Implications of 98 GeV and 125 GeV Higgs scenario in non-decoupling SUSY

Dilip Kumar Ghosh

Department of Theoretical Physics Indian Association for the Cultivation of Science Kolkata, India

Collaborators: B. Bhattacherjee, M. Chakraborti, A. Chakraborty, U. Chattopadhyay, D. Das

Ref: [Phys. Rev. D 88 (2013) 035011]

- Introduction
- Inclusive LEP-LHC Higgs (ILLH) scenario
- ILLH @MSSM and NMSSM
- Collider analysis and results
- Updated analysis (in progress)
- Summary

Introduction

- A Standard Model like Higgs particle has been found by the ATLAS & CMS collaboration of the LHC experiment with $m_h \simeq 125$ GeV.
- Evidence of this particle in multiple channels.
- The observed rates of this particle are compatible with the SM prediction.

- Higgs couplings are not yet measured very precisely
- With future LHC run and possibly at ILC the couplings will be measured more precisely => constrain several scenarios beyond the SM / or give a possible direction to new physics.

Can MSSM accommodate 125 GeV Higgs boson ?

- It seems that the observed 125 GeV Higgs like particle agrees well with prediction of MSSM.
- In MSSM, the large quadratic divergence in m_h^2 due to top quark loop is cancelled by the scalar partner of top quarks (called stop \tilde{t}_i , with i = 1, 2).
- Stop sector plays a crucial role in determining the Higgs mass

 the
 experimental determination of the stop properties is crucial to understand the
 nature of SUSY protecting the Higgs mass at EW scale.
- So far LHC has not seen any evidence of SUSY particles, only lower bounds have been put on different SUSY particles.
- Limits on gluino (\tilde{g}) and squarks (\tilde{q}) currently stands at about 1.5 TeV for $m_{\tilde{g}} \simeq m_{\tilde{q}}$ and about 1.2 TeV for $m_{\tilde{g}} \ll m_{\tilde{q}}$.

ATLAS SUSY Searches* - 95% CL Lower Limits O H T M L . Emili (c Ho-l)

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

	Model		Jets	- T	15 artin	1 Mass IIIII	Reference
⁴ gen. med. Inclusive Searches	BIGGRA (MSSM MSLGRA (MSSM MSLGRA (MSSM Bigling (MSSM) Bigling (MSSM) Bigling (MSSM) Bigling (MSSM) GGM (Integration (MSSP)	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ 2 \ e, \mu (Z) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	2-6 jets 3-6 jets 3-8 je	T Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		ATLAS-CONF-2013-047 ATLAS-CONF-2013-042 ATLAS-CONF-2013-042 ATLAS-CONF-2013-042 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142 ATLAS-CONF-2013-041 ATLAS-CONF-2013-041 ATLAS-CONF-2013-041 ATLAS-CONF-2013-041
3 rd gen. squarks 3 ^r direct production 8	$ \begin{array}{c} & & \\ & & $	0.1 e, µ 0 2 e, µ (SS) 1.2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 1 e, µ 0 1 e, µ 3 e, µ (Z)	3 b 2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 b 2 b 1 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7 20.7	13.1%	ATLAS-CONF-2013-061 108.2631 ATLAS-CONF-2013-007 1208.4305,1208.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028
Long-lived EW particles direct	$ \begin{array}{l} \begin{matrix} I_{k_1} \mathcal{I}_{k_1} \mathcal{I}_{k_1} \mathcal{I}_{k_2} \mathcal{I}_{k_1} \mathcal{I}$	2 e, µ 2 e, µ 2 r 3 e, µ 1 e, µ Disapp. trk 0 e, µ) 1.2 µ 2 γ 1 µ, displ. vtr	0 0 2 <i>b</i> 1 jet 1-5 jets	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.3 20.3 22.9 15.9 4.7 20.3	パー 5315 GGV ペパース ペパーム ペパーム ペパーム ペパーム ペパース ペパース ペパース ペパース ペパース ペパース ペパース ペパース	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-059 ATLAS-CONF-2013-059 ATLAS-CONF-2013-055 ATLAS-CONF-2013-055 ATLAS-CONF-2013-055 ATLAS-CONF-2013-055
- RPV	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{r}_{7} + X, \ \widetilde{r}_{7} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{r}_{7} + X, \ \widetilde{r}_{7} \rightarrow e(\mu) + \tau \\ Bilnear \ RPV \ CMSSM \\ \widetilde{r}_{1}^{+} \widetilde{r}_{1}, \ \widetilde{r}_{1}^{+} \rightarrow Wr_{2}^{+}, \ \widetilde{r}_{5}^{+} \rightarrow e\widetilde{r}_{7}, \ e\mu\widetilde{r} \\ \widetilde{r}_{1}^{+} \widetilde{r}_{1}, \ \widetilde{r}_{1}^{+} \rightarrow Wr_{2}^{+}, \ \widetilde{r}_{5}^{+} \rightarrow e\widetilde{r}_{7}, \ e\mu\widetilde{r} \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_{1}, \ \widetilde{t}_{1} \rightarrow bs \\ Scalar \ duon \ pair, \ scluon \rightarrow o\widetilde{\sigma} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \tau \end{array} \\ \begin{array}{c} 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	7 jets 7 jets 6-7 jets 0-3 b 4 jets	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7 4.6	5	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-007 1210.4826
Other	Scalar gluon pair, sgluon→tr WIMP interaction (DS, Dirac χ) √s = 7 TeV full data	$2 e, \mu$ (SS) 0 $\sqrt{s} = 8 \text{ TeV}$ artial data	1 b mono-jet √s = full	Yes Yes 8 TeV data	14.3 10.5	B00 Gall B00 Gall mg,1-db Gall	ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

