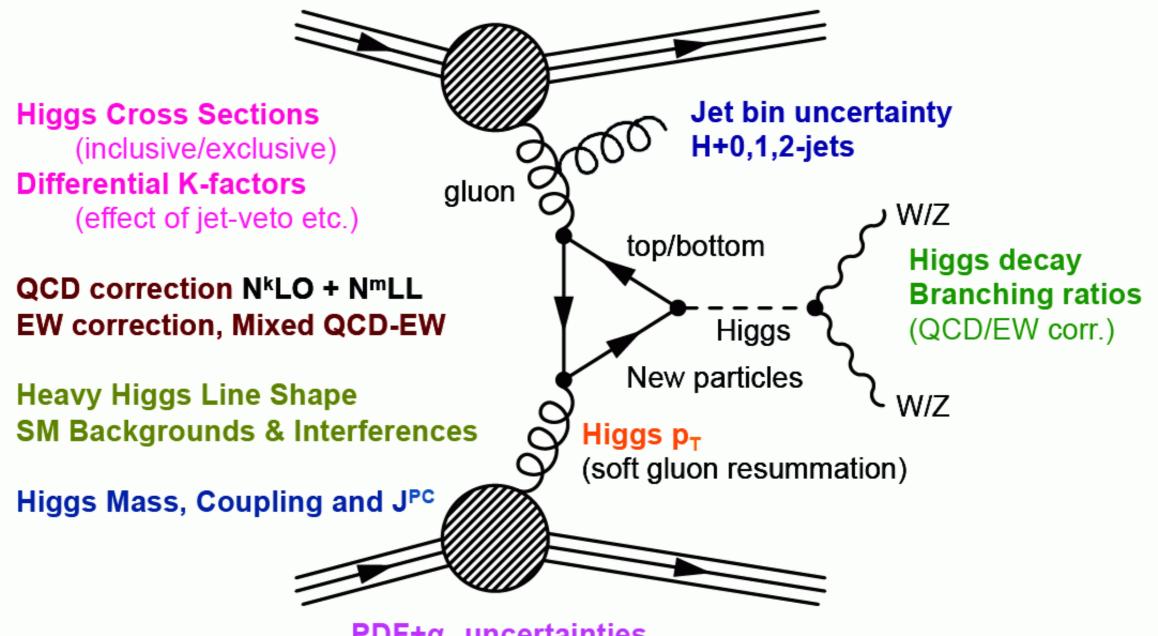

Higher-Order QCD Effects in Higgs Boson Production

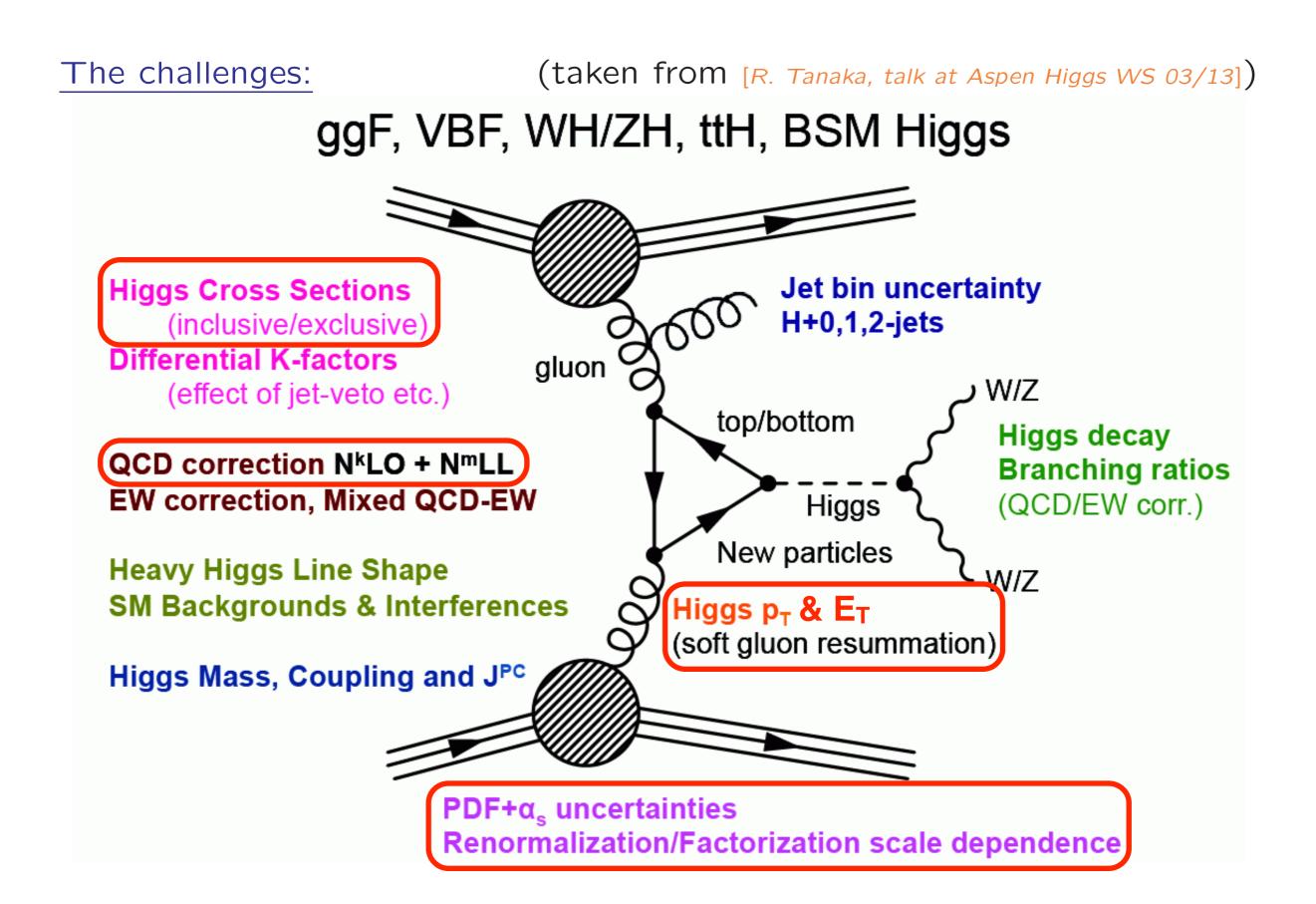
Bryan Webber

UNIVERSITY OF CAMBRIDGE

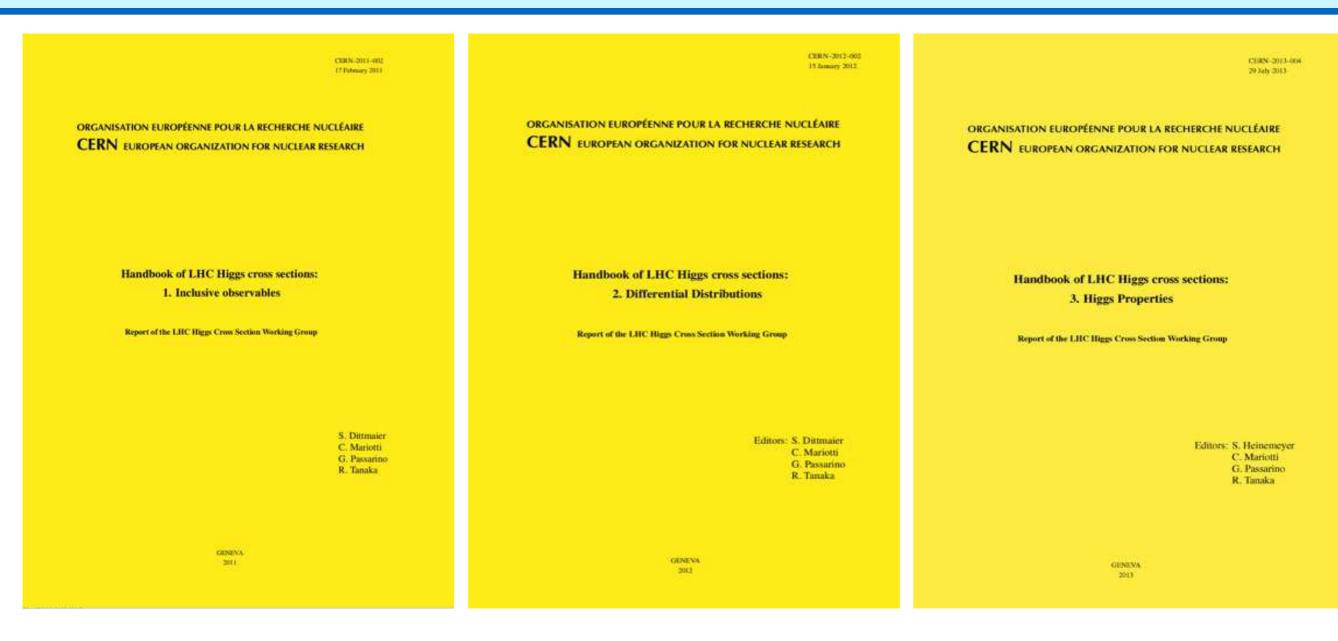
Higgs production cross sections



2


The challenges:

(taken from [R. Tanaka, talk at Aspen Higgs WS 03/13])


ggF, VBF, WH/ZH, ttH, BSM Higgs

PDF+α_s uncertainties Renormalization/Factorization scale dependence

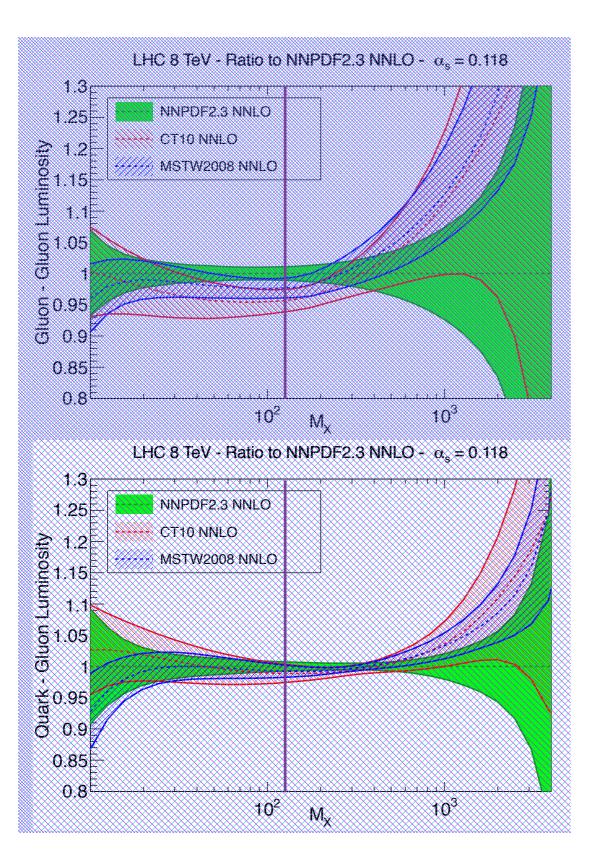
LHC Higgs Cross Section Working Group

arXiv:1101.0593, 1201.3084, 1307.1347

Higgs Production Cross Section

 $\sigma_{\rm H}(s) = \sum_{i,i} \int \mathrm{d}x_1 \mathrm{d}x_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \,\hat{\sigma}_{ij}\left(x_1 x_2 s, m_{\rm H}^2, \alpha_{\rm S}(\mu_R^2), \mu_F^2, \mu_R^2\right)$

Table B.10: ggF cross sections at the LHC at 8 TeV and corresponding scale and PDF+ α_s uncertainties computed

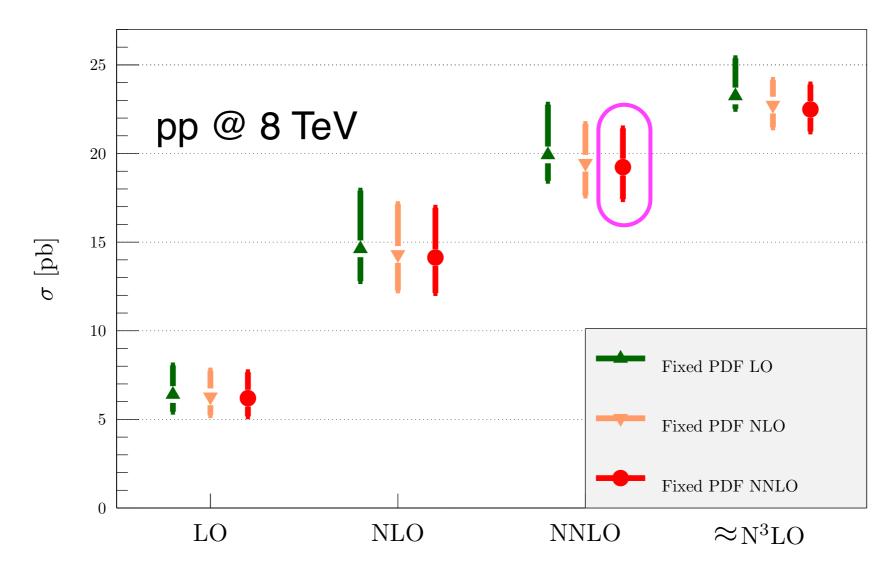

according to the PDF4LHC recommendation.

$M_{\rm H}[{\rm GeV}]$	σ [pb]	QCD Scale [%]	PDF+ α_s [%]
124.4	19.45	+7.2 -7.9	+7.5 - 6.9
124.5	19.42	+7.2 -7.9	+7.5 - 6.9
124.6	19.39	+7.2 -7.9	+7.5 - 6.9
124.7	19.36	+7.2 -7.9	+7.5 - 6.9
124.8	19.33	+7.2 -7.8	+7.5 - 6.9
124.9	19.30	+7.2 -7.8	+7.5 - 6.9
125.0	19.27	+7.2 -7.8	+7.5 - 6.9
125.1	19.24	+7.2 -7.8	+7.5 - 6.9
125.2	19.21	+7.2 -7.8	+7.5 - 6.9
125.3	19.18	+7.2 -7.8	+7.5 - 6.9
125.4	19.15	+7.2 -7.8	+7.5 - 6.9
125.5	19.12	+7.2 - 7.8	+7.5 - 6.9
125.6	19.09	+7.2 - 7.8	+7.5 - 6.9
125.7	19.06	+7.2 -7.8	+7.5 - 6.9
125.8	19.03	+7.2 -7.8	+7.5 - 6.9
125.9	19.00	+7.2 -7.8	+7.5 - 6.9
126.0	18.97	+7.2 -7.8	+7.5 - 6.9
126.1	18.94	+7.2 -7.8	+7.5 - 6.9
126.2	18.91	+7.2 -7.8	+7.5 - 6.9
126.3	18.88	+7.2 -7.8	+7.5 - 6.9
126.4	18.85	+7.2 -7.8	+7.5 - 6.9
126.5	18.82	+7.2 -7.8	+7.5 - 6.9

HXSWG vol.3

NNLO $\rightarrow \sigma_{ggF}(8 \text{ TeV}) = 19.1 \pm 2.0 \text{ pb}$

PDF Uncertainties

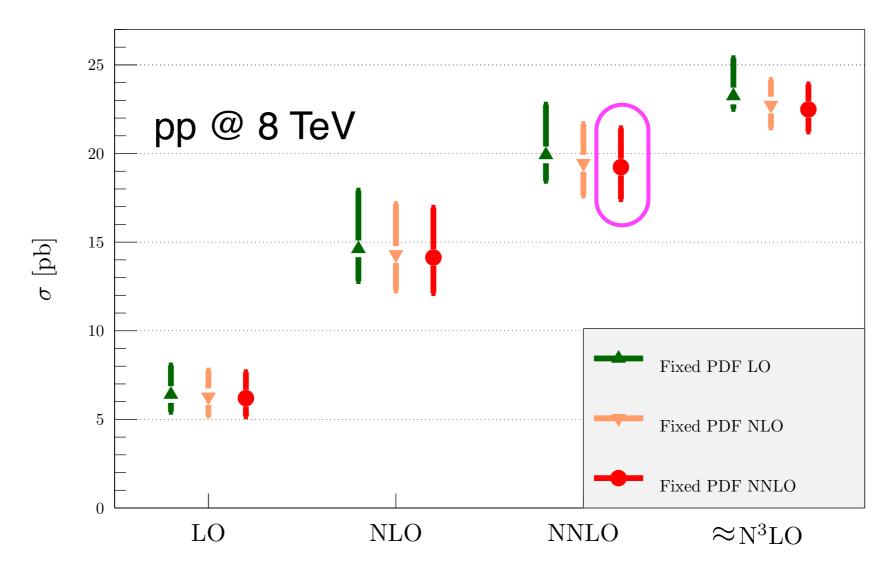


Ball et al., 1211.5142

- Parton luminosity $\mathcal{L}_{ij}(M_X^2, s) =$ $\int dx_1 dx_2 f_i(x_1, M_X^2) f_j(x_2, M_X^2) \delta(x_1 x_2 s - M_X^2)$
- Relevant PDFs (relatively) well known at x ~ M_H/\sqrt{s}
- Some disagreement with CTI0 \mathcal{L}_{gg}
- Remains true at 13 TeV
- Can be improved (in principle)

