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Abstract. Recently observational lower bounds on the strength of cosmic magnetic fields
were reported, based on γ-ray flux from distant blazars. If inflation is responsible for the
generation of such magnetic fields then the inflation energy scale is bounded from above

as ρ
1/4
inf < 2.5 × 10−7MPl × (Bobs/10−15G)−2 in a wide class of inflationary magnetogenesis

models, where Bobs is the observed strength of cosmic magnetic fields. The tensor-to-scalar
ratio is correspondingly constrained as r < 10−19 × (Bobs/10−15G)−8. Therefore, if the
reported strength Bobs ≥ 10−15G is confirmed and if any signatures of gravitational waves
from inflation are detected in the near future, then our result indicates some tensions between
inflationary magnetogenesis and observations.
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1 Introduction

In 2010, the first detection of cosmic magnetic fields was reported [1] (see also [2–9]). Al-
though High Energy Stereoscopic System (HESS) γ-ray telescopes observed TeV scale γ-rays
from several blazars, Fermi space telescope did not observe GeV scale γ-rays from same
blazars. Without cosmic magnetic fields, these two observations would contradict each other
because some parts of TeV scale γ-rays traveling through the inter-galactic medium are con-
verted into GeV scale γ-rays by electromagnetic cascade reaction; TeV scale γ-rays emit
electron/positron pairs by scattering with extragalactic background lights and then created
electrons and positrons emit GeV scale γ-rays by inverse Compton scattering with CMB
photons until traveling O(1)Mpc typically [4]. In the presence of cosmic magnetic fields, on
the other hand, they can bend the trajectory of charged particles and consequently decrease
the flux of secondary GeV scale γ-rays. From the observational lower limit on the bending
angle the lower limit on the cosmic magnetic field strength was obtained. Several works were
devoted to this subject [1–9]. Some of them took account of possible time variance of intrinsic
blazar fluxes. The reported lower limit ranges O(10−14–10−20)G .

The problem is what the origin of cosmic magnetic fields is. No astrophysical process or
early universe phenomenology is known to explain sufficient amount of magnetogenesis [10].
As for the inflationary magnetogenesis, many scenarios were proposed, aiming to explain the
origin of magnetic fields of galaxies or galaxy clusters as well as cosmic magnetic fields [11–
21]. The major obstacle in those models is the so-called “back reaction problem” [18, 22, 23].
Generation of magnetic fields during inflation inevitably increases the energy density of the
electromagnetic field. If it becomes comparable with the energy density of inflaton then the
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dynamics of inflation is significantly altered. Consequently, the inflationary epoch may end or
generation of magnetic fields is drastically suppressed. Demozzi, et al. [23] pointed out that
in some specific models this problem is crucial and prevents generation of sufficient magnetic
fields.

In the present paper we conduct a model independent analysis of inflationary magneto-
genesis. Specifically, we derive an upper limit on the inflation energy scale by assuming that
all observed cosmic magnetic fields are generated during inflation. Our constraint depends
on neither details of the model lagrangian, the behavior of photon mode functions nor the
shape of magnetic field spectrum. If the strength of cosmic magnetic fields is stronger than
10−15G, the upper limit on the inflation energy density is 2.5× 10−7MPl. As a consequence,
tensor-to-scalar ratio r is severely constraint as r < 10−19. Therefore in this case, if all ob-
served cosmic magnetic fields are generated during inflation, it is almost impossible to detect
gravitational waves from inflation in near future observations. Conversely, if any signatures
of inflationary gravitational waves are detected, then the cosmic magnetic fields should have
another origin.

The rest of the paper is organized as follows. In section 2, we introduce the observational
lower limit on the strength of the magnetic field. In section 3, we discuss the assumptions
which are needed to derive the main result. In section 4, the derivation of the upper limit
on the inflation energy scale is presented. In section 5, we investigate the validity of the
third assumption and explore the possibility to evade the constraint. Section 6 is devoted to
a summary of this paper. In appendix, we derive the observational lower bound of cosmic
magnetic fields in terms of the magnetic power spectrum.

