Natural inflation models in string-inspired supergravity

Tetsutaro Higaki

KEK theory center

In collaboration with

M. Czerny and F. Takahashi (Tohoku U) 1403.0410, 1403.5883 and 1404.6923

Inflation

Accelerating expansion of the universe

NASA

Primordial gravitational wave!?

Tension; needs more data

BICEP2: r ~ 0.2; dust?

Planck: r < 0.11

Mortonson et al; Flauger et al.

BICEP2 collaboration

Planck collaboration

Motivation: Testing string theory

Future tensor mode confirmation = very high energy

$$V_{\mathsf{inf}} \simeq (2.0 imes 10^{16} \; \mathsf{GeV})^4 \cdot \left(rac{r}{0.16}
ight)$$

 $\Delta \phi > M_{\mathsf{PI}}$

Lyth bound

 $M_{\rm string} \sim 10^{17} {
m GeV}$ Inflaton: Ubiquitous heavy axion ϕ

Summary

Natural inflation: Large tensor mode generated

 $V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$: Under good control and f > M_{Pl}

- String natural inflation: Many brane charges needed
 - Large decay constant:

$$f\sim rac{N_{
m brane}}{\Delta}M_{
m string}$$

 N_{brane} : # of D-branes, $\Delta < 1$: Alignment of winding/fluxes.

– Severe tadpole condition?

Content

- 1. Motivation
- 2. Observation and inflation
- 3. Axion inflation: (Multi-)natural inflation
- 4. Multi-natural inflation in supergravity
- 5. String/supergravity
- 6. Summary

2. Observations and inflation

 $M_{Pl} = 2.4 \times 10^{18} \text{ GeV} = 1 \text{ will be used.}$

Cosmic Microwave Background

CMB fluctuation: $\Delta T/T \sim 10^{-5}$

where T \sim 2.7 K

Why inflation?

Inflation = Accelerating expansion of the universe

• Generating <u>density fluctuations</u> in CMB

= seeds of galaxies

• Grativational wave

- Solutions for fine-tuning problems
 - Flatness problem: $\Omega_{curvature} \ll 1$
 - Horizon problem : T \sim 2.7K in CMB

Inflation driven by an inflaton ϕ

- EOM $\ddot{\phi} + 3H\dot{\phi} + \partial_{\phi}V = 0$
- Friedman Eq.

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3}\left(\frac{1}{2}\dot{\phi}^2 + V\right)$$

• Slow-roll conditions

$$\frac{\dot{H}}{H^2} \ll 1, \quad \ddot{\phi} \ll H\dot{\phi} \quad \Longrightarrow \quad \left\{ \epsilon = \frac{1}{2} \left(\frac{\partial_{\phi} V}{V} \right)^2 \ll 1, \quad \eta = \frac{\partial_{\phi}^2 V}{V} \ll 1 \right\}$$
Inflation!!
$$a \propto e^{Ht}$$

$$a(t): \text{ Scale factor}$$

$$H: \text{ Hubble parameter}$$

CMB fluctuation generated by $\delta \phi$

 $\delta \varphi$: inflaton fluctuation

Metric perturbation

• Metric perturbations:

$$ds^{2} = -dt^{2} + a(t)^{2}e^{\zeta(t,\vec{x})}[\delta_{ij} + h_{ij}(t,\vec{x})]dx^{i}dx^{j}$$
$$\zeta: \text{ Scalar perturbation } \zeta \leftrightarrow \delta \phi \frac{H}{\dot{\phi}}$$

h: Tensor perturbation (Gravitational wave) \rightarrow B-mode polarization in CMB photon

Power spectrum and r

• Power spectrum $(\Delta T/T)^2$ from inflation:

$$P_{\zeta} = \frac{V_{\inf}}{24\pi^2 \epsilon} \left(\frac{k}{k_0}\right)^{n_s - 1}, \quad P_h = \frac{2V_{\inf}}{3\pi^2} \left(\frac{k}{k_0}\right)^{n_t}$$

 $k_0 = 0.002 \,\mathrm{Mpc}^{-1}$

• Tensor to scalar ratio:

$$r = \frac{P_h}{P_{\zeta}} \simeq 16\epsilon.$$

Observations and potential shape

BICEP2; Planck collaboration

 $r_{\rm BICEP2} \simeq 16\epsilon \simeq 0.2.$

 $P_{\zeta} \simeq \frac{V_{\text{inf}}}{24\pi^2\epsilon} \simeq 2.5 \times 10^{-9}$