..

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

 superparticles responsible for cancellation of quadratic divergence in Higgs mass are the third generation squarks, can be comparatively light to cure the fine-tuning problem of SM.

$$\begin{array}{lll} m_h^2 &\simeq & m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left(\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} (1 - \frac{X_t^2}{12M_S^2}) \right) \\ M_S &= & \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \\ X_t &\equiv & A_t - \mu \cot \beta \end{array}$$

- *A_t* : the trilinear Higgs-stop coupling.
- $m_h \Longrightarrow$ heavier for larger tan β or M_S .
- For a given M_S , m_h reaches maximum when $X_t = \sqrt{6}M_S$ so-called m_h^{max} scenario.
- Lighter stop/sbottom : large stop/sbottom tri-linear couplings.

• Light third generation scenario has an extremely attractive prospect for both the theorists and the experimentalists

Did LEP give us any hint about Higgs ?

- At LEP, Higgs boson is searched in $e^+e^-
 ightarrow ZH$ channel.
- Combined analysis of four LEP experiments: $M_h > 114.4 \text{ GeV} @ 95\% \text{ C.L.}$

- Parameter: $\zeta \equiv \begin{pmatrix} g_{HZZ}^{BSM} \\ g_{HZZ}^{M} \end{pmatrix} = \sin(\beta \alpha)$ (α : Higgs mixing angle, tan β : ratio of VEVs)
- A mild excess (~ 2.3 σ) of Higgs-like events $e^+e^- \rightarrow Zh$ with a mass near 98 GeV.

- Both LEP and LHC events can be explained simultaneously in MSSM, and NMSSM.
- MSSM: Five Higgses : h^0 , H^0 , A^0 , H^{\pm} .
- At tree level, M_A and tan β controls the MSSM Higgs sector.
- Higgs couplings to gauge bosons and fermions are functions of β and α .
- W^+W^-H , HZZ, ZAh, $W^{\pm}H^{\mp}h$, $ZW^{\pm}H^{\mp}h$ and $\gamma W^{\pm}H^{\mp}h \propto \cos(\beta \alpha)$.
- W^+W^-h , hZZ, ZAH, $W^{\pm}H^{\mp}H$, $ZW^{\pm}H^{\mp}H$ and $\gamma W^{\pm}H^{\mp}H \propto \sin(\beta \alpha)$.
- decoupling : $M_A \ge 300 \text{ GeV}$ and $\cos^2(\beta \alpha) \to 0 \implies \sin^2(\beta \alpha) \to 1$.
- In decoupling limit : One can interpret the newly observed state at 125 GeV as the light CP even Higgs boson with SM like couplings.
- non-decoupling : $M_h \sim M_A \sim M_H \sim M_Z$ or $\sin^2(\beta \alpha) \rightarrow 0 \Longrightarrow \cos^2(\beta \alpha) \rightarrow 1$.
- This would mean larger coupling strength of H with the SM gauge bosons.
- We may explore the possibility of M_H ~ 125 GeV, instead of h as the discovered new resonance.
- *H* behaves like $h_{\rm SM}$ and *h* has weaker couplings to W/Z.

