Cosmic Complementarity: constraining neutrinos, dark energy & gravity

Roland de Putter JPL/Caltech IPMU Seminar 5/1/2014

Jet Propulsion Laboratory California Institute of Technology

<u>Outline</u>

- Neutrino mass constraints and the primordial power spectrum
- Combining weak lensing and galaxy clustering to probe dark energy, gravity and neutrinos
- Using cross-correlations to calibrate photometric redshifts in cosmic shear surveys

The absolute mass scale Σm_{ν} is a crucial property of neutrinos

Neutrino Oscillations: $\Sigma m_v > 0.06 \ eV$.

 Tritium Beta Decay: m_B < 2.05 eV (95 % CL) → Σm_v < 6.2 eV Troitsk Collaboration 2011

COSMOLOGY

Figure 1: Karie plots for $m_0 = 0$ (solid fine) and $m_0 \neq 0$ (dashed fine)

CNB affects cosmological observables through expansion history and growth of perturbations

1. Background Evolution:

- effect on cosmic distances, BAO, ...

2. Growth of Structure:

 neutrinos do not cluster on scales below free-streaming length

The strongest limits on Σm_v come from cosmological data: $\Sigma m_v < 0.23 \text{ eV}$ (95 % CL) from Planck CMB + BAO Planck Collaboration XVI

These bounds assume a power law primordial power spectrum (PPS)!

$$\Delta_R^2(k) = \Delta_R^2(k_0) \left(\frac{k}{k_0}\right)^{n_s - 1}$$

Power spectra of cosmic fluctuations are the "product" of PPS and transfer functions

$$C_{l} = \int d\ln k \ W_{l}(k) \ \Delta_{R}^{2}(k)$$

transfer function PPS

Galaxy Clustering

Agnostic approach: model the PPS by a 20-node spline at $k = 0.001 - 0.35 Mpc^{-1}$

$$\Delta_R^2(k) = \Delta_{R,0}^2 \cdot \text{spline}[p\{k_i\}]$$

RdP, Linder & Mishra, Phys Rev D 2014 (arXiv:1401.7022)

CMB data (Planck + SPT/ACT + WMAP Polarization) strongly constrain the primordial power spectrum

The CMB-only neutrino mass bound weakens by a factor 3 when the PPS is left free

Adding low-redshift data breaks the degeneracy between "late-universe parameters" Σm_v and H_o

CMB + BOSS Galaxy Power Spectrum tightens the constraint and makes it less dependent on the assumed PPS

CMASS galaxy sample (z=0.57)

Anderson et al 2012

Adding a direct measurement H₀=73.8 +/- 2.4 km/s/Mpc yields a constraint Σm_v< 0.19 eV, independent of PPS

- Tension ($\Delta \chi^2$ ≈10.5) between CMB and H0 data
- Variations in H₀ analysis lead to upper limit 0.18 eV 0.28 eV a robust, consensus H0 measurement will be incredibly useful

Conclusions so far

- The strongest bounds on absolute neutrino mass scale come from cosmological data
- However, published bounds assume a simple functional form for the primordial power spectrum
- With CMB data only, allowing a free PPS weakens the neutrino bound by factor 3
- Adding low redshift data (galaxy clustering, H0) creates PPS-independent, strong upper limits Σm_v< 0.2 eV

Beutler et al 1403.4599

- Neutrino mass constraints and the primordial power spectrum
- Combining weak lensing and galaxy clustering to probe dark energy, gravity and neutrinos
- Using cross-correlations to calibrate photometric redshifts in cosmic shear surveys

Galaxy Clustering:

 Large volume, 3D maps of galaxies allow measurement of clustering and growth of structure

- BOSS: V = 4.4 (h^{-1} Gpc)³, $\Omega \approx 10,000 \ deg^2$

Weak Gravitational Lensing:

- Cosmic shear directly measures metric perturbations and also has strong dependence on expansion history
- CFHTLS: Ω ≈ 150 deg²

The SDSS telescope at Apache Point, New Mexico

The Canada France Hawaii Telescope (Mauna Kea)

Weak lensing and galaxy clustering are complementary probes of cosmology

Kilbinger et al 2012 (CFHTLS)

Mandelbaum et al 2013 (SDSS)

Sumine: Subaru Measurement of Images and Redshifts

8.2 m Subaru telescope

The Hyper Suprime Cam (HSC) wide field imaging survey will measure cosmic shear across 1500 deg²

2014 – 2019

- Wide 1.5 deg field of view
- Deep multi-band imaging (grizy; i ≈26, y ≈24)
- n = 20 arcmin⁻²
- <z> = 1

The Prime Focus Spectrograph (**PFS**) cosmology survey will measure 3D clustering at *z=0.6-2.4*

- 2018 2023
- 2400 fibers
- $\lambda = 380 1260 \text{ nm}$
- ELG's ([OII])

SuMIRe: 3 tomographic bins

Takada et al 2012, Oguri & Takada 2011

EUCLID: 6 tomographic bins

Amendola et al 2012

- How much improvement when Weak Lensing and Galaxy Clustering Combined?
- How important is overlap between surveys?