Ball et al., 1303.3590

Forte, Isigro, Vita, 1312.6688



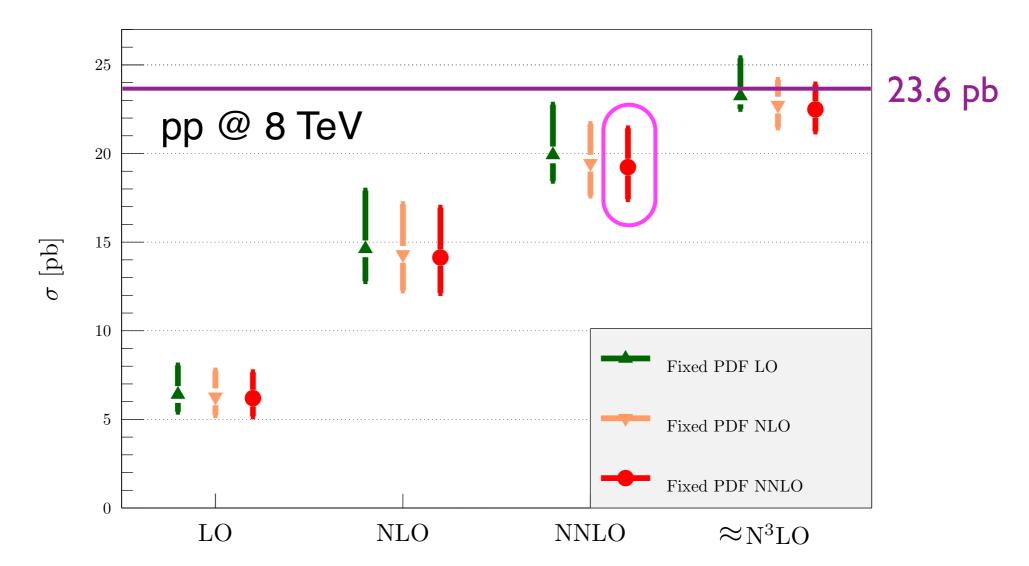
• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right]$$

 $\lambda \approx 5.6$

Ball et al., 1303.3590

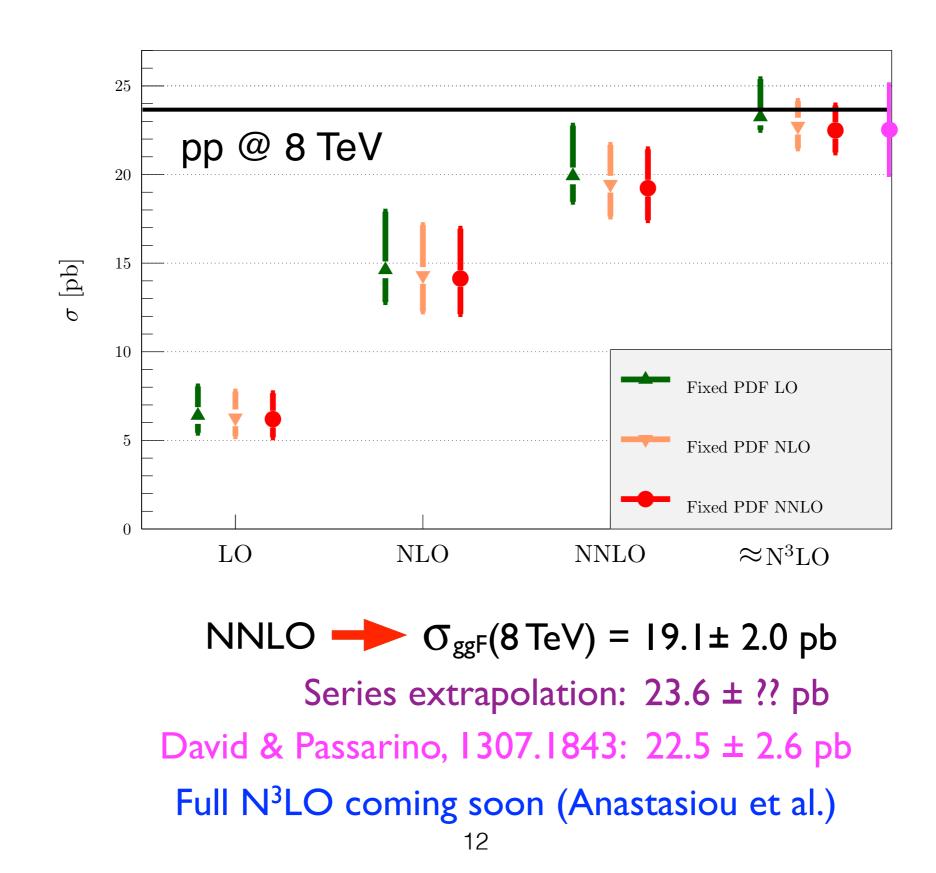
Forte, Isigro, Vita, 1312.6688



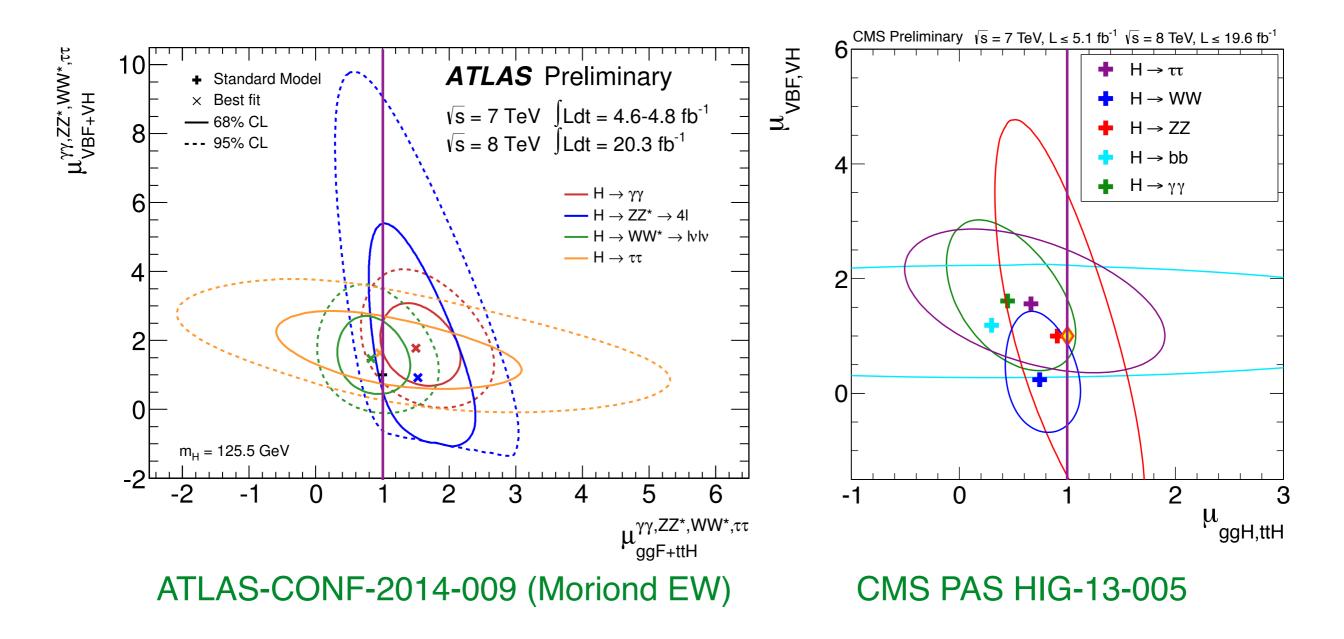
• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right] \approx \sigma_{\rm LO} \left[1 - \kappa + \frac{\kappa}{1 - \lambda \alpha_{\rm S}} \right]$$

 $\lambda \approx 5.6$


Ball et al., 1303.3590

Forte, Isigro, Vita, 1312.6688



• Higher-order effects are larger than x2 scale variation estimates

•
$$\sigma_{\rm ggF} \approx \sigma_{\rm LO} \left[1 + \kappa \{ \lambda \alpha_{\rm S} + (\lambda \alpha_{\rm S})^2 + (\lambda \alpha_{\rm S})^3 + \cdots \} \right] \approx \left[\sigma_{\rm LO} \left[1 - \kappa + \frac{\kappa}{1 - \lambda \alpha_{\rm S}} \right] \right]$$