- We generate approximately 70 million random points in the following combined range of parameters:
- We consider $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}.$

$$\begin{aligned} 3 < \tan \beta < 5.5, \ 0.085 < M_A < 0.2 \text{ TeV}, \ 0.3 \text{ TeV} < \mu < 12 \text{ TeV}, \\ 0.05 \text{ TeV} < M_1, M_2 < 1.5 \text{ TeV}, \ 0.9 \text{ TeV} < M_3 < 3 \text{ TeV}, \\ -8 \text{ TeV} < A_t < 8 \text{ TeV}, \ -3 \text{ TeV} < A_b, \ A_\tau < 3 \text{ TeV}, \ A_u = A_d = A_e = 0, \\ 0.3 \text{ TeV} < M_{\tilde{q}_3} < 5 \text{ TeV}, \text{ where, } \tilde{q}_3 \equiv \tilde{t}_L, \tilde{t}_R, \tilde{b}_L, \tilde{b}_R \\ M_{\tilde{q}_1} = 3 \text{ TeV}, \text{ for } i = 1, 2 \text{ and } M_{\tilde{\ell}_1} = 3 \text{ TeV}, \text{ for } i = 1, 2, 3. \end{aligned}$$

- CMS has constrained $\tan \beta M_A$ plane from $H/A \rightarrow \tau^+ \tau^-$ decay.
- ATLAS has constrained $\tan \beta M_{H^{\pm}}$ plane from $H^+ \rightarrow \tau^+ \nu_{\tau}$ in $t\bar{t}$ events, where one $t \rightarrow bH^+$.

[CMS-PAS-HIG-2012-050],[ATLAS Collaboration, JHEP 06 (2012),039]

• 90 < M_A < 250 GeV for tan β > 5.5 is excluded.

• 90 < $M_{H^{\pm}}$ < 150 GeV for 2 < tan β < 6 is excluded.

ILLH in MSSM

- The blue points satisfy following constraints:
 - Lower limits on SUSY particles
 - 95 GeV $< m_h < 101$ GeV; 122 GeV $< m_H < 128$ GeV.
 - $0.1 < \sin^2(\beta \alpha) < 0.25$.
 - $R_{aa}^{H_2}(\gamma\gamma)_{\min} > 0.5$, [CMS : $\hat{\mu} = 0.78^{+0.28}_{-0.26}$].
 - $2.77 \times 10^{-4} < Br(b \to s\gamma) < 4.09 \times 10^{-4}$ at 3σ level. [Br(b → sγ)(exp) = $(3.43 \pm 0.22) \times 10^{-4}$]. [arXiv:1207.1158]. • 0.67 × 10⁻⁹ < Br(B_s → μ⁺μ⁻) < 6.22 × 10⁻⁹ at 2σ level.
- The red circles (enclosing blue points) shows points satisfy the DM relic density constraint (only upper limit): $0.112 < \Omega_{\tilde{v}^0} h^2 < 0.128$.

ILLH in MSSM

- From our previous figure : 130 GeV < M_A <200 GeV for 3 < tan β < 5.5 .
- Direct constraint from $H^{\pm} \rightarrow \tau^+ \nu_{\tau}$ (ATLAS) : blue solid line.
- Exclusion from $H/A \rightarrow \tau^+ \tau^-$: maroon line
- The region of $M_{H^{\pm}}$ < 145 GeV becomes entirely disallowed via $H^+ \rightarrow \tau^+ \nu_{\tau}$ from ATLAS.
- $150 < M_{H^{\pm}} < 200$ GeV.

- Anti-correlation behavior between primary signal strength observables.
- Total Higgs decay width is primarily determined by $h \rightarrow b\bar{b}$ decay width.
- QCD and SUSY QCD corrections to m_b (Δ_b) play important roles in modifying the total decay width/ relevant branching ratios.
- A reduction (enhancement) of $h, H \rightarrow b\bar{b}$ couplings decreases (increases) the total decay width of Higgs.
- Enhances (reduces) the branching ratios to $h, H \rightarrow \gamma \gamma$ increasing (decreasing) $R_{gg}^h(\gamma \gamma)$ or $R_{gg}^H(\gamma \gamma)$.

