Holography and Cosmology	Higher spin dS ₄ /CFT ₃	dS ₃ /CFT ₂	Outlook
00000000	0000000000	000000	0

Recent advances in dS/CFT

Edgar Shaghoulian

Stanford Institute for Theoretical Physics

Kavli Institute for the Physics and Mathematics of the Universe April 22, 2014

Dionysios Anninos and ES hep-th:1405.xxxx

Dionysios Anninos, Raghu Mahajan, Djordje Radicevic and ES hep-th:1405.xxxx

Dionysios Anninos, Frederik Denef, George Konstantinidis and ES hep-th:1305.6321

Recent advances in dS/CFT

	Holography and Cosmology 000000000	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂ 000000	Outlook O
--	---------------------------------------	--------------------------------------	---	--------------

Contents

- ▶ Holography and cosmology (20 minute portion)
- ▶ Higher spin dS₄/CFT₃
 - Wavefunctional calculations
 - Extension of duality to parity-violating phases
- ▶ Entropy of the cosmological horizon via dS₃/CFT₂

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
•00000000		000000	O

Accelerating universe

Accelerated expansion applies both to

- ▶ the inflationary era (B-modes!!!!!!!!!!!)
- ▶ our current/late-time universe ("dark energy" domination)

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
00000000		000000	O

de Sitter spacetime

Both eras are well-approximated by the de Sitter geometry:

$$ds^2 = -dt^2 + e^{2Ht} dx_i^2 \,.$$

This represents an *exponentially* expanding spacetime.

Observer cosmological horizons obey thermodynamical laws, with S = A/4.

Recent advances in dS/CFT

Holography and Cosmology 00000000	Higher spin dS_4/CFT_3 00000000000	dS_3/CFT_2 000000	Outlook O

Holography

Historical intuition: black hole entropy S = A/4 scales like the area of the region as opposed to volume; same scaling as QFT in one lower dimension.

Proposal: perhaps quantum gravity can be reformulated as a QFT in one lower dimension ['t Hooft, Susskind].

Entropy bounds [Bousso] often lead to QFT "living" on an appropriate (conformal) boundary of the spacetime.

In most examples of holography renormalization group flow of QFT reconstructs emergent dimension; time is emergent in case of de Sitter.

Renormalization group flows are often between two fixed points; maybe in our universe these fixed points are the inflationary era and dark-energy domination! [Strominger]

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
000000000		000000	O

Holography: AdS/CFT

AdS/CFT proposal [Maldacena; Gubser, Klebanov, Polyakov; Witten]:

$$Z_{bulk} = Z_{CFT}$$

Z defines a given theory by encoding all of its correlation functions.

Concrete proposal: Bulk theory is string theory in $AdS_5 \times S^5$, boundary theory is four-dimensional $\mathcal{N} = 4$ super-Yang Mills.

Allows strongly coupled quantum gravity calculations through weakly coupled CFT calculations.

Duality often provides "microscopic" count of black hole entropy through a ${\rm CFT}_2$ calculation.

But AdS is not our universe!

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	00000000000	000000	O

Holography: dS/CFT

Adapt success of AdS/CFT to dS. Hopeful due to analytic continuation $z \rightarrow i\eta$, $t \rightarrow iy$, $\ell_{AdS} \rightarrow i\ell_{dS}$ which connects AdS and dS:

$$ds^{2} = \ell_{AdS}^{2} \frac{-dt^{2} + dz^{2} + dx_{i}^{2}}{z^{2}} \longrightarrow \ell_{dS}^{2} \frac{-d\eta^{2} + dy^{2} + dx_{i}^{2}}{\eta^{2}}$$

dS/CFT proposal [Maldacena; Strominger; Witten]:

$$\Psi_{HH} = Z_{CFT}$$

Weak form:

$$\log \Psi_{HH}[\phi(\vec{x}),\eta_c] = \sum_{n=1}^{\infty} \frac{1}{n!} \left(\int d^3 x_1 \cdots \int d^3 x_n \phi(\vec{x}_1) \cdots \phi(\vec{x}_n) \langle \mathcal{O}(\vec{x}_1) \cdots \mathcal{O}(\vec{x}_n) \rangle_{CFT} \right)$$

Strong form: Z_{CFT} non-perturbatively defines Ψ_{HH} for finite sources encoding geometry, topology, etc.

