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Abstract

We construct a twist-closed enhancement of the derived category of coherent
sheaves on a smooth compact complex-analytic manifold by means of DG-category
of dbar-superconnections.

1 Introduction

The derived category of coherent sheaves is known to be a meaningful homological in-
variant of an algebraic variety. The basic motivation for the authors of the present paper
was the wish to understand to which extent the derived category is a good invariant for
complex analytic manifolds.

Let X be a compact complex analytic manifold and Dbcoh(X) the derived category of
OX-modules with bounded coherent cohomology. There are some indications that this
category is not as good as it is in the algebraic case. First, a result of Verbitsky

Verb1
[V1]

implies that Dbcoh(X) are equivalent for all K3 surfaces X with no curves. Hence, the
derived category does not ‘feel’ the complex geometry of the generic K3 surface. Note
that, in the case of projective varieties, a conjecture (cf.

Kaw
[Kaw],

Rouq
[R]) states that there

is only a finite number of smooth projective varieties derived equivalent to a given one.
It is known that there is at most countably many algebraic varieties in a given class of
derived equivalence (

AT
[AT]).

Second, a wonderful property of the derived category of coherent sheaves on a smooth
proper algebraic variety is that it satisfies a property similar to Brown representability.
Namely, the category is saturated, i.e all bounded cohomological functors with values in
vector spaces are representable (see

BK1
[BK1],

BVdB
[BVdB]). It was shown in

BVdB
[BVdB] that for

the derived category of a smooth compact complex surface with no curves (say, a generic
K3) this property does not hold. It was also conjectured that if the derived category
is saturated then the variety is (an analytification of) an algebraic space. Recently, the
conjecture was proved by B. Toën and M. Vaquié (

TV2
[TV2]), though they used an a priori

stronger version of saturatedness.
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It was probably these facts that lead to a currently rather typical opinion that the
derived category was not a meaningful homological invariant in the complex analytic
case. Formally speaking this was correct. However, there was some ambiguity in what
sort of natural structure is reasonable to fix when considering derived categories. In
particular, it was mentioned quite a time ago that it made sense to consider triangulated
categories together with enhancements, a sort of enrichments of the categories with a
DG-structures

BK2
[BK2]. We will show that some good (twist-closed) enhancements are

relevant to complex-analytic geometry.
We construct a particular nice DG-enhancement, EX , of Dbcoh(X) in this paper. Its

objects are DG-modules over the DG-algebra of Dolbeault forms. Our first principal
result is that the homotopy category of this DG-category is equivalent to Dbcoh(X).

An important property of the category EX is that it is twist-closed, which means
that the functors constructed via twisted complexes in the category are representable.
Twisted complexes are solutions of the Maurer-Cartan equation with values in the (de-
gree one) endomorphisms of objects in the DG-category. Note that twist-closed cate-
gories are pre-triangulated, i.e so-called one-sided twisted complexes are representable,
but it is crucial for the construction of moduli in complex-analytic geometry to have
representability of all twisted complexes.

In the sequel to this paper, we will show that solutions of the Maurer-Cartan equation
in CX are ‘well-parameterized’ if we consider moduli of appropriate simple objects, thus
giving a parametrization of the corresponding representation objects. By patching the
parameter spaces for all simple objects, we construct a coarse moduli space of simple
objects in the category. The moduli space represents the relevant functor of points on
the category of Stein varieties.

It is worthwhile to mention here that the first construction of the moduli spaces of
simple objects in the derives category of coherent sheaves on a projective variety is due
to M. Inaba

Ina
[Ina]. He has shown that the moduli functor for this case is represented by

an algebraic space. M. Liebich constructed a moduli stack of appropriate objects in the
derived category of a proper variety

Lieb
[Lieb].

Toën and Vaquié constructed a similar moduli of simple objects (and, more generally,
a higher stack of all objects) in a saturated DG-category

TV1
[TV1]. As we have already dis-

cussed, the derived category of a complex-analytic manifold is not, in general, saturated.
Hence, their result is not applicable in the complex-analytic case.

2 DG-enhancements

In this section we recall some facts on DG-categories and introduce the notion of twist-
closed DG-categories.

