later on: g3 will be the gauge coupling for

the effective quantum field theory living on D2-branes at the origin.

The space R5/Γ is obtained by imposing the identifications in equation (2.20):
ũ ' ũ+ 2π k1 ,

θ1 ' θ1 + 2πmR̃ k1 ,

θ2 ' θ2 − 2πmR̃ k1 ,

k1 ∈ Z , (3.5)

in addition to the standard identifications for cylindrical coordinates,

θ1 ' θ1 + 2π k2 , θ2 ' θ2 + 2π k3 , k2, k3 ∈ Z . (3.6)

It is convenient to disentangle the periodicities. For this reason we introduce the new

angular variables {
φ1 = θ1 −mR̃ũ ,
φ2 = θ2 +mR̃ũ ,

(3.7)

to rewrite the metric in the form

d̃s2 = d~x2
0...3 + dρ2

1 + ρ2
1 dφ2

1 + dρ2
2 + ρ2

2 dφ2
2

+ 2mR̃(ρ2
1 dφ1 − ρ2

2 dφ2) dũ+ R̃2
(
1 +m2(ρ2

1 + ρ2
2)
)

dũ2 + dx2
9 , (3.8)

with the three independent sets of identifications:

(ũ, φ1, φ2) 7→ (ũ+ 2π n1, φ1 + 2π n2, φ2 + 2π n3) , n1, n2, n3 ∈ Z . (3.9)

The space is of course still locally flat, but in this coordinate system one can see immediately

the S1 fibration structure where the fiber is described by ũ. This can be interpreted in

terms of a non-flat Kaluza-Klein gauge connection (ρ2
1 dφ1 − ρ2

2 dφ2), which explains the

origin of the name fluxbrane. The natural vielbein is given by

ẽn = dxn , n = 0, 1, 2, 3, 9

ẽ4 = dρ1 , ẽ5 = ρ1

(
dφ1 +mR̃ dũ

)
, ẽ6 = dρ2 , ẽ7 = ρ2

(
dφ2 −mR̃ dũ

)
,

ẽ8 = R̃ dũ .

(3.10)

An alternative description for the same space can be obtained by passing to rectilinear

coordinates:

z1 ≡ x4 + i x5 ≡ ρ1 e
i φ1 , z2 ≡ x6 + i x7 ≡ ρ2 e

i φ2 , x8 ≡ R̃ũ , (3.11)

which are related to the previous coordinate by a rotation in ũ:(
x4

x5

)
=

(
cos(mR̃ũ) sin(mR̃ũ)

− sin(mR̃ũ) cos(mR̃ũ)

)(
y1

y2

)
,

(
x6

x7

)
=

(
cos(mR̃ũ) sin(mR̃ũ)

− sin(mR̃ũ) cos(mR̃ũ)

)(
y3

y4

)
.

(3.12)
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The metric can be recast in the form

g̃µν dX̃µX̃ν = d~x2
0...3 +

7∑
i=4

(dxi +mV i dx8)2 + dx2
8 + dx2

9 , (3.13)

where V i ∂i is the Killing vector

V i ∂i= −x5 ∂x4+x4 ∂x5+x7 ∂x6−x6 ∂x7= ∂φ1− ∂φ2 , (3.14)

with norm

‖V ‖2 = x2
4 + x2

5 + x2
6 + x2

7 = ρ2
1 + ρ2

2 . (3.15)

This is precisely the form of the Ω deformation of flat space in the directions z1 and z2 with

parameters ε1 = −ε2 = m as described in [11].

Fluxtrap. In order to make contact with the (2 + 1)-dimensional theory living on the

D2-branes we want to describe, we now perform a T-duality in the x8-direction. Since

the three identifications in equation (3.9) are independent we can make use of Buscher’s

rules [23] for the T-duality to exchange the coordinate ũ for a new coordinate u, also with

periodicity 2π. The metric and B-field become:

gσρ = g̃σρ +
B̃ũσ B̃ũρ − g̃ũσ g̃ũρ

g̃ũũ
, guu =

(α′)2

g̃ũũ
, guσ = α′

B̃ũσ
g̃ũũ

,

Bσρ = B̃σρ +
B̃ũσ g̃ũρ − B̃ũρg̃ũσ

g̃ũũ
, Buσ = α′

g̃ũσ
g̃ũũ

, Φ = Φ̃− 1

2
log

(
g̃ũũ
α′

)
,

(3.16)

where (σ, ρ) run over all coordinates except ũ or the dual coordinate u. In terms of the dual

radius

R =
α′

R̃
, (3.17)

the new dimensionful coordinate is

x8 = Ru , (3.18)

such that the metric, B-field and dilation after T-duality are given by

ds2 = d~x2
0...3 + dρ2

1 + dρ2
2 + ρ2

1 dφ2
1 + ρ2

2 dφ2
2 +
−m2(ρ2

1 dφ1 − ρ2
2 dφ2)2 + dx2

8

1 +m2(ρ2
1 + ρ2

2)
+ dx2

9 ,

(3.19)

B = m
ρ2

1 dφ1 − ρ2
2 dφ2

1 +m2(ρ2
1 + ρ2

2)
∧ dx8 , (3.20)

e−Φ =

√
1 +m2(ρ2

1 + ρ2
2)

g2
3

√
α′

. (3.21)

Observe that the complex coordinates z1 ≡ x4 + i x5 and z2 ≡ x6 + i x7 are left

untouched by T-duality in the direction ũ since the three identifications in equation (3.9)

are independent. Moreover, V µ ∂µ remains a Killing vector for the geometry.
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It is convenient to introduce a “natural” vielbein for the T-dual geometry. This is

obtained by imposing

ẽmµ ∂X̃
µ = emµ ∂X

µ , (3.22)

where ∂X is the worldsheet derivative. Under T-duality, ∂X transforms as (see e.g. [24]):

∂ũ→ 1

g̃ũũ
(α′ ∂u− (g̃σũ + B̃σũ) ∂Xσ) , (3.23)

∂X̃σ → ∂Xσ , (3.24)

where Xσ runs again over all the coordinates other than u. The invariance of emµ ∂X
µ

results in 
emu =

α′

g̃ũũ
ẽmũ ,

emσ = ẽmσ −
g̃σũ + B̃σũ

g̃ũũ
ẽmũ for Xσ 6= u .

(3.25)

The inverse of these transformations is given bye u
m =

g̃ũũ
α′
ẽ ũ
m +

g̃σũ + B̃σũ
α′

ẽ σ
m ,

e σ
m = ẽ σ

m for Xσ 6= u .
(3.26)

Starting from the vielbein for flat space in equation (3.10), we obtain

en = dxn , n = 0, 1, 2, 3, 9

e4 = dρ1 , e5 =
ρ1

∆2

(
dφ1 +m2ρ2

2(dφ1 + dφ2) +mdx8

)
,

e6 = dρ2 , e7 =
ρ2

∆2

(
dφ2 +m2ρ2

1(dφ1 + dφ2)−mdx8

)
,

e8 =
1

∆2
(−mρ2

1 dφ1 +mρ2
2 dφ2 + dx8) ,

(3.27)

where

∆2 = 1 +m2(ρ2
1 + ρ2

2) . (3.28)

With this, we have collected all the necessary expressions for the fluxtrap geometry.

3.2 Supersymmetry of the closed string background

After having derived the form of the metric, B-field, dilaton and the vielbein in the fluxtrap

background, we will now investigate the number of supersymmetries that are preserved

by this background and explicitly give the preserved Killing spinors. It is convenient first

to study the supersymmetries preserved by the fluxbrane background and then apply the

T-duality to transform the Killing spinors.