 $n_s \simeq 1 - 6\epsilon + 2\eta \simeq 0.96.$

 $k_0 = 0.002 \,\mathrm{Mpc}^{-1}$

$$P_{\zeta} = \frac{V_{\text{inf}}}{24\pi^2 \epsilon} \left(\frac{k}{k_0}\right)^{n_s - 1}; \ \epsilon = \frac{1}{2} \left(\frac{\partial_{\phi} V}{V}\right)^2 \ll 1, \quad \eta = \frac{\partial_{\phi}^2 V}{V} \ll 1$$

High scale and long excursion

• Energy/Hubble scale:

$$V_{\text{inf}} \simeq (2.0 \times 10^{16} \text{ GeV})^4 \cdot \left(\frac{r}{0.16}\right)$$

 $H_{\text{inf}} \simeq (1.0 \times 10^{14} \text{ GeV}) \cdot \left(\frac{r}{0.16}\right)^{1/2}$ $_{3H_{\text{inf}}^2 = V_{\text{inf}}}$

• Distance during the inflation in field space Lyth

$$\frac{\Delta\phi}{M_{\text{Pl}}} \gtrsim 7.1 \cdot \left(\frac{r}{0.16}\right)^{1/2} \left(\frac{N_e}{50}\right). \qquad \begin{array}{l} \text{N}_e: \text{e-folding number}\\ N_e = \int H dt \simeq \int \frac{d\phi}{\sqrt{r/8}}. \end{array}$$

3. Axion inflation:

(Multi-)natural inflation

Inflation with an axion ϕ

Shift symmetry controls theory

$$\phi \to \phi + C$$

Almost flat potential over super-Planckian for ϕ

Natural inflation: Large field inflation

Freese et al

$$V_{\text{natural}}(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right].$$

• Small shift-violation $\Lambda \ll M_{Pl}$ - will always exist via a non-perturbative effect $\frac{\phi}{f_{\phi}} \langle F_{\mu\nu} \tilde{F}^{\mu\nu} \rangle$

• Slow roll for
$$f > M_{Pl}$$
: $\epsilon \sim \eta \sim \left(\frac{M_{Pl}}{f}\right)^2 \ll 1$.

Natural inflation and observation

• Parameters: $f \gtrsim 5M_{\text{Pl}}$, $\Lambda \sim 10^{16} \text{ GeV}$ (BICEP2)

• Potential:

$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

• Inflaton mass:

$$m_\phi \sim {\Lambda^2 \over f} \sim 10^{13}\,{
m GeV}$$

1403.5277: Freese et al
$$m_{\mathsf{Pl}} \simeq 1.2 \times 10^{19} \, \mathrm{GeV} \simeq 5 M_{\mathsf{Pl}}$$

Multi-Natural inflation

1401.5212 : Czerny, Takahashi

• Multi-corrections can exist:

$$V = v_0 - \Lambda_1^4 \cos\left(\frac{\phi}{f_1}\right) - \Lambda_2^4 \cos\left(\frac{\phi}{f_2} + \theta\right) + \cdots$$

Multi-Natural inflation

1401.5212 : Czerny, Takahashi

• Multi-corrections can exist:

$$V = v_0 - \Lambda_1^4 \cos\left(\frac{\phi}{f_1}\right) - \Lambda_2^4 \cos\left(\frac{\phi}{f_2} + \theta\right) + \cdots$$
$$\frac{\phi}{f_1'} \langle F_{\mu\nu} \tilde{F}^{\mu\nu} \rangle + \frac{\phi}{f_2'} \langle G_{\mu\nu} \tilde{G}^{\mu\nu} \rangle + \cdots$$

Multi-Natural inflation

1401.5212 : Czerny, Takahashi

• Multi-corrections can exist:

$$V = v_0 - \Lambda_1^4 \cos\left(\frac{\phi}{f_1}\right) - \Lambda_2^4 \cos\left(\frac{\phi}{f_2} + \theta\right) + \cdots$$

Wide parameter space:

1403.0410, 1403.5883 : Czerny, TH, Takahashi

- Large field inflation with r ~ 0.1
- Running n_s with modulations

1403.4589: Czerny, Kobayashi, Takahashi

Also small field inflation with r << 0.1 for Planck.