DG-categories can be considered as a particular class of A∞-categories. The theory
has a direct generalization to the A∞-case. We avoid this more general context here, be-
cause natural enhancements which one meets in complex geometry have a DG-structure.

Let E be an additive DG-category over a field. This means that we have direct sums
of objects, morphisms between any two objects constitute a Z-graded complex of vector
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spaces over the field, and Leibnitz rule for the composition of morphisms is satisfied. We
will denote the space of degree i morphisms in E by Rhomi.

Two objects A,B ∈ E are said to be DG-isomorphic if there exists an invertible degree
zero closed morphism f ∈ Rhom0(A,B). Accordingly, one defines DG-isomorphism of
functors.

We assume that the category is equipped with an equivalence T : E → E , called
translation functor, together with a DG-isomorphism of functors:

µ : id→ T,

where µ has degree −1.
If E is a DG-category, then its homotopy category HoE is defined as a category with

the same objects as in E , but morphisms are the degree zero homology of complexes of
morphisms in E .

We now explain the ideology (based on
BK2
[BK2]) of twisted complexes and functors

which they represent.
A twisted complex in a DG-category E is a pair T = (E,α), where E is an object in

E and a twisting cochain α is in Rhom1(E,E) and satisfies Maurer-Cartan equation:

dα + α2 = 0.

Any twisted complex T = (E,α) defines a contravariant functor

hT : E → C·(Vect),

where C·(Vect) stands for the category of complexes of vector spaces. The functor is
defined on A ∈ E by:

A 7→ Rhom·(A,E),

but the differential in Rhom·(A,E) is twisted by α:

dα = dRhom·(A,E) + α.

The Maurer-Cartan equation for α implies that d2
α = 0.

We will also consider twisted complexes of a particular form. A twisted complex
T = (E,α) is called one-sided, if the object E is decomposed into a finite direct sum
E = ⊕Ei and α is strictly upper triangular with respect to this decomposition.

The basic example of a one-sided twisted complex is obtained by taking E to be of
the form

E = E1 ⊕ E2 (1) onesided

and assuming α to be strictly upper triangular with respect to this decomposition, i.e.
to belong to Rhom1(E1, E2), which is a subspace in Rhom1(E,E). Note that α2 is
automatically zero for such α. Therefore, the Maurer-Cartan equation reduces to dα = 0.
Thus α can be interpreted as a closed degree zero morphism E1 → E2[1].

In the following definition, DG-categories are assumed to be additive and equipped
with translation functors.



July 15, 2011: some heading 4

Definition 2.1 (i) A DG-category is called twist-closed if hT is representable for any
twisted complex T .

(ii) A DG-category is called pre-triangulated if hT is representable for any one-sided
twisted complex T .

The following theorem was proved in
BK2
[BK2].

Theorem 2.2 If E is pre-triangulated, then HoE is naturally triangulated.

The idea behind this theorem is that the twisting cochain α in a one-sided twisted
complex of the form (

onesided
1) defines a morphism α̃ : E1 → E2[1] in HoE and the object

that represents the functor hT gives a cone of α̃ in the homotopy category. Thus the
basic hereditary problem of the axiomatics of triangulated categories that the cones of
morphisms are not canonical is resolved by lifting morphisms in a triangulated category
to closed morphisms in an appropriate DG-category.

Another reason why DG-context looks more suitable is that the pre-triangulatedness
is a property of a DG-category, while to make a category triangulated one has to put
an extra structure on the category (to fix a class of exact triangles). The price to pay
for transferring into the DG-world is that one has to consider DG-categories up to an
appropriate equivalence relation, i.e. there is always a variety of equivalent choices for
DG-categories ”representing” a given triangulated category.

Definition 2.3 If D is a triangulated category, then a pre-triangulated category E to-
gether with an equivalence of triangulated categories HoE→D is said to be an enhance-
ment of D. The category D is then said to be enhanced. A functor between two DG-
categories is said to be an quasi-equivalence if it induces an equivalence of the corre-
sponding homotopy categories.

It is clear from definitions that a twist-closed DG-category is pre-triangulated, hence
its homotopy category is naturally triangulated. It will be crucial for our further con-
structions to have enhancements which are twist-closed.