In our choice of coordinates, the Killing spinors in the flat background are given by

KIIB = exp

[
1

2
θ1Γ45 +

1

2
θ2Γ67

]
ε0 , (3.29)
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where ε0 is a complex Weyl spinor. Introducing φ1 and φ2, this becomes

KIIB = exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
exp

[
mR̃ũ

2
(Γ45 − Γ67)

]
ε0 . (3.30)

Observe that all the variables are 2π-periodic. The matrix Γ45 − Γ67 has eigenvalues ±2i

and 0. There are thus two possibilities for the Killing spinor to have the right periodicity [4]:

1. mR̃ is an integer. In this case the original variables θ1 and θ2 are only 2π-periodic

and the only non-trivial identification in equation (3.5) is ũ ' ũ + 2πk1. In other

words, the spacetime is the standard flat space, preserving 32 real supercharges.

2. For generic values of mR̃, the second exponential is not periodic in ũ unless Γ45 − Γ67

vanishes, in which case the dependence on ũ drops out of the spinor.

The first case is simply flat space without any deformation; in the following we will pursue the

second alternative, which cuts down the number of Killing spinors by half. The orthogonal

projectors

Πflux
± =

1

2
(1±Γ4567) , (3.31)

satisfy

Γi Πflux
± =

{
Πflux
∓ Γi if i = 4, 5, 6, 7,

Πflux
± Γi otherwise.

(3.32)

Using the fact that

Πflux
− (Γ45 − Γ67) = Πflux

− (1+Γ4567)Γ45 = Πflux
− Πflux

+ Γ45 = 0 , (3.33)

we find the expression for the 16 type IIB Killing spinors of the fluxbrane background:

KIIB = Πflux
− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε0 . (3.34)

Having obtained the expressions for the Killing spinors in type IIB, we can translate

them into the T-dual type IIA fluxtrap picture (see e.g. [25]): KIIA = εL + εR, where
εL = e−Φ/8(1+Γ11) Πflux

− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε0 ,

εR = e−Φ/8(1−Γ11)Γu Πflux
− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε1 ,

(3.35)

with ε0 and ε1 constant Majorana spinors, and

Γu = R∆ eauΓa =
mρ1

∆
Γ5 −

mρ2

∆
Γ7 +

1

∆
Γ8 (3.36)

is the Γ matrix in the u direction, normalized to square to the identity, (Γu)2 = 1.

These spinors are such that the corresponding variations of the dilatino and gravitino

(equations (B.9) and (B.10)) vanish.

Both ε0 and ε1 have 32 real components. The projectors Πflux
− and (1±Γ11) each reduce

the preserved supercharges by a factor of one half. In our fluxtrap background, we are

therefore left with 16 preserved real supercharges.
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3.3 Fluxtrap solution as the string theory of the Ω-background

The fluxtrap solution (3.19)–(3.21) is the string theory of the Ω-deformation, and we would

like to understand the meaning of that. So far we have considered branes — specifically

D2-branes — embedded transverse to the z1,2 directions. To understand the relationship

with the Ω-deformation of four-dimensional gauge theory, let us consider a different type of

D-brane, which we shall embed to fill the z1,2 directions and denote with a prime.

The Ω-deformation of maximally supersymmetric gauge theory [11] can be defined by

starting with five-dimensional gauge theory and dimensionally reducing on a circle with

twisted boundary conditions defined by the identifications (2.20), where the rotation (2.20)

acts on directions in the gauge theory itself, rather than on scalar fields. That is to say, the

directions of the 5D gauge theory, in our coordinates, would be x4,5,6,7,8̃. It is natural to

interpret this gauge theory as the dynamical theory of Euclidean D4′-branes spanning the

x4,5,6,7,8̃ directions.

Dimensionally reducing to 4-dimensional gauge theory, as in [11] amounts to performing

a T-duality along the x̃8 direction, leaving us with the flux-trap solution (3.19)–(3.21). The

D4′-branes have now been transformed into D3′-branes spanning the z1,2 directions. The Ω-

deformation of four-dimensional N = 4 super-Yang-Mills theory can be thought of precisely

as the α′ → 0 limit of a set of D3′-branes embedded in the fluxtrap solution (3.19)–(3.21),

spanning the directions z1,2.

The prime on the D3′-branes emphasizes that the four-dimensional gauge theory here is

not to be identified with the gauge theory from which we constructed our three-dimensional

theory with twisted masses. The two types of branes are entirely separate, and not to be

included simultaneously in the same dynamical system. (Indeed, the primed branes live in

type IIB string theory and the unprimed branes in type IIA, although this is not significant

— a T-duality along a trivial direction such as x1,2,3,9 transforms a IIA brane into a IIB

brane and leaves the fluxtrap solution unaffected.)

The primed D3-branes, on which the Ω-deformed gauge theory lives, are Euclidean and

space-filling in the z1,2 directions. The unprimed D2-branes, on which the gauge theory

of [14] lives, are transverse to the z1,2 directions. The Ω-deformation appears in the former

as a position-dependent gauge coupling, and in the latter as a twisted mass term.

The relationship between the twisted mass deformation of the unprimed D2-branes

and the Ω-deformation of the primed D3-branes is that both arise from the same defor-

mation of the closed string background in which each type of brane is embedded in its

own way.

We expect that embedding the Ω-deformation in string theory via the fluxtrap solution

clarifies and simplifies certain aspects of the Ω-deformation that otherwise appear somewhat

technical and opaque. Let us take an easy example: one particularly salient feature of the

Ω-deformation is its localization of instantons to the origin of the four spacetime dimensions

of the gauge theory. Even from the gauge theory perspective, a moment’s thought makes

it clear that such a localization can only come about through a position-dependent gauge

coupling with a maximum at the origin. A small instanton is pointlike, and cannot therefore

couple to a metric or B-field; its only interaction with background fields is through the
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gauge coupling. Since its action is inversely proportional to g′24 , the instanton’s action is

minimized where the gauge coupling attains its maximum value.

For a D3’-brane in the flux-trap solution, the four-dimensional gauge coupling is

g′ 24 Ω =
g′ 24 (0)√

1 + ε̄2r2
, (3.37)

where

g′4 (0) ≡ (2π)1/2 (α′)1/4 g3 (3.38)

is the local gauge coupling of the four-dimensional gauge theory near the origin, and

ε̄ ≡ m. (3.39)

We have introduced the primed branes only to clarify the relationship between the

mass-deformed 3D theory and the Ω-deformed 4D Euclidean theory. Hereafter we shall leave

the primed branes and not return to them in the present article. However we anticipate

that the string theory embedding of the Ω-deformation may be useful for analyzing the

Ω-deformed theory on the primed D3′-branes.

4 Open strings

In the following section, we describe the three-dimensional gauge theory that lives on the

worldvolume of a single D2-brane extended in the directions x1 and x2 in the fluxtrap

background (see table 1). After briefly discussing the kappa-symmetry-fixed action in

the static gauge, we derive the expressions for the eight Killing spinors preserved by the

D2-brane located at ρ1 = ρ2 = 0. We then derive the supersymmetry generators Q and find

a rotating brane solution which saturates the bps bound and preserves four supercharges.

Finally we show how the low energy description of the D2-brane dynamics contains the

expected form of a real mass term. The dynamics of N identical D2-branes in the same

background can then be inferred up to commutator terms from the single-trace form of the

D-brane action, since we are working at string tree level.

4.1 Action and fermionic symmetries

We would like to describe the dynamics of a D2-brane extended in the (x1, x2) directions.

Since the background is symmetric under translations in the x1 and x2 directions, we can

choose a consistent truncation of the theory where:

• the two-form on the D2-brane is vanishing,

Bαβ + 2πα′Fαβ = 0 ; (4.1)

• the position of the D2-brane in the transverse direction only depends on time.

