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Prologue

Without vector notation, Maxwell’s original equations consisted of eight (or twenty)

formulas.

It was the rotational SO(3) or Lorentz SO(1, 3) symmetry that reorganized them into

four or two compact equations.

This talk aims to show that

Type IIA & IIB supergravities may undergo an analogous ‘simplification’ and ‘unification’,

restructured by ‘Stringy Differential Geometry’,

in the name of N = 2 D = 10 Supersymmetric Double Field Theory.
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Talk based on works with Imtak Jeon & Kanghoon Lee

Differential geometry with a projection: Application to double field theory

JHEP 1104:014 arXiv:1011.1324

Double field formulation of Yang-Mills theory PLB 701:260(2011) arXiv:1102.0419

Stringy differential geometry, beyond Riemann PRD 84:044022(2011) arXiv:1105.6294

Incorporation of fermions into double field theory JHEP 1111:025 arXiv:1109.2035

Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity

PRD Rapid Comm. 85:081501 (2012) arXiv:1112.0069

Ramond-Ramond Cohomology and O(D,D) T-duality JHEP 1209:079 arXiv:1206.3478

Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10

Supersymmetric Double Field Theory PLB723:245(2013) arXiv:1210.5078

Comments on double field theory and diffeomorphisms JHEP 1306:098 arXiv:1304.5946

Covariant action for a string in doubled yet gauged spacetime

NPB 880:134(2014) arXiv:1307.8377
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Related works on U-duality

U-geometry : SL(5) with Yoonji Suh, JHEP 04 (2013) 147 arXiv:1302.1652

M-theory and F-theory from a Duality Manifest Action

with Chris Blair and Emanuel Malek, to appear in JHEP arXiv:1311.5109
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Introduction

In Riemannian geometry, the fundamental object is the metric, gµν .

Diffeomorphism: ∂µ −→ ∇µ = ∂µ + Γµ

∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλ
µν = 1

2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

Curvature: [∇µ,∇ν ] −→ Rκλµν −→ R

On the other hand, string theory puts gµν , Bµν and φ on an equal footing,

as they form a multiplet of T-duality.

This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.

Basically, Riemannian geometry is for Particle theory. String theory requires a

novel differential geometry which geometrizes the whole NS-NS sector.
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Closed string

The low energy effective action of gµν , Bµν , φ is well known in terms of Riemannian

geometry

Seff. =

Z

ΣD

p

−ge−2φ
“

Rg + 4∂µφ∂
µφ− 1

12 HλµνHλµν
”

.

Diffeomorphism and B-field gauge symmetry are manifest,

xµ → xµ + δxµ , Bµν → Bµν + ∂µΛν − ∂νΛµ .

Though not manifest, this enjoys T-duality which mixes {gµν ,Bµν , φ}. Buscher
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T-duality

Redefine the dilaton,

e−2d =
p

−ge−2φ

Set a (D + D) × (D + D) symmetric matrix, Duff

HAB =

0

B

B

@

g−1 −g−1B

Bg−1 g − Bg−1B

1

C

C

A

Hereafter, A,B, .... : ‘doubled’ (D + D)-dimensional vector indices, with D = 10 for SUSY.
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T-duality

T-duality is realized by an O(D,D) rotation, Tseytlin, Siegel

HAB −→ MA
CMB

DHCD , d −→ d ,

where

M ∈ O(D,D) .
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T-duality

O(D,D) metric,

JAB :=

0

B

B

@

0 1

1 0

1

C

C

A

freely raises or lowers the (D + D)-dimensional vector indices.
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Double Field Theory (DFT), 2009 - 2010

Hull and Zwiebach , later with Hohm

SDFT =

Z

ΣD

e−2d LDFT(H, d) ,

where

LDFT(H, d) = HAB
“

4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD

”

+4∂AHAB∂Bd − ∂A∂BHAB .

Spacetime is formally doubled, yA = (x̃µ, xν), A = 1, 2, · · · ,D+D.

Yet, Double Field Theory (for NS-NS sector) is a D-dimensional theory written in terms

of (D + D)-dimensional language, i.e. tensors.

All the fields MUST live on a D-dimensional null hyperplane or ‘section’, ΣD .
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Section condition in Double Field Theory

By stating DFT lives on a D-dimensional null hyperplane, we mean that, the O(D,D)

d’Alembert operator is trivial, acting on arbitrary fields as well as their products:

∂A∂
AΦ = 2

∂2

∂x̃µ∂xµ
Φ ≡ 0 , ∂AΦ1∂

AΦ2 ≡ 0 : section condition

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



What does O(D, D) do in Double Field Theory ?

O(D,D) rotates the D-dimensional null hyperplane where DFT lives.

A priori, the O(D,D) structure in DFT is a ‘meta-symmetry’ or ‘hidden symmetry’ rather

than a Noether symmetry.

Only after dimensional reductions,

D = d + n =⇒ d ,

it can generate a Noether symmetry,

O(n, n)

which is a subgroup of O(D,D) and ‘enhanced’ from O(n).
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String worldsheet origin of the section condition

Closed string

XL(σ
+) = 1

2 (x + x̃) + 1
2 (p + w)σ+ + · · · ,

XR(σ−) = 1
2 (x − x̃) + 1

2 (p − w)σ− + · · · .

Under T-duality,

XL + XR −→ XL − XR ,

such that

(x, x̃, p,w) −→ (x̃ , x,w , p) .

Level matching condition for the massless sector,

p · w ≡ 0 ⇐⇒ ∂A∂
A = 2

∂2

∂xµ∂x̃µ

≡ 0 .
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Section condition in Double Field Theory

Up to O(D,D) rotation, we may further choose to set

∂

∂x̃µ

≡ 0 .

Then DFT reduces to the effective action:

SDFT =⇒ Seff. =

Z

ΣD

p

−ge−2φ
“

Rg + 4(∂φ)2 − 1
12 H2

”

.
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Double Field Theory (DFT), 2009 - 2010

Thus, in the DFT formulation of the effective action by Hull, Zwiebach & Hohm the

O(D,D) T-duality structure is manifest.

What about the diffeomorphism and the B-field gauge symmetry?
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Diffeomorphism & B-field gauge symmetry

Introducing a unifying (D + D)-dimensional parameter,

XA = (Λµ, δxν)

it is possible to spell a unifying transformation rule, up to the section condition,

δXHAB ≡ XC∂CHAB + 2∂[AXC]HC
B + 2∂[BXC]HA

C ,

δX
`

e−2d
´

≡ ∂A
`

XAe−2d
´

.

In fact, these coincide with the generalized Lie derivative,

δXHAB = L̂XHAB , δX (e−2d ) = L̂X (e−2d ) = −2(L̂X d)e−2d .
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Generalized Lie derivative

Definition Siegel, Courant, Grana ...

L̂X TA1···An := XB∂BTA1···An + ω∂BXBTA1···An +
n

X

i=1

(∂Ai
XB − ∂BXAi

)TA1···Ai−1
B

Ai+1···An .

cf. ordinary one in Riemannian geoemtry,

LX TA1···An := XB∂BTA1···An + ω∂BXBTA1···An +
n

X

i=1

∂Ai
XBTA1···Ai−1BAi+1···An .

Commutator of the generalized Lie derivatives,

[L̂X , L̂Y ] ≡ L̂[X ,Y ]C
,

where [X ,Y ]C denotes the C-bracket,

[X ,Y ]AC := XB∂BY A − Y B∂BXA + 1
2 Y B∂AXB − 1

2 XB∂AYB .
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Diffeomorphism & B-field gauge symmetry

Brute force computation can show that

L̂XHAB ≡ XC∂CHAB + 2∂[AXC]HC
B + 2∂[BXC]HA

C ,

L̂X
`

e−2d
´

≡ ∂A
`

XAe−2d
´

,

are symmetry of the action by Hull, Zwiebach & Hohm

SDFT =

Z

ΣD

e−2d LDFT(H, d) ,

LDFT(H, d) = HAB
“

4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD

”

+4∂AHAB∂Bd − ∂A∂BHAB .

This expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.
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B + 2∂[BXC]HA

C ,

L̂X
`

e−2d
´

≡ ∂A
`

XAe−2d
´

,

are symmetry of the action by Hull, Zwiebach & Hohm

SDFT =

Z

ΣD

e−2d LDFT(H, d) ,

LDFT(H, d) = HAB
“

4∂A∂Bd − 4∂Ad∂Bd + 1
8∂AHCD∂BHCD − 1

2∂AHCD∂CHBD

”

+4∂AHAB∂Bd − ∂A∂BHAB .

The underlying differential geometry is missing here.
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Stringy differential geometry and

Supersymmetric Double Field Theory (SDFT)

The remaining of this talk is structured to explain our works :

[ 1011.1324, 1105.6294, 1109.2035, 1112.0069, 1206.3478, 1210.5078, 1304.5946 ]

Proposal of a underlying stringy differential geometry for DFT

The full order construction of N = 2 D = 10 SDFT

which ‘unifies’ IIA and IIB SUGRAs and ‘contains’ more .

The reduction of SDFT to ordinary SUGRA via gauge fixing.
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Symmetries of N = 2 D = 10 SDFT

O(D,D) T-duality: Meta-symmetry

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin (1,D−1)L × Spin (D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

All the bosonic symmetries will be realized manifestly and s imultaneously.

For this, it is crucial to have the right field variables .

We shall postulate O (D,D) covariant genuine DFT-field-variables, and NOT employ

Riemannian variables such as metric, B-field, R-R p-forms.
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Spacetime is doubled yet gauged 1304.5946 1307.8377

All the fields are required to satisfy the section condition,

∂A∂
AΦ ≡ 0 , ∂AΦ1∂

AΦ2 ≡ 0 ,

which implies an invariance under a shift set by a ‘derivative-index-valued’ vector,

Φ(x + ∆) = Φ(x) if ∆A = ϕ∂Aϕ′ for arbitrary functions ϕ and ϕ′ .

The section condition implies, and in fact can be shown to be e quivalent to,

an equivalence relation for the coordinates,

xA ∼ xA + ϕ∂Aϕ′

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in the coordinate space.

=⇒ The diffeomorphism symmetry means an invariance under arbitrary

reparametrizations of the ‘gauge orbits’.

Spacetime is doubled yet gauged! (further remarks to come at the end of this talk).
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Field contents of Type II SDFT

Bosons

NS-NS sector

8

>

>

<

>

>

:

DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cα
ᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψα
p̄ , ψ′ᾱ

p
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Field contents of Type II SDFT

Bosons

NS-NS sector

8

>

>

<

>

>

:

DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cα
ᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψα
p̄ , ψ′ᾱ

p

Index Representation Metric (raising/lowering indices)

A, B, · · · O(D, D) & DFT-diffeom. vector JAB

p, q, · · · Spin (1, D−1)L vector ηpq = diag (− + + · · ·+)

α, β, · · · Spin (1, D−1)L spinor C+αβ , (γp)T = C+γp C−1
+

p̄, q̄, · · · Spin (D−1, 1)R vector η̄p̄q̄ = diag (+ − −· · · −)

ᾱ, β̄, · · · Spin (D−1, 1)R spinor C̄+ᾱβ̄ , (γ̄p̄)T = C̄+γ̄p̄ C̄−1
+
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Field contents of Type II SDFT

Bosons

NS-NS sector

8

>

>

<

>

>

:

DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cα
ᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψα
p̄ , ψ′ᾱ

p

R-R potential and Fermions carry NOT (D + D)-dimensional

BUT undoubled D-dimensional indices.
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Field contents of Type II SDFT

Bosons

NS-NS sector

8

>

>

<

>

>

:

DFT-dilaton: d

DFT-vielbeins: VAp , V̄Ap̄

R-R potential: Cα
ᾱ

Fermions

DFT-dilatinos: ρα , ρ′ᾱ

Gravitinos: ψα
p̄ , ψ′ᾱ

p

A priori, O(D,D) rotates only the O (D,D) vector indices (capital Roman), and

the R-R sector and all the fermions are O (D,D) T-duality singlet.

The usual IIA ⇔ IIB exchange will follow only after fixing a gauge.
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The DFT-dilaton gives rise to a scalar density with weight one,

e−2d .

The DFT-vielbeins satisfy the four defining properties:

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ , VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

For fermions, the gravitinos and the DFT-dilatinos are not twenty, but ten-dimensional

Majorana-Weyl spinors,

γ(D+1)ψp̄ = c ψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′
p = c′ψ′

p , γ̄(D+1)ρ′ = −c′ρ′ ,

where c and c′ are arbitrary independent two sign factors, c2 = c′2 = 1.

Lastly for the R-R sector, we set the R-R potential, Cα
ᾱ, to be in the bi-fundamental

spinorial representation of Spin (1,D−1)L × Spin (D−1, 1)R . It possesses the chirality,

γ(D+1)Cγ̄(D+1) = cc ′ C .
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Spin (1,D−1)L × Spin (D−1, 1)R chiralities:

γ(D+1)ψp̄ = c ψp̄ , γ(D+1)ρ = −c ρ ,

γ̄(D+1)ψ′
p = c′ψ′

p , γ̄(D+1)ρ′ = −c′ρ′ ,

γ(D+1)Cγ̄(D+1) = cc ′ C .

A priori all the possible four different sign choices are equivalent up to

Pin(1,D−1)L × Pin(D−1, 1)R rotations.

That is to say, N = 2 D = 10 SDFT is chiral with respect to both Pin(1,D−1)L and

Pin(D−1, 1)R , and the theory is unique, unlike IIA/IIB SUGRAs.

Hence, without loss of generality, we may safely set

c ≡ c′ ≡ +1 .

Later we shall see that while the theory is unique, it contains type IIA and IIB

supergravity backgrounds as different kind of solutions.
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The DFT-vielbeins generate a pair of rank-two projectors,

PAB := VA
pVBp , PA

BPB
C = PA

C , P̄AB := V̄A
p̄V̄Bp̄ , P̄A

B P̄B
C = P̄A

C ,

which are symmetric, orthogonal and complementary to each other,

PAB = PBA , P̄AB = P̄BA , PA
BP̄B

C = 0 , PA
B + P̄A

B = δA
B .

It follows

PA
BVBp = VAp , P̄A

B V̄Bp̄ = V̄Ap̄ , P̄A
BVBp = 0 , PA

BV̄Bp̄ = 0 .

Note also

HAB = PAB − P̄AB .

However, our emphasis lies on the ‘projectors’ rather than the “generalized metric".
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However, our emphasis lies on the ‘projectors’ rather than the “generalized metric".
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Further, we construct a pair of rank-six projectors,

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D , PCAB
DEFPDEF

GHI = PCAB
GHI ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D , P̄CAB
DEF P̄DEF

GHI = P̄CAB
GHI ,

which are symmetric and traceless,

PCABDEF = PDEFCAB = PC[AB]D[EF ] , P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ] ,

PA
ABDEF = 0 , PABPABCDEF = 0 , P̄A

ABDEF = 0 , P̄ABP̄ABCDEF = 0 .
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Having all the ‘right’ field-variables prepared, we now disc uss their derivatives or

what we call, ‘semi-covariant derivative’.

The meaning of “semi-covariant" will be clarified later.
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Semi-covariant derivatives

For each gauge symmetry we assign a corresponding connection,

ΓA for the DFT-diffeomorphism (generalized Lie derivative),

ΦA for the ‘unbarred’ local Lorentz symmetry, Spin (1,D−1)L,

Φ̄A for the ‘barred’ local Lorentz symmetry, Spin (D−1, 1)R .