Mt	MA	tan β	μ	M ₁	M2	M ₃	A _t	Ab
173.6	167.5	5.0	5429.8	527.9	119.2	1416.6	5729.2	-217.1
$A_{ au}$	M _{q̃3L}	MĩtR	M _{ĎB}	M _h	M _H	<i>М</i> (<i>Н</i> [±])	M _{ĩt1}	M _{Ď1}
-115.2	1712.6	1602.2	426.7	97.7	125.1	182.1	999.2	539.1
М _ĝ	$BR(B_S \rightarrow \mu^+ \mu^-)$	$BR(b \to s\gamma)$	Ωh ²	$\zeta \sigma^{SI}_{(p-\chi)}$				
1608.9	2.8×10 ⁻⁹	3.8×10^{-4}	4.5×10^{-4}	5.5×10^{-11}				

- All masses are in GeV unit
- cross-section is pb unit.
- Main issues of our analysis in MSSM :
- In MSSM one can have 98 GeV and 125 GeV Higgs bosons.
- This restrict : 3 < tan β < 5.5, 130 GeV < M_A < 200 GeV and 150 GeV < $M_{H^{\pm}}$ < 200 GeV

ILLH in NMSSM

- $\lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$.
- 3 (2) CP even (odd) neutral Higgses, H_i , i = 1, 2, 3 and A_i , i = 1, 2, and H^{\pm} .
- We vary λ , κ , A_{λ} , A_{κ} , A_0 , m_0 , $m_{1/2}$, tan β , μ_{eff} using NMSSMTools3.2.4.
- In this parameter (figure) space of interest, $M_{A_2} \sim M_{H_3} \sim M_{H^{\pm}}$.
- Heavy mass scale ($M_A > 200 \text{ GeV}$) \implies can accommodate $m_h \sim 98 \text{ GeV}$ (not possible in MSSM with $M_A > 200 \text{ GeV}$.)
- Indirect exclusion: A bit tough, particle masses relatively heavy, so less sensitive at the LHC.
- Exclusion is Model dependent.
- Can we discover/exclude this at LHC in a model independent way ?

Prospect of observing 98 GeV Higgs @ Colliders

- A combination of a 98 GeV & a 125 GeV Higgs boson in the nondecoupling limit of MSSM and in NMSSM.
- Nondecoupling limit of MSSM: → relatively light Higgs bosons → can be probed at the early run of the LHC.
- Non observation of such light Higgs bosons will indirectly exclude the possibility of scenario with a 98 GeV Higgs boson.
- Previous attempts :
- At 8 TeV LHC, 5σ signal for $pp \rightarrow H^{\pm}A^{0}$, $H^{\pm}h^{0} \rightarrow \tau^{\pm}\nu b\bar{b}$ and $pp \rightarrow H^{+}H^{-} \rightarrow \tau^{+}\nu\tau^{-}\bar{\nu}$ can be observed with an integrated luminosity of 7(11) fb⁻¹ and 24(48) fb⁻¹, respectively for $M_{A} = 95(130)$ GeV.
- At the 14 TeV energy : 5σ signal can be observed with an integrated luminosity of 4(7) fb⁻¹ and 10(19) fb⁻¹ respectively. [N.D.Christensen etal. 2012]
- ATLAS search : $130 < M_A < 200$ GeV for tan $\beta \sim 3 5.5$ ruled out the above analysis and some others.

[M. Drees, PRD (2005) & (2012), N.D.Christensen etal. 2012, M. Asano etal. PRD (2012), S. Scopel etal. PRD (2013)].

