Abstract. In section 1 we show that differential operators $L_{n_{D3}}$ of type $D3$ annihilate periods for two pencils of hypersurfaces $1 - tf_n = 0$ in 3-torus given by levels of Laurent polynomials f_n, in particular L_n are of Picard–Fuchs type. However these operators are not associated to any Fano threefolds of first series. In section 2 we prove that they annihilate regularized G-series (generating functions for 1-point Gromov–Witten invariants) of two Fano threefolds of degrees 28 and 30 with second Betti numbers 2 and 3, so they indeed come from symplectic geometry of Fano threefolds. In section 3 we demonstrate the mirror symmetry between two deformation classes of smooth Fano threefolds Y_{28}, Y_{30} from section 2 and two Laurent polynomials f_{14}, f_{15} from section 1.

Let t be a coordinate on 1-dimensional torus $T = \text{Spec } \mathbb{C}[t, t^{-1}]$ and $D = \frac{d}{dt}$.

Definition 0.1 ([13]). Operators of type $nD3$ is a family of linear differential operators

$$L(b_1, b_2, b_3, b_4, b_5) = D^3 - t \cdot b_1 D(D + 1)(2D + 1) - t^2 \cdot (D + 1)(b_2 D(D + 2) + 4b_3) -$$

$$- t^3 \cdot b_4(D + 1)(D + 2)(2D + 3) - t^4 \cdot b_5(D + 1)(D + 2)(D + 3)$$

with parameters b_i.

Operator L_b of type $nD3$ has a unique power series solution F_b with initial condition $F_b(0) = 1$:

$$F_b = 1 + \frac{t^2}{2} + (5b_1 b_3 + 2b_4) \frac{t^3}{9} + \ldots$$

We consider two particular operators L_n of type $nD3$ (from [13, 11]):

$$L_{14} = L_{(1,59,16,68,80)},$$

$$L_{15} = L_{(1,43,12,78,216)}.$$

with solutions

$$F_{14}(t) = 1 + 8t^2 + 24t^3 + 240t^4 + 1440t^5 + 11960t^6 + 89040t^7 + \ldots$$

$$F_{15}(t) = 1 + 6t^2 + 24t^3 + 162t^4 + 1080t^5 + 7620t^6 + 55440t^7 + \ldots$$

Date: June 10, 2011.

This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. This work was supported by Grant-in-Aid for Scientific Research (10554503) from Japan Society for Promotion of Science. Based on my work that was partially supported by SFB/TR 45 and grants INTAS 05-10000-8118 and NSH. 1987.2008.1.

Original definition has the other basis $a_{01}, a_{02}, a_{03}, a_{11}, a_{12}$ for parameter space \mathbb{A}^5. Bases a and b are equivalent over \mathbb{Z}: $b_1 = a_{11}, b_2 = a_{12} + 2a_{01} - a_{11}^2, b_3 = a_{01}, b_4 = a_{02} - a_{01}a_{11}, b_5 = a_{03} - a_{01}^2; a_{01} = b_3, a_{02} = b_4 + b_1b_3, a_{03} = b_5 + b_3^2, a_{11} = b_1, a_{12} = b_2 - 2b_3 + b_1^2$.
1. Laurent polynomials

Consider the Laurent polynomials f_n:

\begin{align}
(1.1) \quad f_{14} &= x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + xy + \frac{1}{xy} + xz + \frac{1}{yz} \\
(1.2) \quad f_{15} &= x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + xy + \frac{1}{y} + yz
\end{align}

Proposition 1.3 (Dutch trick cor Utrecht trick, see e.g. [15]). Let $\omega = \prod_{k=1}^d \frac{dx_k}{2\pi i x_k}$ be a logarithmic volume form on the torus $X = (\mathbb{C}^*)^d = \text{Spec} \mathbb{C}[x_1, x_1^{-1}, \cdots, x_d, x_d^{-1}]$. For Laurent polynomial $w(x) \in \mathbb{C}[X]$ define regular constant term series as $G_w^n(t) = \int_{|x| = 1} \omega_x \frac{w(x)}{1-tw(x)} = \sum_{k \geq 0} < w^k > t^k$, where $< w >$ is a constant term of Laurent polynomial w. Let $\omega_t = \text{Res}_{t-w=0} \omega_x \frac{w(x)}{1-tw(x)}$ be a fiberwise residue of $\frac{w(x)}{1-tw(x)}$. Then $G_w^n(t)$ is a solution to Picard–Fuchs equation for the pencil of hypersurfaces $1-tw(x) = 0$ equipped with volume form form ω_t.