• The coordinates x3,8,9 are constant and the gauge field is flat.
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This truncation can be realized as the restriction to the subset of configuration space

invariant under a set of discrete symmetries and translational invariances. Under this

truncation, the relevant part of the bosonic action and the kinetic term for the fermions [26]

are in our conventions (see appendix B):

S = −µ2

∫
d3ζ e−Φ

√
−det gαβ

(
1− eΦ/4

2
θ̄(1−ΓD2)gαβΓβ ∂αθ

)
+O(θ4) , (4.2)

where µ2 = (2π)−2(α′)−3/2, θ = θL + θR is a Majorana spinor, gαβ is the pullback of the

metric on the D2-brane,

gαβ = gµν
∂Xµ

∂ζα
∂Xν

∂ζβ
α, β = 0, 1, 2 , (4.3)

ζα are the intrinsic coordinates on the worldvolume of the D2-brane and ΓD2 is given

by [27],

ΓD2 =
1√

−det gab

εαβγ

3!
ΓαΓβΓγ , (4.4)

where Γα is the pullback of the gamma matrices on the brane:2

Γα =
∂Xµ

∂ζα
emµΓm . (4.5)

Since ∂x0 , ∂x1 and ∂x2 are Killing vectors for the bulk metric in equation (3.19), it is

easy to fix reparametrization symmetry of the intrinsic coordinates ζ by choosing a static

gauge for the embedding:

x0 = ζ0 , x1 = ζ1 , x2 = ζ2 . (4.6)

The corresponding pullback of the metric is simply

gαβ dζα dζβ = ĝ00(dζ0)2 + (dζ1)2 + (dζ2)2 , (4.7)

where ĝ00 = −1 + ∂0X
ρ ∂0X

σgρσ and Xρ and Xσ run over the transverse coordinates,

Xρ, Xσ = {x3, ρ1, φ1, ρ2, φ2, x8, x9 } . (4.8)

The fact that the B field does not contribute can be understood by observing that ∂x1 and

∂x2 are Killing vectors and a double T-duality in these directions maps our D2-brane to a

D0 brane.

The action is invariant under kappa-symmetry and under the susy transformations

induced by the bulk Killing spinors ε. On the fermionic variable θ they act as follows:

δκθ = (1+ΓD2)κ , δsusy
ε θ = ε , (4.9)

where κ is a Majorana spinor. The transformation δκ can be used to impose a covariant

gauge fixing,

Γ11 θ = θ ⇒ θR = 0 , (4.10)

2The normalization factors are chosen such that ΓD2 squares to the identity: (ΓD2)2 = 1.
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in order to obtain the same number of bosonic and fermionic degrees of freedom. After

gauge fixing, the kinetic term of the fermionic action takes the form

Sf =
µ2

2

∫
d3ζ e−3Φ/4

√
−det gαβ ψ̄ g

αβΓβ ∂αψ , (4.11)

and using the form of the pullback in equation (4.7):

Sf = −µ2

2

∫
d3ζ

e−3Φ/4√
−det gαβ

ψ̄ Γ̂0ψ̇ , (4.12)

where ψ is the Majorana-Weyl spinor ψ = θL and Γ̂0 is the pullback of the gamma matrices

in the direction ζ0:

Γ̂0 = Γα
∣∣
α=0

=
∂Xσ

∂ζ0
emσΓm . (4.13)

The action is invariant under the transformation

δεψ =
(
δsusy
ε − δκ

∣∣
κ=εR

)
ψ = εL − ΓD2 εR , (4.14)

which leaves θR invariant, consistently with the gauge choice θR = 0.

Supersymmetries preserved by the static embedding. We say that a Killing spinor

ε = εL + εR is preserved by the D2-brane if the associated transformation leaves ψ invariant:

δεψ = εL − ΓD2 εR = 0 . (4.15)

If we choose the static embedding in which ĝ00 = 1, the expression of ΓD2 is simply

ΓD2 = Γ012 . (4.16)

In the previous section (equation (3.35)) we have found that the Killing spinors in the

bulk are 
εL = e−Φ/8(1+Γ11) Πflux

− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε0 ,

εR = e−Φ/8(1−Γ11)Γu Πflux
− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε1 .

(4.17)

Using the commutation relations of Πflux
− with the components of Γu, we find that the

conservation of supersymmetry requires

Πflux
−

(
ε0 −

1

∆
Γ1208 ε1

)
+ Πflux

+

(
m

∆
Γ120(ρ1Γ5 − ρ2Γ7)

)
ε1 = 0 . (4.18)

The two parts must vanish separately since the two projectors are orthogonal.3 We obtain

the conditions

ρ1 = ρ2 = 0 and ε0 = Γ1208 ε1 . (4.19)

3The contribution of the directions x1 and x2 can be factored out, which is consistent with the fact that

our configuration is T-dual to a D0-brane.

– 18 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
8

The first condition fixes the transverse position of the D2-brane, the second one breaks half

of the 16 supersymmetries, resulting in a total of 8 preserved supercharges:
εL = e−Φ/8 Γ1208(1+Γ11) Πflux

− exp

[
1

2
(φ1 + φ2)Γ67

]
ε1 ,

εR = e−Φ/8(1−Γ11)Γu Πflux
− exp

[
1

2
(φ1 + φ2)Γ67

]
ε1 .

(4.20)

It is convenient to introduce the Majorana-Weyl spinor ε̃,

ε̃ = e−Φ/8(1 + Γ11) Πflux
− exp

[
1

2
(φ1 + φ2)Γ67

]
ε1 , (4.21)

and write the spinors conserved by the static embedding of the D2-brane as

εL = Γ1208 ε̃ , εR = Γuε̃ . (4.22)

The spinor ε̃ is normalized such that it can written as the sum of 8 orthogonal components:4

ε̃ =

8∑
A=1

ε̃A , (ε̃A)T ε̃B = δAB , A,B = 1, . . . , 8 , (4.23)

where εT is the transposed spinor.

4.2 BPS bound for the DBI action

We have seen that the static embedding of the D2-brane into the fluxtrap breaks half of the

16 supersymmetries of the bulk. Now we would like to describe a different bps embedding

that preserves only 1/4 of the bulk supersymmetries.

Hamiltonian formalism. In order better to understand the bps condition we pass to the

Hamiltonian formalism. The conjugate momentum to the bosonic variable Xρ is given by

Pρ ≡
∂L
∂Ẋρ

= µ2 e
−Φ Ẋσgρσ√

−det gαβ
, (4.24)

where Ẋ is the derivative with respect to ζ0:

Ẋρ ≡ ∂Xρ

∂ζ0
. (4.25)

The Hamiltonian is therefore given by

H = PρẊ
ρ − L = µ2 e

−Φ ẊρẊσgρσ√
−det gαβ

+ µ2 e
−Φ
√
−det gαβ = µ2

e−Φ√
−det gαβ

, (4.26)

and in particular the energy of the static embedding configuration (ĝ00 = −1, ρ1 = ρ2 = 0) is

Hstatic =
µ2

g2
3

√
α′

=
1

4π2g2
3(α′)2

. (4.27)

4This is possible because (ε̃)T ε̃ does not depend on φ1 or φ2.
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The last quantity we want to derive from the bosonic action is the angular momentum

for a rotation in the direction of the Killing vector V ρ ∂ρ= ∂φ1− ∂φ2 :

J = V ρPρ = µ2 e
−Φ V ρẊσgρσ√

−det gαβ
= µ2

e−Φ√
−det gαβ

ρ2
1φ̇1 − ρ2

2φ̇2

1 +m2(ρ2
1 + ρ2

2)
. (4.28)

Clearly, the angular momentum is vanishing for the static configuration:

J static = 0 . (4.29)

In order to canonically quantize the fermionic part of the action we introduce the

conjugate momentum

Πa ≡
δL
δψ̇a

= i
µ2 e

−3Φ/4

2
√
−det gαβ

ψb(Γ0Γ̂0)ba , a, b = 1, . . . , 16 , (4.30)

which by definition satisfies the canonical anticommutation relation

{Πa, ψ
b} ≡ i δ b

a , a, b = 1, . . . , 16 (4.31)

whence

{Πa,Πb} = −µ2

2

e−3Φ/4√
−det gαβ

(Γ0Γ̂0)ab . (4.32)

Using the conjugate momentum one can directly write down the supercharges that generate

the supersymmetry transformations in equation (4.14):

Qε = iΠa δεψ
a +O

(
(fermions)3) , (4.33)

which satisfy the anticommutation relation

{QA, QB} = δεAψ
a {Πa,Πb} δεBψb +O

(
(fermions)2) . (4.34)

At this point we have all the ingredients to calculate the explicit expression for the

anticommutator, up to fermion bilinear terms. Since we want to consider compare with the

energy of the static embedding, we plug in the expressions for the preserved Killing spinors

in equation (4.21):

{QA, QB}=− µ2 e
−3Φ/4

2
√
−det gαβ

(εAL − ΓD2 ε
A
R)a(Γ0Γ̂0)ab(ε

B
L − ΓD2 ε

B
R)b

=− µ2 e
−3Φ/4

2
√
−det gαβ

[
Γ1208 ε̃

A− Γ̂012Γu√
−det gαβ

ε̃A
]a

(Γ0Γ̂0)ab

[
Γ1208 ε̃

B− Γ̂012Γu√
−det gαβ

ε̃B
]b
,

(4.35)

where we have dropped terms on the right-hand side containing two or more fermions,

leaving only the purely bosonic terms.