 $\lambda \approx 5.6$

• ATLAS, but not CMS, find ggF excess in $\gamma\gamma$ and ZZ^{*} channels

Cross Sections at 13 TeV

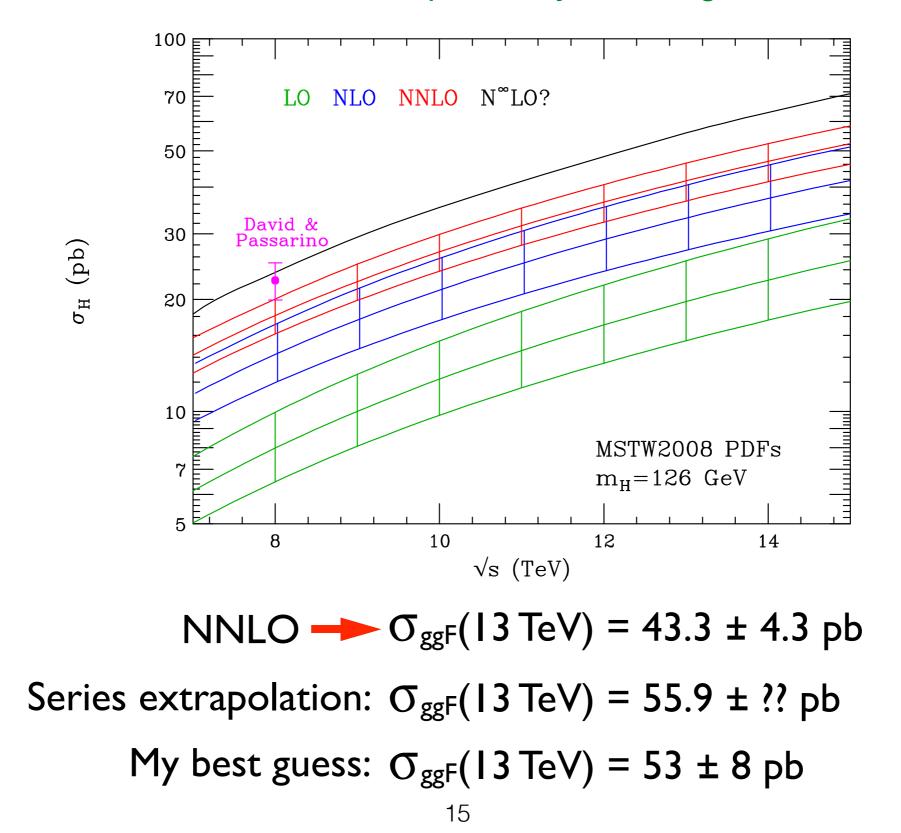
HXSWG 05/04/2014

√s = 13.0 TeV

gluon-gluon Fusion Process

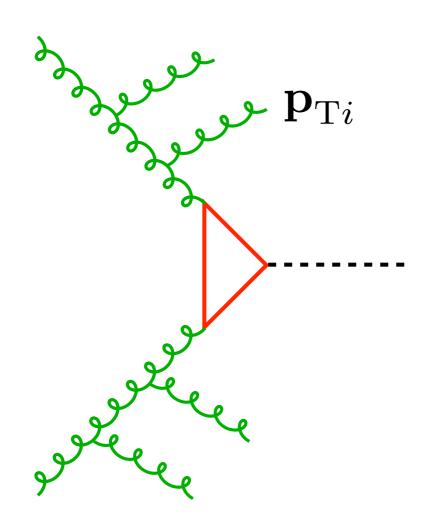
• All cross sections are in complex-pole-scheme from the dFG program. They are computed at NNLL QCD and NLO EW.

m _H (GeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+ α_s) %
125.0	43.92	+7.4	-7.9	+7.1	-6.0
125.5	43.62	+7.4	-7.9	+7.1	-6.0
126.0	43.31	+7.4	-7.9	+7.1	-6.0


VBF Process

• At NNLO QCD and NLO EW. All cross sections are in complex-pole-scheme.

m _H (GeV)	Cross Section (pb)	+QCD Scale %	-QCD Scale %	+(PDF+ α_s) %	-(PDF+ α_s) %
125.0	3.748	+0.7	-0.7	+3.2	-3.2
125.5	3.727	+1.0	-0.7	+3.4	-3.4
126.0	3.703	+1.3	-0.6	+3.1	-3.1


Cross Section vs Energy

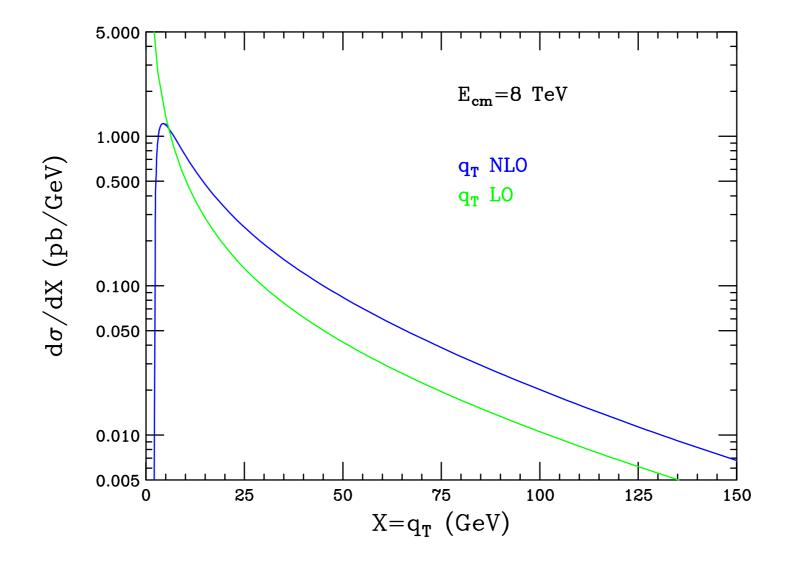
http://theory.fi.infn.it/grazzini/hcalculators.html

Higgs Differential Cross Sections

Higgs q_T & E_T

• Higgs transverse momentum

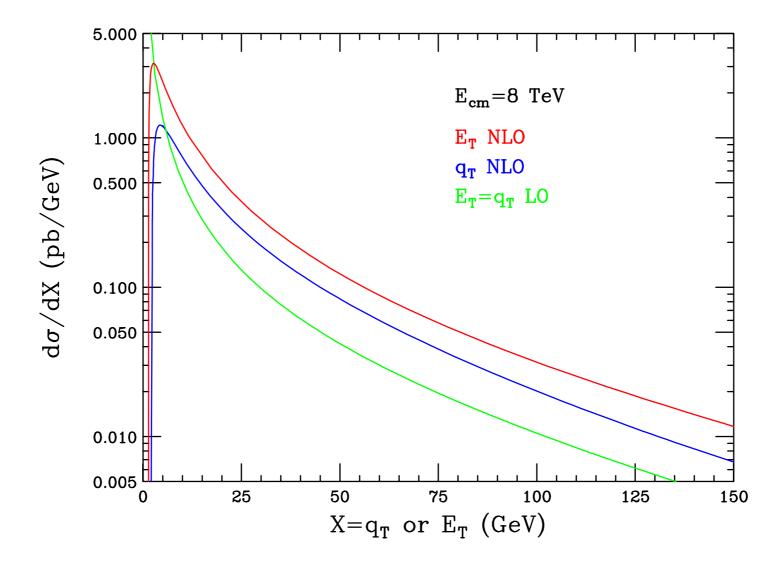
$$\mathbf{q}_{\mathrm{T}} = -\sum \mathbf{p}_{\mathrm{T}i}$$


Bozzi et al. 0705.3887 Mantry & Petriello, 0911.4135 Catani & Grazzini, 1011.3918 de Florian et al. 1109.2109

• Radiated transverse energy

$$E_T = \sum |\mathbf{p}_{\mathrm{T}i}|$$

Papaefstathiou, Smillie, BW, 1002.4375 +Grazzini, 1403.3394


Higgs q_T (fixed order)

• (N)LO
$$\xrightarrow[q_T \to 0]{} (-)\infty$$

• Large logs of m_{H^2}/q_{T^2} need resummation

Higgs $q_T \& E_T$ (fixed order)

• (N)LO
$$\xrightarrow{E_{T} \to 0} (-)\infty$$

• Large logs of $m_{\rm H}^2/E_{\rm T}^2$ need resummation

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \ldots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d \mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \ldots$$

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \dots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d \mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \dots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] (e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1) + \dots \right\}$$