2 Observational Constraint on Magnetic Power Spectrum

From the observations of blazars, current strength of cosmic magnetic fields is constrained
[1–9]. While the constraints in those literatures are given in terms of the correlation length of
magnetic fields, it is straightforward to rewrite it for the power spectrum of magnetic fields
as

B2
eff(ηnow) ≡

∫
dk

k
F (kL)PB(ηnow, k) ≥ B2

obs, (2.1)

where PB(ηnow, k) is the power spectrum of the magnetic field at the present,

F (z) ≡ 3

2
z−2

[
cos(z)− sin(z)

z
+ zSi(z)

]
, (2.2)

and Si(z) denotes the sine integral function. (See Appendix for derivation.) Here, η is
the conformal time, the subscript ”now” denotes the present value, L ≡ 1Mpc stands for
the characteristic length scale for energy losses of charged particles due to inverse Compton
scattering [4], Bobs is the observational lower limit on the strength of cosmic magnetic fields.
For z ≥ 0, F (z) satisfies

0 < F (z) ≤ 1, 0 ≤ zF (z) ≤ α, α ≡ Max[zF (z)] ' 2.48. (2.3)

Although Bobs still has a few orders of uncertainty, in the present paper we adopt the value
reported by ref.[7] in which the latest data were analyzed. According to ref.[7], Bobs ' 10−15G
unless the time variance of intrinsic blazar fluxes is significant.
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The derivation of the formula (2.1) is given in Appendix. Here, instead of showing the
detailed derivation, we provide intuitive understanding of it. For this purpose, let us replace
F (kL) by its asymptotic forms,

F (z) ∼
{

1 +O(z2) (z � 1)
3π
4z +O(z−2) (z � 1)

, (2.4)

and drop O(1) numerical factors to obtain the approximate formula as

B2
eff(ηnow) ∼

∫ 1/L

0

dk

k

[
PB(ηnow, k)

]
+

∫ ∞
1/L

dk

k

[
1

kL
PB(ηnow, k)

]
. (2.5)

Let us now think of a Fourier mode of the magnetic field. For kL � 1, the corresponding
magnetic field can be treated as a homogeneous field, as far as the particle’s trajectory (with
the total length L) is concerned. Thus modes with kL� 1 contribute to the bending angle
as if they are homogeneous fields. This explains the first term in the right hand side of
(2.5). On the other hand, for kL � 1, the direction of the corresponding magnetic field
randomly changes N ∼ kL times while the charged particle travels the total length L. If
we were interested in the trajectory of the charged particle within one of short segments of
the length ∼ k−1 then the magnetic field could be treated as a homogeneous field. Actually,
we are interested in the total bending angle due to N segments. Because of the randomness
of the direction, the total bending angle from N segments adds up to only

√
N times the

contribution from each segment. Therefore the contribution of modes with kL � 1 to the
variance of the bending angle should acquire the weight of order 1/N ∼ 1/(kL). This explains
the second term in the right hand side of (2.5).

3 Four Assumptions

To derive the upper limit on the inflation energy scale, we need four assumptions.

3.1 Assumption 1: the form of kinetic term

First, we assume that the kinetic term of the photon field Aµ is of the form

Lkin = −1

4
I2(η)FµνF

µν , (3.1)

where it is understood that the time-dependence of I(η) is due to its dependence on homoge-
neous, time-dependent fields present in the theory. Thus, Lkin includes various interactions
between the photon field and other fields [12, 13, 18, 23]. This form of coupling does not
have to break either gauge or local Lorentz symmetry. In general the photon field can have
additional interactions Lint:

LA = Lkin + Lint. (3.2)

However we let Lint unspecified. Even so, under the four assumptions introduced in this
section, we can derive the upper limit on the inflation energy scale in a model independent
way. Note that when I = 1 and Lint = 0, the usual Maxwell theory is restored.