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
000000000		000000	O

Holography: dS_4/CFT_3

Concrete conjectures for AdS/CFT (i.e. a specific bulk gravity theory and a boundary CFT which are equivalent) have existed for almost twenty years.

A concrete conjecture for dS/CFT was only made a few years ago [Anninos, Hartman, Strominger], relating a four-dimensional higher-spin theory to a three-dimensional CFT of N symplectic scalars:

$$S = \frac{1}{2} \int d^3x \ \Omega_{ab} \partial_i \chi^a \partial_i \chi^b, \qquad \Omega_{ab} = \left(\begin{array}{cc} 0 & 1_{N/2 \times N/2} \\ -1_{N/2 \times N/2} & 0 \end{array} \right).$$

- Construct wavefunctionals in this theory by calculation of Z_{CFT} .
- Generalize this example (and others) by adding Chern-Simons sector; connect to AdS cousins.

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	000000000	000000	0

Holography: dS_3/CFT_2

There does not exist well-understood proposal for dS_3/CFT_2 , but we may be able to make progress by symmetry principles and the constraints of two-dimensional CFTs.

I will argue that the observer-dependent horizon entropy can be accounted for by a count of local operators in the putative dual CFT, although this does not seem to carry over to four dimensions!

Holography and Cosmology	Higher spin dS ₄ /CFT ₃	dS ₃ /CFT ₂	Outlook
000000000	000000000	000000	0

Open mathematical problems of relevance to quantum de Sitter

▶ Do there exist modular-invariant functions (or even modular forms) of the form

$$Z(\tau,\bar{\tau}) = \sum_{i} \rho(\Delta_i,\bar{\Delta}_i) q^{\Delta_i} q^{\bar{\Delta}_i}$$

with $\rho(\Delta_i, \bar{\Delta}_i) \in \mathbb{Z}^+$ with Δ_i and $\bar{\Delta}_i$ complex?

• Equations like O(-N) = Sp(N) are understood mathematically and physically; what about analytic continuations to imaginary N, i.e. O(iN)? [Deligne]

0000000 00000000000000000000000000000	Holography and Cosmology	Higher spin dS_4/CFT_3	dS_3/CFT_2	Outlook
	0000000	0000000000	000000	0

Caffeine Time

Recent advances in dS/CFT

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	0000000000	000000	O

Sp(N) theory

Minimal parity-invariant Type-A Vasiliev theory with Neumann boundary conditions in bulk dual to free Sp(N) theory of *anticommuting* scalars

[Anninos, Hartman, Strominger]:

$$S = \frac{1}{2} \int d^3x \sqrt{g} \,\Omega_{AB} \left(\partial_i \chi^A \partial_j \chi^B g^{ij} + \frac{R[g]}{8} \chi^A \chi^B + m(x^i) \chi^A \chi^B \right).$$

$$\chi \cdot \chi \longleftrightarrow \phi$$
 with $m^2 l_{dS}^2 = +2$, $T_{ij} \longleftrightarrow g_{\mu\nu}$.

Need to restrict the theory to singlet sector, i.e. only Sp(N) invariant operators in spectrum.

Conserved currents of the form $J_{i_1\cdots i_s}^{(s)} = \Omega_{ab}\chi^a \partial_{(i_1}\cdots \partial_{i_s)}\chi^b + \cdots$ with dimension $\Delta = s + 1$ dual to bulk spin-s fields.

|--|

Dunne-Kirsten method

What to do with this theory? Begin by computing wavefunctionals!

Turn off sources for operators $J_{i_1\cdots i_s}^{(s)} = \Omega_{ab}\chi^a\partial_{(i_1}\cdots\partial_{i_s)}\chi^b + \cdots$ with dimension $\Delta = s + 1$ dual to higher spin fields.

Preserve SO(3) symmetry: on S^3 consider mass profile $m(\theta)$ and metric deformation $ds^2 = d\theta^2 + f(\theta)^2 \sin^2 \theta \ d\Omega_2^2$.

