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Abstract. The Riemann-Roch theorem without denominators for the Chern

class maps on higher algebraic K-groups with values in motivic cohomology
groups in the context of motivic homotopy theory is proved.

1. Introduction

In this article, the Riemann-Roch theorem without denominators for the Chern
class maps on higher algebraic K-groups with values in motivic cohomology groups
in the context of motivic homotopy theory is proved. The Riemann-Roch theorem
without denominators for the Chern class maps on the K0-group of schemes with
values in the Chow groups was stated (in full generality) by Grothendieck [SGA6,
Exposé XIV, (3.1), p. 670] and was proved in full by Jouanolou [Jo]. Gillet [Gi]
extended the theorem (also given the same name) to the Chern class maps for the
higher algebraic K-groups with values in cohomology theories satisfying certain ax-
ioms. It is not clear at least from the definition that the motivic cohomology theory
satisfies these axioms. Levine has proved the theorem for his motivic cohomology
groups in [Le, p.174, 3.4.7.Theorem]. We prove the Riemann-Roch theorem without
denominators by translating the argument in Gillet [Gi] to the setting of motivic
homotopy theory of Morel and Voevodsky [Mo-Vo].

The setting in which we work is provided by the theory of Voevodsky in [Mo-Vo]
and in [Vo1]. We denote by H(k) the A1-homotopy category over Spec k in [Vo1,
p.585 DEFINITION 3.5]. The homotopy category of pointed spaces ([Vo1, p.586])
is denoted by H•(k). Let Sm/k denote the category of schemes which is smooth
over Spec k. For a smooth k-scheme X and a locally closed smooth subscheme
Y ⊂ X, we let X/Y denote the quotient in the category of Nisnevich sheaves on
Sm/k. We often regard it as an object in H•(k).

For n ≥ 0, let K(Z(n), 2n) denote the Eilenberg-MacLane space as in [Vo1,
DEFINITION 6.1, p.597]. We will use the product map mm,n : K(Z(m), 2m) ∧
K(Z(n), 2n) → K(Z(m + n), 2(m + n)) of [Vo1, p.597, bottom] for m,n ≥ 0. For
n < 0, we denote by K(Z(n), 2n) the zero object in the category H•(k). For
m,n ∈ Z with m < 0 or n < 0, we denote by mm,n the unique map mm,n :
K(Z(m), 2m) ∧K(Z(n), 2n)→ K(Z(m+ n), 2(m+ n)) in H•(k).
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From now on we assume that the base field k is perfect. For i, j ≥ 0 and a
pointed space X, we put H2j−i

M (X,Z(j)) = HomH•(k)(S
i
s ∧ X,K(Z(j), 2j)). For

i, j ∈ Z with i < 0 or j < 0, we set H2j−i
M (X,Z(j)) = 0.

Let ι : X ↪→ Y be a closed immersion of smooth schemes over Spec k of (equi-)
codimension d. Let N = NY/X denote the normal bundle. The main theorem is
the following.

Theorem 1.1 (cf. [Gi, THEOREM 3.1, p.235]). Let n ≥ 0 and q ≥ 1. The
following diagram is commutative.

Kn(X)
ι!−−−−→ KX

n (Y )

Pd
q (c(−),c(N))

y ycq+d

H2q−n
M (X,Z(q)) ι!−−−−→ H2q−n+2d

M (Y/(Y \ ι(X)),Z(q + d))

Here KX
n (Y ) is the higher algebraic K-group with supports (defined in Section 2.1),

cq is the Chern class (defined in Section 2.1), P d
q (c(−), c(N)) is the homomorphism

which we will define in Section 4.3.2 using universal power series P d,e
q (defined in

Section 3.3), and ι! are the Gysin maps (defined in Section 2.2.3).

The statement of the theorem is not new. An advantage of giving a formalism
of Chern classes and proving the Riemann-Roch theorem in the context of motivic
homotopy theory is that we obtain compatibility with localization sequences and
universal coefficient theorems easily. Some applications will be given in our other
papers.

It is known that theK-groups defined in Section 2.1 is isomorphic to the Thomason-
Trobaugh K-groups for smooth k-schemes. There is defined pushforwards (another
name for a map related to the Gysin map) for Thomason-Trobaugh K-groups. In
Section 6, we show that the Gysin map defined in earlier section using Panin’s
result and the pushforward map of Thomason and Trobaugh are compatible un-
der the comparison isomorphism. One of the key results is the construction of the
isomorphism between K-theory with support which is functorial in some sense.

This article is organized as follows. In Section 2, we first give the definition
of Chern classes using Riou’s result([Ri2]). The Chern classes in this setting is
also defined by Pushin ([Pu]). We then recall the definition of the Gysin maps for
motivic cohomology and for K-theory. For this, we follow largely an exposition by
Panin ([Pa]). We need the details for our proof of the main result. In Section 3, we
collected some definitions of universal power series that often appear in Riemann-
Roch type theorems. Section 4 is devoted to the proof. In Section 5.1, we see that,
with our definition, it is easy to show that the Riemann-Roch theorem is compatible
with the localization sequences. In Section 6, we show that the Gysin map and the
pushforward map of Thomason and Trobaugh are compatible.

2. Chern classes and Gysin maps

2.1. Chern classes. Let k be a perfect field.
We let Gr denote the infinite Grassmannian as defined in [Ri2, p.3]. For a pointed

space X and a non-negative integer n, we let Kn(X) = HomH•(k)(S
n
s ∧X,Z×Gr).

If X is a smooth k-scheme, this coincides with the Thomason K-group, that is,
the n-th homotopy group of the K-theory spectrum K(X) defined in [TT, 3.1.
Definition] ([Vo1, THEOREM 6.5, p.599]). Riou shows ([Ri2, p.4]) that the product
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µ : (Z×Gr) ∧ (Z×Gr)→ Z×Gr defined in [Mo, p.74] induces the usual product
of K-theory. We let ch0 : Kn(X)→ H−n

M (X,Z(0)) denote the map

Kn(X) = HomH•(k)(S
n
s ∧X,Z×Gr)→ HomH•(k)(S

n
s ∧X,Z)

induced by the composite Z×Gr→ Z ∼= K(Z(0), 0) of the first projection Z×Gr→
Z and the canonical weak equivalence K(Z(0), 0) ∼= Z. We note that ch0 = 0 for
n ≥ 1 since Sn

s ∧X has connected stalks. For a smooth k-scheme Y and a closed
subset X ⊂ Y of the underlying topological space of Y , we let KX

n (Y ) denote the
group Kn(Y/(Y \ X)) where we regard Y \ X as an open subscheme of Y . For
n ≥ 1, we define the n-th Chern class cn : Z × Gr → K(Z(n), 2n) to be the map
which corresponds, by the isomorphism of Riou [Ri2, Théorème 3.1, p.5], to the
natural transform K0(−)→ H2n

M(−,Z(n)) = CHn(−) of the contravariant functors
on Sm/k which is the classical n-th Chern class map cn : K0(X) → CHn(X) on
each smooth k-schemeX. We also call the induced mapKm(Z)→ H2n−m

M (Z,Z(n))
for a space Z the n-th Chern class map.

2.2. Gysin maps. In this section, we recall the definition of the Gysin map for
motivic cohomology and for K-theory.

2.2.1. Let X be a smooth k-scheme, and V be a vector bundle over X. We let
Th(V ) = Th(V/X) = V/(V \ ι(X)) denote the Thom space of V ([Mo-Vo, p.111,
Definition 2.16]) where ι : X → V is the zero section of V . The scheme V is
canonically embedded in P(V ⊕1) as an open subscheme. Here 1 denotes the trivial
bundle of rank one. We identify the boundary P(V ⊕ 1) \ V with P(V ). Then the
canonical morphism of pointed spaces P(V ⊕ 1)/P(V )→ Th(V ) is an isomorphism
in the homotopy category H•(k). This is Proposition 2.17.3 of [Mo-Vo, p.112].

2.2.2. Let us recall the construction of the Thom class of a vector bundle. We
follow Panin [Pa, THEOREM 3.35, p. 305].

Let Pair/k be the category of pairs (X,U) of a smooth k-scheme X and an
open subscheme U ⊂ X. Let A be a ring object in the category H•(k). Let

Ã denote the contravariant functor Z 7→
⊕

n≥0 HomH•(k)(S
n
s ∧ Z,A) from the

category H•(k) to the category of graded rings. We assume that the contravariant

functor (X,U) 7→ Ã(X/U) from the category Pair/k to the category of rings is
a ring cohomology theory with a Chern structure c in the sense of Panin [Pa,
DEFINITION 3.2, p. 285]. We also assume that, for every smooth k-schemeX and a

line bundle L on X, the element c(L) ∈ Ã(X) belongs to the subring A(X) ⊂ Ã(X).
For a pointed space Z, we denote by A(Z) the ring HomH•(k)(Z,A). For a morphism
f : Z → Z ′ in H•(k), we denote by f∗ the homomorphism A(Z ′)→ A(Z) supplied
by the composition with f .