NB! The twist-closedness is not preserved under quasi-equivalences.
The following example shows that a standard enhancement of the derived category

of coherent sheaves on an algebraic variety is not twist-closed.

2.4 Example. Let X be an algebraic variety with the structure sheaf OX and
D = Dbcoh(X) the derived category of complexes OX-modules with bounded coherent co-
homology. Consider the DG-category E = I(X) of bounded below complexes of injective
OX-modules with bounded coherent cohomology. By definition, this is a full subcategory
in the DG-category C ·(OX −mod) of complexes of OX-modules. It is known that I(X)
(not the C ·(OX −mod)) is an enhancement of Dbcoh(X)

BK2
[BK2],

BLL
[BLL].

Let E be a complex in I(X) with the differential d, such that some term of E is not a
coherent OX-module (this is a typical object). Consider the twisted complex T = (E,α)
where α = −d. One can show that the functor hT is not representable. Indeed, it is
represented by the object in C ·(OX − mod) which is a complex with the same graded
components as E and with trivial differential. Its cohomology is not coherent.
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Here is an example of a twist-closed enhancement.

2.5 Example. Let D = D(mod − A) be the derived category of (right) modules
over a finite dimensional associative algebra A of finite global dimension. Consider
the DG-category E = P(A) consisting of perfect complexes, i.e. finite complexes of
finitely generated projective A-modules. This is a full subcategory in the DG-category
C ·(mod − A) of all complexes of A-modules. Again P(A) (and not C ·(mod − A)) is
an enhancement of D(mod − A). Every twisted complex T = (E,α) over this category
produces a functor hT which is representable by the complex E with the differential

dT = dE + α.

This is a perfect complex. Hence the enhancement is twist-closed.

3 The enhancement by super-connections

Let X be a smooth complex-analytic space and OX the sheaf of holomorphic functions on
X. Denote by Dbcoh(X) the derived category of complexes of OX-modules with bounded
coherent cohomology.

We will construct a twist-closed enhancement of Dbcoh(X). Our further construction
of moduli of objects in DG-categories will be rather sensitive with respect to the property
of twist-closedness.

We want to construct a twist-closed DG-category C = CX whose homotopy category
is equivalent to Dbcoh(X). The idea of the construction can be explained via Koszul
duality applied to the algebra of differential operators (cf.

Kap
[Kap]). This goes along the

following lines.

3.1 The view-point via Koszul duality

Denote by Ai,j = Ai,jX the sheaf of smooth complex-valued (i, j)-forms on X. For the
sake of simplicity, we will also use the notation Ai = AiX = A0,i. In particular, A0

X is
the sheaf of smooth functions on X.

A locally free coherent sheaf on X is given by a smooth vector bundle E on X with
a flat ∂̄ connection ∇. One can interpret such a connection as a module over the sheaf
of algebras D∂̄X of ∂̄-differential operators on X. D∂̄X is a nonhomogeneous quadratic
algebra over A0

X . The quadratic dual algebra to D∂̄X is the sheaf of DG-algebras on X

AX = ⊕AiX

of smooth (0, i)-forms on X equipped with Dolbaut differential ∂̄. We use notation
A+ = A+

X = ⊕i>0AiX for the positive part of Dolbaut complex. Denote by A\X the same
graded algebra with no differential. If E is a locally free OX-module, then Ai,j(E) =
Ai,jX (E) = Ai,jX ⊗OX

E denotes the sheaf of smooth (i, j)-forms on X with values in E .
Similarly, we put A(E) = AX(E) = AX ⊗ E .
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Koszul duality typically states that appropriate derived categories of modules over
Koszul dual algebras are equivalent. This is a reason to search for an enhancement of
Dbcoh(X) among DG-categories of appropriate AX-DG-modules.

For the case of a locally free OX-module E , the ∂̄-connection ∇ : E → A0,1(E) can
be extended to a differential in A(E). As a result, A(E) acquires a natural structure of
a DG-module over A. This is the module which corresponds to E .