Gaussian theory: zeta-regularized partition function computed with Dunne-Kirsten formula on \mathbb{R}^3 :

$$\log\left(\frac{\det\left[-\nabla^2+\mu^2+\hat{m}(r)\right]}{\det\left[-\nabla^2+\mu^2\right]}\right) = \sum_{l=0}^{\infty} (2l+1) \left(\underbrace{\log T^{(l)}(\infty)}_{\text{Gelfand-Yaglom}} - \underbrace{\frac{\int_0^\infty dr \ r \ \hat{m}(r)}{2l+1}}_{\text{regularizer}}\right)$$

Recent advances in dS/CFT

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	0000000000	000000	O

Constant mass on peanuts: divergence!

Anninos, Denef, and Harlow computed Z_{CFT} for $m(x^i) = m_0$ on S^3 . Consider peanut deformation of geometry:

Figure : Left: $|\Psi_{HH}(\zeta, m)|^2$ for for $N = (\ell_{dS}/\ell_P)^2 = 2$ as a function of m_0 for peanut geometries ($l_{max} = 45$). Right: Zoomed in to de Sitter minimum.

$$\phi = \eta \,\nu(x^i) + \eta^2 \mu(x^i)$$

Holography and Cosmology	Higher spin dS_4/CFT_3	dS_3/CFT_2	Outlook
00000000	000000000	000000	0

Spherical harmonics: killing the divergence

Figure : Left: Plot of $|\Psi_{HH}(A)|^2$ for the first harmonic mapped to \mathbb{R}^3 . Right: Plot of $\log |\Psi_{HH}(A)|^2$.

Figure : Plot of log $|\Psi_{HH}(A)|$ for the first eight spherical harmonics mapped to \mathbb{R}^3 .

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	00000000000	000000	O

More evidence and a conjecture

Figure : $|\Psi_{HH}(A)|^2$ (left) and $\log|\Psi_{HH}(A)|$ (right) as a function of A, the overall size of a Gaussian deformation $m(r) = A(e^{-r^2} - m_0(r))$ constructed to be orthogonal to the zero mode of the three-sphere.

Conjecture: The partition function of any SO(3)-symmetric deformation for which the three-sphere zero mode harmonic is fixed is bounded.

Evidence extends beyond conformal class of sphere: fixing zero mode on squashed sphere leads to normalizable wavefunction in squashing direction.

(미) 《라) 《문) 《문) 문] = 카이이 Stanford Institute for Theoretical Physics

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	0000000000	000000	O

Extensions of higher-spin dS_4/CFT_3

Analytic continuation $z \to i\eta$, $t \to iy$, $\ell_{AdS} \to i\ell_{dS}$ connects AdS and dS:

$$ds^{2} = \ell_{AdS}^{2} \frac{-dt^{2} + dz^{2} + dx_{i}^{2}}{z^{2}} \longrightarrow \ell_{dS}^{2} \frac{-d\eta^{2} + dy^{2} + dx_{i}^{2}}{\eta^{2}}$$

Sp(N) theory discovered by taking $(\ell/\ell_P)^2 = N \rightarrow -N$ of AdS higher-spin duality with O(N) theory. O(-N) = Sp(N).

Zoo of duals to higher-spin gravities in the bulk:

- ▶ Sp(N) Chern-Simons-ghost-boson $\leftrightarrow O(N)$ Chern-Simons-boson
- ▶ Sp(N) Chern-Simons-ghost-fermion $\leftrightarrow O(N)$ Chern-Simons-fermion
- ▶ U(N) Chern-Simons-ghost-boson $\leftrightarrow U(N)$ Chern-Simons-boson
- ▶ U(N) Chern-Simons-ghost-fermion $\leftrightarrow U(N)$ Chern-Simons-fermion

On AdS side Chern-Simons-matter proposed to be dual to parity-violating bulk Vasiliev; do the dS "wrong-statistics" theories mirror this? Bulk maintains a simple map [Chang, Pathak, Strominger].

Holography and Cosmology 000000000	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂ 000000	Outlook O

Evidence for extensions on \mathbb{R}^3

Consider the Sp(N) Chern-Simons-matter bosonic theory deformed by marginal triple-trace interaction:

$$S_{CS} = -\frac{ik}{8\pi} \int d^3x \,\epsilon^{\mu\nu\rho} \left(A^a_\mu \partial_\nu A^a_\rho + \frac{1}{3} f^{abc} A^a_\mu A^b_\nu A^c_\rho \right),$$

$$S_B = \int d^3x \left(\Omega_{ij} (D_\mu \chi)_i (D^\mu \chi)_j + N \frac{\lambda_6^b}{3!} \left(\frac{\Omega_{ij} \chi_i \chi_j}{N} \right)^3 \right), \quad D_\mu \equiv \partial_\mu + A_\mu.$$

We can calculate the beta functions of this theory as a function of $\lambda = N/k$, $\lambda_6 = g_6 N^2$. CS level k quantized and does not run.