By [Pa, THEOREM 3.27, p. 302], for a smooth k-scheme X and for a vector
bundle V on X of rank n, the Chern classes c1(V ), . . . , cn(V ) ∈ A(X) are defined.
In this paragraph we recall their characterization. Let π : P(V ) → X be the pro-

jective bundle associated to V . We regard the ring Ã(P(V )) as a left Ã(X)-module

via the ring homomorphism π∗ : Ã(X)→ Ã(P(V )). Let ξV = c(OP(V )(−1)), where
OP(V )(−1) is the dual to the tautological line bundle OP(V )(1) on P(V ). (Through-
out this article, we will regard line bundles on a scheme X as invertible OX -modules
and vice versa.) By the projective bundle formula [Pa, THEOREM 3.9, p. 290],

the ring Ã(P(V )) is free of rank n as a left Ã(X)-module with basis 1, ξV , . . . , ξ
n−1
V .
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Hence the subring A(P(V )) ⊂ Ã(P(V )) is free of rank n as a left A(X)-module with
basis 1, ξV , . . . , ξ

n−1
V . Then by the construction of the Chern classes, the elements

c1(V ), . . . , cn(V ) ∈ A(X) are characterized by the formula

(2.1) ξnV +
n∑

i=1

(−1)ici(V )ξn−i
V = 0.

Let V be a vector bundle of rank n overX. LetW = V ⊕1 and let p : P(W )→ X
denote the projection. Since the restriction of the line bundle OP(W )(1) to P(V )
is equal to OP(V )(1), the pullback homomorphism A(P(W )) → A(P(V )) (resp.

Ã(P(W )) → Ã(P(V ))) is a homomorphism of left A(X)-modules (resp. left Ã(X)-
modules) which maps ξW to ξV . Hence the pullback homomorphism A(P(W )) →
A(P(V )) (resp. Ã(P(W )) → Ã(P(V ))) is surjective and we have a short exact se-
quence

0→ A(P(W )/P(V ))→ A(P(W ))→ A(P(V ))→ 0

(2.2) (resp. 0→ Ã(P(W )/P(V ))→ Ã(P(W ))→ Ã(P(V ))→ 0).

Moreover the subgroupA(P(W )/P(V )) ⊂ A(P(W )) (resp. Ã(P(W )/P(V )) ⊂ Ã(P(W )))

is free of rank one as a left A(X)-module (resp. a left Ã(X)-module) with basis

th
naive

(V ) := ξnW +
∑n

i=1(−1)ici(V )ξn−i
W .

We put th(V ) = cn(OP(W )(1)⊗p∗(V )) ∈ A(P(W )). The restriction of the vector
bundle OP(W )(1)⊗p∗(V ) to P(V ) is equal to OP(V )(1)⊗π∗(V ), where π : P(V )→ X
is the canonical projection. Since there is a canonical inclusion OP(V ) → OP(V )(1)⊗
π∗(V ) whose quotient is vector bundles on P(V ) whose cokernel is a vector bundle
of rank n − 1, it follows from the Whitney sum formula (which can be proved
using the splitting principle) that the pullback of th(V ) to A(P(V )) is zero. Hence
th(V ) belongs to the subgroup A(P(W )/P(V )) = A(P(W )/(P(W )\X)) of the group
A(P(W )). We define the class th(V ) ∈ A(Th(V )) as the image of the element th(V )
under the isomorphism of Section 2.2.1 identifying A(P(W )/P(V )) with A(Th(V )).

2.2.3. The Gysin map for K-theory and for the motivic cohomology are defined as
follows. Let ι : X → Y be a closed embedding of smooth k-schemes. Then there is a
canonical isomorphism in the homotopy category H•(k) of the form Y/(Y \ ι(X)) ∼=
Th(N) where N = NY/X is the normal bundle. (This is Theorem 2.23 of [Mo-Vo,
p.115].) Consider the following diagram

A(Sn
s ∧X)

p∗

−→ A(Sn
s ∧ P) −∪th(N)−−−−−−→ A(Sn

s ∧ P) f∗

←− A(Sn
s ∧ Th(N)).

Here the notation is as follows:

• P = P(N ⊕ 1).
• f : P→ Th(N) is the composite of the quotient map P→ P/P(N) and the
isomorphism P/P(N) ∼= Th(N) of Section 2.2.1.
• The map − ∪ th(N) is the composite

A(Sn
s ∧P) = HomH•(k)(S

n
s ∧P, A)

−∧th(N)−−−−−−→ HomH•(k)(S
n
s ∧P∧P, A∧A)

α−→ HomH•(k)(S
n
s ∧P, A)

where the map − ∧ th(N) is supplied by the smash product with th(N) ∈
A(P) = HomH•(k)(P, A) and the map α is supplied by the composition with
the diagonal map P→ P ∧ P and the product map A ∧A→ A.
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Since th(N) ∈ A(P) belongs to the subgroup A(P/P(N)), the image of th(N) under
the pullback A(P)→ A(P(N)) is zero. Hence the composite

A(Sn
s ∧ P) −∪th(N)−−−−−−→ A(Sn

s ∧ P)→ A(Sn
s ∧ P(N))

is zero. Thus the image of the map −∪ th(N) is contained in the image of the ho-
momorphism f∗. It follows from the short exact sequence (2.2) that the homomor-
phism f∗ is injective. We then define the map ι! to be the unique homomorphism
which makes the diagram

(2.3)

A(Sn
s ∧X)

p∗

−−−−→ A(Sn
s ∧ P)

ι!

y y−∪th(N)

A(Sn
s ∧ Th(N))

f∗

−−−−→ A(Sn
s ∧ P)

commutative.
In our application, we take A = Z × Gr or we take A =

∏
n≥0 An where An =

K(Z(n), 2n). In these cases, the Chern structures of the contravariant functor

(X,U) 7→ Ã(X/U) :=
⊕

n HomH•(k)(S
n
s ∧ (X/U), A) from Pair/k are given in [Pa,

§3.8]. We recall that, for a line bundle L, the Chern class c(L) in K-theory is
given by the class [O]− [L], and in motivic cohomology by the class of the divisor
associated with L. We check the three properties in [Pa, DEFINITION 2.1, p. 269],
the three properties in [Pa, DEFINITION 2.13, p. 280], and the three properties in
[Pa, DEFINITION 3.2, p. 285]. The property 1 in [Pa, DEFINITION 2.1, p. 269]
follows from the surjectivity of A(X)→ A(U) for any object (X,U) in Pair/k. The
property 2 in [Pa, DEFINITION 2.1, p. 269] follows from [Mo-Vo, Lemma 2.27].
The property 3 in [Pa, DEFINITION 2.1, p. 269], the three properties in [Pa,
DEFINITION 2.13, p. 280], and the properties 1 and 3 in [Pa, DEFINITION 3.2,
p. 285] are not difficult to check. The property 2 in [Pa, DEFINITION 3.2, p. 285]
in the case where A = Z×Gr follows from the short exact sequence 0→ Kn(X)→
Kn(X × P1) → Kn(X × A1) → 0 given by Quillen’s localization sequence and
the Poincaré duality [TT, 3.21. Theorem, p. 328] and the coincidence of the map
Kn(X)→ Kn(X×P1) in the short exact sequence above with the map x 7→ p∗x∪ξ
where p : X × P1 → X is the first projection and ξ = c(O(−1)). The property
2 in [Pa, DEFINITION 3.2, p. 285] in the case where A =

∏
n≥0 An follows from

[Vo-Su-Fr, Chapter 5, Proposition 3.5.1]. In the latter case where A =
∏

n≥0 An,

for a vector bundle V on a smooth k-scheme X, it follows from the formula (2.1) in
Section 2.2.2 that the Chern class map ci(V ) for each i ≥ 1 is equal to the image
ci([V ]) of the class [V ] of V in K0(X) under the map ci : K0(X) → H2i

M(X,Z(i))
introduced in Section 2.1, since we have c(L) = c1([L]) for a line bundle L on X by
the definition of the Chern structure. In particular we have th(N) ∈ Ad(P). Hence
the map ι! : A(S

n
s ∧ X) → A(Sn

s ∧ Th(N)) defined above sends An(S
n
s ∧ X) into

An+d(S
n
s ∧ Th(N)).

Lemma 2.1. When A = Z × Gr or A =
∏

n≥0 K(Z(n), 2n), the Gysin map ι! is
an isomorphism.

Proof. When A = Z × Gr (resp. A =
∏

n≥0 K(Z(n), 2n)), a direct computation

shows that th(N) = (−1)dthnaive(N) · [OP(d)] (resp. th(N) = (−1)dthnaive(N)).

Hence in these two cases, the composite A(Sn
s ∧X)

p∗

−→ A(Sn
s ∧P)

−∪th(N)−−−−−−→ A(Sn
s ∧P)
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is injective and its image is equal to the kernel of the pullback homomorphism
A(Sn

s ∧ P)→ A(Sn
s ∧ P(N)). This proves the claim. �

3. Universal power series

We define some universal power series in this section. We use the following no-
tation. For m,n ≥ 0, let Z[[x; y]]m,n denote the ring Z[[x1, . . . , xm; y1, . . . , yn]]
of formal power series in m + n indeterminates x1, . . . , xm, y1, . . . , yn. We de-
fine the degree of a monomial in Z[[x; y]]m,n by putting deg(xi) = deg(yj) = 1.
For an integer q, we say that an element f in Z[[x; y]]m,n is homogeneous of de-
gree q if f is written as a Z-linear combination of monomials of degree q. For
1 ≤ i ≤ n (resp. 1 ≤ j ≤ n), let ci (resp. c

′
j) denote the i-th (resp. j-th) elementary

symmetric polynomial with variables x1, . . . , xm (resp. y1, . . . , yn). Then the ring
Z[[c; c′]]m,n = Z[[c1, . . . , cm; c′1, . . . , c

′
n]] of formal power series in m + n indetermi-

nates c1, . . . , cm, c′1, . . . , c
′
n is a subring of Z[[x; y]]m,n. For an integer q, we say

that an element f in Z[[c; c′]]m,n is homogeneous of degree q if f is homogeneous
of degree q as an element in Z[[x; y]]m,n.