We want to extend this correspondence to arbitrary objects in Dbcoh(X). It is natural
to call A-DG-modules of appropriate form by ∂̄-super-connections (see below). If every
coherent sheaf on X has a resolution by locally free OX-modules, which is true if X is
the complexification of an algebraic variety or if X is a surface

Schuster
[S], then it is easy to

construct a super-connection corresponding to an arbitrary object in Dbcoh(X).
In general, locally free resolutions don’t exist. A counterexample with a complex

torus is due to C. Voisin
Voisin
[Vo]. This makes the issue more subtle. Technically, it will

be easier for us to construct a functor in the inverse direction and prove that it is an
equivalence.

3.2 The construction of the enhancement

Let M be a bounded (left) DG-module over A. If d is a differential in M , m an element
in M and ω an element in A, then the Leibnitz rule is satisfied:

d(ω ·m) = ∂̄ω ·m+ (−1)degωω · dm (2) leibnitz

By forgetting the differential in M , we obtain a module, M \, over A\. If M is a
left A\-module, then it is naturally endowed with structure of right A\-module by the
standard formula:

m · ω := (−1)degm·degωω ·m.

Define the objects of the category C = CX to be DG-modules M over A for which
M \ are locally free graded modules of finite rank over A\. If M is in C, then it is, in
particular, a bounded graded complex of locally free A0-modules. We say that objects of
C are ∂̄-super-connections or simply by super-connections in compliance with Quillen’s
terminology in

Qui
[Q].

Let M and N are in C. Consider them as right A\-modules. Then the complex
Hom·A(M,N) of local right module homomorphisms HomA\(M \, N \) is endowed with a
left A\-module structure which comes from the left module structure on N and with the
standard differential (coming from the differentials in M and N). Hence, Hom·A(M,N)
is an object in C too. Note that elements φ ∈ Hom·A(M,N), ω ∈ A and m ∈ M satisfy
the sign rule:

φ(ω ·m) = (−1)deg φ·degωω · φ(m). (3) gradhom

We define homomorphisms in C as the graded complex of global sections ofHom·(M,N):

RHomC(M,N) := Γ(X,Hom·A(M,N)).

Proposition 3.3 C is a twist-closed DG-category.
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Proof. The translation functor is defined by the shift of grading of DG-A-modules.
Hence, we need to prove that every twisted complex in C is representable.

Let M be in C, d the differential in M and α ∈ RHom1(M,M) a solution of the
Maurer-Cartan equation. Since α satisfies the sign rule

gradhom
3, then d+α satisfies the Leibnitz

rule (
leibnitz
2). Moreover, (d + α)2 = 0. Hence Mα, the A\-module M \ with new differential

d + α, is a DG-A-module. Clearly, it lies in C and is the representation object for the
twisted complex defined by the pair (M,α).

Corollary 3.4 Category C is pre-triangulated. The homotopy category Ho(C) is trian-
gulated.

For a twisted complex (M,α), we will denote by Mα the representation object con-
structed in the proof of the proposition.

Any object in CX is clearly a complex of OX-modules. If M and N are in C, then
a closed morphism in RHom0(M,N) obviously defines a morphism of complexes of the
corresponding OX-modules. Homotopy-equivalent closed morphisms define trivial mor-
phisms in Dbcoh(X), because the derived category factors through the homotopy category
of complexes of OX-modules. Hence we obtain a functor:

Φ : Ho(CX)→ Db(OX −mod). (4) functor

The rest of this section is devoted to proving that CX defines an enhancement of
Dbcoh(X).

equiv Theorem 3.5 Let X be a smooth compact complex-analytic space. Then Φ is a trian-
gulated equivalence between the homotopy category Ho(CX) and Dbcoh(X).

The strategy of the proof is as follows. First, we will show that functor Φ is fully
faithful, i.e retains homomorphisms between any two objects in Ho(CX). Second, we
will show that any super-connection is a complex of OX-modules with bounded coherent
cohomology. Third, we will prove that any object in Dbcoh(X) is quasi-isomorphic to a
super-connection. The proof is relied on the description of the local structure of super-
connections.

3.6 Local structure of super-connections

Every finite complex of locally free OX-modules E· yields a super-connection by taking
tensor product of complexes

AX ⊗OX
E·.

