| Speaker: | Francesco Sala (University of Pisa) |
|---|---|
| Title: | Cohomological Hall algebras of 1-dimensional sheaves and Yangians over the Bridgeland's space of stability conditions |
| Date (JST): | Tue, Mar 03, 2026, 13:30 - 15:00 |
| Place: | Seminar Room A |
| Abstract: |
In this talk, I will introduce the nilpotent cohomological Hall algebra COHA(S, Z) of coherent sheaves on a smooth quasi-projective complex surface S that are set-theoretically supported on a closed subscheme Z. This algebra can be viewed as the "largest" algebra of cohomological Hecke operators associated with modifications along a subscheme Z of S. When S is the minimal resolution of an ADE singularity and Z is the exceptional divisor, I will describe how to characterize COHA(S, Z) in terms of the Yangian of the corresponding affine ADE quiver Q (based on joint work with Emanuel Diaconescu, Mauro Porta, Oliver Schiffmann, and Eric Vasserot, arXiv:2502.19445). More generally, I will discuss nilpotent COHAs arising from Bridgeland stability conditions on the bounded derived category of nilpotent representations of the preprojective algebra of Q, following joint work with Olivier Schiffmann and Parth Shimpi (arXiv:2511.08576). |