$$f_2 = 0.5f_1, \quad \Lambda_2^4 = B\Lambda_1^4, \quad \theta = \frac{2\pi}{3}$$

$$V = v_0 - \Lambda_1^4 \cos\left(\frac{\phi}{f_1}\right) - \Lambda_2^4 \cos\left(\frac{\phi}{f_2} + \theta\right). \quad m_\phi \sim \frac{\Lambda_1^2}{f_1} \sim \frac{\Lambda_2^2}{f_2} \sim 10^{13} \text{ GeV}.$$

Large decay constant for natural inflation

 $f > M_{\mathsf{PI}}$.

4. Multi-natural inflation in supergravity

1403.0410, 1403.5883 : Czerny, TH, Takahashi

Why supergravity?

The theory controlled:

1. Toy model: Embedding inflation into string theory

2. Study of Non-perturbative effects

3. Stable; no tachyons

Note: No relation to TeV scale SUSY!!

Scalar potential in SUGRA

$V = e^{K} [|DW|^{2} - 3|W|^{2}].$

 $|DW|^2 = K^{i\overline{j}}(D_iW)(\overline{D_jW}), \quad DW = (\partial K)W + \partial W, \quad K^{i\overline{j}} = (\partial_i\overline{\partial_j}K)^{-1}$

K: Kähler potential, W: Superpotential

• K: Symmetric under $\Phi \rightarrow \Phi + iC$

$$K = \frac{f^2}{2} (\Phi + \Phi^{\dagger})^2, \quad f \lesssim 1.$$

• W: Const. + gaugino condensations Λ³

$$W = W_0 + Ae^{-a\Phi} + Be^{-b\Phi},$$

Spontaneous SUSY-breaking:

$$\Delta V = 3e^{2K/3} |W_0|^2.$$

• K: Symmetric under $\Phi \rightarrow \Phi + iC$

$$K = \frac{f^2}{2} (\Phi + \Phi^{\dagger})^2, \quad f \lesssim 1.$$

Canonical normalization:

$$\Phi = \sigma + i\phi; \quad \sigma \to \frac{\sigma}{\sqrt{2}f}, \quad \phi \to \frac{\phi}{\sqrt{2}f}.$$
$$f^{2}(\partial\sigma)^{2} + f^{2}(\partial\phi)^{2} \to \frac{1}{2}(\partial\sigma)^{2} + \frac{1}{2}(\partial\phi)^{2}.$$

W: Const. + gaugino condensations Λ³; N-vacua

$$W = W_0 + Ae^{-a\Phi} + Be^{-b\Phi},$$

$$a \sim b \sim 10^{-2}$$
, $A \sim B \sim 10^{-(6-7)}$, $W_0 \sim 10^{-3}$.

Exponent = (1/decay constant) after canonical normalization:

$$W \supset W_0 + Ae^{-i\frac{a}{\sqrt{2}f}\phi} + Be^{-i\frac{b}{\sqrt{2}f}\phi},$$

• Spontaneous SUSY-breaking:

$$\Delta V = 3e^{2K/3}|W_0|^2.$$

- Heavier saxion σ : $V_{\text{saxion}}(\sigma) \simeq |W_0|^2 \sigma^2$; $\langle \sigma \rangle = 0$.
- SUSY-breaking in true vacuum: $W_0 \sim m_{3/2}$.
- Fine-tuning of CC; other type possible
 KKLT

Axion potential = Multi-natural

• Axion potential for $\sigma = 0$

$$V_{\text{axion}}(\phi) \simeq 6AW_0 \left[1 - \cos\left(\frac{\phi}{f_1}\right)\right] + 6BW_0 \left[1 - \cos\left(\frac{\phi}{f_2} + \theta\right)\right]$$

 $\theta = \operatorname{Arg}(1/B)$

 $AW_0 \sim (dynamical scale)^3 \times (SUSY breaking)$

Large decay constant for small a or b:

$$f_1 \equiv \frac{\sqrt{2}f}{a}, \quad f_2 \equiv \frac{\sqrt{2}f}{b} \implies f \text{ for } a^{-1} \sim b^{-1} \sim 10^2$$