Here we will prove the main technical statement which claims that any super-connection
is locally gauge-equivalent to a super-connection of this kind. We believe that this fact
is of independent interest.

Let M be a super-connection. Since M \ is locally free over A\, it can be non-
canonically presented in the form:

M \ = A\ ⊗ E · (5) decompmodule
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where E · = M/A+M is a finitely graded locally free A0
X-module. To have this presenta-

tion, choose a splitting for the projection M → E · and use the A\-module structure of
M \. Every E i can be understood as a smooth complex vector bundle on X. Consider
the (non-canonical) bigrading of M \ where Ai ⊗ E j has bidegree (i, j). The standard
grading of Ai ⊗ E · in M is the total degree (i+ j).

The differential D = dM for this module has a decomposition with respect to this
bigrading:

D = γ +∇+
∑
i≥2

βi. (6) expansion

Here γ is the component of bidegree (0, 1), ∇ the component of bidegree (1, 0), and βi
is the component of degree (i, 1 − i). Leibnitz rule implies that γ is an endomorphism
of M of total degree 1, hence it satisfies the sign rule (

gradhom
3). Therefore, γ is fully defined

by A0
X-module homomorphisms γj : E j → E j+1. ∇ can be understood as a set of ∂̄-

connections ∇j on E j. An important issue is that these connections are not necessarily
flat, which prevents us at this stage from considering E j as holomorphic vector bundles.
By Leibnitz rule again, components βi are completely defined by maps E j → Ai⊗E j−i+1.
In this notation, the bigraded components of the condition

D2 = 0

reads as a sequence of equations:
γ2 = 0,

[γ,∇] = 0,

∇2 + [γ, β2] = 0,

[∇, β2] + [γ, β3] = 0,

[∇, β3] + β2
2 + [γ, β4] = 0,

and so on.
Note that if all βi’s are zero, then these equations are equivalent to requiring ∇ to

give holomorphic structure on all bundles E j’s and γ to be a differential in a complex of
holomorphic vector bundles.

Now, we choose a point x0 in X and an open neighborhood of x0 in analytic topology
on X. We consider local gauge transformations of the form:

D′ = e−φDeφ (7) gauge

with φ an A\-module endomorphism of M \, which has degree 0 with respect to the
canonical grading. Clearly, φ is defined by its values on E ·. Thus, we interpret φ as an
element of Hom0

A0(E ·,A\ ⊗ E ·). The gauge parameter φ is said to be strict if it has a
decomposition

φ = φ1 + φ2 + . . . (8) phidecomposition

where φi’s are homomorphisms in Hom0
A0(E ·,Ai ⊗E ·) over the neighborhood of x0. The

corresponding gauge transformation is also said to be strict.
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Transformation (
gauge
7) for components of D′ reads:

γ′ = γ,

i.e. γ does not change,
∇′ = ∇+ [γ, φ1],

β′2 = β2 + [γ, φ2] +
1

2
γφ2

1 +
1

2
φ2

1γ − φ1γφ1 + [∇, φ1],

etc.
The following theorem confirms that every superconnection is locally isomorphic to

a complex of holomorphic vector bundles.

local Theorem 3.7 Any super-connection M over an open neighborhood of a point x0 in X
can be transformed, at the price of shrinking the neighborhood of x0, by a strict gauge
transformation of the form (

gauge
7) to the form (

expansion
6) with all βi’s being zero. Moreover, if

D holomorphically depend on some parameters wi’s, then one can choose φi’s to be
holomorphic in wi’s too.

Proof. We proceed by induction on dimension of X. If dimension is 0 or 1, then all
βi’s are automatically zero. So we have the base of the induction. Assuming the fact is
true in dimension n, consider n+1 dimensional neighborhood Ũ of the point in X which
is of the form:

Ũ = U × U1,

where U is an n-dimensional polydisc and U1 a 1-dimensional complex disc. Let z1, . . . , zn
be holomorphic coordinates on U and z a coordinate on U1. We can decompose any form
in A0,i

Ũ
into the sum

ω = ωi,0 + ωi−1,1

with
ωi,0 =

∑
|I|=i

fIdz̄I

and
ωi−1,1 =

∑
|I|=i−1

fIdz̄Idz̄

where fI are smooth functions on Ũ and

dz̄I =
∏
j∈I

dz̄j

is an (ordered) product where j runs over an ordered subset I ⊂ {1, . . . , n}.
We will apply similar decompositions to vector bundle valued forms, to D, ∇, etc.