RdP, Dore & Takada arXiv:1308.6070

SuMIRe Dark Energy: Strong WL + GC complementarity, but overlap not crucial

 $FOM = (Det(Cov[w_0, w_a]))^{-\frac{1}{2}}$

Tight bounds on timevarying DE equation of state

CMB prior (Planck) included

SuMIRe growth rate: Strong WL + GC complementarity, but overlap not crucial

CMB prior (Planck) induded

Bounds on growth rate of large scale structure Combination of WL+GC crucial!

EUCLID dark energy: Strong WL + GC complementarity, but overlap not crucial

EUCLID growth rate: Strong WL + GC complementarity, but overlap not crucial

CMB prior (Planck) included

Bounds on growth rate of large scale structure Combination of WL + GC crucial! The number of modes probed by cross-correlations is small compared to that probed my RSD or WL alone

Font-Ribera et al, 2013

Neutrino mass detection should be possible with EUCLID (and DESI)

- $\sigma(\Sigma m_v) = 0.03 \ eV$
- Dominated by Galaxy Clustering (amplitude information)

Cosmological information in shear-galaxy cross power spectra is limited, but other "same-sky" benefits do exist

- imaging survey provides target catalog
- Identifying/constraining systematics
- information from non-linear regime
 - Hikage, Takada & Spergel 2011 Yoo & Seljak 2012 Hikage et al 2013 Cacciato et al 2013

higher order statistics

- Neutrino mass constraints and the primordial power spectrum
- Combining weak lensing and galaxy clustering to probe dark energy, gravity and neutrinos
- Using cross-correlations to calibrate photometric redshifts in cosmic shear surveys

Upcoming cosmic shear surveys require < 1 % level calibration of photometric redshifts

Ilbert et al 2006

Huterer et al 2005; Ma, Hu & Huterer 2005; etc

(Source) redshift distributions can be estimated using cross-correlations with overlapping spectroscopic sample

Newman 2008, Schulz 2010, Matthews & Newman 2010, McQuinn & White 2013, Menard et al 2013

(Source) redshift distributions can be estimated using cross-correlations with overlapping spectroscopic sample

Menard et al 2013

Newman 2008, Schulz 2010, Matthews & Newman 2010, McQuinn & White 2013, Menard et al 2013

Matthews & Newman 2010

Redshift distribution reconstruction crucially relies on knowledge of galaxy bias

Can cross-correlations technique improve cosmic shear constraints by calibrating photo-z distribution?

de Putter, Dore & Das - ApJ 2013

We assume a Gaussian photo-z model

 Simple Gaussian model for photo-z distributions:

> See, e.g. Ma, Hu & Huterer (2006), Huterer et al (2006), Ma & Bernstein (2008), Hearin et al (2010)

$$p(z_{\rm ph}|z) = \frac{1}{\sqrt{2\pi}\sigma_z(z)} e^{-\frac{1}{2}(z_{\rm ph}-z-b_z(z))^2/\sigma_z^2(z)}$$
$$\frac{dn_i}{dz}(z) = \frac{dn}{dz}(z) \int_{z_i^{\rm high}}^{z_i^{\rm high}} dz_{\rm ph} p(z_{\rm ph}|z)$$

(distribution in tomographic bin)

- Distribution defined by scatter σ_z(z) and bias b_z(z)
- Parametrized by spline with 11 nodes in z=0-3 : allows for very general redshift evolution

Fiducial: $\sigma_z(z) = 0.05 (1+z), \ b_z(z) = 0$

SuMIRe Dark Energy Figure of Merit (no photo-z prior)

Cross-correlations can partially restore HSC cosmic shear information lost due to poorly calibrated photo-z's

Cross-correlations can partially restore EUCLID cosmic shear information lost due to poorly calibrated photo-z's

Cross-correlation technique looks promising, but major challenges remain

- Breaking the n(z) galaxy bias degeneracy
- Dealing with outliers/distributions beyond Gaussian
- Non-linear bias
- Confusion with magnification bias
- etc

Summary/Conclusions

- Cosmological data are closing in on neutrino mass (Σm_ν < 0.2 eV); combining probes is crucial for robustness
- Combining future Weak Lensing and Galaxy Clustering data will improve DE FOM by factor 2-3 compared to either probe alone and leads to strong cosmic growth constraints
- Cross-correlations with overlapping spectroscopic survey ameliorate photo-z systematics in cosmic shear surveys

Thank You