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Introduction

As a cosmologist, I consider the observed accelerated expansion as one of the
most fundamental problems in cosmology.

A a theoretical physicist I consider its ’solution’ via the introduction of a tiny
cosmological constant or vacuum energy as deeply unsatisfactory.

Other suggestions are a new matter component like e.g. quintessence with strong
negative pressure.

Or modifications of gravity.

Massive gravity, which weakens gravity on very large scales seems a most natural
and simple idea.

This motivated me to look into massive gravity theories.
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Ruth Durrer (Université de Genève ) Massive Gravity IPMU, July 2014 3 / 20



Introduction

As a cosmologist, I consider the observed accelerated expansion as one of the
most fundamental problems in cosmology.

A a theoretical physicist I consider its ’solution’ via the introduction of a tiny
cosmological constant or vacuum energy as deeply unsatisfactory.

Other suggestions are a new matter component like e.g. quintessence with strong
negative pressure.

Or modifications of gravity.

Massive gravity, which weakens gravity on very large scales seems a most natural
and simple idea.

This motivated me to look into massive gravity theories.
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Ruth Durrer (Université de Genève ) Massive Gravity IPMU, July 2014 3 / 20



A mass for the graviton

The gravitational field is the metric. The only diffeomorphism invariant possibility to
give it a potential is of the form Λ

√−g.
This is a cosmological constant, not a mass term.

A mass term is proportional the the square of excitation w.r.t to some reference
metric.

In 1939 Pauli and Fierz showed that within linearized gravity, there is only one
form for quadratic potential for hµν = gµν − ηµν (mass term) which does not lead
to a ’ghost’, namely

U =
m2

4

(
hµνhµν − h2

)
.

In general, hµν has 6 degrees of freedom. 5 of them make up the massive spin-2
graviton and the 6th is a spin-0 ghost (i.e. its kinetic term has the wrong sign). The
above form of the mass term ensures that one of these 6 degrees of freedom is
not propagating but fixed by a constraint.
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A mass for the graviton

More precisely: consider the quadratic Lagrangian for hµν ,

L =
M2

p

2

[
hνµEµναβhαβ − U

]
,

Eµναβ = −1
2

[ (
ηµαηνβ − ηµνηαβ

)
� +(

ηµνηαρηβσ + ηαβ η̄µρηνσ − ηµβ η̄νρηασ − ηανηβρηµσ
)
∂ρ∂σ

]
is the Lichnerowicz operator (on flat spacetime). The ’lapse function’ h00 enters
only linearly, in the form h00(· · · ), like a Lagrange multiplier. Hence its variation
yields an additional constraint and removes one of the 6 degrees of freedom in hij .
The remaining constraints determine hi0.

This can be generalized to an arbitrary reference metric, gµν = fµν + hµν and
remains true in the quadratic action.

But whatever higher order covariant terms you add to U, h00 will no longer appear
as a Langrange multiplier, the additional condition is lost and the ’ghost’ will
appear. ⇒ Boulware Deser ghost (1972).
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Ruth Durrer (Université de Genève ) Massive Gravity IPMU, July 2014 5 / 20



Van Dam-Veltman-Zakharov discontinuity (1970)

Setting Dµν = ηµν − 1
m2 ∂µ∂ν , the equation of motion for hαβ is(

�−m2
)

hµν =
1

M2
P

[
Dµ(αDβ)ν −

1
3
DµνDαβ

]
Tαβ

so that the massive graviton propagator is

G(mass)
µναβ =

F (mass)
µναβ

�−m2 , F (mass)
µναβ = Dµ(αDβ)ν −

1
3
DµνDαβ .

The amplitude for graviton exchange between two sources becomes

A(mass)
T ,T ′ =

∫
d4xT

′ µνG(mass)
µναβTαβ .

In the limit m→ 0 this tends to

A(m→0)
T ,T ′ =

∫
d4xT

′ µν 1
�

(
Tµν − 1

3
Tηµν

)
6= A(m=0)

T ,T ′ =

∫
d4xT

′ µν 1
�

(
Tµν − 1

2
Tηµν

)
.