For integers m,n,m′, n′ with m ≥ m′ ≥ 0 and n ≥ n′ ≥ 0, we regard the ring
Z[[x; y]]m′,n′ as the quotient of Z[[x; y]]m,n by the ideal generated by xm′+1, . . . , xm,
yn′+1, . . . , yn. Under the quotient map Z[[x; y]]m,n � Z[[x; y]]m′,n′ , the element ci
(resp. c′j) maps to ci (resp. c

′
j) if i ≤ m′ (resp. j ≤ n′) and maps to 0 otherwise. We

denote by Z[[x; y]] the projective limit lim←−m,n≥0
Z[[x; y]]m,n where the transition

map is the quotient map Z[[x; y]]m,n � Z[[x; y]]m′,n′ . We denote by Z[[c; c′]] the
subring lim←−m,n≥0

Z[[c; c′]]m,n of Z[[x, y]]. For an integer q, we say that an element

f = (fm,n)m,n in Z[[x; y]] (resp. in Z[[c; c′]]) is homogeneous of degree q if fm,n is
homogeneous of degree q for any m,n ≥ 1 (resp. if f is homogeneous of degree q as
an element in Z[[x; y]]). We note that if 0 ̸= f ∈ Z[[c; c′]] is homogeneous of degree
q, then q ≥ 0 and f belongs to the subring Z[c1, . . . , cq; c′1, . . . , c′q] of Z[[c; c′]].

3.1. For an integer q ≥ 1, let Qq be the universal polynomial in [SGA6, Chap. 1,
§3]. We regard it as an element in Z[[c; c′]]. The element Qq is characterized by
the following property. For any m,n ≥ 1, the image of Qq under the projection
Z[[c; c′]] � Z[[c; c′]]m,n is the coefficient of tq in the formal power series

m∏
i=1

n∏
j=1

1 + (xi + yj)t

(1 + xit)(1 + yjt)
∈ Z[[x; y]]m,n[[t]]

with coefficients in Z[[x; y]]m,n. The element Qq is homogeneous of degree q.

3.2. Let m,n be integers. Consider the element

(1 +
∑
i≥1

cit
i)n(1 +

∑
j≥1

c′jt
j)m(1 +

∑
q≥1

Qq(c, c
′)tq) ∈ Z[[c; c′]][[t]].

For q ≥ 1, we define Rm,n,q ∈ Z[[c; c′]] to be the coefficient of tq in the element
above. It is homogeneous of degree q.

3.3. Let d be a non-negative integer. For 0 ≤ p ≤ d, we let

Sd,(p)(x1) =
∏

I⊂{1,...,d}
|I|=p

(1 + (x1 −
∑
j∈I

yj)t) ∈ 1 + tZ[[x; y]]1,d[[t]].



THE RIEMANN-ROCH THEOREM WITHOUT DENOMINATORS IN MOTIVIC HOMOTOPY THEORY7

Let e,m be integers with m ≥ 0 and m ≥ e. We let

Sd,(p),e,m =

∏m
i=1 S

d,(p)(xi)

(Sd,(p)(0))m−e
∈ 1 + tZ[[x; y]]m,d[[t]].

Then the element Sd,(p),e,m belongs to the subset 1+tZ[[c; c′]]m,d[[t]] of 1+tZ[[x; y]]m,d[[t]].

The system of elements (Sd,(p),e,m)m asm varies gives an element in 1+tZ[[c; c′]]d[[t]]
where Z[[c; c′]]d is a shorthand for lim←−m

Z[[c; c′]]m,d. We denote the element by

Sd,(p),e. The following lemma follows immediately from the definition of the formal
power series Sd,(p),e so the proof is omitted.

Lemma 3.1. Let us write Sd,(p)(0) = 1 +
∑

q≥1 c
(p)
q tq, where c

(p)
q is an element in

Z[[c; c′]]0,d = Z[[c′1, . . . , c′d]] which is homogeneous of degree q. Then Sd,(p),e is equal
to

1 +
∑
q≥1

Re,(dp),q
(c; c

(p)
1 , c

(p)
2 , . . .)tq.

For q ≥ 0, we let P d,e
q ∈ Z[[c; c′]]d denote the coefficient of tq in ((

∏d
p=0(S

d,(p),e)(−1)p)−
1)/c′d. For the divisibility by c′d, see [Fu-La, p.44–45]. By construction, P d,e

q is ho-

mogeneous of degree q − d. In particular we have P d,e
q = 0 for q < d.

4. Proof of Theorem 1.1

4.1. One can use the argument in the proof of [Ri1, Théorème v.13, p. 159] to show
that there is a degree-preserving isomorphism

(4.1) Z[[c; c′]] ∼= HomH•(k)(Gr×Gr,
∏
q≥0

K(Z(q), 2q)).

Here, the degree q part of the right hand side of (4.1) is HomH•(k)(Gr×Gr,K(Z(q), 2q)).
In Section 3.2, we constructed, for each m,n, q ∈ Z with q ≥ 1, an element
Rm,n,q ∈ Z[[c; c′]]. This element defines a map Gr × Gr → K(Z(q), 2q) via the
isomorphism above. We define a map R : (Z×Gr)× (Z×Gr)→

∏
q≥1 K(Z(q), 2q)

as the map whose restriction to ({m}×Gr)×({n}×Gr) = Gr×Gr for each m,n ∈ Z
is equal to the map (Rm,n,q)q : Gr×Gr→

∏
q≥1 K(Z(q), 2q).

Lemma 4.1. Let the notations be as above. We have

R = c• ◦ µ

in HomH•(k)((Z×Gr)× (Z×Gr),
∏

q≥1 K(Z(q), 2q)). Here we put c• = (cq)q≥1.

Proof. One can show using the argument in the proof of [Ri1, Theoreme v.9, p.
157] that the canonical map

HomH•(k)((Z×Gr)×(Z×Gr),K(Z(q), 2q))→ Hom(K0(−)×K0(−),H2q
M(−,Z(q)))

is an isomorphism for each q ≥ 0. Here the latter is the set of morphisms in the
category of presheaves on Sm/k. Hence it suffices to prove that the morphisms of

functors K0(−)×K0(−)→
∏

q≥1 H
2q
M(−,Z(q)) induced by R and by c•◦µ coincide.

Let us use the same symbol to denote the morphism of functors.
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We endow
∏

q≥1 H
2q
M(X,Z(q)) for each X in Sm/k with the structure of abelian

group by canonically identifying it with the multiplicative group1 +
∑
q≥1

aqt
q

∣∣∣∣∣∣ aq ∈ H2q
M(X,Z(q))

 .

Then both R and c• ◦ µ can be regarded as bilinear morphisms of presheaves of
abelian groups.

Thus, to check the equality, we are reduced to the case of a pair of classes of
vector bundles, and moreover, by splitting principle, a pair of classes of line bundles.
That is, we need only verify that c•([L1⊗L2]) = R(c1(L1), c1(L2)) for line bundles
L1 and L2 over a smooth k-scheme. This follows immediately from the construction
of the elements (Rm,n,q)m,n. �

Lemma 4.1 shows that the map R factors through the canonical map (Z×Gr)×
(Z×Gr)→ (Z×Gr)∧(Z×Gr) by [Ri1, Lemme III.33, p. 96]. By abuse of notation,
we denote by R the map (Z×Gr) ∧ (Z×Gr)→

∏
q≥0 K(Z(q), 2q) induced by R.

4.2.

4.2.1. Given q, d ≥ 0, let

P d
q : Z×Gr×Gr→ K(Z(q − d), 2(q − d))

denote the map whose restriction to {e} ×Gr×Gr ∼= Gr×Gr for each integer e is
equal to the composite

Gr×Gr→
∏
i≥0

K(Z(i), 2i)→ K(Z(q − d), 2(q − d))

where the first map is the map corresponding to the element P d,e
q ∈ Z[[c; c′]]d via the

isomorphism (4.1) (here we regard Z[[c; c′]]d as a subring of Z[[c; c′]] via the inclusion
Z[[c; c′]]d → Z[[c; c′]] which sends ci to ci for i ≥ 0 and c′j to c′j for 1 ≤ j ≤ d) and
the second map is the projection to the (q− d+ 1)-st factor (resp. the unique map
to the final object K(Z(q − d), 2(q − d))) if q ≥ d (resp. if q < d). By Lemma 3.1
the map P d

q factors though the canonical map Z × Gr ×Gr → (Z × Gr) ∧Gr. By

abuse of notation, we denote by P d
q the map (Z×Gr)∧Gr→ K(Z(q− d), 2(q− d))

induced by P d
q .