- Gluon fusion: g g \to H \to $b\bar{b}$ for 98 GeV Higgs boson, large QCD jet background, difficult to prove.
- Di-photon via Gluon fusion: Heavily suppressed BR(H $\rightarrow \gamma \gamma$) for a 98 GeV Higgs, hard to distinguish from the continuous backgrounds.
- VBF production: not so sensitive for a 98 GeV Higgs boson.
- Higgs-strahlung process (VH): H is produced along with a gauge boson W/Z, may have sufficient boost (large p_T of Higgs)

• 2.3 σ excess in the LEP constrains the effective coupling :

 $g_{ZZh}^{BSM}/g_{ZZh}^{SM}\simeq 0.3-0.5$

- \Rightarrow controls the 98 GeV Higgs production cross-section in Vh at LHC
- ⇒ A Model independent input parameter.
- We follow ATLAS simulation considering 20% LEP excess and apply the Jet Substructure technique.
- 80 $< m_{\ell\ell} <$ 100 GeV, [$hZ, Z
 ightarrow e^+ e^- / \mu^+ \mu^-$]

Process	Significance $\left(\frac{S}{\sqrt{B}}\right)$	Combined
ℓνb̄b	1.7	
$\ell^+\ell^-bar{b}$	0.9	2.5
Ę⊤bb	1.6	

- **9** 98 GeV Higgs at the 14 TeV LHC with 300 ${\rm fb}^{-1}$ luminosity is $\sim 2.5\sigma$.
- This signal significance may be reduced further if systematic uncertainties in the SM background estimations are considered.

[ATLAS Collaboration, Report No. ATL-PHYS-PUB-2009-008]

• Associated production of 98 GeV Higgs boson with top quarks:

 $pp
ightarrow t\bar{t}h(h
ightarrow bar{b})$

- $\sigma(pp
 ightarrow t\bar{t}h) \sim$ 1 pb for $m_h \sim$ 100 GeV. at 14 TeV run of LHC. [CERN Yellow Report Page At 14TeV]
- Translated the results already performed by Tilman Plehn et. al. for $\sim 115~GeV$ Standard Model Higgs boson at 14 TeV LHC. [T. Plehn et.al. PRL 104, 111801 (2010)]
- While translating the results of Tilman Plehn for our choice of Higgs mass, we expect enhancements of 60% and 20% in Higgs production rate and background estimation.
- In our analysis, we scale the signal and background by 1.6 and 1.2, respectively for $h(m_h = 98 \text{ GeV}) \rightarrow b\bar{b}$.
- For an integrated luminosity of 300 fb⁻¹ with two tagged b-jets the significance \sim 3.1 σ , while for three b-tag sample \sim 2.6 σ .
- Jet Substructure may marginally exclude the 98 GeV Higgs: experimental collaborations need to perform further detailed analysis.
- In NMSSM A 98 GeV Higgs production from the decay of heavy Higgs bosons as well as from the cascade decays of other sparticles may play an important role at the LHC. [S.F. King et.al. NPB 870,323 (2013); Z.Kang et.al. PRD 88,015006 (2013)]

- There has been a plan to build e^+e^- linear collider (ILC) with \sqrt{s} \sim 250 GeV 1000 GeV.
- Like LEP, the Higgs boson will be produced in $e^+e^- \rightarrow Zh$ channel.
- ILC will be an ideal machine for the Higgs precision study.
- In our analysis, we assume $h \rightarrow b\bar{b}$ decay mode, while Z can decay leptonically or hadronically.
- We use MadGraph5 to estimate the signal as well as SM background cross-section for the 98 GeV Higgs boson.
- For $\sqrt{s} = 250 \text{ GeV}$, $\sigma(e^+e^- \rightarrow Zh) = 350 \text{ fb}$, whereas $\sigma(e^+e^- \rightarrow ZZ) \sim 1.1 \text{ pb}$.
- We find that a 98 GeV Higgs boson can be easily discovered / excluded at the 250 GeV ILC with a 100 $\rm fb^{-1}$ luminosity.
- Discovery potential at the LHC is marginal.
- ILC is an ideal machine to study this scenario.