After a straightforward calculation we obtain a simple expression for the anticommutator:

{QA, QB} =

(
µ2 e

−Φ√
−det gαβ

− µ2

g2
3

√
α′

)
δAB − µ2 e

−Φ

2
√
−det gαβ

{
Γ8 −

1

∆
Γu, Γ̂0

}
(ε̃A)TΓ08 ε̃

B.

(4.36)
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Using the explicit expression for Γu in equation (3.36), and the pullback Γ̂0 in equation (4.13),

we find that: {
Γ8 −

1

∆
Γu, Γ̂0

}
= −2m

∆2

(
ρ2

1φ̇1 − ρ2
2φ̇2

)
, (4.37)

which allows us to compare the anticommutator with the expressions for the Hamiltonian and

angular momentum that we have found from the bosonic action in equations (4.26) and (4.28).

The final result is:

{QA, QB} = (H−Hstatic)δAB +mJ (ε̃A)TΓ08 ε̃
B . (4.38)

The anticommutator vanishes for the static embedding since we are discussing the super-

charges preserved by this configuration. This is also the case for the bps-states that we

construct in the following.

Rotating branes. The expression of the angular momentum suggests the following ansatz

for a rotating D2-brane:

φ1 = ω ζ0 , φ2 = −ω ζ0 , (4.39)

where ω is constant and all the other transverse coordinates have a fixed value independent

of ζ0. The non-trivial pullbacks of metric and gamma matrices are given by

ĝ00 = −1 + (ρ2
1 + ρ2

2)(m2 − ω2)

1 +m2(ρ2
1 + ρ2

2)
, (4.40)

Γ̂0 = Γ0 −
ω

m
Γ8 +

ω

m∆
Γu . (4.41)

The bosonic part of the Lagrangian is then given by

Lb = − 1

4π2g2
3(α′)2

√
1 + (ρ2

1 + ρ2
2)(m2 − ω2) . (4.42)

bps states are extrema of the action. The non-trivial BPS equations are:

ρ1(m2 − ω2) = ρ2(m2 − ω2) = 0 . (4.43)

These are satisfied either if ρ1 = ρ2 = 0, which is the static embedding, or if

ω = ±m. (4.44)

This is the rotating D2-brane embedding. Note that we have not restricted to small

fluctuations about the static brane: even if we are not in a linear approximation, the

frequency is independent of the amplitude and no conditions are imposed on the position of

the D2-brane in ρ1,2 or the other transverse directions.

By substituting the condition in equation (4.44) into the general expressions for energy

and angular momentum we find

Hrot
± =

1

4π2g2
3(α′)2

(
1 +m2(ρ2

1 + ρ2
2)
)

J rot
± = ± m

4π2g2
3(α′)2

(ρ2
1 + ρ2

2) , (4.45)
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where the ± refers to the two branches of the solution ω = ±m. After subtracting the

energy of the static configuration we obtain the bps condition

Hrot
± −Hstatic

J rot
±

= ±m. (4.46)

In order to verify that this is indeed a bound, we have to turn to the fermionic action. A

Killing spinor ε is conserved iff:

εL = ΓD2 εR . (4.47)

Using the expression for the bulk Killing spinors in equation (3.35), and the pullback of the

Γ matrices on the rotating brane ansatz, we obtain the equation

Πflux
− (ε0 − Γ1208 ε1) + Πflux

+

(
mΓ120(1±Γ08)(ρ1Γ5 − ρ2Γ7)

)
ε1 = 0 . (4.48)

The two parts must vanish separately since the two projectors are orthogonal. This implies

ε0 = Γ1208 ε1 , and (1±Γ08)ε1 = 0 . (4.49)

The two conditions together preserve a total of 4 supercharges. Explicitly:
εL = e−Φ/8 Γ1208(1+Γ11) Πflux

− exp

[
1

2
(φ1 + φ2)Γ67

]
(1∓Γ08)ε2 ,

εR = e−Φ/8(1−Γ11)Γu Πflux
− exp

[
1

2
(φ1 + φ2)Γ67

]
(1∓Γ08)ε2 ,

(4.50)

where ε2 is a constant Majorana spinor. This is precisely the same form that we have found

for the static embedding in equation (4.21), with an extra projector 1
2(1∓Γ08). To be

precise, a given Killing spinor ε = (Γ1208 + Γu)ε̃ which is preserved in the static embedding

is also preserved by the rotating brane if

Γ08 ε̃pres = ∓ε̃pres , (4.51)

and not preserved otherwise: Γ08 ε̃��pres = ±ε̃��pres.

Using the expression for the anticommutator of the supercharges in equation (4.38) we

find that the supercharges corresponding to Killing spinors preserved and not preserved by

the rotating D2-brane satisfy

{QApres, Q
B
pres} = (H−Hstatic ∓mJ )δAB (4.52)

{QApres, Q
B
��pres} = 0 (4.53)

{QA��pres, Q
B
��pres} = (H−Hstatic ±mJ )δAB . (4.54)

This implies that

(H−Hstatic) +mJ ≥ 0 , (H−Hstatic)−mJ ≥ 0 , (4.55)

where one of the two conditions is trivial depending on the sign of mJ . The bound is

saturated if ω = ±m:

Hrot
± −Hstatic ∓mJ rot

± = 0 . (4.56)
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4.3 Low energy effective gauge theory

In this section we derive the low energy action describing the dynamics of the D2-brane in

the fluxtrap background. The parameter m that we have introduced in the identifications

in section 3 will appear explicitly as a real mass term for the fields describing the motion of

the D2-brane in the directions x4 . . . x7.

Let us start with the kappa-symmetry-fixed dbi action at second order in the fermions.

In order to get the canonical normalization for the fermionic term it is convenient to pass

to the democratic formulation (see [26]) in which the action is written as:

S = −µ2

∫
d3ζ e−Φ

√
−det(gαβ +Bαβ)

[
1− 1

2
ψ̄
(
(g +B)αβΓβDα + ∆(1)

)
ψ

]
, (4.57)

where

Dα = ∂αX
µ

(
∇µ +

1

8
HµmnΓmn

)
, (4.58)

∆(1) =
1

2
Γm ∂mΦ− 1

24
HmnpΓ

mnp . (4.59)

Since we are only interested in the low energy dynamics we expand all the terms at the

respective leading order. The bulk fields are

gµν dXµ dXν = d~x2
0...9 +O(X4) , (4.60)

Hµνρ dXµ ∧ dXν ∧ dXρ = 2m(ρ1 dρ1 ∧ dφ1 − ρ2 dρ2 ∧ dφ2) ∧ dx8 +O(X5) , (4.61)

e−Φ =
1

g2
3

√
α′

(
1 +

m2

2
(ρ2

1 + ρ2
2)

)
+O(X4) . (4.62)

In our consistent truncation the dynamics only depends on ζ0, hence√
−det(gαβ +Bαβ) = 1− 1

2
ẊσẊσ +O(X4) ; (4.63)

moreover the only relevant covariant derivative, at leading order reduces to

∇0 = ∂0 . (4.64)