Combining all of them, we introduce master ‘semi-covariant’ derivative

DA = ∂A + ΓA + ΦA + Φ̄A .
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It is also useful to set

∇A = ∂A + ΓA , DA = ∂A + ΦA + Φ̄A .

The former is the ‘semi-covariant’ derivative for the DFT-diffeomorphism (set by the

generalized Lie derivative),

∇CTA1A2···An := ∂CTA1A2···An − ωΓB
BCTA1A2···An +

n
X

i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

And the latter is the covariant derivative for the Spin (1,D−1)L × Spin (D−1, 1)R local

Lorenz symmetries.
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By definition, the master derivative annihilates all the ‘constants’,

DAJBC = ∇AJBC = ΓAB
DJDC + ΓAC

DJBD = 0 ,

DAηpq = DAηpq = ΦAp
rηrq + ΦAq

rηpr = 0 ,

DAη̄p̄q̄ = DAη̄p̄q̄ = Φ̄Ap̄
r̄ η̄r̄ q̄ + Φ̄Aq̄

r̄ η̄p̄r̄ = 0 ,

DAC+αβ = DAC+αβ = ΦAα
δC+δβ + ΦAβ

δC+αδ = 0 ,

DAC̄+ᾱβ̄ = DAC̄+ᾱβ̄ = Φ̄Aᾱ
δ̄C̄+δ̄β̄ + Φ̄Aβ̄

δ̄C̄+ᾱδ̄ = 0 ,

including the gamma matrices,

DA(γp)α
β = DA(γp)α

β = ΦA
p

q(γq)α
β + ΦA

α
δ(γp)δ

β − (γp)α
δΦA

δ
β = 0 ,

DA(γ̄p̄)ᾱ
β̄ = DA(γ̄p̄)ᾱ

β̄ = Φ̄A
p̄

q̄(γ̄q̄)ᾱ
β̄ + Φ̄A

ᾱ
δ̄(γ̄p̄)δ̄

β̄ − (γ̄p̄)ᾱ
δ̄Φ̄A

δ̄
β̄ = 0 .
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It follows then that the connections are all anti-symmetric,

ΓABC = −ΓACB ,

ΦApq = −ΦAqp , ΦAαβ = −ΦAβα ,

Φ̄Ap̄q̄ = −Φ̄Aq̄p̄ , Φ̄Aᾱβ̄ = −Φ̄Aβ̄ᾱ ,

and as usual,

ΦA
α

β = 1
4ΦApq(γpq)α

β , Φ̄A
ᾱ

β̄ = 1
4 Φ̄Ap̄q̄(γ̄p̄q̄)ᾱ

β̄ .
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Further, the master derivative is compatible with the whole NS-NS sec tor,

DAd = ∇Ad := − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

DAVBp = ∂AVBp + ΓAB
CVCp + ΦAp

qVBq = 0 ,

DAV̄Bp̄ = ∂AV̄Bp̄ + ΓAB
C V̄Cp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

It follows that

DAPBC = ∇APBC = 0 , DAP̄BC = ∇AP̄BC = 0 ,

and the connections are related to each other,

ΓABC = VB
pDAVCp + V̄B

p̄DAV̄Cp̄ ,

ΦApq = V B
p∇AVBq ,

Φ̄Ap̄q̄ = V̄ B
p̄∇AV̄Bq̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Here

Γ0
CAB = 2

`

P∂CPP̄
´

[AB]
+ 2

`

P̄[A
DP̄B]

E − P[A
DPB]

E
´

∂DPEC

− 4
D−1

`

P̄C[AP̄B]
D + PC[APB]

D
´`

∂Dd + (P∂E PP̄)[ED]

´

,

and, with the corresponding derivative, ∇0
A = ∂A + Γ0

A,

Φ0
Apq = V B

p∇0
AVBq = V B

p∂AVBq + Γ0
ABCV B

pV C
q ,

Φ̄0
Ap̄q̄ = V̄ B

p̄∇0
AV̄Bq̄ = V̄ B

p̄∂AV̄Bq̄ + Γ0
ABC V̄ B

p̄V̄ C
q̄ .
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The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Further, the extra pieces, ∆Apq and ∆̄Ap̄q̄ , correspond to the torsion of SDFT, which

must be covariant and, in order to maintain DAd = 0, must satisfy

∆ApqV Ap = 0 , ∆̄Ap̄q̄ V̄ Ap̄ = 0 .

Otherwise they are arbitrary.

As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

ρ̄γpqψA , ψ̄p̄γAψq̄ , ρ̄γApqρ , ψ̄p̄γApqψ
p̄ ,

where we set ψA = V̄A
p̄ψp̄, γA = VA

pγp .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Further, the extra pieces, ∆Apq and ∆̄Ap̄q̄ , correspond to the torsion of SDFT, which

must be covariant and, in order to maintain DAd = 0, must satisfy

∆ApqV Ap = 0 , ∆̄Ap̄q̄ V̄ Ap̄ = 0 .

Otherwise they are arbitrary.

As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

ρ̄γpqψA , ψ̄p̄γAψq̄ , ρ̄γApqρ , ψ̄p̄γApqψ
p̄ ,

where we set ψA = V̄A
p̄ψp̄, γA = VA

pγp .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



The connections assume the following most general forms:

ΓCAB = Γ0
CAB + ∆CpqVA

pVB
q + ∆̄Cp̄q̄V̄A

p̄V̄B
q̄ ,

ΦApq = Φ0
Apq + ∆Apq ,

Φ̄Ap̄q̄ = Φ̄0
Ap̄q̄ + ∆̄Ap̄q̄ .

Further, the extra pieces, ∆Apq and ∆̄Ap̄q̄ , correspond to the torsion of SDFT, which

must be covariant and, in order to maintain DAd = 0, must satisfy

∆ApqV Ap = 0 , ∆̄Ap̄q̄ V̄ Ap̄ = 0 .

Otherwise they are arbitrary.

As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

ρ̄γpqψA , ψ̄p̄γAψq̄ , ρ̄γApqρ , ψ̄p̄γApqψ
p̄ ,

where we set ψA = V̄A
p̄ψp̄, γA = VA

pγp .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



The ‘torsionless’ connection,

Γ0
CAB = 2

`

P∂CPP̄
´

[AB]
+ 2

`

P̄[A
DP̄B]

E − P[A
DPB]

E
´

∂DPEC

− 4
D−1

`

P̄C[AP̄B]
D + PC[APB]

D
´`

∂Dd + (P∂E PP̄)[ED]

´

,

further obeys

Γ0
ABC + Γ0

BCA + Γ0
CAB = 0 ,

and

PCAB
DEF Γ0

DEF = 0 , P̄CAB
DEF Γ0

DEF = 0 .
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In fact, the torsionless connection,

Γ0
CAB = 2

`

P∂CPP̄
´

[AB]
+ 2

`

P̄[A
DP̄B]

E − P[A
DPB]

E
´

∂DPEC

− 4
D−1

`

P̄C[AP̄B]
D + PC[APB]

D
´`

∂Dd + (P∂E PP̄)[ED]

´

,

is uniquely determined by requiring

∇AJBC = 0 ⇐⇒ ΓCAB + ΓCBA = 0 ,

∇APBC = 0 ,

∇Ad = 0 ,

ΓABC + ΓCAB + ΓBCA = 0 ,

(P + P̄)CAB
DEF ΓDEF = 0 .
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Having the two symmetric properties, ΓA(BC) = 0, Γ[ABC] = 0, we may safely replace

∂A by ∇0
A = ∂A + Γ0

A in L̂X and also in [X ,Y ]AC ,

L̂X TA1···An = XB∇0
BTA1···An + ω∇0

BXBTA1···An +
Pn

i=1(∇0
Ai

XB −∇0
BXAi

)TA1···Ai−1
B

Ai+1···An ,

[X ,Y ]AC =XB∇0
BY A − Y B∇0

BXA + 1
2 Y B∇0AXB − 1

2 XB∇0AYB ,

just like in Riemannian geometry.