- We relook the MSSM parameter space in the light of updated Higgs data:
- ATLAS limits :

$$\begin{aligned} R_{\gamma\gamma} &: 1.55^{+0.33}_{-0.28} @ [7 \text{ TeV}(4.8) + 8 \text{ TeV}(20.7)] \\ R_{ZZ^*} &: 1.43^{+0.40}_{-0.35} @ [7 \text{ TeV}(4.6) + 8 \text{ TeV}(20.7)] \\ R_{b\bar{b}} &: 0.2^{+0.7}_{-0.6} @ [7 \text{ TeV}(4.7) + 8 \text{ TeV}(20.3)] \\ R_{\tau^+\tau^-} &: 1.4^{+0.5}_{-0.4} @ [8 \text{ TeV}(20.3)] \end{aligned}$$

• CMS limits :

- $R_{\gamma\gamma}$: 0.78^{+0.28}_{-0.26}@[7 TeV(5.1) + 8 TeV(19.6)]
- R_{ZZ^*} : 0.93^{+0.29}_{-0.25}@[7 TeV(5.1) + 8 TeV(19.7)]

$$R_{b\bar{b}}$$
 : $1.0^{+0.5}_{-0.5}$ @[7 TeV(5.1) + 8 TeV(18.9)]

 $R_{\tau^+\tau^-}$: 0.87^{+0.29}_{-0.29}@[7 TeV(4.9) + 8 TeV(19.7)]

Updated analysis

• All points satisfy following constraints :

- 95 GeV $< m_h <$ 101 GeV and 122 GeV $< m_H <$ 128 GeV
- $0.1 < \sin^2(\beta \alpha) < 0.25$
- $2.77 \times 10^{-4} < Br(b \to s\gamma) < 4.09 \times 10^{-4}$
- $0.67 \times 10^{-9} < \text{Br}(B_s \to \mu^+ \mu^-) < 6.22 \times 10^{-9}$

- All points satisy previous constraints and $R_{\gamma\gamma}$ @2 σ level .
- ATLAS left figure and CMS right figure
- Point to note : 130 GeV < M_A < 200 GeV is allowed from CMS analysis of $H/A \rightarrow \tau^+ \tau^-$.

• Previous constraints plus R_{ZZ^*} and $R_{b\bar{b}}$ @2 σ level

• Previous constraints plus $R_{\tau^+\tau^-}$ @2 σ level .

- We studied the possibility that both the LEP excess in the $b\bar{b}$ final state with a 98 GeV Higgs boson and the LHC signal for a 125 GeV Higgs like object can be simultaneously explained in the most general MSSM framework.
- This can happen in nondecoupling zone of MSSM Higgs sector, where, $M_h \sim M_A \sim M_H \sim M_Z$ or $\sin^2(\beta - \alpha) \rightarrow 0 \implies \cos^2(\beta - \alpha) \rightarrow 1$.
- We have found a region of parameter space in MSSM allowed by heavy flavour physics, CDM constraints, constraints from the XENON100 experiment on the DM direct detection cross-section.
- Both ATLAS & CMS searches on $H/A \rightarrow \tau^+ \tau^-$ and $H^{\pm} \rightarrow \tau^+ \nu_{\tau}$ from ATLAS collaboration severely constraint the parameter space : 130 GeV < M_A < 200 GeV and 150 GeV < $M_{H^{\pm}}$ < 200 GeV.
- For these ranges of M_A and $M_{H^{\pm}}$, tan $\beta \sim 3 5.5$.
- We have shown that at the LHC it will be difficult to probe directly 98 GeV Higgs boson scenario, due low signal significance.

- The most recent data (at 2σ) on Higgs search still allow MSSM parameter space where one can have simultaneously 98 GeV and 125 GeV Higgs boson.
- More precise measurement on Higgs may be able to rule out this scenario indirectly.
- ILC is an ideal machine to explore this possibility.

Thank You!

- B. Bhattacherjee et. al., arXiv:1305.4020 [hep-ph].
- 2 R. Barate et al. [LEP Higgs WG], Phys. Lett. B 565, 61 (2003).
- T. Plehn et. al., Phys. Rev. Lett. 104, 111801 (2010).
- J. Butterworth et. al., Phys. Rev. Lett. 100, 242001 (2008).
- ATLAS Public NOTE: ATL-PHYS-PUB-2009-088

Backup slides

- Exclude points with over-abundant relic densities, include the possibility of multi-component dark matter.
- Heavy sleptons: no coannihilation with LSPs.
- spin-independent direct detection $\tilde{\chi}_1^0 p$: Region above the solid (black) line discarded via XENON100 data
- Scaled cross-section $(\zeta \sigma_{p\tilde{\chi}_{1}^{0}}^{SI})$: under-abundant relic densities. $\zeta = \min\{1, \Omega_{\tilde{\chi}_{1}^{0}}h^{2}/(\Omega_{CDM}h^{2})_{\min}\}$, where $(\Omega_{CDM}h^{2})_{\min} = 0.112$
- Possibility at future direct-detection experiment XENON-1T