A straightforward calculation shows that

gαβΓβDα = −Γ0 ∂0+O(X2) , (4.65)

∆(1) = −m
2

(Γ45 − Γ67)Γ8 +O(X2) . (4.66)

And substituting the expansion into the action we obtain:

S = − 1

8π2g2
3(α′)2

∫
d3ζ

[
−ẊσẊσ+m2(ρ2

1+ρ2
2)+ψ̄ Γ0ψ̇+

m

2
ψ̄(Γ45−Γ67)Γ8ψ

]
+. . . . (4.67)

The result is more transparent in rectilinear coordinates,

z1 = x4 + i x5 = ρ1 e
i φ1 , z2 = x6 + i x7 = ρ2 e

i φ2 , (4.68)

– 23 –



J
H
E
P
0
1
(
2
0
1
2
)
1
4
8

in which the relevant part of the action becomes

S =
1

8π2g2
3(α′)2

∫
d3ζ
[
ż1 ˙̄z1 + ż2 ˙̄z2 −m2(z1z̄1 + z2z̄2)− ψ̄ Γ0ψ̇ − im ψ̄

(
Πz1
− −Πz2

−
)
Γ8ψ

]
,

(4.69)

where the projectors Πz1 and Πz2 are defined by

Πz1
− =

1

2
(1− iΓ45) , and Πz2

− =
1

2
(1− iΓ67) . (4.70)

With gauge fields included, the quadratic action contains the additional term

Sgauge = − 1

4g2
3

∫
d3ζ FαβF

αβ . (4.71)

For N identical D2-branes in the fluxtrap geometry, the U(1) gauge connection is

promoted to a U(N) gauge connection, the scalar fields and fermions are promoted to

matrices in the adjoint representation of U(N), and the action is replaced by a single-trace

version of itself, which is uniquely determined up to commutator terms. Since commutator

terms involve at least three fields and we are only working to quadratic order, such terms

do not affect the properties of the twisted mass in the gauge theory.

5 Relation to the gauge/Bethe correspondence

5.1 Brane configuration without twisted masses

We will now make some brief comments on the connection of our work to the gauge/Bethe

correspondence of [14, 15]. The string theory embedding of the gauge theories there involve

D2-branes suspended between NS-fivebranes, with D4-branes added to the background, as

shown in table 2. This brane configuration is a subset of the one described in [16], with the

NS5’-brane removed. After the removal of the orthogonal NS5’ and the exchange x2 ↔ x6

and x3,4,5 ↔ x7,8,9, the D2, D4 and NS5 branes of [16] becomes the branes we consider here.

The D4-branes here are located at an arbitrary position between the two NS fivebranes.

Prior to the addition of the twisted mass deformation, the configuration in table 2

preserves (4, 4) supersymmetry in 1+1 dimensions [28], unlike the configuration of [16]

which preserves only (2,2), due to the presence of the orthogonal NS5’-brane that was used

to give an infinite mass in the superpotential for the adjoint chiral multiplet degrees of

freedom, following [17, 29]. In the configuration of [16], the presence of the NS5’-brane as

one of the two boundaries for the D2 leaves only two massless adjoint scalars, enough to fill

out a (2,2) vector multiplet. In our current configuration, by contrast, prior to the fluxtrap

deformation, there are four massless scalars in the adjoint, enough to fill out a vector

multiplet of (4,4) supersymmetry. The A2 component of the D2-brane gauge field obeys

Dirichlet boundary conditions at the NS-fivebrane [30], so there are no additional massless

bosonic 2-dimensional degrees of freedom in the adjoint, beyond those of the (4, 4) vector

multiplet, consisting of the 2D gauge connection, and motions in the x6,7,8,9 directions.

The two NS-fivebranes are separated in the x2 direction by a distance δ2, and there

is a set of L D4-branes touching the N D2s. For any such configuration, there is a set of
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massless hypermultiplets in the fundamental and in the antifundamental representation of

SU(N), consisting of open strings connecting the D2-branes and the D4-branes [17, 28].

The (4, 4) supersymmetry forces an interaction (2.1) which in N = (2, 2) language is a

cubic superpotential involving the fundamental chiral multiplets, the antifundamental chiral

multiplets, and the adjoint chiral multiplet:

W = Q̃φQ . (5.1)

5.2 Fluxtrap deformation of the brane configuration

Thus the configuration we have described reproduces exactly the gauge theory of [14, 15],

with precisely one exception: the sole missing ingredient is the twisted mass deformation

for chiral multiplets in the fundamental and adjoint representations. These mass terms

are present in [14, 15], playing a key role in the infrared dynamics. So we now deform our

brane configuration by the fluxtrap deformation of the closed string background, which

adds a twisted mass deformation for the adjoint and chiral multiplets of the D2-brane gauge

theory , breaking SUSY to N = (2, 2).

The twisted mass for the adjoint in 1+1 dimensions simply descends from a local

term in 2+1 dimensions, the real mass for the adjoint chiral multiplet. To see that the

twisted mass term for the fundamental and antifundamental chiral multiplets must be

present, one need only verify that the deformation preserves N = (2, 2) supersymmetry,

and note that the superpotential must be neutral under the symmetry operator Z defining

the central charge. Since the adjoint chiral multiplet is not neutral, the fundamental and

antifundamental chiral multiplets must be non-neutral as well. Together they must cancel

the Z-charge of the adjoint chiral multiplet, and so each must have a Z-charge equal to −1
2

the Z-charge of the adjoint chiral multiplet. Thus the fundamental matter is forced to have

a mass equal to exactly half that of the adjoint matter [14].

It remains to demonstrate that the fluxtrap deformation can be combined consistently

with the presence of these other branes, the NS5s and D4s. Once this is shown, our string

realization of the gauge theories of [14, 15] will be complete.

One might have questioned whether the ingredient added here — the twisted mass

deformation for the chiral multiplets via the fluxtrap solution — can in fact be combined

consistently with the other ingredients of [16], the NS5-branes on which the D2’s terminate,

and the D4-branes providing the matter in the fundamental representation. The answer to

that question is affirmative. The D4-branes can be added unproblematically to the solutions

described in this article; the string coupling exp[Φ] is bounded above by an arbitrarily small

value in all the solutions we consider, the backreaction of the D4-branes on the rest of the

geometry can be made arbitrarily small.

At first sight, combining the NS5’s with the fluxtrap deformation may appear to be a

trickier issue. Both the NS5’s and the fluxtrap are solutions of nonlinear equations of motion

of the massless modes of closed string theory. There is no principle that guarantees that

such solutions need superpose with one another. However we show by explicit construction,

in appendix A, that the solutions do in fact combine; there is a combined fivebrane-fluxtrap

solution that reduces to the pure fluxtrap when the fivebranes are moved to infinity, and
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reduces to a solution of arbitrarily positioned parallel NS-fivebranes when the fluxtrap

deformation is turned off.

In appendix A we have written the full solution for the fluxtrap deformation of

the geometry of parallel (but not necessarily coincident) NS-fivebranes, which break the

supersymmetry of the fluxbranes again by half. This demonstrates the consistency of

combining the NS-fivebranes with the fluxbrane deformation, establishing our construction

as an exact string solution reducing to the Nekrasov-Shatashvili gauge/Bethe system at low

energies.

In the appendix we have for completeness also included solutions of the Dirac-Born-

Infeld action of the D2-branes in the fivebrane-fluxbrane background, which shows the

persistence of the exact BPS formula for rotating trajectories of the adjoint fields with

twisted masses, in the presence of the NS-fivebranes. We construct static and rotating bps

solutions of the D2-brane DBI action in the NS5-fluxbrane background, which preserve 4 and

2 supercharges, respectively, and again satisfy the relation E−E0 = |mJ |. These static and

rotating solutions are classically bps-saturated embeddings of D2-branes into the fivebrane-

fluxtrap geometry. The embeddings exactly saturating the bps bound E −E0 = |mJ |, can

be thought of as representing a condensate of bps-saturated particles in (2 + 1)-dimensional

gauge theory on the interval.