Theorem 1.4. For $n = 14, 15$ we have $G_{f_n} = F_n$. In particular, differential operators L_n are Picard–Fuchs differential operators for level families $1-tf_n = 0$ of Laurent polynomials f_n.

The proof is straightforward once one knows the formulation: functions G_{f_n} satisfy some differential equation, and each coefficient of G_f gives a linear relation for coefficients of the differential equation.

2. Fano varieties

2.1. Introduction. An important symplectic invariant of Fano variety Y is its regularized G-series $RG_Y \in \mathbb{Q}[[t]]$ (see [23]). If Y is a Fano threefold of first series then RG_Y is the unique analytic solution of the unique linear differential operator L_Y from 5-parametric family $nD3$ with the initial condition $RG_Y(0) = 1$. In [11] Golyshev specified 17 points in the parameter space of $D3$'s that correspond to Fano threefolds of first series. He pointed out to me two other interesting differential operators [13] and [14] in family $nD3$. These equations are also listed in [11]. In [13] Lian and Yau realized F_{14} and F_{15} as periods for two families of K3 surfaces. In the first chapter we find Laurent polynomials $f_{14}(x_1, x_2, x_3)$ and $f_{15}(x_1, x_2, x_3)$ such that $F_n = \frac{1}{(2\pi i)^3} \int_{|x_i| = 1} \frac{dx_1 dx_2 dx_3}{1-tf_n x_1 x_2 x_3}$ i.e. we realized F_n as periods of hypersurfaces $1-tf_n = 0$ in 3-dimensional torus $\text{Spec} \mathbb{C}[x_1, x_1^{-1}, x_2, x_2^{-1}, x_3, x_3^{-1}]$. Laurent polynomials f_n are associated with the singular toric Fano 3-folds X_{2n} that admit smoothing Y_{2n} in the unique deformation class. In this article we prove that F_n coincides with $RG_{Y_{2n}}$:

Theorem 2.1. Series $RG_{Y_{2n}}$ is annihilated by differential operator L_n: $RG_{Y_{2n}} = F_n$.

We note that Fano threefolds Y_{28} and Y_{30} are not of first series ($b_2(Y_{28}) = 2$ and $b_2(Y_{30}) = 3$), but nevertheless they turn out to be quantum minimal: the minimal degree in D of differential operators annihilating their RG-series is 3, and not naively expected 4 and 5.

2Fano variety is a smooth variety Y with an ample anticanonical line bundle $\det T_Y$. Fano threefold Y is said to be of first series if its second Betti number is equal to one: $b_2(Y) = \dim H^2(Y, \mathbb{Q}) = 1$. Iskovskikh showed that there are exactly 17 deformation classes of such varieties, and his classification was redone with different methods by Mukai and Ciliberto-Miranda-Lopez. We refer the reader to the textbook [12] for the details on algebraic geometry of Fano threefolds.
2.2. **G-series.** Take $D = t \frac{d}{dt}$ where t is a coordinate on one-dimensional torus $T = \text{Spec} \ C[t, t^{-1}]$.

Let \ast be quantum multiplication on cohomologies of Fano variety Y.

Define *quantum differential equation* as a trivial vector bundle over T with fibre $H^r(Y)$ and connection

\[(2.2)\quad D \Phi = c_1(Y) \ast \Phi\]

where $\Phi(t) \in H^r(Y)$.

Let $G_Y(t) = [pt] + \sum_{n \geqslant 1} G^{(n)} t^n$ be the unique power series solution of (2.2) with initial condition $G_Y(0) = [pt]$, where $[pt] \in H^{2 \dim Y}(Y, \mathbb{Z})$ is the cohomology class Poincaré-dual to the class of the point. Define series

\[(2.3)\quad G_Y(t) = \int_Y G_Y(t) = 1 + \sum_{n \geqslant 1} g_n(Y) t^n\]

and

\[(2.4)\quad R G_Y(t) = 1 + \sum_{n \geqslant 1} g_n(Y) n! t^n\]

Remark 2.5. String equation implies $g_1(Y) = 0$.

Proposition 2.6 (\cite{Mir}). If Y is Fano threefold of first series then $R G_Y$ is annihilated by unique normalized differential operator of type $D3$.

