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Introduction

@ As a cosmologist, | consider the observed accelerated expansion as one of the
most fundamental problems in cosmology.
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Introduction

@ As a cosmologist, | consider the observed accelerated expansion as one of the
most fundamental problems in cosmology.

@ A atheoretical physicist | consider its ‘solution’ via the introduction of a tiny
cosmological constant or vacuum energy as deeply unsatisfactory.

@ Other suggestions are a new matter component like e.g. quintessence with strong
negative pressure.

@ Or modifications of gravity.

@ Massive gravity, which weakens gravity on very large scales seems a most natural
and simple idea.

This motivated me to look into massive gravity theories.
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A mass for the graviton

@ The gravitational field is the metric. The only diffeomorphism invariant possibility to
give it a potential is of the form A/—g.
This is a cosmological constant, not a mass term.
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A mass for the graviton

@ The gravitational field is the metric. The only diffeomorphism invariant possibility to
give it a potential is of the form A/—g.
This is a cosmological constant, not a mass term.

@ A mass term is proportional the the square of excitation w.r.t to some reference
metric.

@ In 1939 Pauli and Fierz showed that within linearized gravity, there is only one
form for quadratic potential for A, = gu. — 1. (Mass term) which does not lead
to a 'ghost’, namely

2
_m w2
U= <hwh K ) .
In general, h,., has 6 degrees of freedom. 5 of them make up the massive spin-2
graviton and the 6th is a spin-0 ghost (i.e. its kinetic term has the wrong sign). The

above form of the mass term ensures that one of these 6 degrees of freedom is
not propagating but fixed by a constraint.
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A mass for the graviton

@ More precisely: consider the quadratic Lagrangian for A,

rvo 1 «_ UV LV
ghveB _§[<nunﬂ_n; 776)54'

(nuunapnﬂd + Py — PP ngynﬂpnw) 8;)(%}

is the Lichnerowicz operator (on flat spacetime). The ’lapse function’ hyo enters
only linearly, in the form hyo(- - - ), like a Lagrange multiplier. Hence its variation
yields an additional constraint and removes one of the 6 degrees of freedom in h;.
The remaining constraints determine hjp.
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A mass for the graviton

@ More precisely: consider the quadratic Lagrangian for A,

M

=™ nyeeon, o]

rvo 1 o UV LV
ghveB _§[<nunﬂ_n; 776)54'

(n;wnapnﬂd + naﬂﬁupnud _ np,ﬁ,r—]l/pnad _ naunﬂpnpﬁ) 8’)80]

is the Lichnerowicz operator (on flat spacetime). The ’lapse function’ hyo enters
only linearly, in the form hyo(- - - ), like a Lagrange multiplier. Hence its variation
yields an additional constraint and removes one of the 6 degrees of freedom in h;.
The remaining constraints determine hjp.

@ This can be generalized to an arbitrary reference metric, g... = f.. + h.. and
remains true in the quadratic action.

@ But whatever higher order covariant terms you add to U, hyo will no longer appear
as a Langrange multiplier, the additional condition is lost and the ‘ghost’ will
appear. = Boulware Deser ghost (1972).
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Van Dam-Veltman-Zakharov discontinuity (1970)

@ Setting Dy = 1w — #&Lay, the equation of motion for h.s is

1 1 o
(D - m2) R = v {DH(QDB)V — 3D Das | T*7
so that the massive graviton propagator is

(mass)

mass) __ vaf (mass) __ 1
G,El,uaﬁ - DM_ m2 ’ F,uuozﬁ - D#(QDﬁ)V - gDMVDaﬁ .
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Van Dam-Veltman-Zakharov discontinuity (1970)
@ Setting Dy = 1w — #&Lay, the equation of motion for h.s is
2 1 1 oB
(D —m ) R = v DutaDsy = 5DuDas| T

so that the massive graviton propagator is
(mass)

G(mass) _ _praB F(m““) D (o Dﬁ)

1
waf T g mR’ prafB T 3 DuvDag -

3
@ The amplitude for graviton exchange between two sources becomes

;ne;_s/s _/d4 7— uquass Taﬁ

praf

@ In the limit m — 0 this tends to

1 1 " 1 1
Tm;O) /d4 T 12 < _ §T77u1/> # ATmT,O) = /d4XT ¢ E <Tuu - ET"?HV) .
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so that the massive graviton propagator is
(mass)

G(mass) _ _praB F(m““) D (o Dﬁ)
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waf T g mR’ prafB T 3 DuvDag -
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@ The amplitude for graviton exchange between two sources becomes

;ne;_s/s _/d4 7— uquass Taﬁ

praf

@ In the limit m — 0 this tends to
IJ 1 I,U 1
7_m;>0) /d4 T © < _ § T’Ihu/) 7_mT/O) /d4 T 2 < _ E an/) .