5.3 Quantum nonabelian symmetry from the brane construction

The existence of this brane construction has the potential to teach us many interesting

things about the remarkable relationships among two-dimensional gauge theories. To take

one immediate example, we will examine the emergence of nonabelian global symmetries

relating the Nekrasov-Shatashvili gauge theories with different ranks N = # D2. Take

the case of two NS-fivebranes, parallel and separated by a distance δ2, with N D2-branes

suspended between them and a twisted mass parameter m characterizing the strength of the

fluxtrap, which gives the adjoint chiral multiplets a twisted mass m and the fundamental

and antifundamental chiral multiplets a twisted mass m
2 .

As the separation δ2 between the fivebranes is taken to zero with g3 held fixed, the

two-dimensional gauge coupling becomes infinitely strong and quantum effects dominate the

system; there is a rich set of quantum vacuum states depending on N and L, which have

been shown [14, 15] to be in one-to-one correspondence with the full Hilbert space of the

N -magnon sector of a spin chain with L spin sites. The set of vacuum states unexpectedly

arranges itself to respect a global SU(2) symmetry [31] organizing the states into SU(2)

representations with irreducible components of dimension at most L+ 1. As δ2 → 0 this

symmetry becomes an exact symmetry of the supersymmetric vacuum states of the gauge

theories.

From the spin chain point of view, the SU(2) is immediately apparent: each spin

variable transforms in a two-dimensional representation and the full state of the system

is trivially a tensor product of those. From the gauge theory point of view, on the other

hand, the quantum SU(2) has been mysterious. Particularly striking is the nature of the

action of the SU(2) generators on the quantum number N , the number of D2-branes. In

the correspondence of [14, 15], the number N is L
2 plus the Cartan generator of the SU(2).
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Figure 2. Realization of the SU(2) symmetry via dualities in string theory.

The raising and lowering operators of the SU(2) therefore raise and lower the rank of

the (1 + 1)-dimensional gauge theory itself. This peculiar SU(2) is clearly a powerful and

unfamiliar type of symmetry — it acts not on the susy vacuum sector of a particular gauge

theory, but on the set of susy vacua of an ensemble of gauge theories of different ranks N ,

mapping vacua of theories of different rank to one another.

The string embedding sheds some light on the origin of this mysterious SU(2) symmetry.

Upon compactification of the spatial direction of the (1 + 1)-dimensional gauge theory, the

brane configuration becomes equivalent under T-duality to a system of D1-branes suspended

between NS-fivebranes in type IIB string theory. It is well known that this configuration

supports a dynamical SU(2) gauge symmetry propagating on the system of NS-fivebranes

that is broken when the NS5s are separated and restored when the NS5s become coincident.

This gauge symmetry has the property that the number of D1-branes suspended between

NS5s does indeed play the role of the Cartan generator, with the raising and lowering

operators literally creating and destroying D1-branes. This seemingly exotic action of

the gauge symmetry can be understood most simply through the S-duality of type IIB

string theory, under which the NS5-branes become D5-branes and the D1-branes suspended

between them become open fundamental strings, transforming in the adjoint of the SU(2)

(see figure 2).

Though a gauge symmetry from the point of view of the fivebranes themselves, the

SU(2) appears to the D2-branes as a global symmetry, because the gauge bosons of the

SU(2) propagate on the fivebranes and not on the twobranes. This SU(2) also becomes

unbroken when the NS5s become coincident. It appears to pass all the most obvious tests

to play the role of the SU(2) symmetry organizing the ground states of the supersymmetric

gauge theories of [14, 15]. Indeed, the string-theoretic embedding opens an even more

surprising possibility: if the SU(2) is an exact dynamical symmetry of the system, then

it ought to act on non-vacuum as well as vacuum states. This suggests an even more

remarkable set of relationships among two-dimensional gauge theories and their quantum

states than that contemplated in [14, 15].

There are several facts that may somewhat temper one’s hopes in this regard.

Among them:

• It is not clear that there is a decoupling limit in which the dynamics of non-vacuum

states of the twobranes decouple from the degrees of freedom of the bulk and from
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the fivebranes. The SU(2) may be an exact symmetry of the system of string theory

on the fivebranes, but that symmetry may not act on states that can be understood

as excitations of the D2-branes alone; it may be necessary to add states in the bulk

or attached to the fivebranes, in order to fill out complete SU(2) representations.

• The SU(2) may be destroyed at the quantum level by the fluxtrap deformation. The

fluxtrap deformation does not carry SU(2) quantum numbers and cannot break the

gauge symmetry explicitly; nor can it trigger spontaneous breaking in the usual sense,

as the solution with coincident fivebranes is still a valid supersymmetric solution

even after the fluxtrap deformation (as shown in appendix A). Rather, the danger

is that the fluxtrap deformation may trigger quantum dynamics on the fivebranes

that would give rise to confinement of the SU(2). The undeformed six-dimensional

theory certainly does not confine, and indeed confinement would be impossible

in a fully Poincaré-invariant six-dimensional gauge theory. However the fluxtrap

breaks some of the Poincaré symmetry of the six-dimensional theory: in order to

preserve supersymmetry and allow the D2-branes to be suspended between them while

preserving supersymmetry, the NS5s must be oriented in the x0,1,6,7,8,9 directions. The

fluxtrap deformation therefore breaks the Poincaré symmetry on the NS-fivebranes

down to SO(2, 1)019 × SO(2)67, times translational symmetries in the 0, 1, 2, and 8

directions. The supersymmetry of the fivebrane theory is also partially broken by

the fluxtrap down to eight supercharges, which is a low enough amount to allow a

gauge coupling running to strong at long distances. This peculiar, Lorentz-breaking

six-dimensional gauge theory is sufficiently unfamiliar that we cannot rule out the

possibility that the deformed theory may confine in the infrared. It is a logical

possibility that strong coupling dynamics deforms the moduli space such that there is

no point at which the SU(2) is restored, perhaps similarly to [32]. Our attitude in the

present discussion is to take the non-confinement of the SU(2) at the quantum level

as a working hypothesis, but by no means a proven fact.

• Even if our string embedding explains the emergence of an SU(2) after compactifi-

cation of x1, we still have not explained the apparent existence of an SU(2) prior

to compactification, which still appears to be valid. The uncompactified type IIA

NS-fivebrane does not support a gauge symmetry in the usual sense.

The points above make clear that the string embedding offers a plausible framework

for explaining the SU(2) symmetry but not a full explanation in the absence of further

refinement.

All comments above apply, on the gauge theory side, the spin-chain side, and the string

theory side, to the case of k fivebranes, where the gauge theory becomes a more complicated

quiver [14, 15], the brane construction has k parallel fivebranes with twobranes suspended

between them, and the mysterious quantum symmetry of the gauge/spin-chain is enhanced

to SU(k), as reproduced by the dynamics of the k fivebranes.
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6 Conclusions

In this paper we have constructed a simple solution of type II string theory, the fluxtrap

solution, realized as a T-dual of a free quotient of flat space preserving half the supersym-

metry of the flat covering space. This fluxtrap can be viewed as a lift of the Ω-deformation

to string theory. This background unifies the Ω-deformed 4-dimensional gauge theories

of [11] and the Lorentz-invariant 3-dimensional gauge theories with twisted masses [14, 15];

each gauge theory is realized on a type of D-brane in the fluxtrap background, with the

former oriented longitudinal to the z1,2 directions of the fluxtrap geometry, and the latter

transverse to z1,2. The coupling to the curved metric, B-field and dilaton gradient of the

closed string background provide simple ways of understanding the deformed dynamics of

each type of theory. In particular we saw explicitly that the same deformation of the closed

string background that produces the twisted masses on a set of D2-branes transverse to the

fluxtrap geometry, can also produce the Omega deformation of the gauge theory on a set of

Euclidean D3’-branes longitudinal the fluxtrap geometry.