This problem is solved by the Vainshtein mechanism (1972): In the presence of
massive sources, the kinetic term of the scalar graviton mode gets strongly
enhanced so that it cannot be excited for
r < r∗ = M/(4πM2

Pm2))1/3 = (λ2
mrs)1/3 ' 100pc for M = M�.
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Ruth Durrer (Université de Genève ) Massive Gravity IPMU, July 2014 6 / 20



Van Dam-Veltman-Zakharov discontinuity (1970)

Setting Dµν = ηµν − 1
m2 ∂µ∂ν , the equation of motion for hαβ is(

�−m2
)

hµν =
1

M2
P

[
Dµ(αDβ)ν −

1
3
DµνDαβ

]
Tαβ

so that the massive graviton propagator is

G(mass)
µναβ =

F (mass)
µναβ

�−m2 , F (mass)
µναβ = Dµ(αDβ)ν −

1
3
DµνDαβ .

The amplitude for graviton exchange between two sources becomes

A(mass)
T ,T ′ =

∫
d4xT

′ µνG(mass)
µναβTαβ .

In the limit m→ 0 this tends to

A(m→0)
T ,T ′ =

∫
d4xT

′ µν 1
�

(
Tµν − 1

3
Tηµν

)
6= A(m=0)

T ,T ′ =

∫
d4xT

′ µν 1
�

(
Tµν − 1

2
Tηµν

)
.

This problem is solved by the Vainshtein mechanism (1972): In the presence of
massive sources, the kinetic term of the scalar graviton mode gets strongly
enhanced so that it cannot be excited for
r < r∗ = M/(4πM2

Pm2))1/3 = (λ2
mrs)1/3 ' 100pc for M = M�.
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

In 2010/11 De Rham, Gabadaze and Tolley have shown, that there are potentials
U beyond the quadratic level for which massive gravity remains ghost free.

For these potentials, which are uniquely fixed by two constant coefficients in
addition to the mass m, there still exists a highly non-trivial combination of the
lapse function and the shift vector (in a 3+1 split of gravity) which enters linearly in
the Lagrangian and therefore generates a constraint for the 6 propagating degrees
of freedom of the gravitational field. This projects out the ’ghost’ so that a massive
spin-2 graviton with its usual 5 degrees of freedom remains.

The proof of this statement has in the meantime been given in several different
ways. Note that even if there are only 5 degrees of freedom left, it is not clear that
these are ’healthy’ in all physically relevant situations. In the following I shall show
that especially in cosmology they are usually not.
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

The general potential is given by

U0(K) = εµναβεµναβ = 4!

U1(K) = εµναβεµ′ναβKµ
′
µ = 3![K] ,

U2(K) =
1
2
εµναβεµ′ν′αβKµ

′
µKν

′
ν =

1
2

(
[K]2 − [K2]

)
,

U3(K) =
1
6
εµναβεµ′ν′α′βKµ

′
µKν

′
νKα

′
α =

1
6

(
[K]3 − 3[K][K2] + 2[K3]

)
,

U4(K) =
1

24
εµναβεµ′ν′α′β′Kµ′

µKν
′
νKα

′
αKβ

′
β

=
1

24

(
[K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]

)
= det(K) .

where K = 1I−
√

g−1f and [M] = TrM.

Un is the n-th order term appearing in the characteristic polynomial of K,

det(λ1I−K) =
4∑

n=0

λn

n!
U4−n(K)

and the potential for g is given by

U = −m2

4

∑
n

cn

n!
Un(K) .
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

This somewhat unwieldy non-analytic potential for gµν becomes much simpler if given
in terms of vier-beins for g and f .
The vier-beins are normalized 1-forms such that

gµνdxµdxν = ηαβθ
αθβ and fµνdxµdxν = ηαβϑ

αϑβ

With these√
−gU(K)d4x = −m2

4
εµναβ

[
c0θ

µ ∧ θν ∧ θα ∧ θβ + c1θ
µ ∧ θν ∧ θα ∧ ϑβ

+
c2

2
θµ ∧ θν ∧ ϑα ∧ ϑβ +

c3

6
θµ ∧ ϑν ∧ ϑα ∧ ϑβ +

c4

24
ϑµ ∧ ϑν ∧ ϑα ∧ ϑβ

]
The term ∝ c0 is simply a cosmological constant and the term ∝ c1 is a tadpole which
we shall neglect. The constant c2 can be absorbed in the definition of m where as c3

and c4 are genuinely new, giving rise to new physical phenomena.

We shall also use that

U = −m2

2
(U2(K) + c3U3(K) + c4U4(K))

= −m2
[
a0 + a1U1(

√
g−1f ) + a2U2(

√
g−1f ) + a3U3(

√
g−1f )

]
with

a0 = 6 + 4c3 + c4, a1 = −(3 + 3c3 + c4)
a2 = 1 + 2c3 + c4, a3 = −c3 − c4.
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Fluctuations

To study solutions of a given theory, we need not only to find them, but we also
have to analyse their stability. Even if a theory of modified gravity has no ghosts a
priori, we need to check whether physically interesting solutions of GR are still
viable, i.e. stable. To this aim we have studied the perturbations of massive gravity
around a fixed background metric ḡ. We set gµν = ḡµν + hµν and write the
Langrangian to 2nd order in hµν .