This assumption on the form of the kinetic term is necessary to quantize the photon
field and to define the kinetic energy density. The photon field Aµ can be separated into
scalar and vector modes as

Aµ(η,x) = (A0, Vi + ∂iS) , ∂iVi = 0, (3.3)
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where A0 and S are the scalar modes and Vi are the vector modes. Let us quantize the vector
modes. After Fourier transformation with respect to the spatial coordinates, expansion by
polarization vectors and mode expansion, we impose the standard commutation relation on
the creation and annihilation operators.

Vi(η,x) =
2∑
p=1

∫
d3k

(2π)3
eik·xε

(p)
i (k̂)

[
a

(p)
k u

(p)
k (η) + a

†(p)
−k u

(p)∗
k (η)

]
(3.4)[

a
(p)
k , a

†(p′)
k′

]
= (2π)3δ(3)(k− k′)δpp

′
, (3.5)

where uk(η) is the mode function of the photon vector mode, p (= 1, 2) is the polarization

label and ε
(p)
i (k̂) is the polarization vector satisfying

kiε
(p)
i (k̂) = 0 (p = 1, 2),

2∑
p=1

ε
(p)
i (k̂)ε

(p)
j (−k̂) = δij −

kikj
k2

. (3.6)

Then the canonical commutation relation for Vi requires the normalization condition of mode
function uk(η) as

I2
(
u

(p)
k ∂ηu

(p)∗
k − u(p)∗

k ∂ηu
(p)
k

)
= i (p = 1, 2). (3.7)

Now let us define the kinetic energy density of the electromagnetic field as

ρkin(η) =
I2

2

∫
dk

k
[PE(η, k) + PB(η, k)] , (3.8)

where we have defined power spectra of electric and magnetic fields as

PE(η, k) =
k3|u′k(η)|2

π2a4(η)
, PB(η, k) =

k5|uk(η)|2

π2a4(η)
. (3.9)

3.2 Assumption 2: Avoidance of strong coupling

The second assumption is that
I(η) ≥ 1 for η ≥ ηi, (3.10)

where ηi is the conformal time at the beginning of inflation.
This assumption essentially states that the effective coupling constants of the photon

field to other fields should be always smaller than present values. For example, let us consider
the interaction between the photon and a charged fermion as

Lint 3 −eψ̄γµψAµ. (3.11)

In order to evaluate the effective coupling constant, we should canonically normalize the
fields. Let us suppose that the fermion ψ is already canonically normalized. The canonically
normalized photon field is Acµ ≡ IAµ. Then the interaction term is rewritten as

Lint 3 −
e

I
ψ̄γµψAcµ. (3.12)

It is now clear that e/I is the effective coupling constant. Therefore if I � 1, the effective
coupling constant becomes large and the tree level analysis would be invalidated. In order to
justify the tree level analysis, we need to assume that I is bounded from below by a positive
constant I0. For simplicity we set I0 to be the present value of I, i.e. I0 = 1.
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3.3 Assumption 3: Small back reaction

The third assumption is that the kinetic energy density of electromagnetic field is smaller
than that of inflaton,

ρkin(η) < ρinf for ηi ≤ η ≤ ηf , (3.13)

where ηi and ηf are the conformal time at the beginning and the end of inflation, and hereafter
we ignore the time-dependence of the inflaton energy density ρinf .

This assumption is closely related to the condition for avoidance of the back reaction
problem,

|ρkin(η) + ρint(η)| < ρinf for ηi ≤ η ≤ ηf . (3.14)

Note that eq.(3.13) and eq.(3.14) are different. In general, the total energy density of the
photon field includes not only the kinetic energy density ρkin but also the interaction energy
density ρint due to the additional interaction terms Lint. If the interaction energy density
is non-negative (ρint ≥ 0) then eq.(3.14) requires eq.(3.13). Even if the interaction energy
is negative (ρint < 0), unless the two contributions ρkin and ρint cancel each other with
a sufficiently good precision, eq.(3.14) generically requires eq.(3.13). Therefore the third
assumption eq.(3.13) is mandatory unless negative ρint precisely cancels out positive ρkin.

In section 5, we confirm the necessity of the third assumption in the case of gauge
and local Lorentz invariant quadratic interactions and explore the possibility of the precise
cancellation between ρkin and ρint.

