Modeling GRB Host Galaxies

Yuu Niino (Kyoto Univ.) 23-Jul-2009 in IPMU

Outline

- Introduction
- Host Galaxies and the metallicity dependence of GRBs
 - Emission Line
 - Absorption Lines in Afterglow Spectra
 - Luminosity Function

• Lyman- α emission

Summary

Introduction

Gamma-Ray Burst (GRB)

GRBs...

- are short and intense pulse of ~ 100 keV gamma-rays.
 - duration of 0.1 100 second
- are in cosmological distance.

Long & Short GRBs

- GRBs can be divided into roughly two classes.
 - Long GRB: duration > 2 sec
 - $E_{iso} = 10^{52 54} erg$
 - Epeak = 10^{2.0} keV
 - Short GRB: duration < 2 sec^z
 - $E_{iso} = 10^{49-51} erg$
 - Epeak = 10^{2.5} keV

Origin of GRBs

- Short time variability and large energy budget of GRBs suggest compact object involvement in GRB mechanism.
- two leading models
 - collapsar model
 - confirmed for some long GRBs
 - compact binary merger model
 - suggested for a few short GRBs

Collapsar Model

- Black hole (BH) and accretion disk are formed in core-collapse of massive star.
- Relativistic jet erupts.
- Shock accelerated particles in the jet emit gamma-rays (by synchrotron or inverse Compton).

Totani-san's website

NASA website

Progenitor of Collapsars
Not all CC SNe accompanies GRBs.
A progenitor star of collapsar model GRB must...

- be massive enough to produce BH.
- Iose its outer envelope so that the jet can get out of the star.
- have central core with specific angular momentum sufficient enough to form accretion disk.

Model Study of Stellar Evolution

- rapidly rotating, low metallicity star (Yoon & Langer 2005, Woosley & Heger 2006)
 - rapid rotation
 - chemically homogeneous star
 - avoid super giant phase
 - whole star as a core
 - Iow metallicity
 - suppress stellar wind

required initial condition of the stars: massive, rapidly rotating, low metallicity Host Galaxy and the metallicity dependence of GRBs

Methods to Study GRB environment

- Emission Line
- Absorption Line in Afterglow Spectra
- Luminosity Function
- Lyman- α emission

GRB Host Emission Line Measurement

Metal Emission Lines

- Direct measurement of the host metallicity is available for low redshift (z < 1) GRBs.
- GRB hosts have lower metallicity than general star forming galaxies.

-16

-15

-19

-20

-21

-22

-17 - 18

Host Luminosity M.

8

Calibration

			Table 9 GRB-Host Metallicities						Savaglio+ 2009	
GRB	$\log R_{23}$	$\log O_{32}$	12 + log(O/H)						log([N II]/[О II])	log([N II]/Hα)
			Lower KD02 ^a	Upper KK04 ^b	Lower N06 ^c	O3N2 ^d	T_e^{e}	Adopted ^f		
980425	0.960	0.550			~8.1	8.1	8.16	8.16	-1.06	-1.21
980703	0.840	-0.529		8.14	7.6			7.6/8.14		
990712	0.932	0.302			~8.1	< 8.3		8.1	<-0.66	<-0.66
991208	0.330	0.491		8.73	<7.4			<7.4/8.73		
010921	0.857	-0.064		8.15	8.0			8.0/8.15		
011121	0.566	-0.429	7.50	8.64				7.50/8.64		
020405	0.759	0.279	7.78	8.44				7.78/8.44		
020903	0.957	0.508			~8.1	8.0	8.22	8.22	-1.55	-1.67
030329	0.820	0.430	7.97	8.33		< 8.2		7.97	<-1.08	<-1.25
030528	0.935	0.179			~8.1			8.1		
031203	0.965	1.067	8.25			8.1	8.02	8.02	-0.68	-1.27
050223	0.536	-0.135		8.66	7.5			7.5/8.66		
050416	0.741	-0.029	7.97	8.44				7.97/8.44		
051022	0.556	0.186		8.65	7.5			7.5/8.65		
051221	0.614	-0.336		8.59	7.6			7.6/8.59		
060218	0.927	0.396			~8.1	8.13	7.29 ^g	8.13	-1.15	-1.22
060505	0.770	-0.292		8.37	7.8	8.44		8.44	-0.88	-0.75

 Different calibration gives us different metallicity. Reliable method can be used only for z < 0.5 (currently 5 GRBs).

Low Luminousity Long GRB

- Some low luminosity long
 GRBs (LLLGRB; Eiso < 10⁵⁰
 erg) are found at z < 0.3.
- Rate of LLLGRBs can not be explained by mere extrapolation of long GRB luminosity function.
 - LLLGRBs may be different class to general long GRBs.

Absorption lines in GRB spectra

GRB Afterglow

- GRB afterglow is emission from front shock of the GRB jet.
- Absorption line system is seen in GRB afterglow in some case.

Si

太陽の数十倍の重さを持つ大質

Mg, Ne, O, C

GRB-DLA & QSO-DLA

GRB-DLA is often compared to QSO-DLA
 GRB-DLAs are typically metal-rich.
 GRB-DLA and QSO-DLA are completely different object.

GRB-DLA & QSO-DLA

GRB Host Galaxy Luminosity Function

Observed Luminosity Function

Fruchter+ 2006

- comparison of host galaxies of long GRBs and CC SNe
- GRB hosts are fainter and smaller (in size) than CC SN Hosts.
- Generally, galaxies with larger stellar mass have larger metallicity.

Observation Based Study

Wolf & Podsiadlowski 2007

reproduce observation of Fruchter+ using luminosity function (LF), L-SFR relation & L-Z relation of survey galaxies.

Cosmological Simulation

- Niino et al. (in progress)
 - use cosmological simulation to reproduce observation.

LF of Simulated GRB hosts

preliminary result

Lyman-α Emission of GRB Host Galaxies

Lyman- a Emission

recombination line of hydrogen

Low metallicity star emits more ionizing flux.

Kobayashi+ 2009 population synthesis code of Schearer 2003 is used.

Lyman alpha emission

- Almost all of GRB host galaxies with Ly α measurement have Ly α equivalent width (EW) > 10 Å. (only 7 galaxy)
 - Roughly 33% of Lyman
 break galaxies (LBGs) have
 such Ly α emission (Shapley + 2003).

Model of GRB Host Ly α Emission

- Niino, Totani & Kobayashi (2009) predict Ly α emission of GRB host galaxies using semianalytic model (Mitaka model) of galaxy formation.
- Mitaka model provides us with mock numerical catalog of galaxies.
 - including SFR, metallicity, Ly α EW

• in each galaxy: $R_{\text{GRB}} \propto \begin{cases} \text{SFR}, \ Z < Z_{\text{crit}} \\ 0, \ Z \ge Z_{\text{crit}} \end{cases}$

Lyman alpha emission

Lyman alpha emission

 $R_{\rm GRB} \propto \begin{cases} {
m SFR}, & Z < Z_{
m crit} \\ 0, & Z \ge Z_{
m crit} \end{cases}$

Summary

- Theoretical studies suggest that GRBs preferentially occur in low-metallicity environment.
- Though various method is used to test the metallicity dependence observationally, the dependence is not robustly confirmed.
 - Some method have potential to make robust conclusion with larger sample in future observation.