4.2.2. Let d ≥ 1. Let Grd = lim−→r
Grd,r denote the Grassmannian which classifies

vector bundles of rank d. Let Ud → Grd denote the universal bundle. We let
pd : Pd = P(Ud ⊕ 1)→ Grd denote the projection. Let Qd = (p∗dUd)⊗OPd

(1). We
write [Qd] : Pd → Z × Gr for a map in H•(k) representing the class of the vector
bundle [Qd] ∈ K0(Pd).

4.2.3. We have three maps:

α1 = (idZ×Gr) ◦ prZ×Gr : (Z×Gr) ∧ Pd → Z×Gr,
α2 = prGr ◦ [Qd] ◦ prPd

: (Z×Gr) ∧ Pd → Gr,
α3 = cd(Qd) ◦ prPd

: (Z×Gr) ∧ Pd → K(Z(d), 2d).
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Here we write pr with a subscript to denote the projection to the factor. We define
a map Aq

d : (Z×Gr) ∧ Pd → K(Z(q), 2q) as the composite

(Z×Grd) ∧ Pd
(α1,α2,α3)−−−−−−−→ (Z×Gr) ∧Gr ∧K(Z(d), 2d)

(Pd
q ◦pr(Z×Gr)∧Gr,idK(Z(d),2d))−−−−−−−−−−−−−−−−−−−→ K(Z(q − d), 2(q − d)) ∧K(Z(d), 2d)

mq−d,d−−−−−→ K(Z(q), 2q).

4.2.4.

Proposition 4.2. Let q ≥ 0. The diagram

(Z×Gr) ∧ Pd
B−−−−→ (Z×Gr) ∧ (Z×Gr)

=

y yRq=(Rm,n,q)m,n

(Z×Gr) ∧ Pd
Aq

d−−−−→ K(Z(q), 2q)
is commutative. Here the map B is

(Z×Gr) ∧ Pd

(idZ×Gr◦prZ×Gr,c
K
d (Qd)◦prPd )−−−−−−−−−−−−−−−−−−−→ (Z×Gr) ∧ (Z×Gr).

Proof. Let Q∨
d denote the dual of Qd. We write ∧•Q∨

d for the Koszul complex
associated to the dual s∨ : Q∨

d → OPd
of the section s : OPd

→ Qd which is the
composite of the tautological section OPd

→ p∗(Ud⊕1)⊗OPd
(1) and the projection

p∗(Ud⊕1)⊗OPd
(1)→ Ud⊗OPd

(1). By the formal computation using the splitting
principle, we have

cKd (Qd) =

d∑
p=0

(−1)p[∧pQ∨
d ] ∈ K0(Pd).

Let c
(p)
q ∈ Z[[c′1, . . . , c′d]] be the polynomial introduced in Section 3.3. Let x1, . . . , xd

be the Chern roots of Qd. Then the set of Chern roots of ∧pQ∨
d is

{−xi1 − xi2 · · · − xip |1 ≤ i1 < · · · < ip ≤ d}

for p = 0, . . . , d. By the formal computation using the splitting principle, we have

cq(∧pQ∨
d ) = c(p)q (c1(Qd), . . . , cd(Qd)).

Therefore it follows from Lemma 3.1 and the construction of P d,e
q that

Rq ◦B = cd(Qd) · [P d
q ◦ (α1, α2)].

The right hand side equals the map Aq
d by definition. This proves the proposition.

�

4.3.

4.3.1. Let X be a smooth k-scheme and let V be a vector bundle of rank d on X.
Then the class [V ] ∈ K0(X) of V gives a map [V ] : X → Z×Gr in H•(k). Let Z be
a pointed space. (Later, we put Z = Sn

s ∧X for some n.) For a map z : Z → Z×Gr
in H•(k), we write P d

q (c(z), c(V )) for the composite

(4.2) Z ×X
(z,[V ])−−−−→ Z×Gr× Z×Gr→ Z×Gr×Gr

Pd
q−−→ K(Z(q − d), 2(q − d))
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where the second map is the canonical projection to the first, the second, and the
fourth factor. By abuse of notation, we let P d

q (c(z), c(V )) denote the map Z∧X →
K(Z(q − d), 2(q − d)) induced by P d

q (c(z), c(V )) : Z ×X → K(Z(q − d), 2(q − d)).

4.3.2. Let QV = p∗V ⊗OP(1). The following is a corollary to Proposition 4.2.

Corollary 4.3. Let the notations be as above. We put P = P(V ⊕ 1). Let q ≥ 0.
The diagram

Z ∧ P
(z,cKd (QV ))−−−−−−−→ (Z×Gr) ∧ (Z×Gr)

=

y yRq=(Rm,n,q)m,n

Z ∧ P
cd(QV )·Pd

q (c(z),c(QV ))
−−−−−−−−−−−−−−−→ K(Z(q), 2q)

is commutative. Here the horizontal map at the bottom is the composite

Z ∧ P id∧(id,cd(Q))−−−−−−−−→ Z ∧ P ∧K(Z(d), 2d)
Pd

q (c(z),c(p∗V ))∧id
−−−−−−−−−−−−→ K(Z(q − d), 2(q − d)) ∧K(Z(d), 2d)
mq−d,d−−−−−→ K(Z(q), 2q).

Proof. The vector bundle V is the pullback of Ud by a morphism X → Grd. As
Chern classes are compatible with pullbacks, the claim follows from Proposition 4.2.

�

4.4. Let us suppose that we are given a vector bundle V of rank d on X. Let
p : P = P(V ⊕ 1) → X denote the projection. Later, we will take V to be the
normal bundle of some closed immersion ι : X ↪→ Y .

4.4.1. Consider the following diagram

(4.3)

Kn(X)
Pd

• (c(−),c(V ))−−−−−−−−−→
∏

q≥1 H
2(q−d)−n
M (X,Z(q − d))

p∗
y p∗

y
Kn(P)

Pd
• (c(−),c(p∗V ))−−−−−−−−−−−→

∏
q≥1 H

2(q−d)−n
M (P,Z(q − d)).

Here for q ≥ 0 the q-th component of the map P d
• (c(−), c(V )) (resp. P d

• (c(−), c(p∗V )))
is the map which sends z ∈ Kn(X) = HomH•(k)(S

n
s ∧X,Z×Gr) to the composite

Sn
s ∧X

id∧∆−−−→ Sn
s ∧X ∧X

Pd
q (c(z),c(V ))
−−−−−−−−−→ K(Z(q), 2q)

(resp. Sn
s ∧ P id∧∆−−−→ Sn

s ∧ P ∧ P
Pd

q (c(z),c(p∗V ))
−−−−−−−−−−→ K(Z(q), 2q))

considered as an element in H2q−n
M (X,Z(q)) (resp. in H2q−n

M (P,Z(q))), where ∆ :
X → X∧X is the diagonal map and the map P d

q (c(z), c(V )) (resp. P d
q (c(z), c(p

∗V )))
is the map (4.2) for Z = Sn

s ∧X (resp. for Z = Sn
s ∧ P). The commutativity of the

diagram follows immediately from the definitions.
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4.4.2. Let QV = p∗V ⊗OP(1). Consider the following diagram:

(4.4)

Kn(P)
Pd

• (c(−),c(QV ))−−−−−−−−−−→
∏

q≥1 H
2(q−d)−n
M (P,Z(q − d))

−∪cKd (QV )

y −∪cd(QV )

y
Kn(P)

c•−−−−→
∏

q≥1 H
2q−n
M (P,Z(q))

Here the map P d
• (c(−), c(QV )) is defined in a manner similar to that of P d

• (c(−), c(p∗V )).
The square is commutative by Corollary 4.3.

Lemma 4.4. Let the notations be as above. We have

p∗(P d
• (c(−), c(V ))) ∪ cd(QV ) = (P d

• (c(p
∗(−), c(QV ))) ∪ cd(QV ).

Proof. The argument below uses Chern polynomials. See for example [Fu, Sec-
tion 3.2, p.50].

Using the splitting principle, we may and will assume that V = L1 ⊕ · · · ⊕ Ld

is the sum of line bundles. The Chern polynomial of QV is ct(QV ) =
∏d

i=1(1 +

c1(p
∗Li ⊗ O(1))t) =

∏d
i=1((1 + c1(p

∗Li)t) + c1(O(1))t). The Chern polynomial

of p∗V is ct(p
∗V ) =

∏d
i=1(1 + c1(p

∗Li)). For the claim, it suffices to show that
ct(p

∗V )cd(QV ) = ct(QV )cd(QV ).
Let ξ = ξV⊕1 = c(OP(V⊕1)(−1)) (see Section 2.2.2). Then ct(QV )− ct(p

∗V ) is a
polynomial in ξ with no constant term. Therefore it suffices to show that ξcd(QV ) =
0. By the definition of cd, we have ξcd(QV ) = ξd+1 + (−1)dξd(

∑
c1(p

∗Li)) + · · ·+
ξc1(p

∗L1) · · · c1(p∗Ld). On the other hand, by equation (2.1), we have ξd+1 +∑d+1
i=1 (−1)ici(p∗(N ⊕ 1))ξd+1−i = 0. Now use the Whitney sum formula to express

the Chern classes of p∗(V ⊕ 1) in terms of the Chern classes of p∗V and of p∗1.
Since we know that the Chern classes of p∗1 are zero, the claim follows. �

We will use the following corollary.

Corollary 4.5. We have

(4.5) p∗(P d
• (c(−), c(V ))) ∪ cd(QV ) = c•(p

∗(−) ∪ cKd (QV )).