3.4 Assumption 4: Magnetogenesis during inflation

The fourth assumption is that all observed magnetic fields are generated during inflation. In
particular, the conformal symmetry of the photon field action is broken appreciably only in
the inflationary era. Since the electric conductivity of the universe increases after the end of
inflation [11], we have

B2
eff(ηnow) ≤ a4

fB
2
eff(ηf ), (3.15)

where we have set a(ηnow) = 1.
By using eq.(3.10), (3.13) and the fact that Beff is smaller than the usual definition of

magnetic field strength (0 < F (kL) ≤ 1), we obtain

B2
eff(ηi) < 2ρinf . (3.16)

Assuming the instantaneous reheating, we find the scale factor at the end of inflation is given
by

a4
f =

ργ
ρinf

(3.17)

where ργ ' 5.7 × 10−125M4
Pl ' 5.2 × 10−12G2 is the present energy density of radiation.

Eq.(3.15), (3.16) and (3.17) lead to the following inequality.

a4
iB

2
eff(ηi)

a4
fB

2
eff(ηf )

< 10−68 × exp[−4(Ntot − 50)]

(
Blow

10−15G

)−2

, (3.18)

where Ntot = ln(af/ai) is the total e-folding number of inflation. This inequality implies that

a4
iB

2
eff(ηi)� a4

fB
2
eff(ηf ), (3.19)

and thus states that the magnetic fields have to be significantly amplified during inflation to
explain the observational lower limit eq.(2.1).
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4 Upper Limit on Inflation Energy Scale

With the four assumptions stated in the previous section, we are now ready to derive the
upper limit on the inflation energy scale. The derivation is independent of details of infla-
tionary magnetogenesis models, the behavior of photon mode functions or the spectrum of
the electromagnetic fields.

Independently from the specific functional form of uk(η), it can be shown that

|uk(ηf )|2 − |uk(ηi)|2 =

∫ ηf

ηi

dη 2|uk(η)| |uk(η)|′

≤
∫ ηf

ηi

dη

k
2k|uk(η)| |u′k(η)|

≤
∫ ηf

ηi

dη

k

(
k2|uk(η)|2 + |u′k(η)|2

)
, (4.1)

where we have used the inequality 2xy ≤ x2 +y2 for real numbers x and y, in order to obtain
the last inequality. Multiplying the both ends of eq.(4.1) by F (kL)k4/π2 and integrating it
over k, we obtain

a4
fB

2
eff(ηf )− a4

iB
2
eff(ηi) <

α

L

∫ ηf

ηi

dη a4(η)

∫
dk

k
[PE(η, k) + PB(η, k)] , (4.2)

where we have used the second inequality listed in (2.3). Using the second, third and fourth
assumptions as well as eq.(3.19), we obtain

B2
eff(ηnow) <

2α

L
ρinf

∫ ηf

ηi

dη a4(η) ' 2α

3HinfL
a3
fρinf (4.3)

where Hinf (' const.) is the Hubble expansion rate during inflation.
Substituting eq.(2.1) and eq.(3.17) into eq.(4.3), we finally obtain the upper limit on

the inflation energy scale,

ρ
1/4
inf <

2α√
3L
ρ3/4
γ MPlB

−2
obs ≈ 2.5× 10−7MPl ×

(
Bobs

10−15G

)−2

. (4.4)

Note this upper limit can become even stronger if details of reheating is taken into consid-
eration instead of eq.(3.17). Provided that the dominant energy density behaves like matter
(∝ a−3) during reheating, the right-hand side of eq.(4.4) is multiplied by an additional factor
(ρreh/ρinf)

1/4 < 1, where ρreh is the energy density at the end of reheating era.
Eq.(4.4) can be converted into the upper bound on the tensor-to-scalar ratio r under

the slow-roll approximation,

r < 10−19 ×
(

Bobs

10−15G

)−8

. (4.5)

