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① Introduction 

 
(1-1)  What is the quantum entanglement ? 
 
In quantum mechanics, a physical state is described by a vector in 
Hilbert space.   
 
If we consider a spin of an electron (= two dimensional Hilbert 
space),  a state is generally described by  the linear combination: 
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Consider two spin systems.  We can think of the following states: 

 

(i)   A direct product state (unentangled state) 

 

 

 

 

(ii) An entangled state 
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One determines the other ! 

∃Non-local correlation 



 
 
 
Divide a quantum system into two subsystems A and B. 
 
 
 
Define the reduced density matrix            by   
 
 
 
The entanglement entropy            is now defined by 

 

                                                                          (von-Neumann entropy) 
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A measure of quantum entanglement is known as  

the entanglement entropy defined as follows. 
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The Simplest Example: two spins (2 qubits) 



EE in Quantum Many-body Systems and QFTs 
 

The EE is defined geometrically  

(sometime called geometric entropy).  
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(1-2)  Holographic Entanglement Entropy 

 

HEE formula   [Ryu-TT 06, proven by Lewkowycz-Maldacena  13] 

 

 

 

 

 

 

Entanglement entropy  
for CFTs (quantum many-body  
systems at critical points) 

Area of minimal surface 
in hyperbolic space 
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A Killing horizon (time independent black holes) 

⇔ All components of extrinsic curvature are vanishing.                        

                                            ∩ 
A minimal surface (or extremal surface) 

⇔Traces of extrinsic curvature are vanishing. 

Note: the HEE formula can be regarded as a generalization  
of Bekenstein-Hawking formula of black hole entropy: 



The HEE suggests that  
 
``Spacetime  in Gravity  
  = Collections of tiny bits of quantum entanglement’’  ? 
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The quantum entanglement can be a key concept  to  

understand the holography. 

 

     

M∂
Boundary Bulk 

d+2 dim. 
d+1 dim. 

µνgΨ
Quantum many-body system (Quantum) gravity 

Entanglement entropy (EE)    =   Area of minimal surface  

+ quantum corrections 

= 
Holography 

[Ryu-TT 06] 

A framework to realize this is the entanglement renormalization. 



Advantages of EE 

 

• EE is defined for any quantum many-body systems.  ⇒Universal  
           (In cond-mat, EE = a quantum order parameter) 

 

• In the presence of quantum corrections, the metric may not  

    be a good description of the spacetime.  But, the EE is robust.  

 

• EE can capture spacetime topologies.  For example, 
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② Entanglement Renormalization and AdS/CFT 

(2-1) Our Motivation  

 
In principle, we can obtain a metric from a CFT as follows: 

 

   a CFT state  ⇒  Information  (~EE) =  Minimal Areas ⇒ metric 
 

 

 

One candidate of such frameworks is so called the entanglement  

renormalization (MERA) [Vidal 05 (for a review see 0912.1651)]  as  

pointed out by [Swingle 09].    
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[cf.  Emergent gravity: Raamsdonk 09, Lee 09] 



(2-2) Tensor Network (TN)   

                                               [See e.g. the review Cirac-Verstraete 09] 

Recently, there have been remarkable progresses in numerical  

algorithms for quantum lattice models, based on so called  

tensor product states. 

 

This leads to various nice variational ansatzs for  the ground state  

wave functions in various quantum many-body systems.  

   

⇒ An ansatz is good if it respects the quantum entanglement     
          of the true ground state. 

 

 

 



 

 

 
Ex. Matrix Product State (MPS)   [DMRG: White 92,…,  

                                                                                     Rommer-Ostlund 95,..] 
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MPS and TTN are not good near quantum critical points (CFTs)  

because their entanglement entropies are too small: 

 

 

 

 

 

 

 

 

 

 

In general,    
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(2-3)  AdS/CFT and (c)MERA  

 

MERA (Multiscale Entanglement Renormalization Ansatz): 

An efficient variational ansatz to find CFT ground states have been  

developed recently.  [Vidal 05 (for a review see 0912.1651)]. 

 

To respect its large entanglement in a CFT,  we add (dis)entanglers. 
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Calculations of EE in 1+1 dim. MERA 
 

A= an interval (length L) 
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A conjectued relation to AdS/CFT [Swingle 09] 
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Now, to make the connection to AdS/CFT clearer,  we would like  

to consider the MERA for quantum field theories.  

Continuous MERA (cMERA) 
                                                                [Haegeman-Osborne-Verschelde-Verstraete 11] 
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Conjecture 

K(u) : disentangler,     L: scale transformation 



(2-4) Emergent Metric from cMERA 

We focus on gravity duals of translational invariant  static states,  

which are not conformal in general.  