No Boost vs Boost

 $H \rightarrow b\bar{b}$ at rest \implies Two back to back jets

 $m_{H} = 120 \text{ GeV}, p_{T} \gtrsim 200 - 300 \text{ GeV} \Longrightarrow$ large boost $\Longrightarrow \Delta R \approx 2m_{H}/p_{T} \approx 1.2 - 0.8$ $\Delta R = \sqrt{(\Delta \eta)^{2} + (\Delta \phi)^{2}}$

G. Kribs talk @ Fermilab (2011)

Application : $pp \rightarrow VH$, $(V = W^{\pm}, Z)$

- $pp \rightarrow VH$, with $V = W^{\pm}, Z \Longrightarrow$
- $\ell \nu b \overline{b}, \ell \ell b \overline{b}, \nu \overline{\nu} b \overline{b}$ final state
- For Higgs to be boosted $p_T(H) > 200 \text{ GeV}$
- Such a high $p_T(H) \implies \sigma_{\text{boosted}}(WH/ZH) \sim 5\% \text{ of } \sigma_{\text{tot}}(WH/ZH) @$ 14 TeV
- ATLAS simulation @14 TeV with 30fb^{-1} luminosity : $N_S(m_H \sim 120 \text{ GeV}) \sim 13.5$ and $N_B \sim 20.3 \implies \frac{S}{\sqrt{B}} = 3$

[J.Butterworth etal., PRL (2008)], ATL-PHYS-PUB-2009-088, G. Kribs talk @ Fermilab (2011)

Fat jets

- Quantitatively, consider the following thumb rule for a two-body decay: To resolve the two partons of a X \rightarrow q \bar{q} decay,choose a radius (or more generally a jet size) of R < $2M_X/P_T$
- For $P_T \gg M_h R \rightarrow$ very small (Overlap of Jet areas !)
- These highly boosted jets are called "Fat Jets"
- Example: Consider a hadronically decaying W Boson..

• Question : How do I see the inside of this fat jet ?

Jet Substructure

The basis of this technique involves an iterative jet clustering algorithm (e.g C/A), examining subjet kinematics step-by-step, and finally choosing the "best" subjets to form the fat-jet mass.

**Ref: Phys. Rev. Lett. 100.242001, Butterworth, Davison, Rubin & Salam

Step 1: Break the jet j into two subjets(j_1, j_2) by undoing its last stage of clustering s.t $\overline{m_{j_1}} > m_{j_2}$.

Step 2: a) Significant mass drop (MD),

 $m_{j_1} < \mu m_j$

b) Splitting is nearly Symmetric

 $\mathbf{y} = [min(P_{T_{j_1}}^2, P_{T_{j_2}}^2)/m_j^2]\Delta R_{j_1, j_2}^2 > y_{cut}$

• Two parameters μ and y_{cut} are independent of Higgs mass and Higgs p_t .

• $\mu = 0.667$ $y_{cut} = (0.3)^2$

⇒ Helps to reject/minimize QCD contamination.

Step 3: If $y > y_{cut}$, consider j as heavy particle neighborhood and exit the loop.

Otherwise

```
Redefine j to be j_1 and go back to Step 1.
```

In practice, above procedure is not optimal for LHC, when the transverse momentum can be around 250-300 GeV.

Since,

 $m_x \sim 150 \text{ GeV} \implies R_{j_1,j_2} \sim 1.0 \rightarrow \text{Large}$

 \Rightarrow Significant degradation due the Underlying Events (UE)

 \rightarrow UE $\propto R_{j_1,j_2}^4$

Filtering

- To minimize UE contamination ⇒ Filter the subjets j₁, j₂ within a finer angular region, R_{filt} < R_{j1,j2}
- Consider 3 hardest p_T subjets 2b & gluon
- Most Effective result (In the context of Higgs search) \Rightarrow $R_{filt} = min(R_{j_1,j_2}/2, 0.3)$
- (provided, both the subjets have tagged b's)