Therefore, if all observed cosmic magnetic fields are generated during inflation, it is extremely
difficult to detect any signatures of primordial gravitational waves, for example direct detec-
tions or CMB B mode polarization. Conversely, if some observations reveal that r is larger
than the upper bound (4.5), it implies that inflation cannot explain the origin of cosmic
magnetic fields under the four assumptions.
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Now let us discuss the intuitive understanding of the reason why we obtain the upper
limit on the inflation energy scale. Eq.(3.13) can be rewritten as

ρkin =
(
a4ρkin

)
exp

[
4

√
ρinf

3M2
Pl

(tf − t)
]
ρinf

ργ
< ρinf , (4.6)

where t is the cosmic time. Here, we have used eq.(3.17) and the equation of the exponential
expansion, af/a(t) = exp [H(tf − t)]. From eq.(4.6) we acquire several observations. First,
at the end of inflation (t = tf ) eq.(4.6) does not constrain ρinf . It is because if ρinf increases,
ρkin ∝ a−4 also increases at the same rate. Hence we have to consider the condition (4.6)
before the end of inflation to obtain the upper bound of ρinf . Second, during inflation (t < tf )
only left-hand side of eq.(4.6) depends on ρinf . It is because ρkin decreases rapidly due to the
cosmic expansion while ρinf is nearly constant. The further past from the end of inflation it
is, the more difficult to satisfy eq.(4.6) it becomes. The only way to weaken the dilution of
ρkin is decreasing ρinf . Therefore the lower ρinf is favored and the upper limit exists. Third,
the upper limit on ρinf is apparently relaxed if a4ρkin is very small until right before inflation
ends. However, since B ∝ uk(η) and E ∝ u′k(η), a rapid amplification of magnetic fields
causes a huge increase of electric fields energy. Such a rapid amplification is restricted by the
avoidance of the back reaction problem.

5 Additional Interaction Terms

The action for the photon field consists of not only the kinetic term Lkin but also the ad-
ditional interaction terms Lint. As already mentioned after (3.14), the third assumption
eq.(3.13) is mandatory unless negative ρint precisely cancels out positive ρkin. Therefore
whether such a precise cancellation is possible is a significant question. The answer we shall
draw in the following discussion is that it is rather difficult to achieve such a cancellation.

Here, it is perhaps worthwhile stressing that, as long as the four assumptions (including
the third one) are satisfied, our main result eq.(4.4) holds even if ρint and ρkin precisely cancel
out.

5.1 Gauge and Lorentz invariant quadratic term

In the quadratic level, the most general renormalizable interaction term which preserves
gauge and local Lorentz symmetry is given by

Lint =
1

8
f(η)εµνρσFµνFρσ +

1

2
m2(η)AµA

µ, (5.1)

where εµνρσ is the totally anti-symmetric tensor with ε0123 = 1/
√
−g, f(η) is a function of

homogeneous scalars. The first term is called axial coupling term. The second term is the
effective mass term of the photon induced by expectation values of charged scalars. It stems
from the kinetic term of the charged scalars, and the positivity of the time kinetic term
implies the positivity of the mass squared m2. This term spontaneously breaks the U(1)
gauge symmetry, and the longitudinal mode of photon field becomes a physical degree of
freedom.

Actually, the axial coupling term does not contribute to the energy density of the photon
field. Since the axial coupling term does not depend on the metric, its contribution to the
energy momentum tensor is exactly zero. The effective mass term does contribute to ρint but
the contribution is always positive because of the positivity of the mass squared. Therefore
the cancellation between ρint and ρkin cannot occur.
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5.2 Model with negative interaction energy

There is an existing model which gives a negative energy contribution from an additional
interaction term. Turner and Widrow [11] proposed a model with non-minimal coupling,
Lint ∝ RAµA

µ, where R is the Ricchi scalar. This coupling can become an effective mass
term of photon with negative mass squared. However this model has three critical problems.
First, the longitudinal mode of photon becomes ghost [23]. Second, the negative energy
contribution from Lint exceeds ρinf and the back reaction spoils inflation when we require
generated magnetic field is sufficient [23]. Third, this coupling explicitly breaks the gauge
symmetry.