Proof. This follows from the lemma using the commutativity of the diagram (4.3).
�

4.5. Proof of Theorem 1.1.

4.5.1. Let f1 : P(V ⊕ 1) → P(V ⊕ 1)/P(V ) be the quotient map. Consider the
commutative diagram

Kn(P)
c•−−−−→

∏
q≥1 H

2q−n
M (P,Z(q))

f∗
1

x f∗
1

x
Kn(P/P(V ))

c•−−−−→
∏

q≥1 H
2q−n
M (P/P(V ),Z(q)).

Recall that the two f∗
1 ’s are injective.
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4.5.2. Let us recall the setup. Let ι : X ↪→ Y be a closed immersion of smooth
k-schemes of codimension d. Let N = NY/X be the normal bundle and let P =
P(N ⊕ 1) where 1 denotes the trivial bundle of rank one. We let p : P→ X denote
the canonical projection.

Let Q = p∗N ⊗ OP(1) and thK = th(N) ∈ A(P) where we take A = Z × Gr.
By definition we have thK = cKd (Q) ∈ HomH•(k)(P,Z×Gr) where cKd is the Chern
class for the cohomology theory A = Z×Gr with the Chern structure given in [Pa,
§3.8]. We let thM = cd(Q) ∈ H2d

M(P,Z(d)) where cd is the Chern class (Section 2.1)
with values in motivic cohomology.

Let f2 : P(N ⊕ 1)/P(N) ∼= Th(N) ∼= Y/(Y \X) denote the Thom isomorphism.
Consider the commutative diagram

Kn(P/P(N))
c•−−−−→

∏
q≥1 H

2q−n
M (P/P(N),Z(q))

∼=
x ∼=

x
Kn(Y/(Y \X))

c•−−−−→
∏

q≥1 H
2q−n
M (Y/(Y \X),Z(q))

where the vertical arrows are the isomorphisms induced by f2.
By the definition of the Gysin map ι! given in Section 2.2.3, the composite maps

p∗(−)∪ thK and p∗(−)∪ thM are equal to f∗
1 ◦ f2 ◦ ι! for K-theory and for motivic

cohomology theory respectively. Since f∗
1 ◦ f2 is injective, the theorem follows from

Corollary 4.5 applied with V = N .
This finishes the proof of Theorem 1.1. �

5. Miscellaneous results

We collect in this section some facts which may be useful in application. They
will be referred to in our other papers.

5.1. Localization sequences. Let Y be a smooth k-scheme. Let U ⊂ Y be an
open subscheme, and let X = Y \U be the closed subscheme of Y with the reduced
structure. Consider the diagram

Kn(Y )
c•−−−−→

⊕
q≥1 H

2q−n
M (Y,Z(q))

(1)

y y(4)

Kn(U)
c•−−−−→

⊕
q≥1 H

2q−n
M (U,Z(q))

(2)

y y(5)

KX
n−1(Y )

c•−−−−→
⊕

q≥1 H
2q−(n−1)
M (Y, U ;Z(q))

(3)

y y(6)

Kn−1(Y )
c•−−−−→

⊕
q≥1 H

2q−(n−1)
M (Y,Z(q))

where the two columns are the localization sequences. The diagram is obviously
commutative.
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Corollary 5.1. Suppose that X is smooth over Spec k and X ⊂ Y is of equi-
codimension d. Then the following diagram is commutative:

Kn(Y )
c•−−−−→

⊕
q≥1 H

2q−n
M (Y,Z(q))

(1)

y y(4)

Kn(U)
c•−−−−→

⊕
q≥1 H

2q−n
M (U,Z(q))

(2)′
y y(5)′

Kn−1(X)
Pd

• (c(−),c(N))−−−−−−−−−→
⊕

q≥1 H
2(q−d)−(n−1)
M (X,Z(q − d))

(3)′
y y(6)′

Kn−1(Y )
c•−−−−→

⊕
q≥1 H

2q−(n−1)
M (Y,Z(q)).

Here the map (2)’ (resp. (3)’, (5)’, (6)’) is the composite ι!◦(2) (resp. (3)◦(ι!)−1, ι!◦
(5), (6)◦(ι!)−1). (Note that the two Gysin maps ι! are isomorphisms by Lemma 2.1).

Proof. This follows immediately from Theorem 1.1. �

5.2.

Lemma 5.2. Let k be a perfect field and let X be a scheme which is smooth over
Spec k. Then the composite of the canonical homomorphism H0(X,O×

X)→ K1(X)
and the Chern class map c1 : K1(X)→ H1

M(X,Z(1)) is bijective.

Proof. Since the composite H0(X,O×
X) → K1(X)

c1−→ H1
M(X,Z(1)) ∼= H0(X,O×

X)
is functorial inX, it comes, by Yoneda’s lemma, from an endomorphism α : Gm,k →
Gm,k of the multiplicative group scheme Gm,k over Spec k. Note that α is equal to
the n-th-power map for some integer n. Let us apply Corollary 5.1 for X = A1

k and
U = Gm,k; we have the commutative diagram

K1(Gm,k)
c1−−−−→ H1

M(Gm,k,Z(1))

∂

y ∂

y
K0(k)

ch0−−−−→ H0
M(k,Z(0)) = Z

where ch0 is the map defined in Section 2.1. Since the pullback map K0(A1
k) →

K0(Gm,k) is an isomorphism and the group H2
M(A1

k,Z(1)) is zero, the two vertical
maps ∂ in the diagram above are surjective. Since the map ch0 is an isomorphism,

the composite K1(Gm,k)
∂−→ K0(k)

ch0−−→ H0
M(k,Z(0)) = Z is surjective. Since the

canonical map H0(Gm,k,O×
Gm,k

)→ K1(Gm,k) is an isomorphism, the image of the

composite K1(Gm,k)
c1−→ H1

M(Gm,k,Z(1))
∂−→ H0

M(k,Z(0)) is equal to nZ. So we
have Z = nZ, hence n ∈ {±1}. This proves the claim. �

5.3.

Lemma 5.3. (cf.p.229 LEMMA 2.25 [Gi]) Let X be a smooth k-scheme Let i, j ≥ 1
be positive integers. Let n ≥ 1. For an element γ ∈ Kn(X), we have ci(γ)cj(γ) = 0

in H
2(i+j)−n
M (X,Z(i+ j)).
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Proof. An element in Kn(X) is represented by a morphism γ : Sn ∧X → Z × Gr
in H•(k). The class ci(γ)cj(γ) is represented by the composition m(ci ∧ cj)∆γ in
the following diagram:

Sn ∧X
∆Sn∧X−−−−−→ (Sn ∧X) ∧ (Sn ∧X)

γ

y γ∧γ

y
Z×Gr

∆−−−−→ (Z×Gr) ∧ (Z×Gr)
m(ci∧cj)−−−−−−→ K(Z(i+ j), 2(i+ j)).

Here m is the product map (see Section 1), and ∆ and ∆Sn∧X are the diagonal
maps. The diagram is obviously commutative. The claim that the map ∆Sn∧X

is nullhomotopic is reduced to the case X is a point, i.e., to the claim that the
diagonal map Sn → Sn ∧ Sn is nullhomotopic if n ≥ 1. This can be checked easily.
Hence the composition m(ci ∧ cj)∆γ is nullhomotopic. �

5.3.1. Using this lemma, we see that many terms of P d
q (c(−), c(N)) in Theorem 1.1

are zero when n ≥ 1. Let us give an explicit description. We refer to Section 3,
especially Section 3.3, for some notation and abbreviation used here. Recall that
the map P d

q (c(−), c(N)) is defined using the power series P d,e
q . From Lemma 5.3,

we know that the terms involving cicj are zero. So we only need to determine the
monomials with one cl for some 1 ≤ l ≤ d and the monomials with no c. We put

T d
n(c

′) = T d
n(c

′
1, . . . , c

′
d) = c′d

−1
∑

I⊂{1,...,d}

(−1)|I|(
∑
j∈I

yj)
n.

Then we have

P d,e
q (c, c′)

= P d,e
q (0, c′) +

q∑
l=1

cl

{
c′d

q−l∑
r=1

P d,e
r (0, c′)

(
q − r − 1

l − 1

)
T d
q−r−l(c

′) +

(
q − 1

l − 1

)
T d
q−l(c

′)

}
for q ≥ 1 and e ≥ 0. The computation is long and is omitted.

6. Compatibility with the pushforward of Thomason and Trobaugh

A comparison isomorphism between the K-groups of Morel-Voevodsky and of
Thomason-Trobaugh is given in [Mo-Vo, p.140, Theorem 3.13]. We will show that
the Gysin map defined in earlier sections is compatible with the pushforward map
of Thomason-Trobaugh under this comparison isomorphism. The main result of
this section is Proposition 6.9.

While the comparison isomorphism is known for K-groups of smooth k-schemes,
it is not stated for K-theory with support. Since we need the isomorphisms for
K-theory with support with some functoriality, we will give the construction of the
comparison isomorphism for K-theory with support in detail.

6.1. Simplicial presheaves. We collect some known results from homotopy the-
ory of simplicial presheaves in this section. These will be used in the construction
of the comparison isomorphism. We did not find a reference for Lemma 6.2 and
the proof is given.
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6.1.1. Let C be a category with a final object. We let sPre∗ C denote the category
of pointed simplicial presheaves on C.

