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Lorentz symmetry: exact?. . .

	 QFT models of HEP are relativistic theories, based on Lorentz
symmetry group

	 In gravity it is the local symmetry group

	 In the observable range of energies the Lorentz symmetry is an exact
symmetry, no violation observed so far

	 But must it be indeed an exact symmetry?
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. . . or effective?

	 [Penrose’70s]: “The concept based on continuous space and Lorentz
symmetry is faulty and should be replaced in the theory including
quantum gravity. There are other models where the space-time and
Lorentz symmetry emerge in an effective description e.g. in low
energy theory”. . .

	 A possibility: The Lorentz symmetry could be the effective symmetry
at IR (Lifshitz) point [Hǒrava’08-09]
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. . . in Fermi systems

	 In some CMT models Lorentz symmetry emerges at the IR fixed point
of initially non relativistic dynamics

I Graphene
I He3

I Topological insulators
I etc. . .

	 In all these cases the Fermi surface degenerates to a point (or set of
disjoint points) and the dispersion relations are linearly
non-degenerate

	 The degrees of freedom are organised into Dirac fermion(s)
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. . . in graphene

The graphene’s dispersion relation
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. . . accidental?

	 In all known examples the Dirac fermion emerges as soon as
I The Fermi surface degenerates to a point
I The spectrum of fluctuations around each Fermi point is linearly

non-degenerate

	 In fact, ABS construction [Atiyah–Bott–Shapiro’64] implies that this spectrum is
non-degenerate only when the fluctuations can be organised into a
faithful representation of the Clifford algebra ⇒ Dirac fermion ⇒
Lorentz symmetry. . . So it’s a universal property!
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Stable and non-stable Fermi points

	 In some cases one can find non-trivial topological charges related to
the Fermi point [Volovik’01]. This implies stability of such systems against
small deformations of the system

	 More generally, the Fermi surfaces can be naturally classified in terms
of K-theory [Hǒrava’05]

	 We can design the dynamical system (e.g. a discrete model) so that
they have stable Fermi points. The effective models for fluctuations
around this points will be Weyl/Dirac fermions and Lorentz symmetry
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Dirac systems

	 2D lattice systems with stable Fermi points in 2D were studied by
[Asano-Hotta’11. . . ]

	 Arbitrary graphs leading to Dirac fermions (arbitrary dimension) we
call Dirac lattices [CS’13]

	 Local deformations of the graph from the Dirac lattice appear as
gauge field and Yukawa field modes coupled to the Dirac fermion (in
D = 2 + 1) [CS’12]

	 In D > 2 + 1 we expect to get coupling to gravity as well
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Dirac lattice

The Model: fermi particle hopping on a graph specified by the
adjacency matrix T (see the main part)

I Non-relativistic
I Dynamical

Absolute time is the dynamical parameter which exists ab initio

The structure of the adjacency matrix:

⇒ Non-degenerate linear dispersion relations
⇒ Dirac fermion
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Dirac lattices → Dirac graphs

Absolute time + Spacial geometry inherited from the graph =
Lorentz invariance

Product geometry: we don’t have any control over the time extension

Deformations of the lattice will not produce a generic geometry

A recipe to cure: generalise to a model where the time extension is
effectively generated from the graph as well

We call such models Dirac graphsb
(better name suggestions accepted)
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Dirac graph model

No dynamics ⇒ Statistical model with ‘partition function’

Z (T ) =

∫
[dψ†][dψ]eiS[ψ,ψ†]

S = ψ† · T · ψ

T is the adjacency matrix

We start with ‘rigid’ T obeying some properties like translational
symmetry, etc.

‘Saddle point integral’ well defined as an analytic continuation (Wick
rotation) ⇒ can define an analogue of Fermi surface: call it
pseudo-Fermi surface

When does it describe a Dirac fermion in low energy (saddle point)
limit?
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(More) on translational invariance
Translation invariant T corresponds to a D-dimensional lattice generated
by translations of the unit cell graph
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Our findings

We considered the simplest nontrivial case: dinternal space = 2

For a region of parameter space a generic adjacency matrix T has a
set of linear non degenerate pseudo-Fermi points when D ≤ 4

When D = 4 the pFp’s are stable and the continuum limit is
described by D = 3 + 1 Dirac fermion

We considered local deformation of the graph T 7→ T + A by nearest
cell operators A

In this case the Dirac field is coupled to (non-dynamical)
deformation-induced Abelian gauge field and gravity background
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U Break!