In particular, we have:
∇ = ∇1,0 +∇0,1,
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where
∇1,0 = ∂̄U + A1,0,

where A1,0 =
∑
fidzi and fi ∈ Hom0(E ·, E ·), and

∇0,1 = ∂̄z + fdz

where again f ∈ Hom0(E ·, E ·).
We can find a form g such that

g−1∇0,1g = ∂̄z

Thus, without loss of generality, we can assume that ∇0,1 = ∂̄z. Now, let us prove by
induction on k that there exists a gauge transformation φ(wi), such that φk = φk,0 for all
k ≥ 1 and for the transformed connection D′ = e−φDeφ the forms β′k have (β′k)k,1 = 0 for
all k ≥ 1. From the transformation rule for D, we get the equation required to annihilate
(β′1)1,1:

(β1)′1,1 = (β1)1,1 + [∇0,1, (φ1)1,0] = 0

This equation has a solution for (φ1)1,0. Moreover, Cauchy formula for the solution
shows that (φ1)1,0 holomorphically depends on parameters wi’s. We can perform gauge
transformation with φ = (φ1)1,0 and kill (β1)1,1. Now, if (βs)s,1 = 0 for s < k, then

(β′k)k,1 = (βk)k,1 + [∇0,1, (φk)k,0]

This equation also has a solution for (φk)k,0 holomorphic in wi’s. Again we can perform
a gauge transformation with φ = (φk)k,0 and kill (βk)k,1.

Once sufficiently many steps of this procedure performed, we transform our supper-
connection to the form:

D = γ +∇1,0 +∇0,1 +
∑

(βi)i+1,0

where
∇0,1 = ∂̄z

Now the equation
(D2)∗,1 = 0

implies
∂̄zγ = 0

∂̄z(∇1,0) = 0

∂̄zβk = 0

This means that D = D1,0 + ∂̄z, where D1,0 holomorphically depends on z. We can use
inductive hypothesis and find gauge transformation which kills βk.

Corollary 3.8 Every superconnection has coherent cohomology.
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3.9 Fully faithfulness

Let M and N be super-connections. We regard them as complexes of OX-modules and
consider the complex of derived local homomorphisms RHomOX

(M,N), which is the
object in D(OX −mod) too.

Fix a complex I(N) of injective OX-modules together with a quasi-isomorphism
N → I(N). It induces a morphism of complexes

µ : Hom·OX
(M,N)→ Hom·OX

(M, I(N)).

Consider the composite φ of the natural map Hom·A(M,N) → Hom·OX
(M,N) with

µ. Since injective sheaves are acyclic with respect to the functor Hom(U ,−), for every
OX-module U (cf.

KS
[KS]), we have a functorial isomorphism in D(OX −mod):

RHomOX
(M,N) ' Hom·(M, I(N)). (9) rhom

Hence we have a commutative diagram:

Hom·A(M,N)
�
��

Hom·OX
(M,N)
@
@R

RHomOX
(M,N)-

φ

µ

rhomiso Lemma 3.10 φ induces a quasi-isomorphism Hom·A(M,N) ' RHomOX
(M,N).

Proof. We need to show that φ induces an isomorphism of cohomology sheaves.
This is a local statement. Hence, we can use theorem (

local
3.7) and replace M and N by

Dolbeaux bicomplexes of finite complexes E ·1 and E ·2 of locally free OX-modules:

M = A⊗ E ·1, N = A⊗ E ·2.

Then the complex Hom·A(M,N) is isomorphic to the Dolbeaux complex of the com-
plex of sheaves of local homomorphisms A⊗HomOX

(E ·1, E ·2).
If E ·1 and E ·2 both consist of single locally free sheaves E1 and E2, then this complex is

obviously quasi-isomorphic to HomOX
(E1, E2). On the other hand, M and N are quasi-

isomorphic to, respectively, E1 and E2, hence RHomOX
(M,N) = HomOX

(E1, E2), i.e. the
statement of the lemma is clear for this case.