5.3 Energy conserving term

From purely phenomenological viewpoints, let us investigate the additional interaction term
of the form √

−gLint =
1

2
a2J2(η)V 2

i (J2 > 0) (5.2)

where J(η) is a function of homogeneous scalar fields and Vi is the photon vector mode
defined in eq.(3.3). This term is effective mass term of photon vector mode with negative
mass squared. Note that this term has neither gauge invariance nor Lorentz invariance. It
does not yield ghost field because it contains only vector modes by breaking Lorentz symmetry
and we still assume that the kinetic term of photon is given by eq.(3.1). Although it may be
hard to embed such a term in a viable elementary particle theory, it is worth investigating it
since we can find an interesting way to realize the cancellation between ρint and ρkin.

From eq.(5.2), the equation of motion is given by

u′′k +
(
k2 − a2J2

)
uk = 0. (5.3)

Here we have assumed I(η) = 1 for simplicity, since otherwise the weak coupling effect due
to I � 1 would make the interaction term irrelevant. At the same time we require the
cancellation between ρint and ρkin for each mode,

|u′k|2 + (k2 − a2J2)|uk|2 = 0. (5.4)

It is easy to show that eq.(5.3), eq.(5.4) and eq.(3.7) imply that

a2J2(η) = const. (5.5)

In other words, the coefficient of the quadratic term (5.2) should be constant.
The reason why only the interaction term with constant coefficient leads the cancellation

is simple. It is the energy conservation. If there is no explicit dependence on time in the
action (for example, if the time-dependence due to the scale factor a(η) is canceled by time-
evolving scalars), then the energy of the system is conserved by virtue of Noether’s theorem.
In the case of eq.(5.2), if J(η) cancels the time dependence of a(η), the photon energy (with
respect to the conformal time η) is conserved. Note that the kinetic term of the photon
field is originally free from a(η). Therefore the energy density of photon does not increase
even if the electromagnetic field strength increases. It is notable that, for this mechanism to
work, the dynamics of the scalar fields included in J(η) has to restore the time translation
symmetry accidentally.

The above analysis implies that the magnetogenesis from inflation whose energy is larger
than the constraint of eq.(4.4) may not be impossible in principle. However, in practice it
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is not easy to realize a model which exploits the energy conserving mechanism because the
accidental symmetry restoration by the scalar field dynamics can be easily spoiled by various
effects such as the back reaction of the photon field. Therefore it is fair to say that all the
four assumptions (including the third one) are likely to be mandatory in a rather broad class
of models and the derived upper limit on the inflation energy scale is considerably general.

6 Conclusion

In this paper we have derived a universal upper limit on the inflation energy scale under
the following four assumptions. (i) The kinetic term of the photon field is of the canonical
form up to a time-dependent overall factor. (ii) The effective coupling constants do not
exceed present values and thus do not exhibit strong coupling. (iii) The kinetic energy of
the photon field is always lower than the inflaton energy density during inflation. (iv) All
observed cosmic magnetic fields are generated during inflation.

The derived constraint is eq.(4.4), ρ
1/4
inf < 2.5 × 10−7MPl × (Bobs/10−15G)−2. As a

consequence, the tensor-to-scalar ratio r is bounded from above as eq.(4.5), r < 10−19 ×
(Bobs/10−15G)−8. We hardly expect that inflation is the origin of both cosmic magnetic
fields and detectable gravitational waves if Bobs > 10−15G. Therefore the future detection of
signatures of inflationary gravitational waves, if any, would imply tension between inflationary
magnetogenesis and observations.