We have constructed the bps-saturated classical solutions of the D2-branes rotating

in the fluxtrap background. These states are half-supersymmetric states of the branes in

the fluxtrap background, preserving 4 of the 8 dynamical supercharges preserved by the

static brane and satisfying the exact relation E − E0 = |mJ | where m is the twisted/real

mass parameter and J is the angular momentum generator that rotates z1 and z2 with

opposite phases. The translationally invariant classical solutions are simply Bose-Einstein

condensates of bps oscillators that have zero momentum in the x1,2 direction. We have

further shown in the appendix that these classical solutions have analogous bps solutions

when NS-fivebranes are added to the background, with the D2s suspended between the

NS-fivebranes, and either rotating or not.

We have discussed (without much detail) the addition of D4-branes together with NS-

fivebranes to the solution, in order to make contact with the gauge/Bethe correspondence

of Nekrasov and Shatashvili. By doing this, we have found a partial explanation of the

mysterious quantum mechanical SU(k) symmetry that acts on the quantum ground states

of the system when the two-dimensional gauge coupling goes to infinity. Certain gaps,

however, remain in this explanation.

The emergence of (not necessarily normalizable) classical bps states, consisting of

excitations of the z1 and z̄2 degrees of freedom, and their superpartners, is intriguing. The

bps formula for these states suggests that their energies do not become infinite even when

the two-dimensional gauge coupling goes to infinity. It would appear that the quantum

vacuum states of the gauge theories are augmented by a set of non-vacuum bps states that

survive and should organize themselves into SU(k) representations (in the presence of k

fivebranes) in the strong coupling limit. It would be interesting indeed to understand how

the spin chain picture could be enlarged to understand these states.

It may seem puzzling why such a simple deformation as a dimensional reduction on a

twisted circle should need to be understood in terms of a complicated-looking supergravity

solution involving curved metrics, B-fields and dilaton gradients. And yet already we

have seen that some of these dynamical elements have allowed us to see aspects of the
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Ω-deformation of 4D gauge theory, and twisted mass deformation of 3D and 2D gauge

theory, with a certain clarity. Universal principles counsel that it is always better to

use a description where irrelevant heavy degrees of freedom have been removed from the

system. The irrelevant degrees of freedom, which were the momentum modes on the x8̃

circle, have been transformed in the T-dual picture into infinitely heavy winding string

modes, which play no role in the dynamics. Finally we would like to note that the fluxtrap

background represents an integrable string theory on general grounds, as it is equivalent

under a T-duality to a free quotient of flat space. Any such background is solvable by a

generally applicable recipe [7] and indeed this particular background has already been to

some extent solved, in its description as a fluxbrane, in [6].

We consider it likely that the fluxtrap description of the Ω-background will prove

efficient for computations where the description as a twisted compactification is unwieldy.

There is hope that this solution will further the investigation of the remarkable relationships

among gauge theories first noted in [14, 15].

The results of this article were announced in a talk at the “Branes and Bethe Ansatz

in Supersymmetric Gauge Theory Workshop”, March, 2011 [33].
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A The fluxtrap deformation of a set of NS-fivebranes

A.1 Bulk fields

In order precisely to specify the brane configuration described in outline in section 5 of this

paper, we need to consider D2-branes stretched between parallel NS5-branes. Consider a

stack of parallel NS5-branes in flat space, extended in the directions x1, x6, x7, x8, x9 (see

table 2). Since the configuration preserves rotations in the 45 and 67 planes it is possible

to repeat the same fluxbrane construction as in section 3. The fields in the bulk in the
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direction 0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
fluxtrap × × × × ×
D2 × × ×
D4 × × × × ×

Table 2. Embedding of the D2-brane with respect to the NS5 fluxtrap.

non-trivial directions read:

d̃s
2

= U
[

dx2
2 + dx2

3 + dρ2
1 + ρ2

1

(
dφ1 +mR̃ dũ

)2]
+ dρ2

2 + ρ2
2

(
dφ2 −mR̃ dũ

)2
+ R̃2 dũ2 ,

(A.1)

B = bi dxi ∧
(

dφ1 +mR̃ dũ
)
, (A.2)

Φ = log(R̃ g2
3) +

1

2
logU , (A.3)

where

U = 1 +
N5α

′

x2
2 + x2

3 + ρ2
1

, bi dxi =
dU

dx3

(
− (x2

3 + ρ2
1) dx2 + x2x3 dx3 + x2ρ1 dρ1

)
, (A.4)

so that

d(bi dxi ∧ dθ1) = ∗ dU , (A.5)

where the Hodge star is understood in the four-dimensional space (x2, x3, ρ1, θ1).

In rectilinear coordinates (x4 + i x5 = ρ1 e
i φ1 , x6 + i x7 = ρ2 e

i φ2):

d̃s
2

= U

[
dx2

2 + dx2
3 +

5∑
i=4

(dxi +mV i dx8)2

]
+

7∑
i=6

(dxi +mV i dx8)2 + dx2
8 , (A.6)

where V i ∂i is the same vector as in equation (3.14):

V i ∂i= −x5 ∂x4+x4 ∂x5+x7 ∂x6−x6 ∂x7= ∂φ1− ∂φ2 . (A.7)

This provides the Ω-deformation of the NS5 background.

Following the same procedure as in section 3 we can T-dualize in the direction ũ and

get the NS5 fluxtrap background:

ds2 = d~x2
0...1 + U

[
dx2

2 + dx2
3 + dρ2

1 + ρ2
1 dφ2

1

]
+ dρ2

2 + ρ2
2 dφ2

2 + dx2
9

+
1

∆2

[
(mbi dxi + dx8)2 −m2(Uρ2

1 dφ1 − ρ2
2 dφ2)2

] (A.8)

B =
1

∆2

[
bi dxi ∧

(
dφ1 +m2ρ2

2(dφ1 + dφ2)
)

+m(U ρ2
1 dφ1 − ρ2

2 dφ2) ∧ dx8

]
, (A.9)

e−Φ =
1

g2
3

√
α′

∆√
U
, (A.10)

where

∆2 = 1 +m2(Uρ2
1 + ρ2

2) . (A.11)
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This configuration preserves 8 real supercharges and the Killing spinors have the following

explicit expression:
εL = e−Φ/8(1+Γ11) ΠNS5

− Πflux
− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε0

εR = e−Φ/8(1−Γ11)Γu ΠNS5
+ Πflux

− exp

[
1

2
φ1Γ45 +

1

2
φ2Γ67

]
ε1

(A.12)

where ε0 and ε1 are constant Majorana spinors,

ΠNS5
± =

1

2
(1±Γ2345) , (A.13)

and

Γu =
mρ1

√
U

∆
Γ5 −

mρ2

∆
Γ7 +

1

∆
Γ8 . (A.14)

A.2 Open strings

D2-brane ansatz. The dynamics of a D2-brane extended in the (x1, x2) can be studied

following the parallel computation in section 4 in absence of NS5-branes.

In order to construct bps solutions, we start with the ansatz

Fαβ = 0 , x0 = ζ0, x1 = ζ1, x2 = x2(ζ0, ζ1, ζ2) , φ1 = ω ζ0, φ2 = −ω ζ0. (A.15)

All the other coordinates are are independent of ζa. This ansatz does not completely fix

the reparametrization invariance (ζ 7→ ζ̃(ζ)) of the D2-brane. The e.o.m. for x2,

∂

∂ζα
δL

δ(∂αx2)
=

δL
δx2

(A.16)

is satisfied for any choice of x2. This means that we can fix the Diff invariance by choosing

the static gauge,

x2 = ζ2. (A.17)

Note that the consistency of this choice is automatic because of the reparametrization

invariance of the DBI action, but still appears nontrivial due to the fact that ∂x2 is not a

Killing vector.