Resummation of Higgs q_T

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \dots)$$

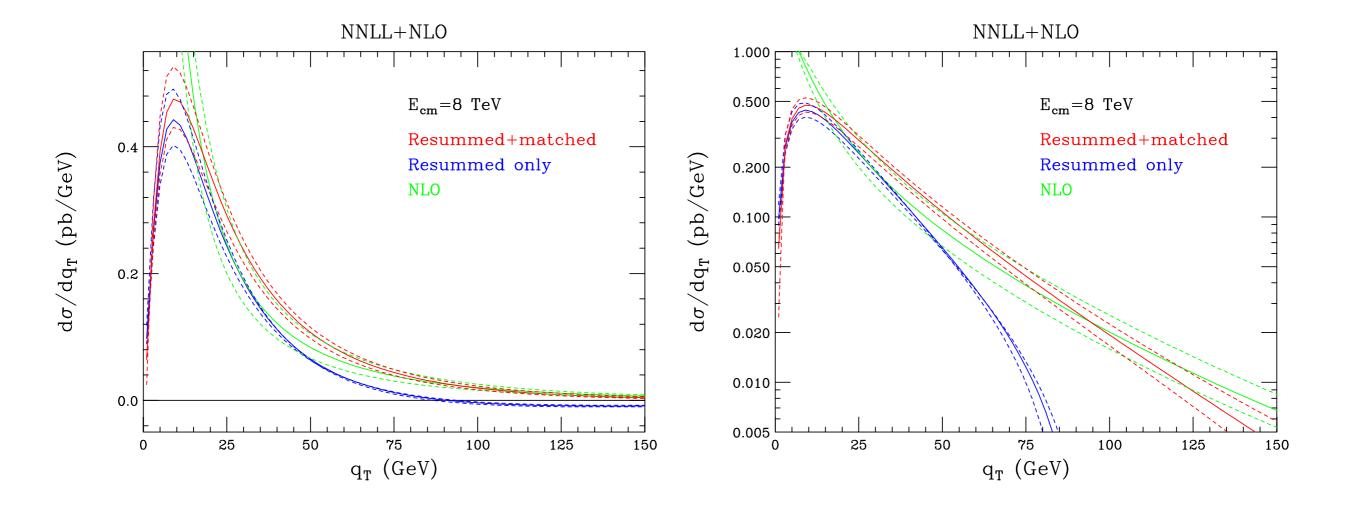
$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d\mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \dots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) + \dots \right\}$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \exp \left\{ \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) \right\}$$

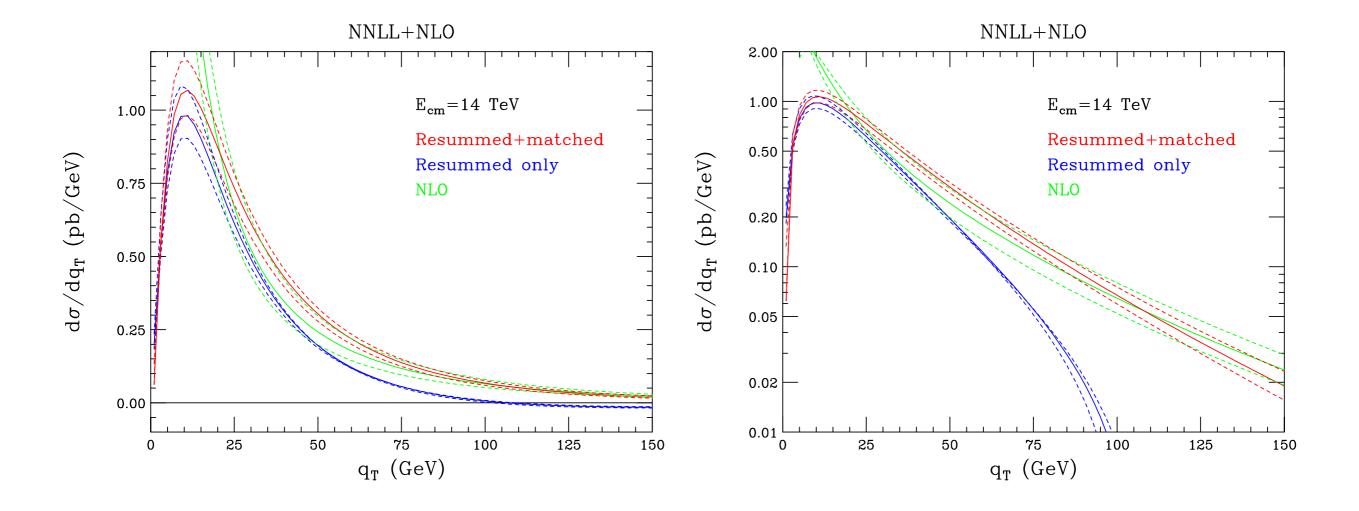
Resummation & matching of Higgs q_T

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \dots)$$


$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d\mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \dots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] (e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1) + \dots \right\}$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \exp \left\{ \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] (e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1) \right\}$$


$$\frac{d\sigma}{d\mathbf{q}_T} = \left[\frac{d\sigma}{d\mathbf{q}_T} \right]_{\text{resum}} - \left[\frac{d\sigma}{d\mathbf{q}_T} \right]_{\text{resum,NLO}} + \left[\frac{d\sigma}{d\mathbf{q}_T} \right]_{\text{NLO}}$$

Higgs transverse momentum: 8 TeV

- Peak at ~10 GeV: $\log(m_{H^2}/q_{T^2})$ ~5.1
- Resummation affects spectrum out to larger qT

Higgs transverse momentum: I4 TeV

- Peak at ~10 GeV: $\log(m_{H^2}/q_{T^2})$ ~5.1
- Resummation affects spectrum out to larger q_T

Resummation of Higgs q_T

$$d\sigma = \int dx_1 dx_2 f_a(x_1, \mu) f_b(x_2, \mu) d\hat{\sigma}_{ab}(x_1 x_2 s, \mu, \dots)$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{d^2 \hat{\sigma}_{gg}}{d\mathbf{q}_T^2} \sim \delta^2(\mathbf{q}_T) + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right]_+ \delta^2(\mathbf{q}_T + \mathbf{p}_T) + \dots$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \left\{ 1 + \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) + \dots \right\}$$

$$\sim \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{i\mathbf{b}\cdot\mathbf{q}_T} \exp \left\{ \alpha_S \int d^2 \mathbf{p}_T \left[\frac{A_g}{\mathbf{p}_T^2} \ln \frac{m_H^2}{\mathbf{p}_T^2} + \frac{B_g}{\mathbf{p}_T^2} \right] \left(e^{i\mathbf{b}\cdot\mathbf{p}_T} - 1 \right) \right\}$$

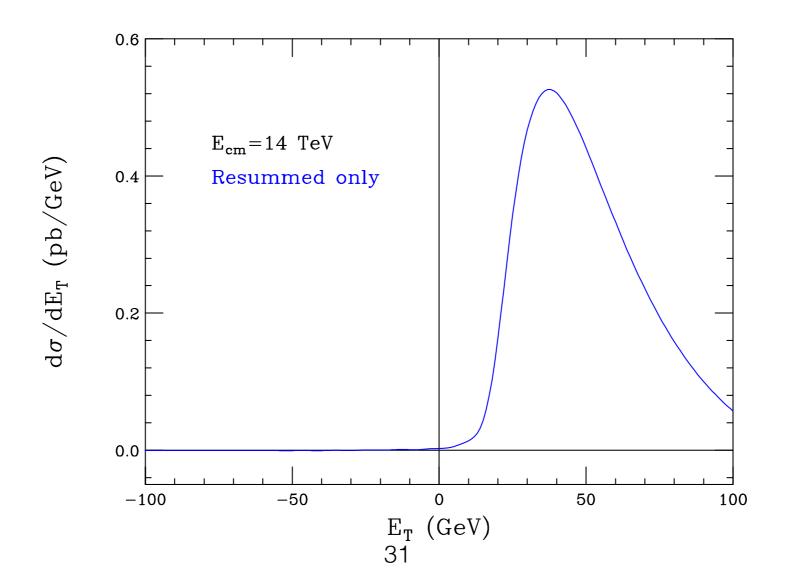
$$\begin{split} \mathrm{d}\sigma &= \int \mathrm{d}x_{1}\mathrm{d}x_{2}\,f_{a}(x_{1},\mu)f_{b}(x_{2},\mu)\,\mathrm{d}\hat{\sigma}_{ab}(x_{1}x_{2}s,\mu,\ldots) \\ &\frac{1}{\hat{\sigma}_{gg}}\frac{\mathrm{d}^{2}\hat{\sigma}_{gg}}{\mathrm{d}\,\mathbf{q}_{\mathrm{T}}^{2}} \sim \delta^{2}(\mathbf{q}_{\mathrm{T}}) + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]_{+}\delta^{2}(\mathbf{q}_{\mathrm{T}} + \mathbf{p}_{\mathrm{T}}) + \ldots \\ &\sim \int\frac{\mathrm{d}^{2}\mathbf{b}}{(2\pi)^{2}}\mathrm{e}^{i\mathbf{b}\cdot\mathbf{q}_{\mathrm{T}}}\left\{1 + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right) + \ldots\right\} \\ &\sim \int\frac{\mathrm{d}^{2}\mathbf{b}}{(2\pi)^{2}}\,\mathrm{e}^{i\mathbf{b}\cdot\mathbf{q}_{\mathrm{T}}}\exp\left\{\alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right)\right\} \\ &\frac{1}{\hat{\sigma}_{gg}}\frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}\,E_{T}} \sim \delta(E_{T}) + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{i\mathbf{b}\cdot\mathbf{p}_{\mathrm{T}}} - 1\right)\right\} \\ &\frac{1}{\hat{\sigma}_{gg}}\frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}\,E_{T}} \sim \delta(E_{T}) + \alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{-i\mathbf{r}|\mathbf{p}_{\mathrm{T}}|) + \ldots\right\} \\ &\sim \int\frac{\mathrm{d}^{2}\mathbf{d}}{\mathbf{q}_{\mathrm{T}}}\,\mathrm{e}^{i\tau E_{T}}\,\mathrm{exp}\left\{\alpha_{\mathrm{S}}\int\mathrm{d}^{2}\mathbf{p}_{\mathrm{T}}\left[\frac{A_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\ln\frac{m_{H}^{2}}{\mathbf{p}_{\mathrm{T}}^{2}} + \frac{B_{g}}{\mathbf{p}_{\mathrm{T}}^{2}}\right]\left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}| - 1\right)\right\} \end{split}$$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau |\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