The kinetic term
√−gR is expanded as usual,√
−gR =

√
−ḡR̄ + hµνEµναβ(ḡ)hαβ − 2hµνḠµν + ∂µVµ

The mass term is more tricky. Since for non-commuting matrices
√

AB 6=
√

A
√

B,
we cannot simply expand

√
g−1f =

√
(1I + h)−1ḡ−1f in h ≡ (hµν) ≡ (ḡµαhαν).

We use the following trick: Setting ti = Ui (
√

g−1f ) and si = Ui (g−1f ) one easily
verifies the relations

t2
1 = s1 + 2t2 , t2

2 = s2 − 2
√

s4 + 2t1t3 , t2
3 = s3 + 2t2

√
s4 .

Now we can expand the si and with them the ti to second order in hµν .
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The mass term is more tricky. Since for non-commuting matrices
√

AB 6=
√

A
√

B,
we cannot simply expand

√
g−1f =

√
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We use the following trick: Setting ti = Ui (
√

g−1f ) and si = Ui (g−1f ) one easily
verifies the relations

t2
1 = s1 + 2t2 , t2

2 = s2 − 2
√

s4 + 2t1t3 , t2
3 = s3 + 2t2

√
s4 .

Now we can expand the si and with them the ti to second order in hµν .
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Fluctuations
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The mass term

After a lengthy calculation we end up with√
− det gU(f , g) =

√
− det ḡ

[
U(f , ḡ)− 2Mµνhµν +Mµναβ(f , ḡ)hµνhαβ

]
+O(h3) with

Mµναβ = −m2
[
a0Mµναβ

0 + a1Mµναβ
1 + a2Mµναβ

2 + a3Mµναβ
3

]
,

Mµναβ
0 =

1
4

ḡµν ḡαβ − 1
4

(
ḡµαḡνβ + ḡµβ ḡνα

)
Mµναβ

j = t̄jMµναβ
0 +

1
2

(
ḡµν tαβj + ḡαβ tµνj

)
+ 2tµναβj , 1 ≤ j ≤ 3 ,

Mµν = −2m2(a1tµν1 + a2tµν2 + a3tµν3 )

tµνj =
∂tj
∂gµν

∣∣∣∣
g=ḡ

, tµναβj =
1
2

∂2tj
∂gµν∂gαβ

∣∣∣∣
g=ḡ

.

with very cumbersome expressions for the tµνj and even more so for tµναβj
(see P. Guarato and RD arXiv:1309.2245).
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Application to cosmology: same conformal time

Let us assume that f is a Friedmann-Lemaı̂tre geometry and we have found a
cosmological solutionb ḡ with the same conformal time,

ḡµνdxµdxν = a2(t)(−dt2 + δij dx i dx j ),

fµνdxµdxν = b2(t)(−dt2 + δij dx i dx j ) .

In this case the mass term becomes

Mµναβ(f , ḡ) = −m2
[
αḡµν ḡαβ +

β

2

(
ḡµαḡνβ + ḡµβ ḡνα

)]
.

α(t) =
1
4

[
1 + (1− r)

{
(5− r) + c3 (4− 2r) + c4 (1− r)

}]
, r =

b
a

−β(t) =
1
4

[
1 + (1− r)

{
(11− 4r) + c3

(
8− 7r + r 2

)
+ c4 (1− r) (2− r)

}]
In the cosmological situation α and β depend only on time, but the expressions below
in terms of r(t) = b(t)/a(t) are always correct when the two metrics ḡ and f are
conformally related by f = r 2ḡ.
For α 6= −β this metric has a ghost with mass (Jaccard, Maggiore & Mitsou)

m2
ghost =

(α + 4β)

2(α + β)
m2 .
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Application to cosmology:same conformal time
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Α Β
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-2

Α + Β

The functions α(r) (red) and β(r) (blue) for two cases:
c3 = c4 = 0 (solid) and c3 = 1 , c4 = 0 (dashed)

(from P. Guarato & RD arXiv:1309.2245).
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Application to cosmology: general