Let $M = \overline{M}_{0, 1}(Y, \beta)$ be the moduli space of stable maps $\phi : (C, p) \to Y$ from rational curves C with marked point p to Y of degree $\phi_* [C] = \beta \in H_2(Y, \mathbb{Z})$, ψ_1 be the first Chern class of the tautological line bundle on M, and $ev_1 : M \to Y$ be the evaluation map $ev_1(\phi, C, p) = \phi(p) \in Y$.

Consider Givental’s J-function

\[(2.7)\quad J_Y(t_i; z) = \prod_i t_i^{a_i D_i} \sum_{\beta \in H_2(Y)} \prod_i \frac{t_i^{\beta \cdot D_i}}{z^{c_1(Y) \cdot \beta}} \cdot (ev_1)_* \frac{z}{z - \psi_1},\]

where D_i is a base of $H^2(Y, \mathbb{Z})$ and $c_1(Y) = \sum a_i D_i$.

Next proposition is a corollary of Givental’s theorem that relates solutions of quantum differential equation and J-function.

Proposition 2.8. G-series equals to the fundamental term of Givental’s J-series:

\[G_Y = \int_{[Y]} J_Y(t_i = t^{a_i}, z = 1) \cup [pt].\]

2.3. **The threefolds.** Define degree of Fano variety Y to be its anticanonical degree

\[\text{deg}(Y) = (-K_Y)^{\dim Y} = \int_{[Y]} c_1(Y)^{\dim Y},\]

Euler number as topological Euler characteristic $\chi(Y) = \int_{[Y]} c_{\dim Y}$ and Picard number $\rho(Y)$ as $\text{rk} \ H^2(Y, \mathbb{Z})$.

3
2.3.1. **Degree 30.**

Definition 2.9. Fano threefolds Y_{30} are blowups of a curve of bidegree $(2, 2)$ on W, where W is a hyperplane section of bidegree $(1, 1)$ of $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$. This deformation class of varieties has number 13 in table 3 of [13], it has degree 30, $\chi = 8$ and $\rho = 3$.

Proposition 2.10. Y_{30} is a complete intersection of three numerically effective divisors of tridegrees $(1, 1, 0), (1, 0, 1)$ and $(0, 1, 1)$ on $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Description [24],[10] shows that Y_{30} is a complete intersection of sections of numerically effective line bundles in a smooth toric Fano variety. This allows us to compute G-series $G_{Y_{30}}$ using Givental’s theorem [10].

So $G_{Y_{30}}$ is given by the pullback of hypergeometric series from three-dimensional torus

$$G_{Y_{30}} = e^{-3t} \sum_{a,b,c \geq 0} \frac{(a+b)!(a+c)!(b+c)!}{a!b!c!3^3} t^{a+b+c} = 1 + 3t^2 + 4t^3 + \frac{27}{4}t^4 + 9t^5 + \ldots$$

2.3.2. **Degree 28.**

Definition 2.12. Fano threefolds Y_{28} are blowups of a twisted quartic on a 3-dimensional quadric Q. This deformation class of varieties has number 21 in table 2 of [13], it has degree 28, $\chi = 6$ and $\rho = 2$.

Realize Q as a linear section of 4-dimensional quadric $Gr(2, 4) \subset \mathbb{P}^5$ parametrizing lines in \mathbb{P}^3. Let U be the universal vector bundle of rank 2 on $Gr(2, 4)$, and $\mathcal{O}_{Gr}(1) = \det U^*$ be the ample generator of Picard group on this Grassmannian.

Proposition 2.13. Consider a generic section of rank 5 vector bundle $(U^* \otimes \mathcal{O}_{\mathbb{P}^4}(1))^\otimes 2 \oplus \mathcal{O}_{Gr}(1)$ on the 8-fold $Gr(2, 4) \otimes \mathbb{P}^4$. Then it is a smooth Fano threefold from deformation class of Y_{28}.

Consider abelianization for Y_{28}: a complete intersection A_{28} in $\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^4$ of line bundles $\mathcal{O}(1, 0, 1)$ twice, $\mathcal{O}(0, 1, 1)$ twice and $\mathcal{O}(1, 1, 0)$.

J-series of Y_{28} (and hence G-series $G_{Y_{28}}$) can be computed using abelian/non-abelian correspondence [3,13] of Bertrand, Ciocan-Fontanine, Kim and Sabbah.

