High-Energy Neutrinos as New Cosmic Messengers

Kohta Murase Institute for Advanced Study, USA

IPMU Seminar February 21 2014

Outline

- 1. Introduction
- 2. Demystifying the origin of "diffuse" PeV neutrinos
- 3. GeV-PeV neutrinos as a probe of relativistic jets

#1 of top 10 breakthroughs in physics in 2013 judged by Physics World

%energy scale
MeV=10⁶ eV, GeV=10⁹ eV, TeV=10¹² eV,
PeV=10¹⁵ eV, EeV=10¹⁸ eV, ZeV=10²¹ eV

Motivation I: Unique Probe of Cosmic Explosions

~10 MeV neutrinos from supernova thermal: gravitational energy of a star

- explosion mechanism
- progenitor/v properties

> GeV neutrinos from γ-ray bursts nonthermal: dissipation of jets

physics of relativistic jets (Γ~100)
SN-GRB connection

Motivation II: Cosmic Rays - A Century Old Puzzle

Open problems •What is the CR origin? •Where is the transition? •How are CRs accelerated?

extremeness of ultrahigh-energy CRs 3x10²⁰ eV ~ 160 km/h tennis ball kin.

UHECR Source Candidates: Cosmic Monsters!

- <u>Neutrinos</u> direct probe of ion acceleration (straight, negligible absorption)
- <u>Gamma rays</u> contamination by leptonic signal interacting w. photons

 $\gamma + \gamma \rightarrow e^+ + e^-$

 $e + \gamma \rightarrow e + \gamma$ (inverse-Compton)

 $e + B \rightarrow e + \gamma$ (synchrotron) es are deflected by magnetic fields

 $\pi^{*} \rightarrow \mu^{*} + v_{\mu}(\overline{v}_{\mu})$ $\mu^{*} \rightarrow e^{*} + v_{\varepsilon}(\overline{v}_{\varepsilon}) + \overline{v}_{\mu}(v_{\mu})$ $\pi^{0} \rightarrow 2\gamma$ CR accelerator

Cosmic rays deflected by magnetic fields interacting w. photons/matter

$$p + \gamma \rightarrow p / n + N\pi$$
$$p + \gamma \rightarrow p + e^+ + e^-$$

Neutrino: Weak Interaction

IceCube: Gton Neutrino Detector

- at south pole
- ~ 1 km³ volume ~ Gton
- 86 strings (120 m spacing)
- 5160 PMTs (17 m spacing)
- completed in 2010

IceCube Detection of High-Energy Neutrinos

- E²_νΦ_ν=(1.2±0.4)x10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ (per flavor)
- Favoring cutoff at ~2 PeV for E⁻² or steeper than E^{-2.2}
- Consistent w. flavor ratio 1:1:1

Hints from Classical Strategy

IC59 upgoing track (1.8σ)
 IC40 shower (2.7σ)

High-Energy Neutrino Sky Map

consistent w. isotropic distribution

circle (21): shower event

Ahlers & KM 13; complied from IceCube 13 Science

Demystifying the Origin of Diffuse PeV Neutrinos

Q. What is the Origin?

A. Not known yet. We need more statistics. But interesting implications are obtained.

Requirements: isotropic flux w. E²_ν ~ 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ (break/cutoff around PeV for hard spectra)

Isotropic Diffuse Flux -> Cosmic Background

It is typically difficult to detect individual HE v sources

Neutrino Production Processes? pp vs py

E_v ~ 0.04 E_p: PeV neutrino ⇔ 20-30 PeV proton (or nucleon)

$$\varepsilon_{\nu}^{2}\Phi_{\nu} = \frac{c}{4\pi} \int dz \left| \frac{dt}{dz} \right| \varepsilon_{\nu}^{2} q_{\nu}(\varepsilon_{\nu}) F(z) \qquad \Longrightarrow E_{\nu}^{2}\Phi_{\nu} \approx \frac{ct_{H}}{4\pi} \left[\frac{f_{\text{mes}}}{4} \varepsilon_{p}^{2} q_{p}(\varepsilon_{p}) \right] f_{z}$$

 f_{mes} (<1): meson production efficiency (ex. $f_{pq} \sim 0.2 n_{v} \sigma_{pv} \Delta$) f_{z} (~0.6-5): source redshift evolution $\epsilon_{p}^{2} q(\epsilon_{p})$: CR energy generation rate per volume

Waxman-Bahcall bound: $\epsilon_v^2 \Phi(\epsilon_v) < f_z \times \frac{10^{-8}}{10^{-8}} \text{ GeV cm}^2 \text{ s}^{-1} \text{ sr}^{-1}$ obs. UHECR flux: $\epsilon_p^2 q(\epsilon_p)=0.6 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1} \& f_{\text{mes}} \rightarrow 1$ limit

Q. What is the Origin?

A. Not known yet. We need more statistics. But interesting implications are obtained.

Requirements: isotropic flux w. E²Φ ~ 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ (break/cutoff around PeV for hard spectra)