In this way, Γ0
ABC is the DFT analogy of the Christoffel connection.

Precisely the same expression was later re-derived by Hohm & Zwiebach.
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Semi-covariant curvature

The usual curvatures for the three connections,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED ,

FABpq = ∂AΦBpq − ∂BΦApq + ΦApr ΦB
r
q − ΦBpr ΦA

r
q ,

F̄ABp̄q̄ = ∂AΦ̄Bp̄q̄ − ∂BΦ̄Ap̄q̄ + Φ̄Ap̄r̄ Φ̄B
r̄
q̄ − Φ̄Bp̄r̄ Φ̄A

r̄
q̄ ,

are, from [DA,DB]VCp = 0 and [DA,DB ]V̄Cp̄ = 0, related to each other,

RABCD = FCDpqVA
pVB

q + F̄CDp̄q̄ V̄A
p̄V̄B

q̄ .

However, the crucial object in DFT turns out to be

SABCD := 1
2

“

RABCD + RCDAB − ΓE
ABΓECD

”

,

which we name semi-covariant curvature.
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Properties of the semi-covariant curvature

Precisely the same symmetric property as the Riemann curvature,

SABCD = 1
2

`

S[AB][CD] + S[CD][AB]

´

,

S0
[ABC]D = 0 .

Projection property,

PI
AP̄J

BPK
C P̄L

DSABCD ≡ 0 .

Under arbitrary variation of the connection, δΓABC , it transforms as

δSABCD = D[AδΓB]CD + D[CδΓD]AB − 3
2Γ[ABE ]δΓ

E
CD − 3

2 Γ[CDE ]δΓ
E

AB ,

δS0
ABCD = D[AδΓ

0
B]CD + D[CδΓ

0
D]AB .
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‘Semi-covariance’

Generically, under δX PAB = L̂X PAB , δX d = L̂X d (DFT-diffeomorphism), the variation of

∇CTA1···An contains an anomalous non-covariant part,

δX
`

∇CTA1···An

´

≡ L̂X
`

∇CTA1···An

´

+
X

i

2(P+P̄)CAi
BFDE∂F∂[DXE ]T···B··· .

Hence, it is not DFT-diffeomorphism covariant,

δX 6= L̂X .

However, the characteristic property of our ‘semi-covariant’ derivative is that, combined

with the projectors it can generate various fully covariant quantities, as listed below.
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with the projectors it can generate various fully covariant quantities, as listed below.
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Projector-aided, fully covariant derivatives

For O(D,D) tensors:

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn ,

P̄C
DPA1

B1 PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn ,

PAB P̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇ATBD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇ATBD1D2···Dn

9

>

>

=

>

>

;

Divergences ,

PAB P̄C1
D1 P̄C2

D2 · · · P̄Cn
Dn∇A∇BTD1D2···Dn ,

P̄ABPC1
D1 PC2

D2 · · ·PCn
Dn∇A∇BTD1D2···Dn

9

>

>

=

>

>

;

Laplacians .
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Projector-aided, fully covariant derivatives

For Spin (1,D−1)L × Spin (D−1, 1)R tensors:

DpTq̄1q̄2···q̄n , Dp̄Tq1q2···qn ,

DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn ,

DpDpTq̄1q̄2···q̄n , Dp̄Dp̄Tq1q2···qn ,

where we set

Dp := V A
pDA , Dp̄ := V̄ A

p̄DA .

These are the pull-back of the previous results using the DFT-vielbeins.
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Projector-aided, fully covariant derivatives

Dirac operators for fermions, ρα, ψα
p̄ , ρ′ᾱ, ψ′ᾱ

p :

γpDpρ = γADAρ , γpDpψp̄ = γADAψp̄ ,

Dp̄ρ , Dp̄ψ
p̄ = DAψ

A ,

ψ̄Aγp(DAψq̄ − 1
2Dq̄ψA) ,

γ̄p̄Dp̄ρ
′ = γ̄ADAρ

′ , γ̄p̄Dp̄ψ
′
p = γ̄ADAψ

′
p ,

Dpρ
′ , Dpψ

′p = DAψ
′A ,

ψ̄′Aγ̄p̄(DAψ
′
q − 1

2Dqψ
′
A) .

Incorporation of fermions into DFT 1109.2035
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Projector-aided, fully covariant derivatives

For Spin (1,D−1)L × Spin (D−1, 1)R bi-fundamental spinorial fields, T α
β̄ :

D+T := γADAT + γ(D+1)DAT γ̄A ,

D−T := γADAT − γ(D+1)DAT γ̄A .

Especially for the torsionless case, the corresponding operators are nilpotent

(D0
+)2T ≡ 0 , (D0

−)2T ≡ 0 ,

and hence, they define O(D,D) covariant cohomology.

The field strength of the R-R potential, Cα
ᾱ, is then defined by

F := D0
+C .

Thanks to the nilpotency, the R-R gauge symmetry is simply realized

δC = D0
+∆ =⇒ δF = D0

+(δC) = (D0
+)2∆ ≡ 0 .
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Projector-aided, fully covariant curvatures

Scalar curvature:

(PABPCD − P̄AB P̄CD)SACBD .

“Ricci” curvature:

Spq̄ + 1
2Dr̄ ∆̄pq̄

r̄ + 1
2Dr∆q̄p

r ,

where we set

Spq̄ := V A
pV̄ B

q̄SAB , SAB = SACB
C .
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Combining all the results above, we are now ready to spell

Type II i.e. N = 2 D = 10 Supersymmetric Double Field Theory
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
h

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2 Tr(FF̄) − i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD⋆
pρ− iψ̄p̄D⋆

p̄ρ− i 1
2 ψ̄

p̄γqD⋆
qψp̄ − i 1

2 ρ̄
′γ̄p̄D′⋆

p̄ ρ
′ + iψ̄′pD′⋆

p ρ
′ + i 1

2 ψ̄
′pγ̄q̄D′⋆

q̄ ψ
′
p

i

.

where F̄ ᾱ
α denotes the charge conjugation, F̄ := C̄−1

+ FT C+.

As they are contracted with the DFT-vielbeins properly,

every term in the Lagrangian is fully covariant.
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
h

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1
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i

.

Torsions: The semi-covariant curvature, SABCD , is given by the connection,

ΓABC = Γ0
ABC + i 1

3 ρ̄γABCρ− 2i ρ̄γBCψA − i 1
3 ψ̄

p̄γABCψp̄ + 4iψ̄BγAψC

+ i 1
3 ρ̄

′γ̄ABCρ
′ − 2i ρ̄′γ̄BCψ

′
A − i 1

3 ψ̄
′p γ̄ABCψ

′
p + 4iψ̄′

B γ̄Aψ
′
C ,

which corresponds to the solution for 1.5 formalism.