@ This problem is solved by the Vainshtein mechanism (1972): In the presence of
massive sources, the kinetic term of the scalar graviton mode gets strongly
enhanced so that it cannot be excited for
r<r.=M/(4rMEm?))"/® = (A% r)"/® ~ 100pc for M = M.
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

@ In2010/11 have shown, that there are potentials
U beyond the quadratic level for which massive gravity remains ghost free.
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@ In2010/11 have shown, that there are potentials
U beyond the quadratic level for which massive gravity remains ghost free.
For these potentials, which are uniquely fixed by two constant coefficients in
addition to the mass m, there still exists a highly non-trivial combination of the
lapse function and the shift vector (in a 3+1 split of gravity) which enters linearly in
the Lagrangian and therefore generates a constraint for the 6 propagating degrees
of freedom of the gravitational field. This projects out the ‘ghost’ so that a massive
spin-2 graviton with its usual 5 degrees of freedom remains.

@ The proof of this statement has in the meantime been given in several different
ways. Note that even if there are only 5 degrees of freedom left, it is not clear that
these are ’healthy’ in all physically relevant situations. In the following | shall show
that especially in cosmology they are usually not.
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

The general potential is given by

W(K) =
Ui(K) =
U:(K)

Us(K) =

where K =T —

prof

€ €uvasg = 4!

Muaﬁéu/yaﬁlcl/u — 3|[IC] ,

(o)

E,u,l/cxﬁe‘u/y/aﬁlc,ululcl’,y - ! ([Ic]z - [’Cz]) ’

N

’ ’
P 0K KT LK

ol = N =

o = g (ICP = 3[KIK? +21K77)

’ ’ ’ ’
P e g KM LK LK™ WKP 5

N

2l4 (IK1* = BICPIC™] + BUCP + BIKIICY] - 61K*]) = det(K).

g~ 'f and [M]=TrM.
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

The general potential is given by
Up(K) = é*Peppap =4

U(K) = e Peunapk? = 3IK],
U(K) = %E“m’eeu'wafx’c“,u/@,uzg([’C] [’Czl)a
Us(K) = e ek K7k = L (ICF - BIKIKT + 21K%) |
Us(K) = 2145“”‘*56,,”%,& WK WK
1

= o (IKI* = BICIPIC?] + B[ + BIKJIKY] — BIK*]) = det(K).

where K =1—+/g-'f and [M]=TrM.
U, is the n-th order term appearing in the characteristic polynomial of /C,

det(AT — K) Z U4 n(K)

and the potential for g is given by
m? Cn
Lj —-‘;I* . ;3itjn(K:).
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De Rham-Gabadaze-Tolley (dRGT) ghost free massive gravity

This somewhat unwieldy non-analytic potential for g,.., becomes much simpler if given
in terms of vier-beins for g and f.
The vier-beins are normalized 1-forms such that

G dx ax” = nas0°6” and £, dx"dx” = nas9°09°

With these
V—gU(K)d*x = —mTzeWﬁ [coew NG AO* NG 4 160" AOY NG NP
+%9“/\9”/\19a/\196-1-%9“/\19”/\19“Aﬁ5+%ﬁ”AﬁyAﬁaA0ﬁ]
The term ¢ is simply a cosmological constant and the term « ¢; is a tadpole which

we shall neglect. The constant ¢, can be absorbed in the definition of m where as c3
and ¢, are genuinely new, giving rise to new physical phenomena.
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This somewhat unwieldy non-analytic potential for g,.., becomes much simpler if given
in terms of vier-beins for g and f.
The vier-beins are normalized 1-forms such that

G dx ax” = nas0°6” and £, dx"dx” = nas9°09°

With these
2
V—gU(K)d*x = _mTeWﬁ [coew AOY AO™ A OP + 10" NG A O AP
+%9“/\9”/\19a/\196-1-%9“/\19”/\19“Aﬁ5+%ﬁ”AﬁyAﬁaA0ﬁ]

The term « ¢, is simply a cosmological constant and the term « ¢; is a tadpole which
we shall neglect. The constant ¢, can be absorbed in the definition of m where as c3
and ¢, are genuinely new, giving rise to new physical phenomena.
We shall also use that

2
U = _% (Ua(K) + csUs(K) + s Us(K))
S [ao +aiUi(Vg— 1) + aUe(v/gTF) + asUs(v/g ! f)]
with
a =6+4c3 + s, ar =—(3+3c3+¢cs)
a =1+2c + ¢4, a3 = —C3 — C4.