• Defined for $\mathsf{E}_{\mathsf{T}} \leq \mathsf{0}$

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

Defined for E_T ≤0


• For $E_T < 0$, can close τ -contour in lower half-plane

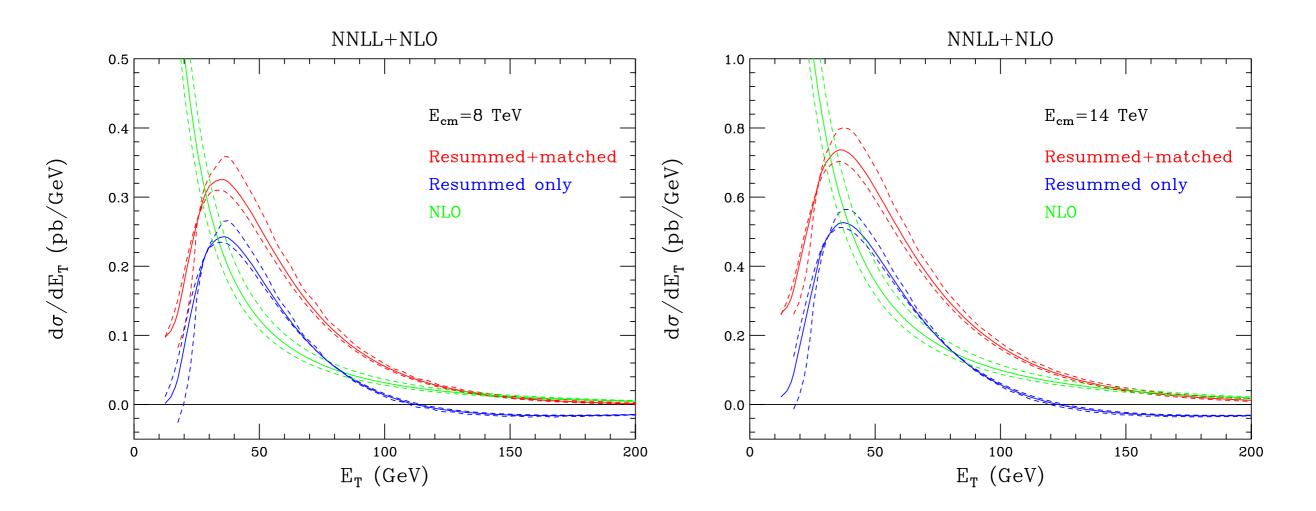
$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

- Defined for E_T ≤0
- For $E_T < 0$, can close τ -contour in lower half-plane
- No singularities in lower half-plane

$$\frac{1}{\hat{\sigma}_{gg}} \frac{\mathrm{d}\hat{\sigma}_{gg}}{\mathrm{d}E_T} \sim \int_{-\infty}^{+\infty} \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{i\tau E_T} \exp\left\{\alpha_{\mathrm{S}} \int \mathrm{d}^2 \mathbf{p}_{\mathrm{T}} \left[\frac{A_g}{\mathbf{p}_{\mathrm{T}}^2} \ln \frac{m_H^2}{\mathbf{p}_{\mathrm{T}}^2} + \frac{B_g}{\mathbf{p}_{\mathrm{T}}^2}\right] \left(\mathrm{e}^{-i\tau|\mathbf{p}_{\mathrm{T}}|} - 1\right)\right\}$$

- Defined for E_T ≤0
- For $E_T < 0$, can close τ -contour in lower half-plane
- No singularities in lower half-plane

Resummation & matching of Higgs E_T

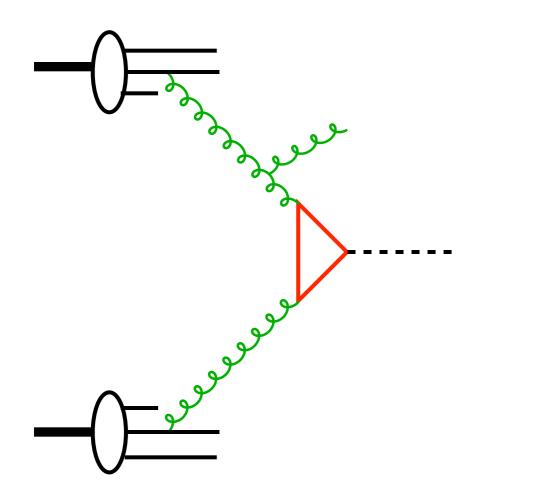

$$\left[\frac{d\sigma_H}{dQ^2 \, dE_T}\right]_{\text{res.}} = \frac{1}{2\pi} \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \int_{-\infty}^{+\infty} d\tau \, \mathrm{e}^{-i\tau E_T} \, f_{a/h_1}(x_1,\mu) \, f_{b/h_2}(x_2,\mu) \, W_{ab}^H(x_1x_2s;Q,\tau,\mu)$$

 $W_{ab}^{H}(s;Q,\tau,\mu) = \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} C_{ga}(\alpha_{\rm S}(\mu), z_{1};\tau,\mu) C_{gb}(\alpha_{\rm S}(\mu), z_{2};\tau,\mu) \,\delta(Q^{2} - z_{1}z_{2}s) \,\sigma_{gg}^{H}(Q,\alpha_{\rm S}(Q)) \,S_{g}(Q,\tau)$

$$S_g(Q,\tau) = \exp\left\{-2\int_0^Q \frac{dq}{q} \left[2A_g(\alpha_{\rm S}(q)) \ln \frac{Q}{q} + B_g(\alpha_{\rm S}(q))\right] \left(1 - e^{iq\tau}\right)\right\}$$
$$A_g(\alpha_{\rm S}) = \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n A_g^{(n)} ,$$
$$B_g(\alpha_{\rm S}) = \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n B_g^{(n)} ,$$
$$C_{ga}(\alpha_{\rm S},z) = \delta_{ga} \,\delta(1-z) + \sum_{n=1}^\infty \left(\frac{\alpha_{\rm S}}{\pi}\right)^n C_{ga}^{(n)}(z)$$

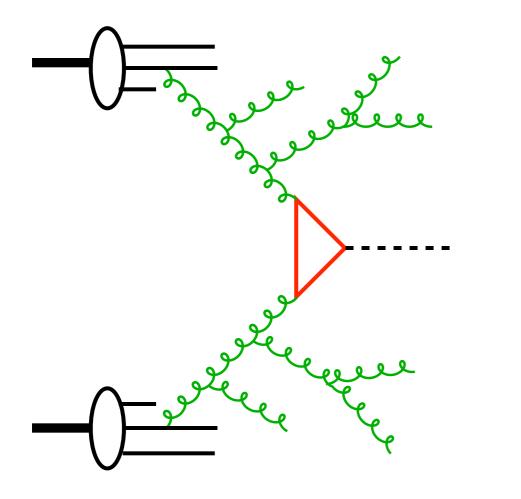
$$\frac{d\sigma_H}{dE_T} = \left[\frac{d\sigma_H}{dE_T}\right]_{\text{resum}} - \left[\frac{d\sigma_H}{dE_T}\right]_{\text{resum,NLO}} + \left[\frac{d\sigma_H}{dE_T}\right]_{\text{NLO}}$$

Transverse energy distribution

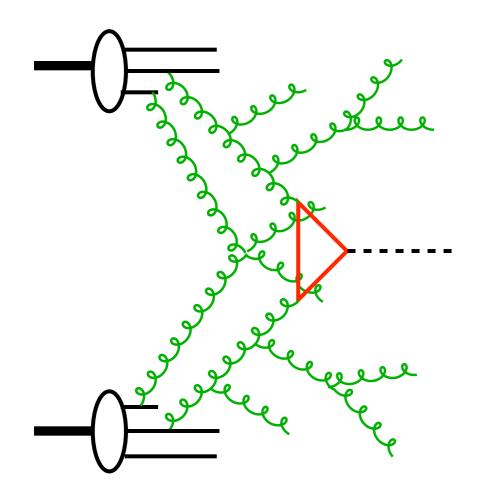

Peak at ~35 GeV: log(m_H²/E_T²)~2.6

- Resummation affects spectrum out to much larger E_T
- Unlike q_T, the Underlying Event also contributes...