Saxion σ decoupled from inflation

• Decoupling condition for successful inflation:

$$AW_0 \ll W_0^2 \quad \Longrightarrow \quad H_{\inf} \ll m_\sigma$$

$$m_{\sigma} \sim W_0, \quad H_{\text{inf}} \sim \sqrt{V_{\text{inf}}} \sim \sqrt{AW_0};$$

Saxion σ decoupled from inflation

• Successful inflation

Saxion σ decoupled from inflation

• Otherwise, no slow-roll inflation due to mixing

Two lessons

• Large decay constant = a << 1 in exponent

$$f_1 \propto rac{1}{a} f. \qquad egin{array}{c} W \sim e^{-a\Phi} \ \mathcal{L}_{kin} = f^2 (\partial \phi)^2 \end{array}$$

• Moduli σ should be much heavier

$$H_{\rm inf} \ll m_{\sigma}$$

5. String theory/Supergravity

Axion inflation in string theory

1. Unified theory; SU(N) on N × D-branes

- 1. Unified theory; SU(N) on N × D-branes
- 2. Extra dimension = Hidden sector: Multiple axions from gauge field of branes/strings

$$a(x) = \int C_n^{\mathsf{RR}}, \quad b(x) = \int B_2^{\mathsf{NS}}.$$

 $Ex : b = B_{56}.$

Axion shift symmetry = remnant of gauge symmetry

- 1. Unified theory; SU(N) on N × D-branes
- 2. Extra dimension = Hidden sector: Multiple axions from gauge field of branes/strings

$$\phi(x) = \int C_4^{\mathsf{RR}} \text{ or } \int C_2^{\mathsf{RR}}.$$

Axion shift symmetry = remnant of gauge symmetry

- 1. Unified theory; SU(N) on N × D-branes
- 2. Extra dimension = Hidden sector: Multiple axions from gauge field of branes/strings

$$\phi(x) = \int C_4^{\mathsf{RR}} \quad \text{or} \quad \int C_2^{\mathsf{RR}}.$$

3. Large decay constant

$$f > M_{\rm Pl} \cdot {}^{\rm Cf:\,M_{\rm Pl} > M_{\rm string}}$$

Moduli stabilization = Scales fixed

Fixing a size of extra dimension

Scales of inflation, EW, SUSY, ...

Moduli stabilization = Scales fixed

Scales of inflation, EW, SUSY, ...

IIB Effective action for volume-axion T

$$K = -2\log(\mathcal{V}), \quad W = W_0 + \sum_n A_n e^{-\sum_i a_{ni}T_i}.$$

- No-scale Kähler potential $K = -3 \log(T + T^{\dagger})$; no $T T^{\dagger}$!
- W₀: Flux stabilized heavy moduli $\int \langle F_n^{\mathsf{RR}} \rangle \neq 0$, $\int \langle H_3^{\mathsf{NS}} \rangle \neq 0$.
- exp[-aT]: Gaugino condensations on D-branes

O⁻-plane

D-branes

Quantized flux

IIB Effective action for volume-axion T

$$K = -2 \log(\mathcal{V}), \quad W = W_0 + \sum_n A_n e^{-\sum_i a_{ni} T_i}$$
• No-scale Kähler potential $K = -3 \log(T + T^{\dagger}) \cdot no T$
• W₀: Flux stabilized heavy moduli $\int \langle F_i \rangle$
• exp[-aT]: Gaugino condensations on I
• exp[-aT]: Gaugino condensations on I
• O-plane
• O-plane
• Quantized flux

4D Gauge coupling = "Volume"

• Dynamical scale of SU(N) on N × D7-branes:

$$W \sim e^{-\frac{2\pi}{N}T},$$

$$T \equiv \text{volume} - i \int_{D7} C_4.$$

Gauge coupling on D7-brane having 4 Ex-dim:

$$\int d^4x \int d^4y (F_{MN})^2 \qquad \qquad \frac{4\pi}{g^2} = \text{volume.}$$
$$\int_{4D} \int_y C_4 \wedge F_2 \wedge F_2 \qquad \qquad \frac{\theta}{2\pi} \equiv \int_{D7} C_4.$$

4D Gauge coupling = "Volume"

• Dynamical scale of SU(N) on N × D7-branes:

$$W \sim e^{-\frac{2\pi}{N}T}$$
, Decay const.:
 $f \propto N$
 $T \equiv \text{volume} - i \int_{D7} C_4$. Inflaton
candidate