Ruth Durrer (Université de Genéve ) Massive Gravity IPMU, July 2014 9/20



Fluctuations

@ To study solutions of a given theory, we need not only to find them, but we also
have to analyse their stability. Even if a theory of modified gravity has no ghosts a
priori, we need to check whether physically interesting solutions of GR are still
viable, i.e. stable. To this aim we have studied the perturbations of massive gravity
around a fixed background metric g. We set g... = g, + h.. and write the
Langrangian to 2nd order in h,..
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@ The kinetic term /—gR is expanded as usual,
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Ruth Durrer (Université de Genéve ) Massive Gravity IPMU, July 2014 10/20



Fluctuations

@ To study solutions of a given theory, we need not only to find them, but we also
have to analyse their stability. Even if a theory of modified gravity has no ghosts a
priori, we need to check whether physically interesting solutions of GR are still
viable, i.e. stable. To this aim we have studied the perturbations of massive gravity
around a fixed background metric g. We set g... = g, + h.. and write the
Langrangian to 2nd order in h,..

@ The kinetic term /—gR is expanded as usual,

/=gR = /—3R + h " P (9)hap — 2h,, G** + 8, V*

@ The mass term is more tricky. Since for non-commuting matrices vVAB # v AV/B,
we cannot simply expand \/g—1f = /(T + h)~Tg=Tfin h= (h*,) = (§"*haw).
We use the following trick: Setting t; = Ui(1/g~—'f) and s; = Ui(g -1 f) one easily
verifies the relations

tig = & +2b, t3232—2\/§+2t1t3, t§2233+2f2\/§.

@ Now we can expand the s; and with them the f; to second order in h,..
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The mass term

After a lengthy calculation we end up with

\/—detgU(f, 9) \/—detg [U(f, 9) — 2M"™ hyy + MMOB(F, g)hwhaﬁ] +O(h%)

MHEE = [:’1’0-/\4/0”0[3 + a1M1Waﬂ + azngaﬂ + aaMlswaﬂ )

14e) 1_ VD 1 i A7 P /AU
Mprer = 2gvg? - 2 (g°g"" + 3"’

4 4

va i rvo 1 UV g e} v va i

MEP = MY B+§(g“1;ﬁ+gﬁl;“)+2t,-“ P,o1<j<s,
MY = 2mP(ait!” + ath + ast)”)
» o as _ 1 P4
/ gy =7 ’ / 2 094, 09ap =3 '

with very cumbersome expressions for the z‘j“" and even more so for tlf‘”‘w
(see P. Guarato and RD arXiv:1309.2245).
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Application to cosmology: same conformal time

Let us assume that f is a Friedmann-Lemaitre geometry and we have found a
cosmological solutionb g with the same conformal time,

Gudx"dx” = & (t)(—df + sjdx'dx),
fodxdx” = bP(t)(—df? + §dx'dx’).
In this case the mass term becomes
M,uuaﬁ(f’ g) _ _m2 [aguugaﬁ + g (guagu[‘} + g,u,ﬁguoz):| .
1 b
a(t) = Z1+(1fr) G-nN+c@d-2n+c(1-r);|, r:5
—8(t) = [1 +(1 —r){(11 —4r) + o3 (8—7r+r ) + e (1 —r)(2—r)}]

In the cosmological situation « and 5 depend only on time, but the expressions below
in terms of r(t) = b(t)/a(t) are always correct when the two metrics g and f are
conformally related by f = r?g.

For a # —f this metric has a ghost with mass (Jaccard, Maggiore & Mitsou)

2 (a+4p) o

mghost - 2(0[+ﬁ) .
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Application to cosmology:same conformal time

The functions «(r) (red) and S(r) (blue) for two cases:
cs = ¢+ = 0 (solid) and ¢z = 1, ¢4 = 0 (dashed)
(from P. Guarato & RD arXiv:1309.2245).

Ruth Durrer (Université de Genéve ) Massive Gravity IPMU, July 2014 13/20



Application to cosmology: general

In general the physical metric will not have the same conformal time as the reference
metric f and we expect

fodxtdx” = —dr® + b?(r)ydx'dx!
Gudxtdx” = —N?(7)dr? + & (r)y;dx'dx’ .

with some unknown lapse function N. In this case the mass term is of the more
complicated form

MO = pfa(r), M= (g, MO =t
MK —mz{p(r)g_}"jgkl-k 0(27-) [gikgjl+gflgjk] }

where 4, v, €, p, and o are polynomials of r and N,
The Fierz-Pauli tuning correspondsto N=1andvy=0,p=—-6=—-0c=1/4,e =1/8.
It is reached when N =1 and a = b.
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Application to cosmology

The functions ~(r) (red), é(r) (purple), (r) (green), p(r) (black), and o(r) (orange)
forthecase cz =1,c4s =0and N =1.
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Background cosmology

In the presence of a mass term Einstein’s equation take the form
G + M, = Mp2T,,.