Monte Carlo Simulation

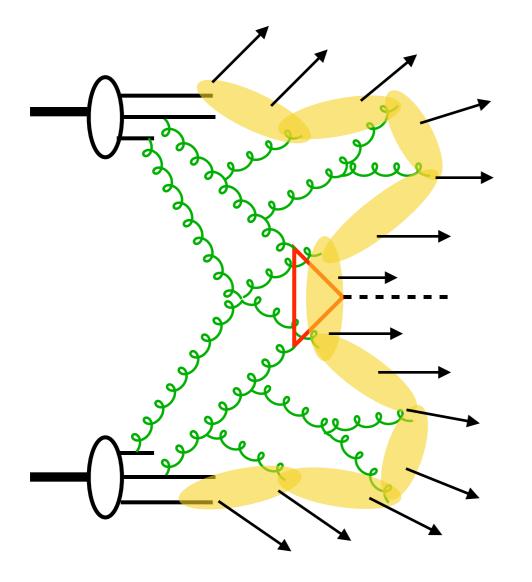

Monte Carlo simulation

Frixione, BW, hep-ph/0204244 Frederix et al., 1110.4738


Monte Carlo simulation

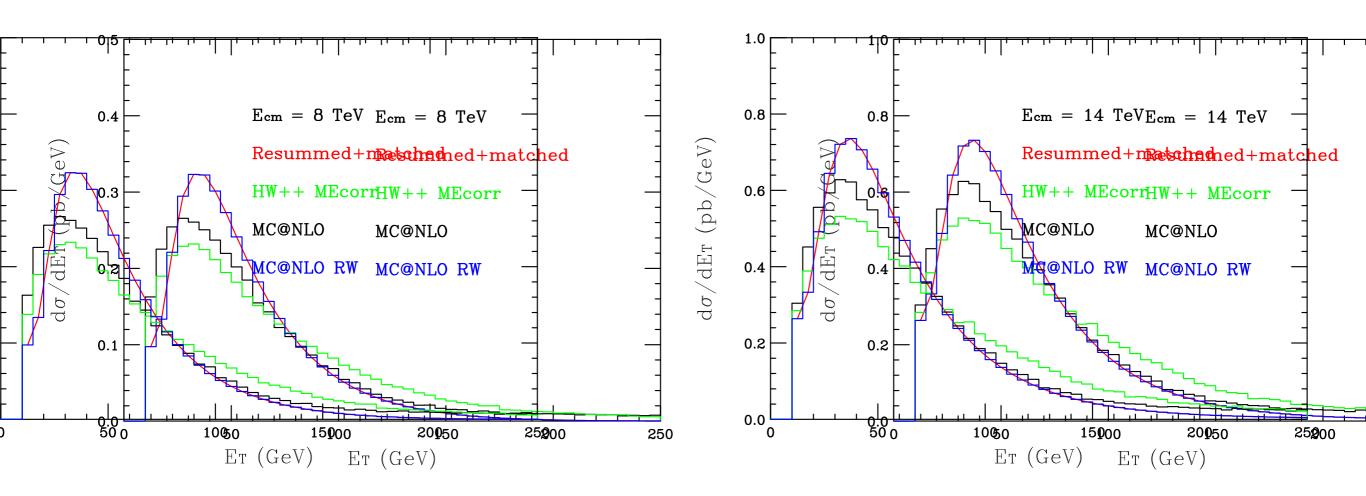
- aMC@NLO: NLO with matching to ...
- Parton showers (\approx higher orders)

Frixione, BW, hep-ph/0204244 Frederix et al., 1110.4738 Bahr et al., 0812.0529, http://projects.hepforge.org/herwig/


Monte Carlo simulation

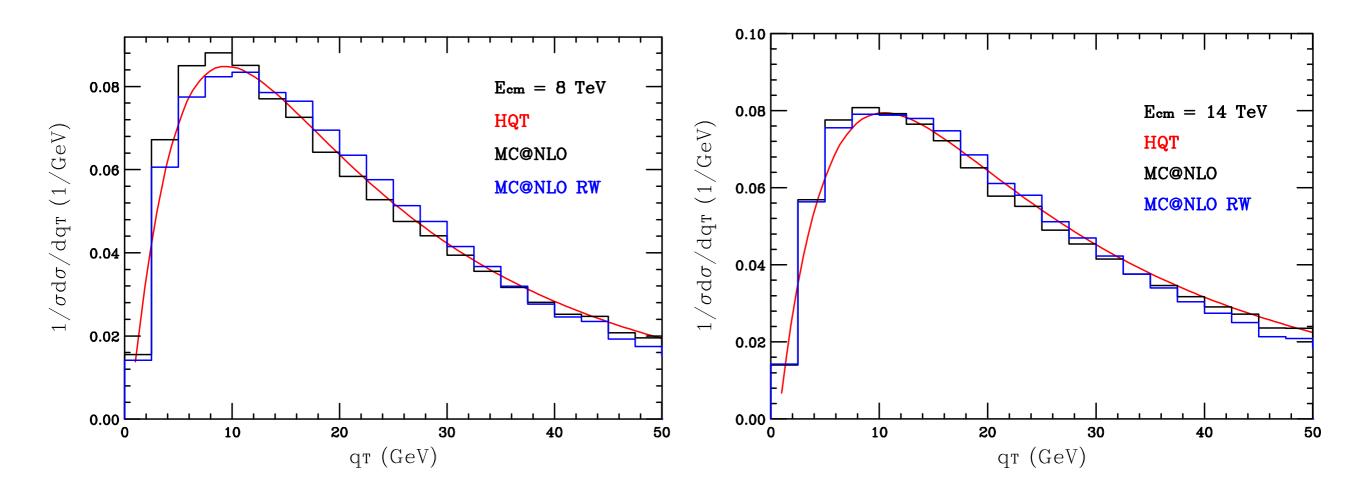
- aMC@NLO: NLO with matching to ...
- Parton showers (\approx higher orders)
- Underlying event model

Frixione, BW, hep-ph/0204244 Frederix et al., 1110.4738 Bahr et al., 0812.0529, http://projects.hepforge.org/herwig/ Borozan, Seymour, hep-ph/0207283


Monte Carlo simulation

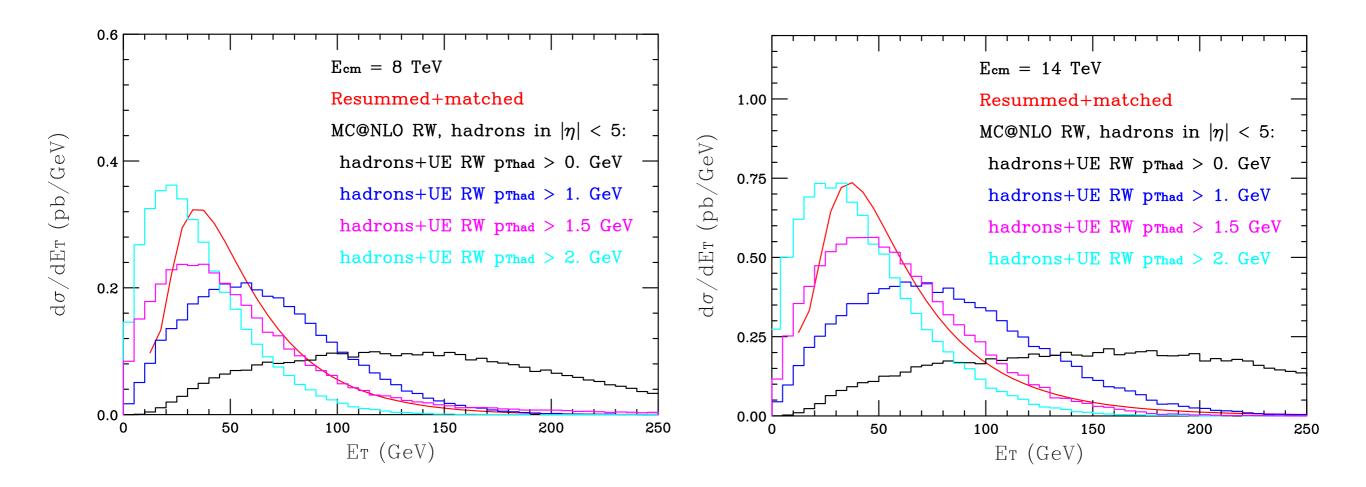
- aMC@NLO: NLO with matching to ...
 - Parton showers (pprox higher orders)
 - Underlying event model
 - Cluster hadronization model