<ロト < 部ト < 書ト < 書ト 三国 の Q () Stanford Institute for Theoretical Physics

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	00000000000	000000	O

Evidence for extensions on \mathbb{R}^3

 $\beta_{\lambda_6} = \frac{1}{16\pi^2 N^2} \left(12\lambda^4 (\pm N - 1) - 20\lambda^2 \lambda_6 (\pm N - 1) + \lambda_6^2 (\pm 3N + 22) \right)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ Stanford Institute for Theoretical Physics

Recent advances in dS/CFT

|--|

Path-integral argument

In Euclidean light-cone gauge $A_{-} = (A_1 + iA_2)/\sqrt{2} = 0$, action is quadratic in A_3^a and linear in A_+^a . A_+^a thus serves as a constraint for A_3^a , and we can rewrite partition function solely in terms of the matter fields.

Schematically, we have

$$Z_B \sim \int [d\chi] \exp\left\{-\bar{\chi}_i(-\partial^2)\chi_i \mp N^{-1}\lambda(\bar{\chi}_i\chi_i)^2 - N^{-2}(\lambda^2 + \lambda_6)(\bar{\chi}_i\chi_i)^3\right\}.$$

Perform a Hubbard-Stratonovich transformation:

$$1 = \int [d\gamma \, d\mu] \exp\left\{-i\mu \left(\gamma - \bar{\chi}_i \chi_i\right)\right\}.$$

Integrate out the χ fields to get

$$Z_B \sim \int [d\gamma \, d\mu] \exp\left\{\pm N \log \det(-\partial^2 - i\mu) \mp N^{-1} \lambda \gamma^2 - N^{-2} (\lambda^2 + \lambda_6) \gamma^3 - i\mu\gamma\right\}.$$

Holography and Cosmology 000000000	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂ 000000	Outlook O
Results on \mathbb{R}^3			
\mathbb{R}^3	Type A Neuma	AdS non - minimal Vasiliev	Dirichlet
Regular commuting boson \longleftrightarrow Critical co U(N) Chern – Sim Critical anticommuting fermion \longleftrightarrow	mmuting boson ons Regular antikommuting fermion	$z \leftrightarrow i\eta \\ \ell \leftrightarrow i\ell$	

An analogous set of dualities exists for the minimal Vasiliev theories.

Holography and Cosmology 000000000	Higher spin dS_4/CFT_3 0000000000	dS ₃ /CFT ₂ 000000	Outlook O

Summary for dS_4/CFT_3

- ▶ Perturbative calculations in Landau gauge for bosonic theories and path-integral calculations in Euclidean light-cone gauge for *all* theories (bosonic/fermionic, minimal/non-minimal) indicate $N \rightarrow -N$ with λ and λ_6 fixed, consistent with the bulk [Chang, Pathak, Strominger]. This allows evidence for higher-spin AdS/CFT dualities to be extended to evidence for higher-spin dS/CFT dualities.
- $N \to -N$ and bosonization maps break on $S^1 \times S^2$.
 - Issues on nontrivial topology need to be understood! [Banerjee, Hellerman, Maltz, Shenker; Banerjee, Belin, Hellerman, Lepage-Jutier, Maloney, Radicevic, Shenker].
- Though higher harmonics for mass-deformation on sphere are normalizable, zero-mode divergence needs to be explained: maybe turning on a finite λ helps.
- Need Einstein-gravity version!

Holography and Cosmology	Higher spin dS_4/CFT_3	dS_3/CFT_2	Outlook
00000000	0000000000	•00000	0

dS_3/CFT_2 duality?

There is no well-understood proposal for a dS_3/CFT_2 duality (but see [Ouyang]).

Forget higher spins.

Proceed by symmetries and general principles: can this account for de Sitter entropy?