- candidate extragalactic sources (proposed before IceCube)
- γ-ray bursts (ex. Waxman & Bahcall 97, Waxman & Bahcall 00 ApJ, KM et al. 06)
- active galaxies (ex. Stecker et al. 91, Mannheim 95)
- newborn magnetars (ex. KM, Meszaros & Zhang 09)
- starburst galaxies (ex. Loeb & Waxman 06, Thompson et al. 07)
- galaxy clusters/groups (ex. KM et al. 08, Kotera, Allard, KM et al. 09) Galactic sources cannot be dominant, see Ahlers & KM 13

Now is the Time to Test Models!

taken from KM et al. 08 ApJL, KM 08 PRDR, KM et al. 09 PRD, KM 08 AIPC, Takami, KM+ 09 APh

State-of-the-Art Theoretical Calculations

e.g., KM 07 PRD

Example: Gamma-Ray Bursts

Gamma-Ray Bursts (py)

numerical results w. detailed microphysics

GRBs are special since stacking analyses are possible \bigcirc duration~10-100 s \rightarrow atm. bkg. is negligible for typical GRBs Stacking analyses imply <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ \rightarrow disfavored But different types (low-power GRBs) are viable (KM & loka 13 PRL)

Active Galactic Nuclei

- Active galaxies are known powerful γ-ray sources
- Golden candidate sources of ultrahigh-energy cosmic rays

AGN Inner Jet (py)

Strong prediction: cross-correlation with known <80 FSRQs

pp Scenarios: Cosmic-Ray Reservoirs

py vs pp: Multi-Messenger Connection

 $p + p \rightarrow N\pi + X$

 Star-forming galaxy
 Galaxy cluster

tight neutrino-gamma connection

Fate of Extragalactic Gamma Rays

log(E [GeV])

Effects of Electromagnetic Cascades

First Multi-Messenger Tests with "Measured" Fluxes

Γ<2.1-2.2 (for extragal.), Γ<2.0 (gal.) (cf. Milky Way: Γ~2.7)

- contribution to diffuse sub-TeV gamma-ray flux: >30-40%
- limits are insensitive to source redshift evolution

Implications

pp scenarios can be tested in near future

- Determining Γ at sub-PeV energies by IceCube If Γ > 2.2 → pp scenarios are disfavored
- Understanding diffuse γ -ray flux at sub-TeV energies 40%-100% from AGN $\rightarrow \Gamma$ ~2.0-2.1 or excluded
- Discovering individual TeV sources (by CTA, HAWC) The sources should show hard spectra
- Need careful studies on py scenarios
- Uneasy for standard jet models to explain the signal → low-power GRBs? AGN core?
- γ-ray constraints are model dependent

Questions & Future Directions

- Spectral features; Is the neutrino break/cutoff real? diffusion break, π cooling, v attenuation, maximum p energy
- Flavor ratios
 1:1:1, 0.57:1:1 (μ damp), 2.5:1:1 (n decay), others (exotic)
- Multi-messenger studies w. IceCube, Auger, HAWC, Fermi etc.; Connection w. origins of observed cosmic rays?
 - E_v ~ 0.04 E_p: PeV v ⇔ ~20-30 PeV p or ~(20-30)A PeV nuclei
 - contained CR spectrum \neq escaped CR spectrum E² $\Phi_{\sim} \sim 10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹ \Leftrightarrow Waxman-Bahcall bound flux
 - a. $f_{mes} \sim 1 \& \epsilon_p^2 N(\epsilon_p)|_{10-100 \text{ PeV}} \sim 10^{44} \text{ erg Mpc}^3 \text{ yr}^1 \sim (\text{obs. value})$ b. $f_{mes} <<1 \& \epsilon_p^2 N(\epsilon_p)|_{10-100 \text{ PeV}} >>10^{44} \text{ erg Mpc}^3 \text{ yr}^1$ (The latter is more favored if UHECRs are heavy nuclei)

Hope Multiwavelength Neutrino Astrophysics

GeV-TeV vs are interesting for both v physics & astrophysics!

GeV-PeV Neutrinos as a Probe of Relativistic Jets

Why Transients?

Original motivation: identifying a source of neutrinos

Transients → temporarily luminous and bkg. reduced

Why Transients?

Neutrinos probe physics that cannot be studied by photons For $\Phi_{v} \propto \epsilon_{v}^{-2}$, $N \propto \epsilon_{v} \Phi_{v} \rightarrow$ more statistics at lower energies

exciting targets: gamma-ray bursts & supernovae

TeV-PeV Neutrinos as a Probe of Jets inside Stars

Motivations

- Jet acceleration and jet composition (baryonic or magnetic)
- clues to GRB-SN connection and progenitors
- Neutrino mixing including matter effects etc.