The master derivatives in the fermionic kinetic terms are twofold:

D⋆
A for the unprimed fermions and D′⋆

A for the primed fermions, set by

Γ⋆
ABC = ΓABC − i 11

96 ρ̄γABCρ+ i 5
4 ρ̄γBCψA + i 5

24 ψ̄
p̄γABCψp̄ − 2iψ̄BγAψC + i 5

2 ρ̄
′γ̄BCψ

′
A ,

Γ′⋆
ABC = ΓABC − i 11

96 ρ̄
′γ̄ABCρ

′ + i 5
4 ρ̄

′γ̄BCψ
′
A + i 5

24 ψ̄
′p γ̄ABCψ

′
p − 2iψ̄′

B γ̄Aψ
′
C + i 5

2 ρ̄γBCψA .
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Type II N = 2 D = 10 SDFT [ 1210.5078 ]

The N = 2 supersymmetry transformation rules are

δεd = −i 1
2 (ε̄ρ+ ε̄′ρ′) ,

δεVAp = i V̄A
q̄(ε̄′γ̄q̄ψ

′
p − ε̄γpψq̄) ,

δεV̄Ap̄ = iVA
q(ε̄γqψp̄ − ε̄′γ̄p̄ψ

′
q) ,

δεC = i 1
2 (γpεψ̄′

p − ερ̄′ − ψp̄ ε̄
′γ̄p̄ + ρε̄′) + Cδεd − 1

2 (V̄ A
q̄ δεVAp)γ(d+1)γpCγ̄q̄ ,

δερ = −γpD̂pε+ i 1
2γ

pε ψ̄′
pρ

′ − iγpψq̄ ε̄′γ̄q̄ψ
′
p ,

δερ
′ = −γ̄p̄D̂′

p̄ε
′ + i 1

2 γ̄
p̄ε′ ψ̄p̄ρ− i γ̄q̄ψ′

p ε̄γ
pψq̄ ,

δεψp̄ = D̂p̄ε+ (F − i 1
2γ

qρ ψ̄′
q + i 1

2ψ
q̄ ρ̄′γ̄q̄)γ̄p̄ε

′ + i 1
4 εψ̄p̄ρ+ i 1

2ψp̄ ε̄ρ ,

δεψ
′
p = D̂′

pε
′ + (F̄ − i 1

2 γ̄
q̄ρ′ψ̄q̄ + i 1

2ψ
′q ρ̄γq)γpε+ i 1

4ε
′ψ̄′

pρ
′ + i 1

2ψ
′
p ε̄

′ρ′ ,

where

Γ̂ABC = ΓABC − i 17
48 ρ̄γABCρ+ i 5

2 ρ̄γBCψA + i 1
4 ψ̄

p̄γABCψp̄ − 3iψ̄′
B γ̄Aψ

′
C ,

Γ̂′
ABC = ΓABC − i 17

48 ρ̄
′γ̄ABCρ

′ + i 5
2 ρ̄

′γ̄BCψ
′
A + i 1

4 ψ̄
′p γ̄ABCψ

′
p − 3iψ̄BγAψC .
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i

.

The Lagrangian is pseudo : It is necessary to impose a self-duality of the R-R field

strength by hand,

F̃− :=
“

1 − γ(D+1)
” “

F − i 1
2ρρ̄

′ + i 1
2γ

pψq̄ψ̄
′
p γ̄

q̄
”

≡ 0 .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Lagrangian :

LType II = e−2d
h

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2 Tr(FF̄) − i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD⋆
pρ− iψ̄p̄D⋆

p̄ρ− i 1
2 ψ̄

p̄γqD⋆
qψp̄ − i 1

2 ρ̄
′γ̄p̄D′⋆

p̄ ρ
′ + iψ̄′pD′⋆

p ρ
′ + i 1

2 ψ̄
′pγ̄q̄D′⋆

q̄ ψ
′
p

i

.

The Lagrangian is pseudo : It is necessary to impose a self-duality of the R-R field

strength by hand,

F̃− :=
“

1 − γ(D+1)
” “

F − i 1
2ρρ̄

′ + i 1
2γ

pψq̄ψ̄
′
p γ̄

q̄
”

≡ 0 .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Type II N = 2 D = 10 SDFT [ 1210.5078 ]

Under the N = 2 SUSY transformation rule, the Lagrangian transforms, disregarding

total derivatives, as

δεLType II ≃ − 1
8 e−2d V̄ A

q̄δεVApTr
“

γpF̃−γ̄q̄F̃−
”

,

where

F̃− :=
“

1 − γ(D+1)
” “

F − i 1
2ρρ̄

′ + i 1
2γ

pψq̄ψ̄
′
pγ̄

q̄
”

.

This verifies, to the full order in fermions, the supersymmetric invariance of the action,

modulo the self-duality.

For a nontrivial consistency check, the supersymmetric variation of the self-duality

relation is precisely closed by the equations of motion for the gravitinos,

δεF̃− = −i
“

D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ
′
p

”

ε̄′γ̄p̄ − iγpε
“

D̃′
pρ̄

′ + D̃′
p̄ψ̄

′
p γ̄

p̄ − ψ̄p̄γpF γ̄p̄
”

.
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Equations of Motion for Bosons

DFT-vielbein:

Spq̄+Tr(γpF γ̄q̄F̄)+i ρ̄γpD̃q̄ρ+2iψ̄q̄D̃pρ−iψ̄p̄γpD̃q̄ψp̄+i ρ̄′γ̄q̄D̃pρ
′+2iψ̄′

pD̃q̄ρ
′−iψ̄′q γ̄q̄D̃pψ

′
q= 0.

This is DFT-generalization of Einstein equation.

DFT-dilaton:

LType II = 0 .

Namely, the on-shell Lagrangian vanishes!

R-R potential:

D0
−

“

F − iρρ̄′ + iγrψs̄ψ̄
′
r γ̄

s̄
”

= 0 ,

which is automatically met by the self-duality, together with the nilpotency of D0
+,

D0
−

“

F − iρρ̄′ + iγrψs̄ψ̄
′
r γ̄

s̄
”

= D0
−

“

γ(D+1)F
”

= −γ(D+1)D0
+F = −γ(D+1)(D0

+)2C = 0 .

The 1.5 formalism works: The variation of the Lagrangian induced by that of the

connection is trivial, δLType II = δΓABC × 0 .
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DFT-vielbein:

Spq̄+Tr(γpF γ̄q̄F̄)+i ρ̄γpD̃q̄ρ+2iψ̄q̄D̃pρ−iψ̄p̄γpD̃q̄ψp̄+i ρ̄′γ̄q̄D̃pρ
′+2iψ̄′

pD̃q̄ρ
′−iψ̄′q γ̄q̄D̃pψ

′
q= 0.

This is DFT-generalization of Einstein equation.

DFT-dilaton:

LType II = 0 .

Namely, the on-shell Lagrangian vanishes!

R-R potential:

D0
−

“

F − iρρ̄′ + iγrψs̄ψ̄
′
r γ̄

s̄
”

= 0 ,

which is automatically met by the self-duality, together with the nilpotency of D0
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−
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Equations of Motion for Fermions

DFT-dilationos,

γpD̃pρ− D̃p̄ψ
p̄ − Fρ′ = 0 , γ̄p̄D̃p̄ρ

′ − D̃pψ
′p − F̄ρ = 0 .

Gravitinos,

D̃p̄ρ+ γpD̃pψp̄ − γpF γ̄p̄ψ
′
p = 0 , D̃pρ

′ + γ̄p̄D̃p̄ψ
′
p − γ̄p̄F̄γpψp̄ = 0 .
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Truncation to N = 1 D = 10 SDFT [1112.0069]

Turning off the primed fermions and the R-R sector truncates the N = 2 D = 10 SDFT

to N = 1 D = 10 SDFT,

LN=1 = e−2d
h

1
8

`

PABPCD − P̄AB P̄CD
´

SACBD + i 1
2 ρ̄γ

AD⋆
Aρ− iψ̄AD⋆

Aρ− i 1
2 ψ̄

BγAD⋆
AψB

i

.

N = 1 Local SUSY:

δεd = −i 1
2 ε̄ρ ,

δεVAp = −i ε̄γpψA ,

δεV̄Ap̄ = i ε̄γAψp̄ ,

δερ = −γAD̂Aε ,

δεψp̄ = V̄ A
p̄D̂Aε− i 1

4 (ρ̄ψp̄)ε+ i 1
2 (ε̄ρ)ψp̄ .
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N = 1 SUSY Algebra [1112.0069]

Commutator of supersymmetry reads

[δε1 , δε2 ] ≡ L̂X3
+ δε3 + δso(1,9)L

+ δso(9,1)R
+ δtrivial .

where

XA
3 = i ε̄1γ

Aε2 , ε3 = i 1
2 [(ε̄1γ

pε2)γpρ+ (ρ̄ε2)ε1 − (ρ̄ε1)ε2] , etc.

and δtrivial corresponds to the fermionic equations of motion.
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Reduction to SUGRA

Now we are going to

parametrize the DFT-field-variables in terms of Riemannian variables,

discuss the ‘unification’,

choose a diagonal gauge of Spin (1,D−1)L × Spin (D−1, 1)R ,

and reduce SDFT to SUGRAs.