Assumptions: modular-invariant CFT dual to Einstein gravity bulk, $|c| = 3\ell/2G$, spectrum given by conical defects with $(\Delta, \bar{\Delta}) = (iM + J, iM - J)$. Light fields can also be included: $\Delta = \bar{\Delta} = 1 \pm \sqrt{1 - m^2 \ell^2}$. CFT is non-unitary!

Holography and Cosmology	Higher spin dS ₄ /CFT ₃	dS ₃ /CFT ₂	Outlook
00000000	000000000	00000	0

de Sitter static patch

Consider static patch of de Sitter

$$-(1-r^2/\ell^2)dt^2 + \frac{dr^2}{1-r^2/\ell^2} + r^2 d\phi^2, \qquad \phi \sim \phi + 2\pi d\phi^2,$$

Horizon at $r = \ell$ obeys thermodynamic properties; is there statistical count of thermodynamic entropy?

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
000000000		000000	O

Black hole entropy via Cardy formula

"Microscopic" derivations of black hole entropy often performed by application of Cardy formula:

$$S = \frac{\pi^2}{3}(c_L T_L + c_R T_R) = 2\pi \left(\sqrt{\frac{c_L \Delta}{6}} + \sqrt{\frac{c_R \bar{\Delta}}{6}}\right)$$

where

$$\begin{pmatrix} \frac{\partial S_{CFT}}{\partial \Delta} \end{pmatrix} = \frac{1}{T_L}, \qquad \begin{pmatrix} \frac{\partial S_{CFT}}{\partial \bar{\Delta}} \end{pmatrix} = \frac{1}{T_R} \\ \Delta = M - J, \qquad \bar{\Delta} = M + J$$

In any unitary, modular-invariant 2D CFT, Cardy formula applies asymptotically in Δ or T.

Technique: find locally AdS₃ factor, compute T_L and T_R , use $c_L = c_R = 3\ell/2G$ (Einstein gravity), and plug in. Try BTZ black hole!

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS_3/CFT_2	Outlook
000000000		000000	O

de Sitter entropy via Cardy formula?

Dual to 3D de Sitter generically non-unitary, as shown by complex weights of massive fields and conical defects.

Metric for conical defects (the analog of BTZ black holes):

$$-(M^2 - r^2/\ell^2)dt^2 + \frac{dr^2}{M^2 - r^2/\ell^2} + r^2 d\phi^2, \qquad \phi \sim \phi + 2\pi.$$

Naïve application of Cardy formula works [Bousso, Maloney, Strominger]:

$$S_{con} = \frac{2\pi^2 \ell}{3} |c| T_{con} = \frac{A}{4} ,$$

where the matching extends to conical defects with angular momentum.

Holography and Cosmology	Higher spin dS_4/CFT_3	dS ₃ /CFT ₂	Outlook
000000000	0000000000	000000	O

Why should it work?

What is even being counted in the Euclidean, non-unitary theory?

Proposal: Modular invariant partition function dual to three-dimensional de Sitter has the spectral decomposition

$$Z(\tau,\bar{\tau}) = \sum_{i} \rho(\Delta_i,\bar{\Delta}_i) q^{\Delta_i} q^{\bar{\Delta}_i}$$

with $\rho(\Delta, \bar{\Delta})$ a positive integer while Δ , $\bar{\Delta}$ generically complex. $S = \log \rho(\Delta, \bar{\Delta})$ interpreted as the degeneracy of *local operators*.

Check on proposal: Cardy formula can be proven for non-unitary theory with complex weights for conical defects $(\Delta, \overline{\Delta}) = (iM + J, iM - J)$, as long as $c = -3i\ell/2G$.

Holography and Cosmology	Higher spin dS_4/CFT_3 00000000000	dS ₃ /CFT ₂	Outlook
000000000		00000●	O

Outlook

- ▶ Due to tight constraints on modular-invariant 2D CFTs, one can possibly "bootstrap" the problem: Do there exist modular-invariant functions of the proposed form? Do they lead to a unitary bulk theory?
- ► Cardy formula uses asymptotia of $Z(\tau) = Z(-1/\tau)$; one can also use the fixed point of the map $\tau = i$ to constrain the theory [Hellerman].