We shall use now the induction on the length the complexes E ·1 and E ·2. If one of
them, say E ·1, has length greater than one, then we decompose it into exact triangle

E ′·1 → E ·1 → E ′′·1

where E ′·1 and E ′′·1 are locally free complexes of shorter length. Let

M ′ →M →M ′′ (10) MMM

be the corresponding decomposition of the object M .
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By induction, we know that φ induces quasi-isomorphisms:

Hom·A(M ′, N) ' RHomOX
(M ′, N),

Hom·A(M ′′, N) ' RHomOX
(M ′′, N)

Cohomology sheaves of Hom·A(M,N) and RHomOX
(M,N) fit into two long exact se-

quences, obtained by applying the functors Hom·A(−, N) and RHomOX
(−, N) to the

triangle (
MMM
10 ), and φ gives a morphism of these long sequences. The quasi-isomorphism

for M follows from the lemma on 5 homomorphisms applied to this diagram. This proves
the lemma.

By the standard property of local RHom, one can recover the global homomorphisms
by the formula:

HomD(OX−mod)(M,N) = H0(X,RHomOX
(M,N)),

where Hi stands for the hyper-cohomology of a complex of OX-modules. In view of the
lemma, we can replace the last argument in this equality:

HomD(OX−mod)(M,N) = H0(X,Hom·A(M,N)).

There is a standard spectral sequence converging to the hypercohomology:

Hi(X,Homj
A(M,N))→ Hi+j(Hom·A(M,N))

Since all the sheaves Homj
A(M,N) are fine, cohomology Hi(X,Homj

A(M,N)) are
trivial for i ≥ 0. The spectral sequence degenerates, and yields the desired equality that
the Hom-space in the derived category is equivalent to the homology of the complex of
global sections of Hom·A(M,N).

3.11 Coherence of cohomology of super-connections

This follows from the theorem (
local
3.7) on the local structure of the super-connections.

3.12 Constructing a super-connection for a coherent sheaf

Let us construct a super-connection that is quasi-isomorphic to a given coherent sheaf.
Let F be a coherent sheaf of OX-modules. Consider the sheaves F = F ⊗OX

A0 and
Fω = F⊗OX

Aω, where Aω stands for the sheaf of complex-valued real-analytic functions
on X regarded as a real manifold. The sheaf Fω is coherent over Aω.

Note that the sheaf Aω is identified with the restriction to the diagonal X ⊂ X × X̄
of the sheaf of holomorphic functions on the product of X with the complex conjugate
manifold X̄. This implies, in particular, that Aω is coherent.

As it is explained by Atiyah and Hirzebruch in
AH
[AH], the famous Grauert’s result

G
[G]

on existence of a small Stein neighborhood of any real-analytic manifold in its complexi-
fication, together with theorems A and B of Cartan, easily implies existence of the finite
locally free resolution of an arbitrary coherent Aω-module. Fix such a resolution for Fω:
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0→ E−nω → . . . E0
ω → Fω → 0 (11) resolution

By a result of Malgrange
Malgrange
[M] A0 is a flat sheaf over Aω. Hence we can safely tensor

the resolution by A0 over Aω and obtain a locally free resolution E · for F over A0:

0→ E−n → . . . E0 → F → 0 (12) resol1

For reader’s convenience, we will provide with another, more explicit, construction for
the resolution of the form