Although our constraint is valid in fairly broad class of inflationary magnetogenesis
scenarios, we have investigated the possibility to evade it. In order to evade the constraint,
at least one of the assumptions should be violated. The third assumption can be violated
only if the energy density due to additional interaction terms and the kinetic energy density
precisely cancel out. We have considered a possible mechanism which exploits a energy
conservation law to realize the cancellation. However, it seems a challenge to build a realistic
model equipped with such a mechanism.
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A Derivation of the Constraint on Magnetic Power Spectrum

In this appendix, we derive eq.(2.1). By Fermi and HESS observations, there is a lower
limit on the bending angle of GeV scale cascade electrons and positrons in the inter-galactic
medium. However, in the literatures the constraint on the cosmic magnetic field is given
only in terms of the correlation length of magnetic fields [1–9] while theorists need the
constraint in terms of the magnetic power spectrum. In this appendix we shall generalize the
constraint on the cosmic magnetic field to more general spectra. Such a generalization makes
the connection between the cosmic magnetic power spectrum PB and the bending angle θ.
For simplicity, we neglect effects of special relativity in this appendix.
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Provided that a charged particle travels distance L in the background of a weak magnetic
field B(r) from t1 till t2. Then the bending angle is given by

θ ' v(t1)− v(t2)

v
, (A.1)

where v(t) is the velocity vector of the particle. Note the absolute value of the velocity vector
is constant. By using the equation of motion with Lorentz force, the difference of the velocity
vectors is written as

v(t2)− v(t1) =

∫ t2

t1

dt̃ v̇(t̃) =
e

m

∫ t2

t1

dt̃ v(t̃)×B(t̃) =
e

m

∫ L

0
dx×B(x), (A.2)

where e and m are the charge and the mass of the particle, respectively, x(t) denotes the
orbit of the particle and its initial value is set to x(t1) = 0. Then, we assume θ is so small
that the orbit can be approximated as a straight line, x(t) ' x1(t)ê1 where ê1 is the unit
vector in the direction of the axis 1. By Fourier transforming B(x), we can perform the line
integral ∫ L

0
dx1 ê1 ×B(x1ê1) =

∫
d3k

(2π)3

eik1L − 1

ik1
ê1 × B̃(k), (A.3)

By using these equations, we find that the variance of θ is given by

〈θ2〉 =
( e

mv

)2
∫

d3kd3k′

(2π)6

(
eik1L − 1

) (
eik

′
1L − 1

)
−k1k′1

(δij − δi1δj1)〈B̃i(k)B̃j(k
′)〉, (A.4)

Since the divergence of magnetic field vanishes (kiB̃i(k) = 0) and the cosmic magnetic fields
are statistically isotropic and homogeneous, the square bracket in eq.(A.4) can be written as

〈B̃i(k)B̃j(k
′)〉 =

1

2
(2π)3δ(3)

(
k + k′

) [(
δij −

kikj
k2

)
2π2

k3
PB(k) + iεijlklH(k)

]
, (A.5)

where PB(k) is the magnetic power spectrum and H(k) stands for the helicity component of
magnetic fields [24]. By substituting eq.(A.5) into (A.4), we obtain

〈θ2〉 =
2

3

(
eL

mv

)2 ∫ dk

k
PB(k) F (kL), (A.6)

F (z) ≡ 3

2
z−2

[
cos(z)− sin(z)

z
+ zSi(z)

]
∼
{

1 +O(z2) (z � 1)
3π
4z +O(z−2) (z � 1)

, (A.7)

where Si(z) denotes the sine integral function. For z ≥ 0, F (z) satisfies

0 < F (z) ≤ 1, 0 ≤ zF (z) ≤ α, α ≡ Max[zF (z)] ' 2.48. (A.8)

In order to find a proper definition of the effective strength of the magnetic field (in-
cluding its normalization) for a given spectrum PB(k), as a fiducial configuration let us
consider a homogeneous magnetic field whose direction is perpendicular to the particle’s tra-
jectory. Denoting the strength of the fiducial magnetic field as B⊥, the bending angle is
θ = L/RL = (eB⊥L)/(mv), where RL is the Larmor radius. On the other hand, for a sta-
tistically isotropic spectrum, the variance of the magnetic field in three-dimensions is three

– 10 –



halves of the variance of the magnetic field projected onto the two-dimensional subspace
perpendicular to the particle’s trajectory. Thus, it is natural to define the effective strength
of the magnetic field as

B2
eff ≡

3

2

(mv
eL

)2
〈θ2〉. (A.9)

Combining this with the formula (A.6), we obtain

B2
eff =

∫
dk

k
F (kL)PB(k). (A.10)
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