In general the physical metric will not have the same conformal time as the reference
metric f and we expect

fµνdxµdxν = −dτ 2 + b2(τ)γij dx i dx j ,

ḡµνdxµdxν = −N2(τ)dτ 2 + a2(τ)γij dx i dx j .

with some unknown lapse function N. In this case the mass term is of the more
complicated form

M0000 = −m2γ(τ), Mij00 = −m2δ(τ)ḡ ij , Mi0j0 = −m2ε(τ)ḡ ij ,

Mijkl = −m2
{
ρ(τ)ḡ ij ḡkl +

σ(τ)

2

[
ḡ ik ḡ jl + ḡ il ḡ jk

]}
.

where δ, γ, ε, ρ, and σ are polynomials of r and N−1.
The Fierz-Pauli tuning corresponds to N = 1 and γ = 0, ρ = −δ = −σ = 1/4, ε = 1/8.
It is reached when N = 1 and a = b.
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Application to cosmology
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r
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Γ ∆ Ρ Σ Ε

The functions γ(r) (red), δ(r) (purple), ε(r) (green), ρ(r) (black), and σ(r) (orange)
for the case c3 = 1, c4 = 0 and N = 1.
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Background cosmology

In the presence of a mass term Einstein’s equation take the form

Gµν +Mµν = M−2
P Tµν .

The covariant conservation of Gµν is a geometrical identity and the conservation of Tµν
is a consequence of the matter equation (we assume that these are not modified).
Hence we also haveMµν

;ν = 0. These 4 additional equations are necessary since we
have lost diffeomorphism invariance when fµν is fixed (One could re-install it with the
Stückelberg trick which we are not doing here).

The Friedmann equations now become

H2 +
1

a2Kg
=

1
3

(ρM + ρ) , 2Ḣ + 3H2 +
1

a2Kg
= (PM + P) .

where H = ȧ/(Na), r = b/a and

−ρM = N−2
[
r 3 (c3 + c4)− r 2 (6c3 + 3c4 + 3) + r (9c3 + 3c4 + 9)− 4c3 − c4 − 6

]
,

PM = 6 + 4c3 + c4 + (2c3 + c4 + 1) r 2 − 2 (3c3 + c4 + 3) r −

N−1
[

(c3 + c4) r 2 + 3c3 + c4 + 3− 2 (2c3 + c4 + 1) r
]
.
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Background cosmology

We interpretMµν as a gravity mass fluid. Its covariant conservation implies[
3c4(r − 1)2 + 3c3(r − 3)(r − 1) + 9− 6r

] (
N−1ȧ− ḃ

)
= 0

Hence either [· · · ] = 0 which implies r = b/a =constant or N = ḃ/ȧ, so that
Ha = ḃ = Hf b, Hf =≡ ḃ/b. In the first case the evolution of the physical scale factor
is fixed by the reference metric b and only N depends on the matter content.

In the second case H = ȧ/(Na) = ḃ/a where again ḃ is given. Hence the first
Friedmann equation becomes an algebraic equation for a and N.
Also the time derivatives of Ḣ = (b̈ − ḃȧ)/a = (b̈ − Nḃ2)/a can be replaced by the
known derivatives of b.
Hence the Friedmann equations become algebraic relations which relate a and N to b
and the matter content of the Universe.
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Ha = ḃ = Hf b, Hf =≡ ḃ/b. In the first case the evolution of the physical scale factor
is fixed by the reference metric b and only N depends on the matter content.
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Friedmann equation becomes an algebraic equation for a and N.
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Fluctuations

We have studied the scalar sector of fluctuations in detail for the special solution
ρ = P = 0, N = 1 and

r =
3 + c3

1 + c3
= rc .

It is easy to verify that this is the only solution with r =constant and N = 1 which solves
all background equations (apart from the trivial case r = 1).
We define the most general scalar perturbation Fourier mode by

hµν(k) ≡ δgµν =

(−2φ iakjB
iakiB 2a2(ψδij − kikjE)

)
.

We can eliminate φ and B from the perturbation equations using the constraints. For ψ
and E = m2E we then obtain coupled linear equations of motion,

d2

dτ 2

(
ψ
E

)
=
(

m2A0 + k2A2

)( ψ
E

)
,

where A0(c3, c4) and A2(c3, c4) are 2× 2 matrices given by rational functions of c3 and
c4. A2 has one vanishing eigenvalue, one of the two scalar modes does not propagate.
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Fluctuations

7

The fact that �01 > 0, indicates an exponential instabil-
ity for small k.