Frixione, BW, hep-ph/0204244 Frederix et al., 1110.4738 Bahr et al., 0812.0529, http://projects.hepforge.org/herwig/ Borozan, Seymour, hep-ph/0207283 BW, Nucl.Phys. B238(1984)492

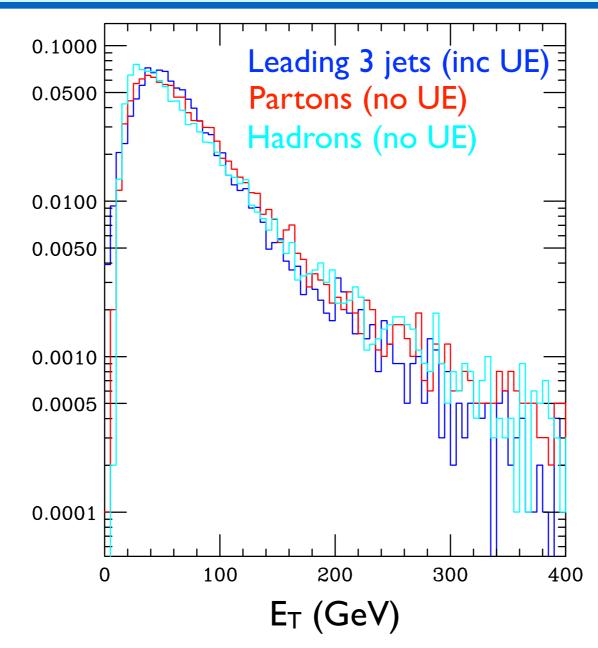

Monte Carlo Higgs E_T

- RW = reweighted to agree with resummed+matched E_T
- Underlying event and hadronization NOT included

Grazzini, Papaefstathiou, Smillie, BW, 1403.3394


Monte Carlo Higgs q_T

• RW = reweighted to agree with resummed+matched E_T


• Reweighting improves agreement with HQT (= resummed+matched q_T)

Monte Carlo Higgs E_T

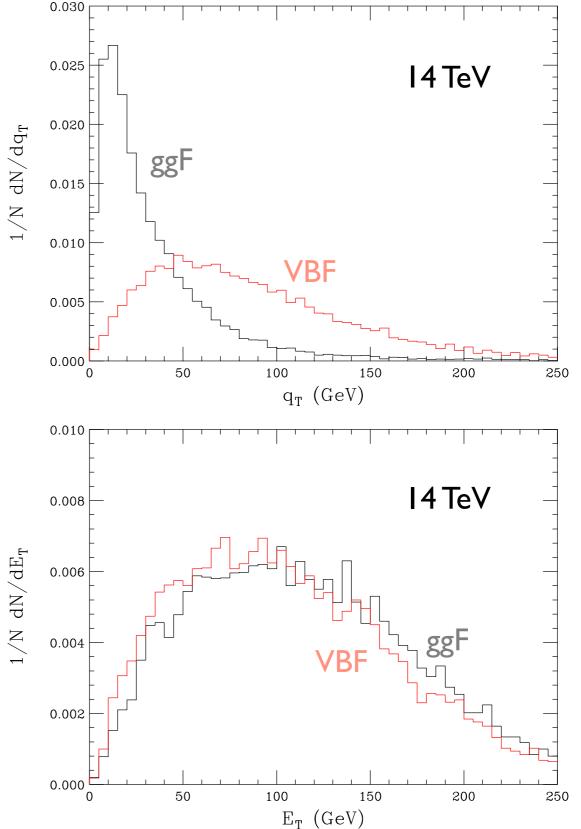
- RW = reweighted to agree with resummed+matched E_T
- Underlying event and hadronization INCLUDED
- Strong dependence on minimum hadron pT

Higgs E_T from jets?

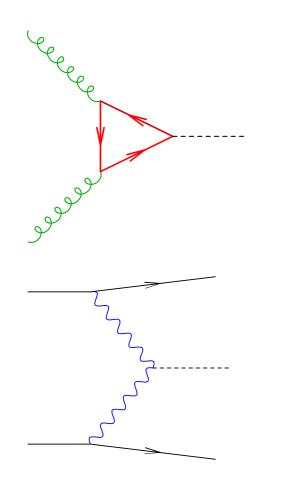
• Suggested by G Salam:

- Parton level $\approx E_T$ of leading n jets (anti-kt, R=0.7)
- Less sensitive to underlying event and hadronization

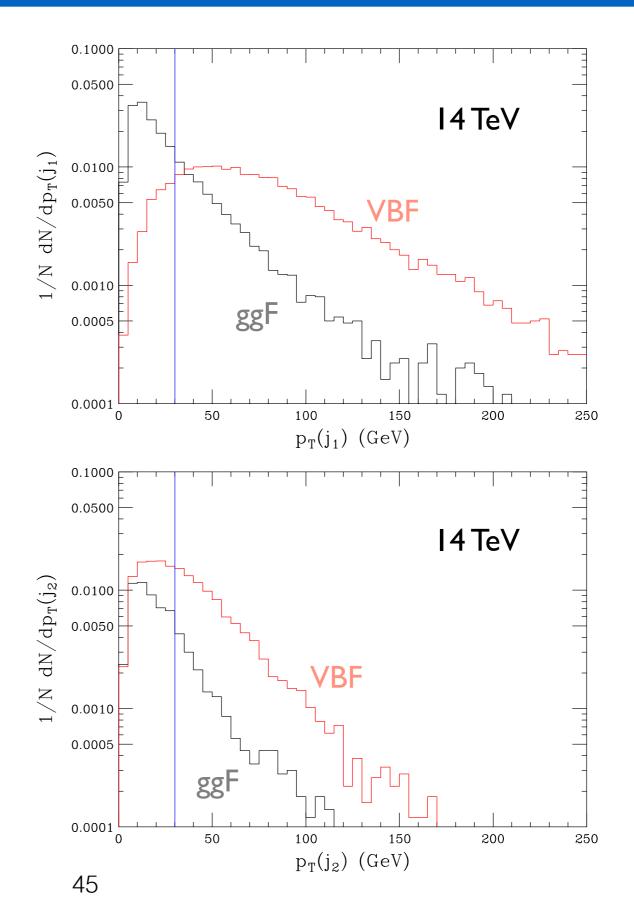
Papaefstathiou, BW, prelim.

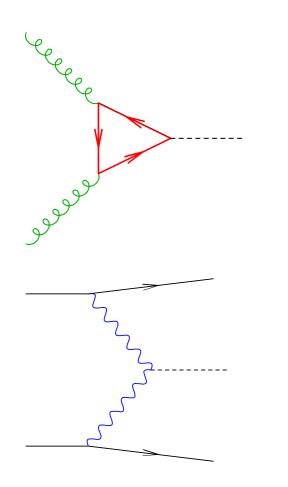

SelectingVBF

Monte Carlo Higgs q_T & E_T


seeee

- Massless coloured vs massive colourless exchange
 - ► Big difference in q_T
 - ► Small difference in E_T


A Papaefstathiou, BW


Leading jets p_T


• Two hard leading jets in VBF

Leading jets M_{jj} and $\Delta\eta_{jj}$

- Cuts (~CMS):
 - ► p⊤(j1), p⊤(j2) > 30 GeV
 - ► M(j₁j₂) > 500 GeV
 - ► ∆η(j₁j₂) > 3.5

SelectingVBF

- Cuts enhance VBF/ggF by ~25
- For 300 fb⁻¹ at 14 TeV:

Mode	BR%	ggF(raw)	VBF(raw)	ggF(cut)	VBF(cut)
bb	56.10	10,000,000	720,000	96,000	170,000
WW	23.13	4,200,000	300,000	40,000	71,000
gg	8.49	1,500,000	110,000	15,000	26,000
tt	6.16	1,100,000	79,000	11,000	19,000
ZZ	2.90	520,000	37,000	5,000	8,900
сс	2.83	510,000	37,000	4,800	8,700
γγ	0.23	41,000	2,900	390	710
Ζγ	0.16	29,000	2,100	270	490

Conclusions

Conclusions

• Higgs ggF cross section at 13 TeV is still very uncertain

• My estimate: $\sigma_{ggF}(13 \text{ TeV}) = 53 \pm 11 \text{ pb}$

Higgs transverse momentum resummed to NNLL+NLO

► Peak $q_T \sim 10$ GeV, independent of energy

- Radiated transverse energy resummed to NNLL+NLO
 - Peak E_T ~35 GeV in associated transverse energy
 - Contribution from Underlying Event reduced for jets
- VBF has broader q_T but similar E_T distribution

Jet cuts can enhance VBF/ggF by ~25

Thanks for listening!