K
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The model

We consider ‘partition function’

Z (T ) =

∫
[dψ†][dψ]eiS[ψ,ψ†]

with the ‘action’: S = ψ† · T · ψ
The Hermitian adjacency matrix T is non-dynamical and possesses a
D-dimensional translational symmetry
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The Adjacency Matrix

The translational symmetry ⇒ block structure of adjacency matrix

T = α +
∑
I

αITI +
∑
I

αI†T−1
I +

∑
IJ

αIJTITJ + . . .

where TI , I = 1, . . . ,D are generators of translations; α, αI etc.
commute with all TI

Locality: T = α +
∑

I

(
αITI + αI†T−1

I

)
	 Dimensions of ‘internal space’ are related to D by ABS construction.

Simplest case: dinternal space = 2⇒ D = 4 (our choice)

So α, αI , etc. are 2× 2 matrices, and I = 0, 1, 2, 3
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Fourier transform

The translation symmetry allows Fourier transform in terms of cell
numbers

f̃α(k) =
∑
n

eik·nfαn

Inverse Fourier transform

fαn =

∫
dDk

(2π)D
e−ik·nfα(k)

This allows us to rewrite the ‘action’ in the ‘momentum space’
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Momentum space

The action

S =

∫
dDk

(2π)D
ψ†(k)T (k)ψ(k)

where
T (k) = α +

∑
I

(αI e−ikI + αI†eikI )

The two-dimensional matrices α, αI and α†I can be expanded in terms
of the extended set of Pauli matrices σA, A = 0, 1, 2, 3,

α = αAσ
A, αI = αI

Aσ
A, αI† = ᾱI

Aσ
A

T (k) = TA(k)σA, TA(k) = αA +
∑

I (α
I
Ae
−ikI + ᾱI

Ae
ikI )
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Stationary points

The stationary points are given by zero modes of the adjacency matrix

In the momentum space: detT = 0,

T 2
0 (k)− T 2

1 (k)− T 2
2 (k)− T 2

3 (k) = 0

Not a single point, but a surface with a conical singularity
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Wick rotation

after the Wick rotation:

−T 2
0 (k)− T 2

1 (k)− T 2
2 (k)− T 2

3 (k) = 0

the only degenerate point is the tip of the cone K

TA(K ) = 0

We call K linearly non-degenerate if T (K + k) 6= 0, for any k 6= 0 in
linear approximation

Pseudo-Fermi point (pFp)
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Pseudo-Fermi points

A pFp is solution to TA(k) ≡ αA +
∑

I (α
I
Ae
−ikI + ᾱI

Ae
ikI ) = 0

Questions. . .
I For which matrices T the pFps exist?
I How many pFps?
I Their locations, etc

Once pFp’s are known. . .
I What is the fermionic spectrum in the vicinity of pFp
I How the spectrum combines globally (for all pFp in the Brillouin zone)
I What happens when the graph is deformed away from diracity?
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Existence of pFp’s

Finding conditions that at least one pFp exists is extremely easy

Given the location K and the parameters αI
A the remaining

parameters αA are recovered from the consistency:

αA = −
∑
I

(αI
Ae
−iKI + ᾱI

Ae
iKI )

Slightly less trivial is to show that this is an isolated linearly
non-degenerate point, i.e.,

deth(K ) 6= 0, hIA(k) =
∂TA(k)

∂kI

Even less trivial is to find all other pFp. (They are always there!)
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pFp’s as intersections of hyper surfaces

We can regard each equation TA(k) = 0 in the pFp condition as
defining a hyper-surface in the momentum space

Then the pFps appear as points of intersection of all four
hyper-surfaces corresponding to each direction A

‘Most common’ 4 convex 3-surfaces in R4 have two points of
intersection carrying opposite indices

However, other situations are also possible
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Example: Intersection of three 2-surfaces in R3

Surfaces TA(k) = 0 and their intersections in D = 3
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Example: Intersection of three 2-surfaces in R3