We let sPreinj∗ C denote the category of pointed simplicial presheaves on C equipped
with the injective model category structure. Recall that the weak equivalence of
simplicial presheaves are defined as pointwise (sometimes called sectionwise) weak
equivalence, the cofibrations as injections, and the fibrations are defined by the
right lifting property. (We note that this is usually called “global injective” model
structure on sPre∗ C. We do not use the term “global” as this model structure does
not resort to topology.)

The model category sPreinj∗ C is a simplicial model category. For F,G ∈ sPreinj∗ C,
the simplicial set Map∗(F,G) is defined by setting Map∗(F,G)n = HomsPre∗ C(F ∧
∆n, G). The internal hom object will be denoted MAP∗(F,G) ∈ sPre∗ C. Explicitly,
for an object U of C, we have MAP∗(F,G)(U) = Map∗C/U (F |U , G|U ). Here the right

hand side uses the simplicial structure of sPreinj∗ C/U where C/U is the category
over U , and F |U and G|U denote the restriction to C/U .

6.1.2. We use the notation
F : C � D : G

to indicate an adjoint pair. Here F is always the left adjoint and G is the right
adjoint. When the categories C and D are model categories and the above is a
Quillen adjunction, we write

LF : Ho C � HoD : RG

for the induced adjunction between the homotopy categories.

6.1.3. We have a Quillen adjunction

(6.1) cst(−) : sSet∗ � sPreinj∗ C : Γ∗.

where cst is the constant presheaf functor and Γ∗ is the global section functor (that
is, the evaluation at the final object).

Let F ∈ sPreinj∗ C. We have a Quillen adjunction

(6.2) F ∧ − : sPreinj∗ C � sPreinj∗ C : MAP∗(F,−).
Using these adjunctions, we see that there are isomorphisms

(6.3)

HomsPre∗ C(G,MAP∗(cst(K), F ))
(1)∼= HomsPre∗ C(G ∧ cst(K), F )
(2)∼= HomsSet∗(K,Map∗(G,F ))

for K ∈ sSet∗ and G,F ∈ sPre∗ C, which are functorial in K,G,F . We thus have
an adjunction (not necessarily Quillen adjunction):

(6.4) MAP∗(cst(−), F ) : sSet∗ � (sPreinj∗ C)opp : Map∗(−, F ).

where opp means the opposite category.

Lemma 6.1. Let F ∈ sPre∗ C and U ∈ C. Then there is an isomorphism in sSet∗

F (U) ∼= Map∗(hU,+, F )

which is functorial in F and in U . Here hU,+(−) = hU (−)
⨿
∗ is the pointed

presheaf associated to the presheaf hU represented by U .

Proof. Omitted. �
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Lemma 6.2. Let F be fibrant. Then the functor MAP∗(−, F ) sends cofibration to
fibration.

Proof. Let f : G → H be a cofibration in sPreinj∗ C. We show that the induced

map f∗ : MAP∗(H,F ) → MAP∗(G,F ) is a fibration in sPreinj∗ C. Suppose given a
commutative diagram

K
α−−−−→ MAP∗(H,F )

g

y yf∗

L
β−−−−→ MAP∗(G,F )

in sPreinj∗ C with g a trivial cofibration. Let α′ : H ∧K → F and β′ : G ∧ L → F
denote the maps which correspond to α and β via the adjunction (6.2)(2). We have
a commutative diagram:

G ∧K
f∧idK−−−−→ H ∧K

idG∧g

y yα′

G ∧ L
β′

−−−−→ F
Let J denote the pushout of the diagram

H ∧K
f∧idK←−−−− G ∧K

idG∧g−−−−→ G ∧ L.

Let γ1 : H ∧K → J and γ2 : G ∧ L → J denote the maps given by the definition
of the pushout. The universality of the pushout gives maps δ : J → H ∧ L and
δ′ : J → F such that δ ◦ γ1 = idH ∧ g, δ ◦ γ2 = f ∧ idL, δ ◦ γ2 = f ∧ idL, and
δ′ ◦ γ2 = β′.

We claim that the map δ : J → H ∧ L is a trivial cofibration. We can check
this as follows. It is easy to see that the map δ is a monomorphism, hence δ is a
cofibration. Let us consider the sequence

H ∧K
γ1−→ J

δ−→ H ∧ L.

Since the functor

− ∧− : sPre∗ C × sPre∗ C → sPre∗ C
preserves trivial cofibrations of each variable, the map δ ◦ γ1 = idH ∧ g is a trivial

cofibration. By considering the sequence G∧L γ2−→ J
δ−→ H ∧L, we see in a similar

manner that the map δ ◦ γ2 = f ∧ idL is also a trivial cofibration.
Since sPreinj∗ C is left proper, γ1 and γ2 are weak equivalences, each being a

pushout of a weak equivalence by a cofibration. By the 2-out-of-3 axiom, it follows
that δ is a weak equivalence, hence it is a trivial cofibration.

Since we assumed that F is fibrant, from the commutative diagram

J
δ′−−−−→ F

δ

y y
H ∧ L −−−−→ ∗

we obtain a map η : H ∧ L → F satisfying η ◦ δ = δ′. Let η′ : L → MAP∗(H,F )
denote the map corresponding to η via the adjunction (6.2). It is easy to check that
η′ ◦ g = α and f∗ ◦ η′ = β. Hence the map f∗ : MAP∗(H,F ) → MAP∗(G,F ) has
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the right lifting property with respect to the trivial cofibration g : K → L. Thus
the map f∗ is a fibration. This finishes the proof. �

Corollary 6.3. Let F be a fibrant object in sPreinj∗ C. Then the functor Map∗(−, F )
sends cofibrations to fibrations.

Proof. This follows from Lemma 6.2 and the adjunction (6.1) by applying the global
section functor. �

6.1.4. Let C be a site with enough points. We also write C for the underlying
category. Let sPreinj,loc∗ C denote the category sPre∗ C equipped with the local
injective model category structure. Recall that the weak equivalences are stalkwise
weak equivalences, the cofibrations are injections, and the fibrations are defined by
the right lifting property. There is a Quillen adjunction:

(6.5) id : sPreinj∗ C � sPreinj,loc∗ C : id.

It is also known that sPreinj,loc∗ C is a left Bousfield localization of sPreinj∗ C (see
[De-Ho-Is, p.24, THEOREM 6.2]).

6.1.5. Let k be a perfect field. Let C = (Sm/k)Nis be the Nisnevich site of smooth

k-schemes. Let sPreinj,loc,A
1

∗ C denote the motivic model category structure on sim-
plicial presheaves. (For the definition we refer to [Ja2]. We use the variant for
pointed presheaves.) There is a Quillen adjunction:

(6.6) id : sPreinj,loc∗ C � sPreinj,loc,A
1

∗ C : id.

6.2. Thomason-Trobaugh K-theory. We collect some facts concerning the Thomason-
Trobaugh K-theory. We followed the exposition of Jardine [Ja] whenever possible.

6.2.1. Let X be a scheme. We let K(X) denote the K-theory spectrum of the
complicial biWaldhausen category of perfect complexes of OX -modules. We define
the Thomason-Trobaugh K-groups of X to be KTT

n (X) = πn(K(X)) for n ≥ 0.
(Note that we do not consider KB(X) of [TT, p.360, 6.4 Definition].)

6.2.2. LetK♭,big(X) denote the K-theory spectrum of the complicial biWaldhausen
category of perfect bounded above complexes of flat OX -modules on the big Zariski
site of X. (We impose a cardinality bound on the objects to avoid set theoretic
problems.) They form a presheaf of spectra on the category C = (Sm/k) of smooth
k-schemes. It is known that K♭,big(X) is weakly equivalent to K(X).

For a (Bousfield-Friedlander) spectrum F and n ≥ 0, we let QF denote the
standard stably fibrant model for F in spectra, with level spaces defined by QFn =
lim−→k

ΩkFn+k
f , where Ff is a strictly fibrant model of F in spectra (see [Ja, p.157,

Theorem 5]). We may take Ff functorial in F so that QF is also functorial in F .
We obtain a presheaf of spaces, denotedQ(K)0(−) whose section atX isQ(K♭,big(X))0.

We letQ(K)0 → GQ(K)0 denote the functorial fibrant replacement in sPreinj,loc,A
1

∗ C.
(We sheafify Q(K)0, apply the explicit fibrant replacement functor of [Mo-Vo, p.69,
Theorem 1.66], then regard it as a presheaf.) As K-theory satisfies Nisnevich de-
scent ([TT, 10.8 Theorem, p.139]), it follows from a theorem of [Mo-Vo] (we refer
to [Ja2, p.457, COROLLARY 1.4] for the details) that Q(K)0 and GQ(K)0 are
pointwise weakly equivalent
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6.2.3. Let U ⊂ Y be an open immersion of schemes. We let X = Y \U denote the
closed complement (as a topological space). Write K(Y onX) = K♭,big(Y onX) for
the K-theory spectrum of the complicial biWaldhausen category of perfect bounded
above complexes of flat OY -modules that are acyclic when restricted to U .

Let K(U)ac = K♭,big(U)ac denote the K-theory spectrum of the complicial bi-
Waldhausen category of perfect bounded above complexes of flat OU -modules that
are acyclic.