The covariant conservation of G, is a geometrical identity and the conservation of T,
is a consequence of the matter equation (we assume that these are not modified).
Hence we also have M*"”., = 0. These 4 additional equations are necessary since we
have lost diffeomorphism invariance when f,,, is fixed (One could re-install it with the
Stiickelberg trick which we are not doing here).
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Background cosmology

In the presence of a mass term Einstein’s equation take the form
G + M, = Mp2T,,.

The covariant conservation of G, is a geometrical identity and the conservation of T,
is a consequence of the matter equation (we assume that these are not modified).
Hence we also have M*"”., = 0. These 4 additional equations are necessary since we
have lost diffeomorphism invariance when f,,, is fixed (One could re-install it with the
Stiickelberg trick which we are not doing here).

The Friedmann equations now become

1 1 :
H 4+ == 2H + 3H? = (Pu+P).
+a2Kg 3(/)M+P)7 +3 +32Kg (Pm+P)
where H = a/(Na), r=b/a and
—pm = N*Z[r3(cg+c4)—r2(603+3c4+3)+r(903+304+9)—403—04—6]7

P 6+4Cs+Cs+ (203 +Cs+1)rP —2(3cs + s+ 3)r —

N‘1[(cs+c4)r2+303+c4+3—2(203+c4+1)r .
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Background cosmology

We interpret M .., as a gravity mass fluid. Its covariant conservation implies
[304(r — 12 +3c(r—38)(r—1)+9— Sr} (N*1é— b) =0
Hence either [- - -] = 0 which implies r = b/a =constant or N = b/a, so that

Ha=b=H:b, H;== b/b. In the first case the evolution of the physical scale factor
is fixed by the reference metric b and only N depends on the matter content.
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known derivatives of b.
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Background cosmology

We interpret M .., as a gravity mass fluid. Its covariant conservation implies
[304(r — 12 +3c(r—38)(r—1)+9— 6r} (N*1é— b) =0

Hence either [- - -] = 0 which implies r = b/a =constant or N = b/a, so that

Ha = b= Hib, H; == b/b. Inthe first case the evolution of the physical scale factor
is fixed by the reference metric b and only N depends on the matter content.

In the second case H = a/(Na) = b/a where again b is given. Hence the first
Friedmann equation becomes an algebraic equation for a and N.

Also the time derivatives of H = (b — ba)/a = (b — Nb?)/a can be replaced by the
known derivatives of b.

Hence the Friedmann equations become algebraic relations which relate aand N to b
and the matter content of the Universe.
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Fluctuations

We have studied the scalar sector of fluctuations in detail for the special solution
p=P=0, N=1and

r_3+Cs_r
_1+03_ ¢

It is easy to verify that this is the only solution with r =constant and N = 1 which solves
all background equations (apart from the trivial case r = 1).
We define the most general scalar perturbation Fourier mode by

3 er iak;B
hlw(k) = (sg“” o (/ak,B 282(1/}(5/1' — k,kjE)> ’

We can eliminate ¢ and B from the perturbation equations using the constraints. For ¢
and £ = nm?E we then obtain coupled linear equations of motion,

2
£ (2)-raen) (1),

where Ao(cs, ¢s) and Az(cs, C4) are 2 x 2 matrices given by rational functions of ¢; and
¢s. A2 has one vanishing eigenvalue, one of the two scalar modes does not propagate.
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Fluctuations

The eigenvectors Ao1 (red), Aoz (blue) of Ap and Az (green) of Az as functions of
—0.5 < ¢z < 10 for the case ¢4 = 0.

A positive eigenvalue indicates an instability.
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Conclusions

@ Massive gravity might lead to ‘degravitation’ on very large scales/late times and
therefore solve both the problem of the cosmological constant together with the
observed acceleration of the Universe!
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@ However, even 'ghost free’ dRGT massive gravity generically has ghosts on a
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@ Also, the background equations are very strange and it is not clear to me whether
they can make sense physically even without considering perturbations.

@ The instability problem addressed here is not the Higuchi ghost (1989) which is
encountered if m® < 2H?, as it remains present even when H — 0.

@ One possibility to evade these conclusions is to consider bi-gravity i.e. add a
kinetic term also for the f metric. This re-installs diffeomorphism invariance and
removes the Higuchi ghost.

@ Whether it also cures the kind of instabilities discussed here is still unclear.
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