However, we emphasize that SDFT can describe not only Riemannian (SUGRA)

backgrounds but also new type of non-Riemannian (“metric-l ess") backgrounds.
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Parametrization: Reduction to Generalized Geometry

As stressed before, one of the characteristic features in our construction of N = 2 D = 10

SDFT is the usage of the O(D,D) covariant, genuine DFT-field-variables.

However, the relation to an ordinary supergravity can be established only after we solve

the defining algebraic relations of the DFT-vielbeins and parametrize the solution in

terms of Riemannian variables, i.e. zehnbeins and B-field.

Assuming that the upper half blocks are non-degenerate, the DFT-vielbein takes the

general form,

VAp = 1√
2

0

B

B

@

(e−1)p
µ

(B + e)νp

1

C

C

A

, V̄Ap̄ = 1√
2

0

B

B

@

(ē−1)p̄
µ

(B + ē)νp̄

1

C

C

A

.

Here eµ
p and ēν

p̄ are two copies of the D-dimensional vielbein corresponding to the

same spacetime metric,

eµ
peν

qηpq = −ēµ
p̄ēν

q̄ η̄p̄q̄ = gµν ,

and further, Bµp = Bµν(e−1)p
ν , Bµp̄ = Bµν(ē−1)p̄

ν .
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ν .

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Parametrization: Reduction to Generalized Geometry

As stressed before, one of the characteristic features in our construction of N = 2 D = 10

SDFT is the usage of the O(D,D) covariant, genuine DFT-field-variables.

However, the relation to an ordinary supergravity can be established only after we solve

the defining algebraic relations of the DFT-vielbeins and parametrize the solution in

terms of Riemannian variables, i.e. zehnbeins and B-field.

Assuming that the upper half blocks are non-degenerate, the DFT-vielbein takes the

general form,

VAp = 1√
2

0

B

B

@

(e−1)p
µ

(B + e)νp

1

C

C

A

, V̄Ap̄ = 1√
2

0

B

B

@
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Parametrization: Reduction to Generalized Geometry

Instead, we may choose an alternative parametrization,

VA
p = 1√

2

0

B

B

@

(β + ẽ)µp

(ẽ−1)p
ν

1

C

C

A

, V̄A
p̄ = 1√

2

0

B

B

@

(β + ¯̃e)µp

(¯̃e−1)p
ν

1

C

C

A

,

where βµp = βµν(ẽ−1)p
ν , βµp̄ = βµν(¯̃e−1)p

ν , and ẽµ
p, ¯̃eµ

p̄ correspond to

a pair of T-dual vielbeins for winding modes,

ẽµ
pẽν

qη
pq = −¯̃eµ

p̄
¯̃eν

q̄η
p̄q̄ = (g − Bg−1B)−1 µν .

Note that in the T-dual winding mode sector, the D-dimensional curved spacetime

indices are all upside-down: x̃µ, ẽµ
p, ¯̃eµ

p̄ , βµν (cf. xµ, eµ
p, ēµ

p̄, Bµν ).
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Parametrization: Reduction to Generalized Geometry

Two parametrizations:

VAp = 1√
2

0

B

B

@

(e−1)p
µ

(B + e)νp

1

C

C

A

, V̄Ap̄ = 1√
2

0

B

B

@

(ē−1)p̄
µ

(B + ē)νp̄

1

C

C

A

versus

VA
p = 1√

2

0

B

B

@

(β + ẽ)µp

(ẽ−1)p
ν

1

C

C

A

, V̄A
p̄ = 1√

2

0

B

B

@

(β + ¯̃e)µp

(¯̃e−1)p
ν

1

C

C

A

.

In connection to the section condition, ∂A∂A ≡ 0, the former matches well with the

choice, ∂
∂x̃µ

≡ 0, while the latter is natural when ∂
∂xµ ≡ 0.

Yet if we consider dimensional reductions from D to lower dimensions,

there is no longer preferred parametrization =⇒ “Non-geometry”, other parametrizations

Lust, Andriot, Betz, Blumenhagen, Fuchs, Sun et al. (München)
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Parametrization: Reduction to Generalized Geometry
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.

However, let me emphasize that to maintain the clear O(D,D) covariant structure, it is

necessary to work with the parametrization-independent, and O(D,D) covariant,

DFT-vielbeins, VAp , V̄Ap̄ , rather than the Riemannian variables, eµ
p, Bµν .

Furthermore, ‘degenerate’ cases are also allowed which lead to genuinely non-Riemannian

‘metric-less’ backgrounds =⇒ New type of string theory backgrounds 1307.8377
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(ẽ−1)p
ν

1

C

C

A

, V̄A
p̄ = 1√

2

0

B

B

@

(β + ¯̃e)µp

(¯̃e−1)p
ν

1

C

C

A

.

However, let me emphasize that to maintain the clear O(D,D) covariant structure, it is

necessary to work with the parametrization-independent, and O(D,D) covariant,

DFT-vielbeins, VAp , V̄Ap̄ , rather than the Riemannian variables, eµ
p, Bµν .

Furthermore, ‘degenerate’ cases are also allowed which lead to genuinely non-Riemannian

‘metric-less’ backgrounds =⇒ New type of string theory backgrounds 1307.8377

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Parametrization: Reduction to Generalized Geometry

Two parametrizations:

VAp = 1√
2

0

B

B

@

(e−1)p
µ

(B + e)νp

1

C

C

A

, V̄Ap̄ = 1√
2

0

B

B

@
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Parametrization: Reduction to Generalized Geometry

From now on, let us restrict ourselves to the former parametrization and impose ∂
∂x̃µ

≡ 0.

This reduces (S)DFT to generalized geometry

Hitchin; Grana, Minasian, Petrini, Waldram

For example, the O(D,D) covariant Dirac operators become

√
2γADAρ ≡ γm

“

∂mρ+ 1
4ωmnpγ

npρ+ 1
24 Hmnpγ

npρ− ∂mφρ
”

,

√
2γADAψp̄ ≡ γm

“

∂mψp̄ + 1
4ωmnpγ

npψp̄ + ω̄mp̄q̄ψ
q̄ + 1

24 Hmnpγ
npψp̄ + 1

2 Hmp̄q̄ψ
q̄ − ∂mφψp̄

”

,

√
2V̄ A

p̄DAρ ≡ ∂p̄ρ+ 1
4ωp̄qrγ

qrρ+ 1
8 Hp̄qrγ

qrρ ,

√
2DAψ

A ≡ ∂p̄ψp̄ + 1
4ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ + 1
8 Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ .

ωµ ± 1
2 Hµ and ωµ ± 1

6 Hµ naturally appear as spin connections. Liu, Minasian
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Hitchin; Grana, Minasian, Petrini, Waldram

For example, the O(D,D) covariant Dirac operators become

√
2γADAρ ≡ γm

“

∂mρ+ 1
4ωmnpγ

npρ+ 1
24 Hmnpγ

npρ− ∂mφρ
”

,

√
2γADAψp̄ ≡ γm

“

∂mψp̄ + 1
4ωmnpγ

npψp̄ + ω̄mp̄q̄ψ
q̄ + 1

24 Hmnpγ
npψp̄ + 1

2 Hmp̄q̄ψ
q̄ − ∂mφψp̄

”

,

√
2V̄ A

p̄DAρ ≡ ∂p̄ρ+ 1
4ωp̄qrγ

qrρ+ 1
8 Hp̄qrγ

qrρ ,

√
2DAψ

A ≡ ∂p̄ψp̄ + 1
4ωp̄qrγ

qrψp̄ + ω̄p̄
p̄q̄ψ

q̄ + 1
8 Hp̄qrγ

qrψp̄ − 2∂p̄φψ
p̄ .