Holography and Cosmology High	her spin dS_4/CFT_3 ($4S_3/CFT_2$	Outlook
000000000 0000	00000000	000000	•

- \blacktriangleright Holographic cosmology is entering a concrete, calculational phase with many dS₄/CFT₃ dualities to play with.
 - ▶ All dualities are for higher-spin bulk theories.
 - ▶ Not understood on higher genus surfaces.
- \blacktriangleright Wavefunctionals at finite N can be computed via the concrete dualities.
 - ▶ Though an infinite class of wavefunctionals are well-behaved, the divergence of the zero mode needs to be understood.
- General principles seem to suggest the dS_3 entropy can be explained as a count of local operators in the dual CFT.
 - Interpretation of local operator count not obviously extendible to four dimensions.

Recent advances in dS/CFT

Holography and Cosmology High	her spin dS_4/CFT_3 ($4S_3/CFT_2$	Outlook
000000000 0000	00000000	000000	•

- \blacktriangleright Holographic cosmology is entering a concrete, calculational phase with many dS₄/CFT₃ dualities to play with.
 - ▶ All dualities are for higher-spin bulk theories.
 - ▶ Not understood on higher genus surfaces.
- \blacktriangleright Wavefunctionals at finite N can be computed via the concrete dualities.
 - ▶ Though an infinite class of wavefunctionals are well-behaved, the divergence of the zero mode needs to be understood.
- General principles seem to suggest the dS_3 entropy can be explained as a count of local operators in the dual CFT.
 - Interpretation of local operator count not obviously extendible to four dimensions.

Recent advances in dS/CFT

Holography and Cosmology High	her spin dS_4/CFT_3 ($4S_3/CFT_2$	Outlook
000000000 0000	00000000	000000	•

- \blacktriangleright Holographic cosmology is entering a concrete, calculational phase with many dS₄/CFT₃ dualities to play with.
 - ▶ All dualities are for higher-spin bulk theories.
 - Not understood on higher genus surfaces.
- \blacktriangleright Wavefunctionals at finite N can be computed via the concrete dualities.
 - ▶ Though an infinite class of wavefunctionals are well-behaved, the divergence of the zero mode needs to be understood.
- General principles seem to suggest the dS_3 entropy can be explained as a count of local operators in the dual CFT.
 - Interpretation of local operator count not obviously extendible to four dimensions.

Recent advances in dS/CFT

Holography and Cosmology High	her spin dS_4/CFT_3 ($4S_3/CFT_2$	Outlook
000000000 0000	00000000	000000	•

- \blacktriangleright Holographic cosmology is entering a concrete, calculational phase with many dS₄/CFT₃ dualities to play with.
 - ▶ All dualities are for higher-spin bulk theories.
 - Not understood on higher genus surfaces.
- \blacktriangleright Wavefunctionals at finite N can be computed via the concrete dualities.
 - ▶ Though an infinite class of wavefunctionals are well-behaved, the divergence of the zero mode needs to be understood.
- General principles seem to suggest the dS_3 entropy can be explained as a count of local operators in the dual CFT.
 - Interpretation of local operator count not obviously extendible to four dimensions.

Recent advances in dS/CFT

Holography and Cosmology High	her spin dS_4/CFT_3 ($4S_3/CFT_2$	Outlook
000000000 0000	00000000	000000	•

- \blacktriangleright Holographic cosmology is entering a concrete, calculational phase with many dS₄/CFT₃ dualities to play with.
 - ▶ All dualities are for higher-spin bulk theories.
 - Not understood on higher genus surfaces.
- \blacktriangleright Wavefunctionals at finite N can be computed via the concrete dualities.
 - ▶ Though an infinite class of wavefunctionals are well-behaved, the divergence of the zero mode needs to be understood.
- General principles seem to suggest the dS_3 entropy can be explained as a count of local operators in the dual CFT.
 - Interpretation of local operator count not obviously extendible to four dimensions.

Recent advances in dS/CFT

Cardy failure in 4D

$$S_{dS} = \log |\Psi_{HH}[S^3]|^2 = \log |Z_{CFT}[S^3]|^2$$

but $Z_{CFT}[S^3]$ is not counting local operators; indeed, even for purely topological theories void of local operators altogether (like pure Chern-Simons theories), $Z_{CFT}[S^3]$ is nonzero.

Recent advances in dS/CFT