There is a commutative diagram of spectra

K(Y onZ)
(2)−−−−→ K(U)ac

(1)

y y(4)

K(Y )
(3)−−−−→ K(U)

where the map (1) is the forgetful map, the maps (2) (3) are the restriction maps,
and (4) the forgetful map. We then obtain by taking Q(−)0 a commutative diagram

Q(K(Y onZ))0 −−−−→ Q(K(U)ac)0y y
Q(K(Y ))0 −−−−→ Q(K(U))0

of spaces.

6.3. In this section and the next, we construct the map α with some subscript.
This is roughly one half of the comparison isomorphism.

6.3.1. Consider the following setup in sSet∗. Let Xi, Yi (1 ≤ i ≤ 4) be pointed
spaces with commutative diagrams

X1
x12 //

x13

��

X2

x24

��

Y1
y12 //

y13

��

Y2

y24

��
X3

x34 // X4, Y3
y34 // Y4.

Suppose given the following commutative diagram in sSet∗:

Y3
y34−−−−→ Y4

y24←−−−− Y2

=

y =

y yγ

Y3
y34−−−−→ Y4

β◦x24←−−−− X2

α

x β

x x=

X3
x34−−−−→ X4

x24←−−−− X2.

We obtain a zigzag of maps in sSet∗ from X1 to Y1 as follows:

X1 → X2 ×X4
X3

θ−→ X2 ×Y4
Y3

η←− Y2 ×Y4
Y3 ← Y1

Here the first and the last maps are those obtained from the first two diagrams,
and the second and the third maps are obtained from the large diagram.

Lemma 6.4. Suppose
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• Y2 = ∗,
• γ is a weak equivalence,
• X2, Y4, and Y3 are fibrant.

Then η is a weak equivalence.

Proof. Consider the commutative diagram

∗ ×Y4 Y3
Ho(η)−−−−→ X2 ×Y4 Y3y y

∗ ×h
Y4

Y3
δ−−−−→ X2 ×h

Y4
Y3

in Ho(sSet∗). Here the vertical arrows are the canonical morphisms in Ho(sSet∗)
from the ordinary fiber product to homotopy fiber product. The lower horizontal
arrow δ is the map induced by γ. It follows from [Go-Ja, p.313, Lemma VI.1.10] that
the vertical arrows are isomorphisms in Ho(sSet∗). Since γ is a weak equivalence,
the lower horizontal arrow is an isomorphism in Ho(sSet∗). This implies that Ho(η)
is an isomorphism in Ho(sSet∗). �

If we further assume that the diagram of the Yi’s is homotopy cartesian and Y1

is fibrant, then the zigzag above gives a map X1 → Y1 in Ho(sSet∗) by replacing
each arrow in the opposite direction by its inverse in Ho(sSet∗).

6.4. Let ι : X ↪→ Y be a closed immersion of smooth k-schemes. Let U = Y \X
be the open complement.

6.4.1. We let X1 = Q(K(Y onX))0, X2 = Q(K(U)ac)0, X3 = Q(K(Y ))0, and
X4 = Q(K(U))0.

Lemma 6.5. The canonical map ∗ → X2 is a weak equivalence.

Proof. Omitted. See the remark in [TT, p.328, 3.22]. �

6.4.2. We let Y1 = Map∗(Y/U,GQ(K)0), Y2 = ∗, Y3 = Map∗(hY,+, GQ(K)0),
and Y4 = Map∗(hU,+, GQ(K)0). We obtain a commutative diagram as in Sec-
tion 6.3 where the maps y12 and y23 are the canonical maps, y13 is the map induced
by Y → Y/U , and y34 is the map induced by U → Y . From Lemma 6.3, it
follows that Y1, Y3, Y4 are fibrant. From the adjunction (6.4), we see that the func-
tor Map∗(−, GQ(K)0) is a right adjoint and hence sends cocartesian diagrams in
sPre∗ C to cartesian diagrams in sSet∗. Note that the diagram

hU,+ −−−−→ ∗y y
hY,+ −−−−→ Y/U

is cocartesian in sPre∗ C. Applying Map∗(−, GQ(K)0) gives the diagram in the
Yi’s, which is hence a cartesian diagram in sSet∗. This is also homotopy cartesian,
since by [Go-Ja, p.313, Lemma VI.1.10], Y1 is isomorphic to the homotopy fiber
product Y3 ×h

Y4
∗.
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6.4.3. We define the map α : X3 → Y3 as the composite

Q(K(Y ))0 = Q(K)0(Y )
(∗)−−→ GQ(K)0(Y ) ∼= Map∗(hY,+, GQ(K)0)

where the map (∗) is that induced by the map Q(K)0 → GQ(K)0 of presheaves,
and the isomorphism is that of Lemma 6.1. The map β : X4 → Y4 is defined in a
similar manner. We write

αι : Q(K(Y onX))0 → Map∗(Y/U,GQ(K)0)

for the map in Ho(sSet∗) obtained from the zigzag of maps. We also write

αι : K
TT
n (Y onX)→ HomHo(sSet∗)(S

n,Map∗(Y/U,GQ(K)0))

for the homomorphisms induced from the αι above for n ≥ 0.

Lemma 6.6. Let f : Y ′ → Y be a morphism in C and let X ′ = Y ′ ×Y X. Then
the diagram

Q(K(Y onX))0
αι−−−−→ Map∗(Y/(Y \X), GQ(K)0)y y

Q(K(Y ′ onX ′))0
αι′−−−−→ Map∗(Y

′/(Y ′ \X ′), GQ(K)0)

where ι′ : X ′ → Y ′ is the base change of ι and the vertical maps are the pullback
maps, is commutative.

Proof. Recall that the map αι was defined using Xi, Yi for 1 ≤ i ≤ 4, θ, and η.
Let us write X ′

i, Y
′
i , θ

′, η′ for the corresponding objects for the closed immersion
ι′. To prove the claim, it suffices to show that the following diagram in sSet∗ is
commutative:

X1 −−−−→ X2 ×X4 X3
θ−−−−→ X2 ×Y4 Y3

η←−−−− Y2 ×Y4 Y3 ←−−−− Y1y y y y y
X ′

1 −−−−→ X ′
2 ×X′

4
X ′

3
θ′

−−−−→ X ′
2 ×Y ′

4
Y ′
3

η′

←−−−− Y ′
2 ×Y ′

4
Y ′
3 ←−−−− Y ′

1 .

Here the vertical maps are the maps induced by the pullback maps. This is straight-
forward. �

Corollary 6.7. The following diagram is commutative:

KTT
n (Y onX)

αι−−−−→ HomHo(sSet∗)(S
n,Map∗(Y/(Y \X), GQ(K)0))

f∗
y y

KTT
n (Y ′ onX ′)

αι′−−−−→ HomHo(sSet∗)(S
n,Map∗(Y

′/(Y ′ \X ′), GQ(K)0))

Proof. This follows immediately from the previous lemma. �

6.5. In this section, we construct a map γ with some subscript. This is roughly
the other one half of the comparison isomorphism.
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6.5.1. Let Z ∈ sShvinj,loc,A
1

∗ C be a simplicial sheaf. For an integer n ≥ 0, we
put KMV

n (Z) = Hom
sShvinj,loc,A1

∗ C(S
n
s ∧ Z,Z × Gr), where S1

s is the sheafification

of the constant presheaf cst(S1). For a smooth k-scheme X, we put KMV
n (X) =

Hom
sShvinj,loc,A1

∗ C(S
n
s ∧ hX,+,Z×Gr).

We define an isomorphism

γZ : KMV
n (Z)→ HomsSet∗(S

n,Map∗(Z,GQ(K)0))

as the composite:

KMV
n (Z)

= Hom
sShvinj,loc,A1

∗ C(S
n
s ∧ Z,Z×Gr)

(1)∼= Hom
sPreinj,loc,A

1
∗ C(cst(S

n) ∧ Z,Z×Gr)
(2)∼= Hom

sPreinj,loc,A
1

∗ C(cst(S
n) ∧ Z,GQ(K)0)

(3)∼= HomsPreinj∗ C(cst(S
n) ∧ Z,GQ(K)0)

(4)∼= HomsPreinj∗ C(cst(S
n),MAP∗(Z,GQ(K)0))

(5)∼= HomsSet∗(S
n,Map∗(Z,GQ(K)0)).

Let us give the description of the maps (1)-(5) in the following subsections. It is
easy to see from the construction that γZ is functorial in Z.

6.5.2. The Quillen adjunction ([Ja2, p.452, THEOREM 1.2])

(−)a : sPreinj,loc,A
1

∗ � sShvinj,loc,A
1

∗ : for,

where (−)a is the associated sheaf functor and for is the forgetful functor regarding
sheaf as a presheaf, gives an isomorphism

Hom
sShvinj,loc,A1

∗
(L(cst(Sn)∧Z)a,Z×Gr) ∼= Hom

sPreinj,loc,A
1

∗
(cst(Sn)∧Z,R(for)(Z×Gr)).