ωµ ± 1
2 Hµ and ωµ ± 1

6 Hµ naturally appear as spin connections. Liu, Minasian
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Unification of type IIA and IIB SUGRAs

Since the two zehnbeins correspond to the same spacetime metric, they are related by a

Lorentz rotation,

(e−1ē)p
p̄(e−1ē)q

q̄ η̄p̄q̄ = −ηpq .

Further, there is a spinorial representation of this Lorentz rotation,

Seγ̄
p̄S−1

e = γ(D+1)γp(e−1ē)p
p̄ ,

such that

Seγ̄
(D+1)S−1

e = − det(e−1ē)γ(D+1) .
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Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT solutions are then classified into two groups,

cc ′ det(e−1ē) = +1 : type IIA ,

cc ′ det(e−1ē) = −1 : type IIB .

This identification with the ordinary IIA/IIB SUGRAs can be established, if we ‘fix’ the

two zehnbeins equal to each other,

eµ
p ≡ ēµ

p̄ ,

using a Pin(D−1, 1)R local Lorentz rotation which may or may not flip the Pin (D−1, 1)R

chirality,

c′ −→ det(e−1ē)c′ .

Namely, the Pin (D−1, 1)R chirality changes iff det(e−1ē) = −1.
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Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT solutions are classified into two groups,

cc ′ det(e−1ē) = +1 : type IIA ,

cc ′ det(e−1ē) = −1 : type IIB .

That is to say, formulated in terms of the genuine DFT-field variables, i.e. VAp , V̄Ap̄,

Cα
ᾱ, etc. the N = 2 D = 10 SDFT is a chiral theory with respect to the pair of local

Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put c ≡ c′ ≡ +1 without loss of generality.

However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

Conversely, any solution in type IIA and type IIB supergravities can be mapped to a

solution of N = 2 D = 10 SDFT of fixed chirality e.g. c ≡ c′ ≡ +1.

In conclusion, the single unique N = 2 D = 10 SDFT unifies type IIA and IIB SUGRAs.
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cc ′ det(e−1ē) = −1 : type IIB .

That is to say, formulated in terms of the genuine DFT-field variables, i.e. VAp , V̄Ap̄,

Cα
ᾱ, etc. the N = 2 D = 10 SDFT is a chiral theory with respect to the pair of local

Lorentz groups. The possible four chirality choices are all equivalent and hence the

theory is unique. We may safely put c ≡ c′ ≡ +1 without loss of generality.

However, the theory contains two ‘types’ of Riemannian solutions, as classified above.

Conversely, any solution in type IIA and type IIB supergravities can be mapped to a

solution of N = 2 D = 10 SDFT of fixed chirality e.g. c ≡ c′ ≡ +1.

In conclusion, the single unique N = 2 D = 10 SDFT unifies type IIA and IIB SUGRAs.

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Unification of type IIA and IIB SUGRAs

The N = 2 D = 10 SDFT solutions are classified into two groups,
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Diagonal gauge fixing and Reduction to SUGRA

Setting the diagonal gauge,

eµ
p ≡ ēµ

p̄

with ηpq = −η̄p̄q̄ , γ̄p̄ = γ(D+1)γp , γ̄(D+1) = −γ(D+1), breaks the local Lorentz symmetry,

Spin (1,D−1)L × Spin (D−1, 1)R =⇒ Spin (1,D−1)D .

And it reduces SDFT to SUGRA:

N = 2 D = 10 SDFT =⇒ 10D Type II democratic SUGRA

Bergshoeff, et al.; Coimbra, Strickland-Constable, Waldram

N = 1 D = 10 SDFT =⇒ 10D minimal SUGRA Chamseddine; Bergshoeff et al.
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Diagonal gauge fixing and Reduction to SUGRA

To the full order in fermions, N = 1 SDFT reduces to 10D minimal SUGRA:

L10D = det e × e−2φ
h

R + 4∂µφ∂
µφ− 1

12 HλµνHλµν

+ i2
√

2ρ̄γm[∂mρ+ 1
4 (ω + 1

6 H)mnpγ
npρ] − i4

√
2ψ̄p [∂pρ+ 1

4 (ω + 1
2 H)pqrγ

qrρ]

− i2
√

2ψ̄pγm[∂mψp + 1
4 (ω + 1

6 H)γnpψp + ωmpqψ
q − 1

2 Hmpqψ
q ]

+ 1
24 (ψ̄qγmnpψq)(ψ̄r γmnpψr ) − 1

48 (ψ̄qγmnpψq)(ρ̄γmnpρ)
i

.

δεφ = i 1
2 ε̄(ρ + γaψa) , δεea

µ = i ε̄γaψµ , δεBµν = −2i ε̄γ[µψν] ,

δερ = − 1√
2
γa[∂aε+ 1

4 (ω + 1
6 H)abcγ

bcε− ∂aφε]

+ i 1
48 (ψ̄dγabcψd )γabcε+ i 1

192 (ρ̄γabcρ)γ
abcε+ i 1

2 (ε̄γ[aψb])γ
abρ ,

δεψa = 1√
2
[∂aε+ 1

4 (ω + 1
2 H)abcγ

bcε]

− i 1
2 (ρ̄ε)ψa − i 1

4 (ρ̄ψa)ε+ i 1
8 (ρ̄γbcψa)γbcε+ i 1

2 (ε̄γ[bψc])γ
bcψa .
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Diagonal gauge fixing and Reduction to SUGRA

After the diagonal gauge fixing, we may parameterize the R-R potential as

C ≡
“

1
2

” D+2
4 P′

p
1
p!

Ca1a2···apγ
a1a2···ap

and obtain the field strength,

F := D0
+C ≡

“

1
2

” D
4 P′

p
1

(p+1)!
Fa1a2···ap+1γ

a1a2···ap+1

where
P′

p denotes the odd p sum for Type IIA and even p sum for Type IIB, and

Fa1a2···ap = p
“

D[a1
Ca2···ap ] − ∂[a1

φCa2···ap ]

”

+ p!
3!(p−3)!

H[a1a2a3
Ca4···ap ]

The pair of nilpotent differential operators, D0
+ and D0

−, reduce to a ‘twisted K-theory’

exterior derivative and its dual, after the diagonal gauge fixing,

D0
+ =⇒ d + (H − dφ) ∧

D0
− =⇒ ∗ [ d + (H − dφ) ∧ ] ∗
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Diagonal gauge fixing and Reduction to SUGRA

In this way, ordinary SUGRA ≡ gauge-fixed SDFT,

Spin (1,D−1)L × Spin (D−1, 1)R =⇒ Spin (1,D−1)D .
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Modifying O(D, D) transformation rule

The diagonal gauge, eµ
p ≡ ēµ

p̄, is incompatible with the vectorial O(D,D)

transformation rule of the DFT-vielbein.

In order to preserve the diagonal gauge, it is necessary to modify the O(D,D)

transformation rule.
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Modifying O(D, D) transformation rule

The O(D,D) rotation must accompany a compensating Pin (D−1, 1)R local Lorentz

rotation, L̄q̄
p̄, SL̄

ᾱ
β̄ which we can construct explicitly,

L̄ = ē−1
ˆ

at − (g + B)bt
˜ ˆ

at + (g − B)bt
˜−1 ē , γ̄q̄ L̄q̄

p̄ = S−1
L̄
γ̄p̄SL̄ ,

where a and b are parameters of a given O(D,D) group element,

MA
B =

0

B

B

@

aµ
ν bµσ

cρν dρ
σ

1

C

C

A

.
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Modified O (D,D) Transformation Rule After The Diagonal Gauge Fixing

d −→ d

VA
p −→ MA

B VB
p

V̄A
p̄ −→ MA

B V̄B
q̄ L̄q̄

p̄

Cα
ᾱ , Fα

ᾱ −→ Cα
β̄(S−1

L̄
)β̄

ᾱ , Fα
β̄(S−1

L̄
)β̄

ᾱ

ρα −→ ρα

ρ′ᾱ −→ (SL̄)ᾱ
β̄ρ

′β̄

ψα
p̄ −→ (L̄−1)p̄

q̄ ψα
q̄

ψ′ᾱ
p −→ (SL̄)ᾱ

β̄ψ
′β̄
p

All the barred indices are now to be rotated. Consistent with Hassan

The R-R sector can be also mapped to O (D,D) spinors.

Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach
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Flipping the chirality: IIA ⇔ IIB

If and only if det(L̄) = −1, the modified O (D,D) rotation flips the chirality of the theory,

since

γ̄(D+1)SL̄ = det(L̄) SL̄γ̄
(D+1) .

Thus, the mechanism above naturally realizes the exchange of Type IIA and IIB

supergravities under O(D,D) T-duality.

However, since L̄ explicitly depends on the parametrization of VAp and V̄Ap̄ in terms of

gµν and Bµν , it is impossible to impose the modified O(D,D) transformation rule from

the beginning on the parametrization-independent covariant formalism.
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Comment 1: Double field Yang-Mills theory 1102.0419

With the semi-covariant derivative, we may construct YM-DFT :

FAB := ∇AVB −∇BVA − i [VA,VB ] , VA =

0

B

B

@

φλ

Aµ + Bµνφ
ν

1

C

C

A

,

SYM =

Z

ΣD

e−2d Tr
“

PAB P̄CDFACFBD

”

≡
Z

dxDp

−ge−2φTr
“

fµν fµν + 2DµφνDµφν + 2DµφνDνφµ + 2i fµν [φµ, φν ]

− [φµ, φν ][φµ, φν ] + 2 (fµν + i [φµ, φν ]) Hµνσφ
σ + HµνσHµν

τφ
σφτ

”

.

Similar to topologically twisted Yang-Mills, but differs in detail.

Curved D-branes are known to convert adjoint scalars into one-form,

φa → φµ, Bershadsky

Action for ‘double’ D-brane Hull; Albertsson, Dai, Kao, Lin
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Comment 2: Rank-four tensor 1105.6294

With DFT-vielbein, it is possible to construct a rank-four tensor which is covariant with

respect to O(D,D) and ‘diagonal’ local Lorentz symmetry.

Gauge fixing the two vielbeins equal to each other, eµm = ēµm̄, gives

Rmnpq + D(pHq)mn − 1
4 Hmn

r Hpqr − 3
4 Hm[n

r Hpq]r .

This may provide a useful tool to organize the higher order derivative corrections to the

effective action. c.f. Hohm, Siegel, Zwiebach; Godazgar2
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Rmnpq + D(pHq)mn − 1
4 Hmn

r Hpqr − 3
4 Hm[n

r Hpq]r .

This may provide a useful tool to organize the higher order derivative corrections to the

effective action. c.f. Hohm, Siegel, Zwiebach; Godazgar2

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Comment 2: Rank-four tensor 1105.6294

With DFT-vielbein, it is possible to construct a rank-four tensor which is covariant with

respect to O(D,D) and ‘diagonal’ local Lorentz symmetry.

Gauge fixing the two vielbeins equal to each other, eµm = ēµm̄, gives
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Comment 3: Doubled yet gauged spacetime 1304.5946 1307.8377

The section condition is equivalent to the ‘coordinate gauge symmetry’,

xM ∼ xM + ϕ∂Mϕ′ .

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

The diffeomorphism symmetry means an invariance under arbitrary reparametrizations

of the ‘gauge orbits’.

Hence, the finite transformation rules are not unique.

For example, the exponentiation of the generalized Lie derivative and a simple ansatz

proposed by Hohm-Zwiebach. These two are fully equivalent up to the coordinate gauge

symmetry. 1304.5946 see also Berman-Cederwall-Perry
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symmetry. 1304.5946 see also Berman-Cederwall-Perry
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String propagates in doubled yet gauged spacetime, 1307.8377

S = 1
4πα′

Z

d2σ L , L = − 1
2

√
−hhijDi XM DjXNHMN(X) − ǫijDiXMAjM ,

where

DiXM = ∂i XM −AM
i , AM

i ∂M ≡ 0 .

The Lagrangian is symmetric with respect to the string worldsheet diffeomorphisms,

Weyl symmetry, O(D,D) T-duality, target spacetime generalized diffeomorphisms and

the coordinate gauge symmetry, thanks to the auxiliary gauge field, AM
i .

c.f. Hull; Tseytlin; Copland, Berman, Thompson; Nibbelink, Patalong; Blair, Malek, Routh

Further, after parametrization and integrating out AM
i , it can produce either

the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′ L ≡ 1

2πα′

h

− 1
2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ǫ
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ǫ
ij∂i Ỹµ∂jYµ

i

,

or novel chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for HAB = JAB ,

1
4πα′ L ≡ 1

4πα′ ǫ
ij∂i Ỹµ∂j Yµ , ∂i Yµ + 1√−h

ǫi
j∂j Yµ = 0 .
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Conclusion

Summary

Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

The fundamental field-variables of N = 2 D = 10 SDFT are, besides the fermions,

the DFT-dilaton, d , DFT-vielbeins, VAp , V̄Ap̄ , and the R-R potential, Cα
ᾱ.

Novel differential geometic ingredients:

� projectors, PAB = VApVB
p, P̄AB = V̄Ap̄V̄B

p̄, and semi-covariant derivative.

� Spacetime being doubled yet gauged (section condition).

N = 2 D = 10 SDFT manifests simultaneously the symmetric structures:

� O(10, 10) T-duality

� DFT-diffeomorphism (generalized Lie derivative)

� A pair of local Lorentz symmetries, Spin (1, 9)L × Spin (9, 1)R
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Conclusion

N = 2 D = 10 SDFT contains not only Riemannian SUGRA backgrounds but also

non-Riemannian ‘metric-less’ backgrounds. For example,

PMN − P̄MN = HMN =

0

B

B

@

0 N

N t 0

1

C

C

A

, N2 = 1 .

While the theory is unique, the Riemannian solutions are twofold.

=⇒ Unification of IIA and IIB.

After parametrizing the DFT field-variables in terms of Riemannian ones and taking the

diagonal gauge, Spin (1, 9)L×Spin (9, 1)R → Spin (1, 9)D , SDFT reduces to SUGRA.

A priori, in the covariant formalism, the R-R sector and the fermions are O(D,D) singlet.

Yet, the diagonal gauge fixing, eµ
p ≡ ēµ

p̄, modifies the O(D,D) transformation rule to

call for a compensating Pin(D−1, 1)R rotation, which may flip the chirality of the theory,

resulting in the known exchange of type IIA and IIB SUGRAs.
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Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian ‘metric-less’ backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity

The uplift of type II SDFT to M-theory, or the extension of T-duality to U-duality:

West (E11); Damour, Henneaux, Nicolai, Riccioni, Steele; Cook; Aldazabal, Graña,

Marqués, Rosabal

U-duality manifest M-theory effective actions: Berman-Perry; Thompson, Godazgar2 ;

JHP-Suh (U-geometry); Cederwall, Edlund, Karlsson; Musaev; Hohm-Samtleben

Jeong-Hyuck Park N = 2 D = 10 Supersymmetric Double Field Theory



Conclusion

Outlook

Further study and classification of the non-Riemannian, metric-less backgrounds.

Quantization of the string action on doubled yet gauged spacetime.

O(10, 10) covariant Killing spinor equation: SUSY and T-duality are compatible.

The relaxation of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;
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Thank you.
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