 

We conjecture that the metric in the extra direction is given by  

using the Bures metric (or Fisher information metric): 

 

 

 

 

 

[Nozaki-Ryu-TT 12] 
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Bures Metric 

The Bures distance between two states is defined by 

 

   

 More generally, for two mixed states ρ1 and ρ2, 

 

     

When the state depends on the parameters {ξi},   

the Bures metric (Fisher information metric) is defined as    

 

 

⇒ Reparameterization invariant  (in our case: coordinate u)  
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   The operation           removes the coarse-graining procedure  

   to extract the strength of unitary transformations (disentanglers ). 

 

   ⇒ Our metric = the density of disentanglers  

                               = the metric  guu  in the gravity dual  

 

  Understandable from the HEE: 
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(2-5) Emergent Metric in a (d+1) dim. Free Scalar Theory 

 
Hamiltonian: 

 
Ground state             :   

 
Moreover,  we introduce the `IR state’          which has no real  

space entanglement.  
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For a free scalar theory, the ground state corresponds to 

 

 

 

 

 

 

For the excited states,            becomes time-dependent.  

One might be tempting to guess  

 

 

 

Indeed, the previous proposal for guu lead to 
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Explicit metric 
 

(i) Massless scalar  (E=k) 

 

 

(ii)   Lifshitz scalar    (E=kν) 

 

 

(iii) Massive scalar   
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③ Finite Temperature CFT and AdS Black Holes 
 

(3-1) Excited States in MERA 

 
Before we study finite temperature states (mixed state),  

we would like to examine a class of excited states (pure states),  

called quantum quenches.  

 

Quantum quenches are triggered by sudden large excitations,  

induced by an instantaneous shift of parameters in the  

Hamiltonian. 

 

e.g. mass shift:                                              ⇒ an excited state in CFT  
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To realized these states, we need to extend the ansatz such that   
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Such a excited state is in the class defined as follows: 
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For a given UV state                         or equally              , 

the intermediate state              or               is determined  

up to an ambiguity.  

 

This stems from the phase factor ambiguity of wave function: 

 

 

 

Our conjecture: 

the phase ambiguity 

⇔ the choice of the time slice 
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A Description of Quantum Quench by Calabrese-Cardy  05  
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because the real excitation  
energy is finite. 
 
Δm~1/β (~ effective temp.) 



Ex. Free Massless Scalar field (Dirichlet b.c.) 

 

 

 

 

 
We fix θk(t) such that we have the form: 
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Time dependent metric  from the 2d Quantum Quench 

t 

Light cone: looks like a 
gravitational wave. 
 

zzgz

We can also (analytically) confirm the linear growth:  SA∝t 
because g(u)∝t at late time. This is also true in higher dim. 
 
This is consistent with the known CFT (2d) [Calabrese-Cardy 05]. 

  and with the holographic result (any d). [Hartman-Maldacena 13] 
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Comparison with AdS BH 

The holographic dual of a quantum quench was analytically  

constructed as the half of eternal AdS BH. [Hartman-Maldacena 13] 

BH formation 

Gravity dual of quantum quench 

Nice slice 

Eternal AdS BH 
dual to finite temp. CFT 

Length∝t ⇒ agrees with  
                        cMERA 

CFT1 CFT2 



(3-2) Finite Temperature CFT MERA 

Indeed, in our free scalar model, we find this relation as follows: 
 
 
 
 
 
 
 
 
  
Therefore we can construct the cMERA for the finite temp. CFT. 
We can indeed prove that the metric guu, defined in a quantum  
information theoretically is identical to that of the quantum quench.  
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④ Possible Gravity Duals of Flat Space and Volume Law 
 
If  we consider the almost flat metric (HEE ∝Volume) 

 
 
 
the corresponding dispersion relation reads 

 
 
 
This leads to the highly non-local Hamiltonian: 
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Confirmation of Volume law ⇔ Non-local QFTs  [Shiba-TT 13] 
ex. w=1, d=1 
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⑤ Conclusions 

The idea of the entanglement renormalization can be  

 a basic mechanism of the AdS/CFT correspondence.  

 

We explored this connection by examining cMERA and proposed  

a metric in the extra dimension purely in terms of QFT data.  

 

Many future problems: 

 

• How to calculate gtt ?  Boosting the subsystem ? Finite temp.? 

• The effect of Large N limit in cMERA  ? 

           (largen N limit ⇔locality⇒saturation of entropy bound ?) 
• Time slices and  diff. inv.  in cMERA ? 

• Free field theories ⇒ Higher spin gauge theory? 
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