The surface T 2
0 (k)− T 2

1 (k)− T 2
2 (k) = 0 in D = 3
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General properties of pFp

For a specific range of parameters pFp exist and well-defined. Even
more: they are stable against small deformations of parameters

There is a topological argument that there can not be a single pFp
[Volovik’01,Hǒrava’05]:

I Associate a topological charge to each pFp K (α),

nα =
1

24π2

∫
S3
α

tr(dTT−1 ∧ dTT−1 ∧ dTT−1)

I The compactness of the Brillouin zone implies:
∑

α nα = 0 and
nα ∈ π3(S3) = Z

I In lattice gauge theory this fact is known as the Nielson-Ninomiya
theorem [Nielson-Ninomiya’81]
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Continuum limit

In the saddle point approximation the main contribution comes from
configurations in the vicinity of pFp

Depending on the value of the topological charge we get fermion
modes as follows

I nα = +1: a positive chirality Weyl fermion
I nα = −1: a negative chirality Weyl fermion
I |nα| > 1: a fundamental multiplet of U(nα) Weyl fermions

In the simplest setup (as we have seen) there are exactly two pFps
with opposite topological charges: n0 = −n1 = 1

This corresponds to one Dirac fermion
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The modes near pFp

Near a pFp Kα, α = 1, 2, we have

TA(Kα + k) = hαIA kI + O(k2), hαIA ≡ hIA(Kα) =
∂TA(k)

∂kI

∣∣∣∣
k=Kα

Fermionic fluctuations near pFps can be labelled as

ψα(k) = ψ(Kα + k)

The contribution of near pFp modes to the action

S =

∫
dDk

(2π)D

∑
α

ψ†α(k)σAh
αI
A (Kα)kIψα(k) + O(k2)
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‘Cartesian Momenta’

It is tempting to introduce the Cartesian momentum qA defined by

qA = hαIA kI

This is a good choice near pFp where dethα > 0

If dethα < 0 ⇒ orientation problem. In this case we should replace
hα by a matrix h′α, s.t. deth′α = | dethα|
There are many (equivalent?) ways to do it. We choose,

h′αIA =

{
hαI0

εαh
αI
a , a = 1, 2, 3

εα = sign dethα
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Dirac fermion, finally!

With the properly defined cartesian momenta q = h′α · k , the action
becomes

S =

∫
dDq

(2π)D
Ψ†
(
q0(I⊗ I) + qa(σa ⊗ σ3)

)
Ψ

where Ψα = h
−1/2
α ψα, and hα = | dethα|

‘Luckily’ we can identify

γ0 = I⊗ σ1, γa = γ0 · (σa ⊗ σ3) = −i(σa ⊗ σ2), Ψ̄ = Ψ† · γ0

so that the action is just the momentum space action of the Dirac
particle!
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S =

∫
dDxΨ̄(−iγA)∂AΨ
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What did we get? What could we. . .

In the minimal setup we got: (one positive chirality fermion) + (one
negative chirality fermion) = Dirac fermion with global U(1) gauge
symmetry

In general you can get a fermion in the fundamental representation of
Uε1(n1)× Uε2(n2)× · · · × Uεk (nk) with

∑k
α=1 εknk = 0

Free Dirac fermion: No gauge fields, gravity or anything like that (so
far). . .
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The graph deformations

Until now the graph was considered as rigid and the adjacency matrix
taking some special values

In particular, we required 4D translation symmetry

This resulted in Dirac fermion

Giving up translational symmetry, but keeping locality we get coupling
to

a) external U(1) gauge field
b) background geometry

Still work in progress. . .
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Conclusion&Outlook. . .

We considered the fermi particle on a graph parameterised by the
adjacency matrix

With translational invariance the model describes a Dirac particle or
particles in the IR limit at a generic point in parameter space

The particle spectrum depends on zeroes of the adjacency matrix. At
generic point in the parameter space there are two pFps

Graph deformations lead to gauge and gravity fields coupled to Dirac
particles

It is interesting to study graphs leading to realistic QFT models, like
QCD or SM. . .

. . . but what if it doesn’t make any sense as a fundamental theory?
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Applications

	 The model still makes sense as an economical discretisation of a
fermionic gauge theory. . .
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