The eigenvalues of A2 are

�21 = 0 (62)

�22 = � 7 + 3c3

r2
c (1 + c3)

, (63)

with eigenvectors

v21 =

✓
�P1(c3,c4)

2(1+c3)2

1

◆
, (64)

v22 =

 
� r2

cP1(c3,c4)

2(�5+c2
3)

1

!
. (65)

The nonvanishing eigenvalues are shown as functions of
c3 for c4 = 0 in Fig. 3. The situation for di↵erent values
of c4 is similar. Typically, one or both eigenvalues of A0

are positive, which indicates an instability.

2 4 6 8 10c3

-4
-2

2
4
6
8
10

FIG. 3: The eigenvectors �01 (red, solid), �02 (blue, dashed)
and �22 (green, dotted) are shown as functions of �0.5 < c3 <
10 for the case c4 = 0.

The eigenvalue �22 is negative for c3 > �1 so that high
momentum modes are stable. The value �21 = 0 reflects
the fact that in dRGT massive gravity, the second scalar
mode does not really propagate [21, 22], but it also does
not decouple as it does in the Fierz-Pauli tuning. This
comes from the choice of the potential U(f, g). Never-
theless, as we have seen in this analysis, the mass term
still leads to exponential instabilities as the eigenmodes
of Eq. (56) behave as exp(±

p
�0imt) for small momenta.

At this point, it is not clear how the expansion of the
Universe can mitigate this instability. When the eigen-
value for the momentum, �22, is negative, there is still
the chance that damping terms reduce the instability to

a power law as long as m2 <⇠ H2. Hence it may be
that the instability found here is not a disaster for the
phenomenology of the observable, expanding Universe.
We study this issue in detail in a forthcoming publica-
tion [33].

IV. CONCLUSIONS

In this paper we have determined the form of the mass
matrix Mµ⌫↵�(f, ḡ) for fluctuations about some back-
ground solution ḡ. We have shown that for ḡ = f we
obtain the Fierz-Pauli mass term, whereas for ḡ 6= f a
more general mass term is found. In the simple case
f = r2ḡ the mass term is of the form

Mµ⌫↵�(f, ḡ) = �m2


↵ḡµ⌫ ḡ↵� +

�

2
(ḡµ↵ḡ⌫� + ḡµ� ḡ⌫↵)

�
.

(66)
We have calculated the functions ↵ and � in terms of r
and found that one recovers the Fierz-Pauli mass term
only for r = 1. Even if r is a constant, r = c 6= 1, the
mass term is di↵erent.

We have also calculated the mass term in the cosmo-
logical setting when f and ḡ have the same physical time
but di↵erent conformal time. Also, in this case, when
ḡ 6= f , the mass term di↵ers from the Fierz-Pauli one.

We have briefly analyzed the consequence of this mass
term in the case of ”static cosmology” and have shown
that even in this case, the mass term generically leads to
instabilities.

In the future we want to study the contributions of
matter, Tµ⌫ , to the mass term. This can be relevant
in the cosmological cases studied here where matter can
contribute significantly to the mass term. We plan to do
this in a forthcoming paper [33]. The main point of the
present paper is the full calculation of the mass term for
perturbations around an arbitrary background which can
be used to study linear perturbation theory around arbi-
trary backgrounds and for an arbitrary reference metric.
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Appendix A: The computation of the perturbed
potential

Here we present more details about the computation
of Mµ⌫↵�(f, ḡ), and we give the detailed results. With
the help of Eq. (24) we can express the first- and second-
order perturbations of tj in terms of those of si. Like for
tj we set

sµ⌫
i =

@si

@gµ⌫

����
g=ḡ

, (A1)

The eigenvectors λ01 (red), λ02 (blue) of A0 and λ22 (green) of A2 as functions of
−0.5 < c3 < 10 for the case c4 = 0.

A positive eigenvalue indicates an instability.
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Conclusions

Massive gravity might lead to ’degravitation’ on very large scales/late times and
therefore solve both the problem of the cosmological constant together with the
observed acceleration of the Universe!

However, even ’ghost free’ dRGT massive gravity generically has ghosts on a
cosmological background.

Also, the background equations are very strange and it is not clear to me whether
they can make sense physically even without considering perturbations.

The instability problem addressed here is not the Higuchi ghost (1989) which is
encountered if m2 < 2H2, as it remains present even when H → 0.

One possibility to evade these conclusions is to consider bi-gravity i.e. add a
kinetic term also for the f metric. This re-installs diffeomorphism invariance and
removes the Higuchi ghost.

Whether it also cures the kind of instabilities discussed here is still unclear.
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