resol1
12. The sheaf F has, locally in a vicinity of every point on X,

a finite resolution by free finite A0-modules. Indeed, the sheaf F has, locally, a resolution
by free OX-modules, which may be taken to be finite as the manifold is smooth. The
sheaf Aω is flat over OX and A0 is flat over Aω by Malgrange theorem, hence A0 is flat
over OX . Thus, we can tensor the resolution by A0 and get a required local resolution.
Every A0-module which is generated, locally over a compact manifold, by a finite number
of sections, is globally generated by a finite number of sections, because A0 is a fine sheaf.
This is clearly applicable to sheaves which locally have free resolutions. Now if we have
an epimorphism of two sheaves which have local resolutions, then the kernel is a sheaf
which also has such resolutions. Apply this to the epimorphism (A0)s → F , which exists
because F is generated by a finite number of global sections. We get that the kernel has
also local free resolutions and is generated over A0 by finite number of sections. Hence
we can iterate the process and construct the resolution until the kernel becomes locally
free. This must happen after a finite number of iterations, because the manifold, being
compact, is covered by a finite number of open sets on which a finite free resolution
exists. Just take the resolution of the length equal to the maximum of lengths of these
free resolutions on this finite number of open sets, then the last kernel will be locally
free.

Denote by ∇F the differential ∂̄ acting on A ⊗ F along the first tensor argument.
It makes A ⊗ F into a DG-module over A. It is not a super-connection, but we will
construct a super-connection M which is quasi-isomorphic to A ⊗ F . Put M \ to be
A⊗E · as a graded module over A with the grading obtained by summation of gradings
on (E ·)\ and A. We need to construct a suitable differential on M \.

Let γ be the differential in the resolution E ·. We denote also by γ its A-linear
extension to M \. We denote by one letter γ0 the map E0 → F , its A-linear extension to
the map (A⊗ E0)\ → (A⊗ F )\ and the extension to the map M \ → (A⊗ F )\ which is
zero on other components (A ⊗ Ei)\ → (A ⊗ F )\, for i 6= 0. First, we claim that there
exists a system of (non-flat, in general) ∂̄-connections on E i’s which commute with γ and
such that

γ0∇ = ∇Fγ0

First we construct a connection on E0 compatible with γ0. If E0 is a free A0-module, i.e.
a trivial smooth vector bundle, then take a basis {si} of its sections and define ∇(si) to
be any element in A1 ⊗ E0 such that γ0∇(si) = ∇Fγ0(si). If E0 is not a trivial bundle,
then consider the sum S0 = E0⊕G0 which is a trivial vector bundle. Take, as above, the
connection S0 → A1⊗S0 on S0 compatible with the composite map S0 → E0

γ0→ F . The
E0-component of this connection will define a connection on E0 compatible with γ0.
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The connections on other Ei’s can be constructed consecutively starting from E0 by
the same argument with replacing γ0 by γ.

Using Leibnitz rule, we extend ∇ to a differential operator (also denoted by ∇) on
M sharp which preserves grading by E ·, is of degree 1 in grading by A and commutes with
γ.

We want to find the differential in M \ of the form

D = γ +∇+
∑
i≥2

βi

where βi’s are A0-module endomorphisms of M of degree i in the grading of A and
degree −i+ 1 in the grading of E ·.

The equation D2 = 0 implies a series of equations on components of D which can be
expressed in terms of the super-commutators:

[γ,∇] = 0

[γ, β2] + [∇,∇] = 0,

[γ, β3] + [∇, β2] = 0,

and so on.
Suppose we have already found βi’s for i = 2, . . . , k − 1, which satisfy the first k − 1

equations. Then the k-th equation looks like:

[γ, βk] + uk = 0, (13) eqk

where uk has an expression in terms of γ,∇ and β2, . . . , βk−1. Moreover, one can check
that [γ, uk] = 0. In order to find βk satisfying (

eqk
13) we need to show that the operator of

commutation with γ has no cohomology on the global sections of endomorphisms of M .
Let us check that the super-connection constructed in this way is quasi-isomorphic

to F . We have the chain maps γ0 : M → A⊗ F . The horizontal filtration of M gives
a spectral sequence which implies that γ0 is a quasi-isomorphism. The fact that the
cohomology of A⊗ F is F can be checked locally. Take locally a resolution E· of F by
free OX-modules. Consider the bicomplex A⊗ E·. The comparison of the two spectral
sequences of the bicomplex gives the result.

Since the functor Φ is fully faithful it follows that its image is a full triangulated
subcategory in Dbcoh(X) that contains all coherent sheaves. Therefore, the essential
image coincides with Dbcoh(X). This concludes the proof of theorem (

equiv
3.5).
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