How are Cosmic Rays Accelerated?

diffusive shock acceleration (Fermi mechanism)

More Realistic Picture

Two pieces of important physics were overlooked

- 1. Ballistic jets inside stars \times \rightarrow collimation shock & collimated jet
- 2. CR acceleration at collisionless shocks $\bigcirc X$ \rightarrow inefficient at radiation-mediated shocks

Limitation of Shock Acceleration

Collisionless shock

Radiation-mediated shock

"Radiation Constraints" on Non-thermal Neutrino Production

- Lower-power is better
- Bigger progenitor is better
- suppressed in typical GRBs and powerful slow-jet SNe
 favoring choked jets (difficulty of penetration)

Novel Acceleration Process in Neutron-Loaded Jets

"Neutron-Proton-Converter Acceleration" (Derishev+03 PRD) another Fermi acceleration mechanism without diffusion

NPC Acceleration: Spectra & Effects

We first performed Monte Carlo simulations for test particles

- Nucleon spectra consisting of bumps rather than a power law
- >10% of incoming neutron energy can be used for NPC acc.
- Enhancement of the detectability of GeV-TeV neutrinos

Summary

- PeV neutrinos may start to be detected by IceCube
- First evidence for astrophysical high-energy neutrinos
- Demystifying the origin of the diffuse neutrino flux
- py scenarios are possible but standard models seem disfavored
- pp scenarios can be tested in the next several years by neutrino obs. (sub-PeV) and γ-ray studies (sub-TeV & >TeV)
- Relevance of sub-PeV γ-ray searches for Galactic sources

Probing cosmic explosions with multi-messenger observations

 We derived radiation constraints on TeV-PeV v production, and low-power GRBs including choked jets are more promising
 GeV-TeV vs are promising for neutron-loaded jets

J.N. Bahcall (IAS), Neutrino Astrophysics (1989)

"The title is more of an expression of hope than a description of the book's contents....the observational horizon of neutrino astrophysics may grow ... perhaps in a time as short as one or two decades"

Backup Slides

Neutrino Constraints on Dark Matter Decay

- Neutrino bound is very powerful at high energies
- Cascade γ-ray bound: more conservative/robust at high m_{dm}
- The dark matter scenario can be tested soon (KM+ in prep.)

Implications for Further Neutrino Studies

Shower searches at lower energies offer the fastest way to distinguish between the neutrino spectra ex. if Γ >2.3 \rightarrow pp scenarios will be disfavored

Q. Galactic Contributions?

- So far, much more papers came out Galactic scenarios
- Need for PeV gamma-ray searches in the southern hemisphere

Q. Galactic Contributions?

Possibly, a fraction of the IceCube signal come from Galactic sources

- up to 7 (among 28) can be associated w. Fermi bubbles
- consistent w. Γ=2.2 (while the cutoff is indicated by Fermi)
- should be tested by γ-ray detectors such as HAWC

Neutrino Production in the Source

at Δ -resonance ($\epsilon_p \epsilon_{\gamma} \sim 0.2 \Gamma^2 \text{ GeV}^2$) $\epsilon_v{}^b \sim 0.05 \epsilon_p{}^b \sim 0.01 \text{ GeV}^2 \Gamma^2 / \epsilon_{\gamma,pk} \sim 1 \text{ PeV}$ (if $\epsilon_{\gamma,pk} \sim 1 \text{ MeV}$)

Meson production efficiency (large astrophysical uncertainty) $f_{pv} \sim 0.2 n_v \sigma_{pv} (r/\Gamma) \propto r^1 \Gamma^{-2} \propto \Gamma^{-4} \delta t^{-1}$ (if $r \sim \Gamma^2 \delta t$)

Neutrino Spectra

Recent IceCube Limits on Prompt v Emission

Implications of IceCube "Stacking" Searches

He+ KM 12 ApJ (see also Hummer et al. 12 PRL)

- + Not ruled out yet
- + ~10 yr observations by IceCube can cover most of relevant parameter space for the GRB-UHECRp hypothesis

Fall of Classical GRB Picture

dissipation: shock/mag./n-p collision

Model-Dependent Predictions

The Role of Neutrons at Subphotospheres: GeV Neutrinos

 Quasi-thermal emission explain observed GRB spectra (via EM cascades, Coulomb heating & synchrotron)

Quasi-thermal Neutrinos are Detectable

see also Bartos, Beloborodov+ 13 PRL

Novel Results of Swift (GRB060218)

Neutrinos in Jet Scenario

XLL GRBs accompanying relativistic SNe may produce UHECRs KM+06 ApJ (energetics), Wang+07 PRD (ext. free exp. shock), KM + 08 PRD (int. or ext. dec. shock)

Neutrino Predictions in the Swift Era

KM & Nagataki, PRL, 97, 051101 (2006) KM, Ioka, Nagataki, & Nakamura, ApJL, 651, L5 (2006)

 ν flashes \rightarrow Coincidence with flares/early AGs, a few events/yr ν s from LL GRBs \rightarrow little coincidence with bursts, a few events/yr

<u>Approaches to GRBs through high-energy neutrinos</u> Flares → potentially more baryon-rich and <u>efficient</u> neutrino emitters LL GRBs → possible indicators of SNe followed by opt. telescopes