The object L(cst(Sn)∧Z)a is canonically weakly equivalent to the sheaf associated
to the cofibrant replacement of cst(Sn) ∧ Z. As cst(Sn) ∧ Z is cofibrant, we only
need to check that (cst(Sn) ∧ Z)a = Sn

s ∧ Z, which follows from the definition of
the wedge product. The object R(for)(Z ×Gr) is weakly equivalent to the fibrant
replacement of Z × Gr regarded as a presheaf. Since R(for)(Z × Gr) is weakly
equivalent to Z×Gr as sheaves, it is so as presheaves also. The isomorphism (1) is
defined to be the composite

Hom
sShvinj,loc,A1

∗ C(S
n
s ∧ Z,Z×Gr) ∼= Hom

sShvinj,loc,A1
∗ C(L(cst(S

n) ∧ Z)a,Z×Gr)
∼= Hom

sPreinj,loc,A
1

∗ C(cst(S
n) ∧ Z,R(for)(Z×Gr)) ∼= Hom

sPreinj,loc,A
1

∗ C(cst(S
n) ∧ Z,Z×Gr).

6.5.3. In sPreinj,loc,A
1

∗ C, we have a weak equivalence

Z×Gr ≃ Q(K)0

See [Ja, p.176, (17)].
By definition, the canonical map Q(K)0 → GQ(K)0 is a weak equivalence. The

composition gives the isomorphism (2).

6.5.4. From the Quillen adjunction (6.6), we obtain an isomorphism

HomsPreinj,loc∗ C(L(id)(cst(S
n) ∧ Z), GQ(K)0)

∼= Hom
sPreinj,loc,A

1
∗ C(cst(S

n) ∧ Z,R(id)GQ(K)0).

Since GQ(K)0 is fibrant in sPreinj,loc,A
1

∗ , it is also fibrant in sPreinj,loc∗ , hence
R(id)GQ(K)0 is canonically weakly equivalent toGQ(K)0. We have L(id)(cst(Sn)∧



22 SATOSHI KONDO AND SEIDAI YASUDA

Z) ≃ cst(Sn) ∧ Z since cst(Sn) ∧ Z is cofibrant. We obtain an isomorphism
Hom

sPreinj,loc,A
1

∗ C(cst(S
n) ∧ Z,GQ(K)0) ∼= HomsPreinj,loc∗ C(cst(S

n) ∧ Z,GQ(K)0).

From the Quillen adjunction (6.5), we obtain an isomorphism HomsPreinj,loc∗ C(cst(S
n)∧

Z,GQ(K)0) ∼= HomsPreinj∗ C(cst(S
n) ∧ Z,GQ(K)0) by an argument similar to that

in the previous paragraph. The isomorphism (3) is obtained as the composite of
these two isomorphisms.

6.5.5. As seen above, GQ(K)0 is fibrant in sPreinj∗ C. Using the Quillen adjunction
(6.2), we obtain the isomorphism (4).

6.5.6. By Lemma 6.2, we see that MAP∗(Z,GQ(K)0) is fibrant. Then from the
Quillen adjunction (6.1) we obtain the isomorphism

HomsPreinj∗ C(cst(S
n),MAP∗(Z,GQ(K)0)) ∼= HomsSet∗(S

n,Γ∗MAP∗(Z,GQ(K)0)).

By definition, Γ∗MAP∗ = Map∗. Thus we obtain (5).

6.6. Deformation to normal cone. The definition of the Gysin map in Sec-
tion 2.2.3 uses the isomorphism Y/(Y \ ι(X)) ∼= Th(N). Let us recall the setup for
deformation to normal cone that leads to this isomorphism. What follows is taken
from [Mo-Vo, p.115].

Let q : B → X × A1 denote the blow-up of ι(X) × {0} in Y × A1. We have a
canonical closed immersion f : X × A1 → B which splits q over ι(X) × A1, and
a canonical closed immersion g : X → B which splits q over X × {1}. There is a
canonical isomorphism q−1(ι(X)×{0}) ∼= P(N ⊕1) which induces an isomorphism
q−1(ι(X)× {0}) \ f(X × {0}) ∼= P(N ⊕ 1) \ P(1). Hence we obtain a diagram

X
1−−−−→ X × A1 0←−−−− X

ι

y f

y y
Y

1−−−−→ B
0←−−−− P

where the vertical arrows are closed immersions, the squares are cartesian, and
P = P(N ⊕ 1).

6.6.1. In sShvinj,loc,A
1

∗ C, we have Th(N) ∼= q−1(ι(X) × {0})/q−1(ι(X) × {0}) \
f(X × {0})). Hence we obtain two morphisms

1 : Y/(Y \X)→ B/(B \ f(X × A1))
0 : P(N ⊕ 1)/P(N)→ B/(B \ f(X × A1))

induced from the morphisms 0 and 1 in the previous section.
By definition of ι!, we have the following commutative diagram:

(6.7) KMV
n (X)

ι!

��

KMV
n (X × A1)

1∗oo 0∗ // KMV
n (X)

ι!

��
KMV

n (Y/U) KMV
n (B/(B \ (X × A1)))

1∗oo 0∗ // KMV
n (P/(P \X))

where the right vertical ι! is the one in the diagram (2.3).
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6.6.2. We consider the following diagram:

(6.8)

KTT
n (X)

1∗←−−−− KTT
n (X × A1)

0∗−−−−→ KTT
n (X)

ι∗

y yf∗

ys∗

KTT
n (Y onX)

1∗←−−−− KTT
n (B onX × A1)

0∗−−−−→ KTT
n (P onX).

The upper horizontal arrows are isomorphisms since the K-theory of a regular
scheme is A1-invariant ([TT, p.362, 6.8 Proposition]). It follows from the base
change theorem ([TT, p.321, 3.18 Proposition], see the remark at the end of proof)
that the two squares are commutative.

The lower horizontal arrows are isomorphisms. For 1∗, this can be seen using
the following commutative diagram:

KTT
n (Y onX)

1∗←−−−− KTT
n (B onX × A1)y y

KTT
n (X)

1∗←−−−− KTT
n (X × A1)

where the vertical maps are pullback maps. The vertical maps are isomorphisms
by excision ([TT, p.322, 3.19 Proposition]) and the lower horizontal map is an
isomorphism by the A1-invariance. One can show that 0∗ is an isomorphism in a
similar manner. Hence the claim follows.

6.6.3.

Lemma 6.8. Let IX be the ideal sheaf defining X ↪→ P. Let E• be a strict perfect
complex on P which is quasi-isomorphic to OP/IX . Then we have the following
commutative diagram:

(6.9)

KTT
n (X)

p∗

−−−−→ KTT
n (P)

s∗

y y−∪E•

KTT
n (P onX) −−−−→ KTT

n (P)

where the lower horizontal arrow is the forget support map.

Proof. For a bounded above complex of flat OX -module F , we have a canonical
quasi-isomorphism

s∗F = p∗F ⊗OP/IX ≃ Tot(p∗F ⊗ E•).

The claim follows from this. �

6.7. We prove the main comparison result (Proposition 6.9) in this section.

6.7.1. Let X ∈ C be a smooth k-scheme. We write γX = γhX,+
. We put βX =

γ−1
X ◦ αX : KTT(X)→ KMV(X).
Let ι : X ↪→ Y be a closed immersion of smooth k-schemes. Let U = Y \X be

the open complement. We put βι = γ−1
Y/U ◦ αι : K

TT(Y onX)→ KMV(Y/U).
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Proposition 6.9. Let ι : X ↪→ Y be a closed immersion of smooth k-schemes. For
n ≥ 0, the following diagram is commutative:

KTT
n (X)

βX−−−−→ KMV
n (X)

ι∗

y yι!

KTT
n (Y onX)

βι−−−−→ KMV
n (Y/(Y \X)).

Here ι∗ is the pushforward for Thomason-Trobaugh K-theory and ι! is the Gysin
map of Section 2.2.3.

Proof. In view of the commutative diagrams (2.3), (6.7), (6.8), (6.9), and recalling
the definition of the Gysin map ι!, it suffices to prove that, for a strict perfect
complex E• which is quasi-isomorphic toOP/IX where IX is the ideal sheaf defining
X ↪→ P, the following diagram is commutative:

KTT
n (X)

βX−−−−→ KMV
n (X)

p∗
y yp∗

KTT
n (P) βP−−−−→ KMV

n (P)

−∪E•

y y−∪thMV

KTT
n (P) βP−−−−→ KMV

n (P)x x
KTT

n (P onX)
βs−−−−→ KMV

n (P/(P \X))

0∗
x x0∗

KTT
n (B onX × A1)

βf−−−−→ KMV
n (B/B \ (X × A1))

1∗
y y1∗

KTT
n (Y onX)

βι−−−−→ KMV
n (Y/(Y \X)).

It is easy to see that the first square is commutative. The commutativity of the
third, fourth and fifth squares follows from Corollary 6.7 and that γ(−) is functorial
with respect to pullbacks. The claim for the second square is the following lemma.

Lemma 6.10. The second square is commutative.

Proof. The second square with −∪ thMV replaced with −∪βP(E•) is commutative
since by [Ri3, p.240, PROPOSITION 3.2.1] the product structures of KTT and
KMV are compatible. Now by the construction of the Chern structure of KMV,

βP([OP/IX ]) = cd(OP(1)⊗ p∗(N)) = thMV

where cd is the Chern class for KMV. The first equality follows by using [OP/IX ] =∑d
i=0(−1)i[∧ip∗N ⊗OP(−i)] in KMV

0 (P). This proves the claim. �

This proves the proposition. �
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