The pullbacks of metric and B field are

gαβ dζα dζβ = −ω
2 + ∆2(m2 − ω2)

m2∆2
(dζ0)2 + (dζ1)2 + (U + Λ2)(dζ2)2 , (A.18)

Bαβ dζα ∧ dζβ =
Λ

∆

ω

m
dζ0 ∧ dζ2 , (A.19)

where

Λ =
m

∆
(x2

3 + ρ2
1)

dU

dx3
. (A.20)

The bosonic part of the DBI action reads

S = −µ2

∫
d3ζ

√
1− 1−∆2(1 + Λ2/U)

m2
(m2 − ω2) . (A.21)
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Introducing

Ξ2 = U(ζ2, x3, ρ1)ρ2
1 + ρ2

2 + (x2
3 + ρ2

1)2U,3(ζ2, x3, ρ1)2

U(ζ2, x3, ρ1)
=

∆2(U + Λ2)

m2U
− 1

m2
(A.22)

the equations of motion reduce to:

δL
δXσ

=
1

4π2g2
3(α′)2

Ξ(m2 − ω2) ∂σΞ√
1 + Ξ2(m2 − ω2)

= 0 , where Xσ = {x3, ρ1, ρ2, x8, x9 } . (A.23)

There are two possibilities to satisfy these equations:

1. If we require

Ξ = 0 , (A.24)

this is equivalent to

∆2 +
∆2Λ2

U
= 1 . (A.25)

Since ∆ ≥ 1 and U is non-negative, the condition can only be satisfied if

∆2 = 1 ⇒ ρ1 = ρ2 = 0 , (A.26)

Λ = 0 . (A.27)

We will refer to this solution where the D2-brane is localized at ρ1 = ρ2 = x3 = 0 as

the static embedding.

2. If

ω = ±m. (A.28)

These are the two branches of the rotating D2-brane embedding. Note that just like it

was in the absence of NS5-branes, even if we are not in a linear approximation the

frequency is constant and no conditions are imposed on the position of the D2-brane

in the other transverse directions.

Hamiltonian formalism. Let us now verify that the rotating solution satisfies has

exactly the bps energy H−Hstatic = |mJ |. The angular momentum density associated to

the rotation in the direction of the Killing vector V i ∂i is:

J = V ρPρ =
δL
δω

= − 1

4π2g2
3(α′)2

Ξ2ω√
1 + Ξ2(m2 − ω2)

, (A.29)

and the Hamiltonian density reads:

H = PρẊ
ρ − L = − 1

4π2g2
3(α′)2

1 + Ξ2m2√
1 + Ξ2(m2 − ω2)

. (A.30)

It follows that on-shell the relation

H−Hstatic

J

∣∣∣∣
ω=±m

= ±m (A.31)

is satisfied without any extra consistency conditions.
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Supersymmetry. We can now turn to the construction of the Killing spinors preserved

by the D2-brane embeddings we have found above.

The gamma matrices pulled back to the D2-brane are

Γ̂0 = Γ0 − Γ8 +
1

∆
Γu , (A.32)

Γ̂1 = Γ1 , (A.33)

Γ̂2 =
√
UΓ2 + ΛΓu . (A.34)

The gamma matrix appearing in the kappa symmetry transformation is modified by the

presence of the B field:

ΓD2 =
1√

−det(g +B)
(1+BαβΓαβΓ11)Γ̂012 =

∆√
U

(
− Γ̂02 +

Λ

∆
Γ11

)
Γ̂1 . (A.35)

The condition for preserving supersymmetry is again εL = ΓD2εR, explicitly:

(1+Γ11) ΠNS5
− Πflux

− ε0 = ΓD2(1−Γ11)Γu ΠNS5
+ Πflux

− ε1 . (A.36)

Plugging in the explicit expression for Γu, and using the fact that:

Γi Πflux
± =

{
Πflux
∓ Γi if i = 4, 5, 6, 7

Πflux
± Γi otherwise

Γi ΠNS5
± =

{
ΠNS5
∓ Γi if i = 2, 3, 4, 5

ΠNS5
± Γi otherwise

(A.37)

we find that the conditions for the preservation of supersymmetry become:

ε0 − Γ0128 ε1 = 0 , (A.38)

mρ1U Γ25 (Γ0 ∓ Γ8) ε1 = 0 , (A.39)

mρ2

√
U Γ27 (Γ0 ∓ Γ8) ε1 = 0 , (A.40)

Λ Γ1 (Γ0 ∓ Γ8) ε1 = 0 . (A.41)

Again we have two possibilities:

1. In the static embedding case we have ρ1 = ρ2 = Λ = 0, so we only need to impose the

condition

ε0 = Γ0128 ε1 . (A.42)

We find that the bps static brane embedding preserves 4 real supercharges:
εL = e−Φ/8(1+Γ11) ΠNS5

− Πflux
− Γ1208 exp

[
1

2
(φ1 + φ2)Γ67

]
ε2 ,

εR = e−Φ/8(1−Γ11)Γu ΠNS5
+ Πflux

− exp

[
1

2
(φ1 + φ2)Γ67

]
ε2 .

(A.43)

2. For the rotating embedding ω = ±m, together with ε0 = Γ1208 ε1 we need to impose

the extra condition

ε1 = (1∓Γ08)ε2 , (A.44)
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description index range

spacetime flat m,n, . . . 0, . . . , 9

spacetime curved µ, ν, . . . 0, . . . , 9

D2-brane worldvolume α, β, . . . 0, 1, 2

transverse to the D2-brane ρ, σ, . . . 3, . . . , 9

spinor components a, b, . . . 1, . . . , 16

D2-brane-preserved Killing spinors A,B, . . . 1, . . . , 8

Table 3. Conventions for the choice of indices.

where ε2 is a constant Majorana spinor. This breaks another half of the super-

symmetries so that the bps rotating brane embedding preserves a total of 2 real

supercharges:
εL = e−Φ/8(1+Γ11) ΠNS5

− Πflux
− Γ1208 exp

[
1

2
(φ1 + φ2)Γ67

]
(1∓Γ08)ε2 ,

εR = e−Φ/8(1−Γ11)Γu ΠNS5
+ Πflux

− exp

[
1

2
(φ1 + φ2)Γ67

]
(1∓Γ08)ε2 .

(A.45)

B Conventions

In this appendix we collect the conventions used in the paper.

The indices are used according to table 3. The signature of the metric is (−,+, . . . ,+).

Hence the flat Gamma matrices Γm satisfy the Clifford algebra:

{Γm,Γn} = 2 ηmn = 2 diag{−1, 1, . . . , 1} . (B.1)

The chirality matrix Γ11 is given by

Γ11 = Γ0Γ1 · · ·Γ9 . (B.2)

The antisymmetric product of N gamma matrices is normalized as follows:

Γm1...mN =
1

N !
(Γm1 . . .ΓmN ± permutations) . (B.3)

The gamma matrices in the bulk are

Γµ = emµΓm , {Γµ,Γν} = gµν , (B.4)

and their pullbacks on the D-brane are given by

Γα =
∂Xµ

∂ζα
emµΓm , {Γα,Γβ} = gαβ . (B.5)

In order to avoid confusion, the pullback of the gamma matrices in the ζ0 direction is

denoted by Γ̂0:

Γ̂0 = Γα
∣∣
α=0

=
∂Xµ

∂ζ0
emµΓm . (B.6)
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In type IIA the spinors are Majorana and are decomposed into the sum of two chiral

components:

ε = εL + εR , Γ11εL = εL , Γ11εR = −εR . (B.7)

The conjugate is defined as:

ε̄ = i εTΓ0 = − i εTΓ0 . (B.8)

The supersymmetry transformations of the dilatino λ and the gravitino Ψm are given e.g.

in [34]:

δελ =
eΦ/4

√
2

[
− 1

2
∂m Φ ΓmΓ11 +

1

24
Hmnp Γmnp

]
ε , (B.9)

δεΨm = eΦ/4

[
∇m +

1

8
∂nΦ Γnm +

1

96
Hnpq (Γ npq

m − 9 δ n
m Γpq) Γ11

]
ε , (B.10)

where the action of the covariant derivative on a spinor is given by

∇m ε = ∂m ε+
1

4
ω np
m Γnp ε , (B.11)

and ω is the spin connection. A spinor ε is a Killing spinor if

δελ = 0 and δεΨm = 0 . (B.12)
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