Proposition 2.14. $G_{Y_{28}}$ equals e^{-t} times coefficient at H_2 of

$$\sum_{a_1,a_2,b \geq 0} t^{a_1+a_2+b} \frac{g(a_1+b,H_1)^2g(a_2+b,H_2)^2g(a_1+a_2,H_1+H_2)g(a_2-a_1)}{g(a_1,H_1)^4g(a_2,H_2)^4b!^5}$$

where $g(d,D) = d! \cdot (1 + h_dD)$ is approximation of Γ-function, $h_d = \sum_{i=1}^d \frac{1}{i}$ is the harmonic number, and H_1, H_2 are positive generators of $H^2(\mathbb{P}^3, \mathbb{Z})$ pulled back to $H^2(\mathbb{P}^3 \times \mathbb{P}^3, \mathbb{Z})$ by two projections.

So $G_{Y_{28}} = 1 + 4t^2 + 4t^3 + 10t^4 + 12t^5 + \frac{299}{18}t^6 + \ldots$

We’ll present a detailed proof of these computations in [6].

Denote the G-series of Y_{28} as $G_n = G_{Y_{2n}}$.

3. Toric Degenerations and Mirror Symmetry

Definition 3.1 ([13]). Let $G_Y(t) = 1 + g_2(Y)t^2 + \ldots$ be the G-series of Y. Laurent polynomial w is said to be mirror for Y if general element of pencil $1 - tw(x) = 0$ is birational to Calabi–Yau variety and $G_Y(t) = G_w(t)$.

Remark 3.2. In particular constant term of w is zero.
Definition 3.3. For toric Fano variety \(X\) let \(\Delta(X)\) be its fan polytope. For lattice polytope \(\Delta\) let \(\mathbb{P}_\Delta\) be the toric Fano variety with fan polytope \(\Delta\). Define vertex Laurent polynomial \(w_\Delta\) as sum of all monomials corresponding to the vertices of \(\Delta\):
\[
(3.4) \quad w_\Delta = \sum_{v \in \text{Vertices}(\Delta)} x^v
\]
For Laurent polynomial \(w\) let \(\Delta(w)\) be its Newton polytope and define \(\mathbb{P}(w) = \mathbb{P}_{\Delta(w)}\)

Theorem 3.5 (Mirror construction for smooth toric Fano varieties \([10]\)). If variety \(X\) is a smooth toric Fano variety then \(w_{\Delta(X)}\) is a mirror for \(X\).

Definition 3.6 (Small toric degeneration \([2]\)). Assume \(X\) is a toric Fano variety that admits only terminal Gorenstein singularities. We say that \(X\) is a small toric degeneration of smooth Fano variety \(Y\) if there exists a flat projective morphism to irreducible curve \(\pi: \mathcal{X} \to C\), such that \(X\) and \(Y\) are isomorphic to some fibers of \(\pi\), and the restriction map \(\text{Pic}(\mathcal{X}) \to \text{Pic}(\mathcal{X}_t)\) is an isomorphism for all \(t \in C\).

Conjecture 3.7 (Small toric degeneration hypothesis \([2]\)). If \(X\) is a small toric degeneration of smooth Fano variety \(Y\), then \(w_{\Delta(X)}\) is a mirror for \(Y\).

Theorem 3.8 (\([8]\)). For \(n = 14, 15\) toric Fano variety \(\mathbb{P}(f_n)\) have terminal Gorenstein singularities and is small toric degeneration of smooth Fano threefold \(Y_{2n}\) in the uniquely determined deformation class (number 2.21 and 3.13 in \([14]\)).

Combination of theorems 1.4 and 2.1 implies

Theorem 3.9. For \(n = 14, 15\) Laurent polynomial \(f_n\) is a mirror for family of smooth Fano threefolds \(Y_{2n}\).

Acknowledgement I am acknowledged to Vasily Golyshev for pointing my attention to equations 0.4, 0.5 and the perfect food I’ve got in IHES, to Bumsig Kim for teaching me “abelianization” trick during my stay in KIAS, and to Duco van Straten for the time we’ve spent in Johannes Gutenberg University. I’ve learned about threefolds \(Y_{28}\) and \(Y_{30}\) from Ivan Cheltsov in IHES and from Costya Shramov during his visit to Mainz. This update is provoked by and should be considered a part of our collaboration \([6]\) with Tom Coates, Alessio Corti, Vasily Golyshev and Al Kasprzyk.

References