Gauge coupling on D7-brane having 4 Ex-dim:

$$\int d^4x \int d^4y (F_{MN})^2 \qquad \qquad \frac{4\pi}{g^2} = \text{volume.}$$
$$\int_{4D} \int_y C_4 \wedge F_2 \wedge F_2 \qquad \qquad \frac{\theta}{2\pi} \equiv \int_{D7} C_4.$$

Wrapping branes

• <u>A single stack</u> of N × D7-branes (N=1: Instanton)

$$W \sim e^{-\frac{2\pi}{N}(w_1T_1 + w_2T_2 + \cdots)}$$

Wrapping branes

• <u>A single stack</u> of N × D7-branes (N=1: Instanton)

$$W \sim e^{-\frac{2\pi}{N}(w_1T_1 + w_2T_2 + \cdots)}$$

 $T = w_1 T_1 + w_2 T_2 + \cdots$

Flux corrections to gauge coupling

• Corrections in the presence of gauge flux F

 $\mathcal{F} = \frac{1}{2\pi} \int_{D7} dy^5 dy^6 F_{56} \in \mathbb{Z}$

$$\delta\!\left(\frac{4\pi}{g_h^2}\right) = \mathcal{F}G + \cdots$$

G: Two cycle (Kähler) moduli

$$G = (e^{-\phi} - iC_0^{\mathsf{RR}}) \int B_2^{\mathsf{NS}} + i \int C_2^{\mathsf{RR}}.$$

Inflaton candidate

Magnetized branes

A stack of N × D7-branes (N=1: Instanton)

Magnetized branes

<u>A stack of N × D7-branes</u> (N=1: Instanton)

N_{brane}: # of D-branes from Gaugino condensation

Yonekura; Harigaya, Ibe: U(1) charge N;

 Δ : Alignment of w or F with multiple axions

Kim-Nilles-Peloso

 f_a : Decay constant in $(\partial \phi)^2$: M_{string} , M_{KK} and $M_{winding}$.

Natural inflation models

No decompactification problem

Inflation does not disturb moduli stabilization

 $H_{\rm inf} \lesssim m_{\rm moduli} \sim m_{3/2}$

Our case: due to axion shift symmetry

Cf: Kallosh et al. for $m_{moduli} > m_{3/2}$

Otherwise runaway volume: Sensible 4D lost.

1. Model with O(10-100) D7-branes

• Effective action on CY with two holes:

 $K = -2\log(t_0^{3/2} - t_1^{3/2} - t_2^{3/2}); \quad t_i = (T_i + T_i^{\dagger}) \quad \text{for } i = 0, 1, 2,$ $W = W_0 - Ce^{-\frac{2\pi}{N}T_0} - De^{-\frac{2\pi}{M}(T_1 + T_2)} + Ae^{-\frac{2\pi}{n_1}T_2} + Be^{-\frac{2\pi}{n_2}T_2},$

1. Model with O(10-100) D7-branes

1. Low energy action: Multi-natural

• Effective action for axion multiplet $\Phi = -T_1 + T_2$

$$K_L \approx \frac{f^2}{2} (\Phi + \Phi^{\dagger})^2$$
$$W_L \approx m_{3/2} + \hat{A}e^{-\frac{\pi}{n_1}\Phi} + \hat{B}e^{-\frac{\pi}{n_2}\Phi}$$

$$f^2 \equiv \frac{3}{2\sqrt{2}\sqrt{t}\mathcal{V}} \lesssim 1, \qquad m_{3/2} \sim W_0, \qquad \widehat{B} \lesssim \widehat{A} \ll m_{3/2} \ll 1.$$

Here $\widehat{A} \sim (m_{3/2})^{M/2n_1}$, $\widehat{B} \sim (m_{3/2})^{M/2n_2}$, $M > 2n_1 \gtrsim 2n_2$, and $n_1 = \mathcal{O}(10 - 100)$.

1. Low energy action: Multi-natural

• Effective action for axion multiplet $\Phi = -T_1 + T_2$

Here $\hat{A} \sim (m_{3/2})^{M/2n_1}$, $\hat{B} \sim (m_{3/2})^{M/2n_2}$, $M > 2n_1 \gtrsim 2n_2$, and $n_1 = \mathcal{O}(10 - 100)$.

1. Large decay constant = Many branes

• Axion potential for $\operatorname{Re}(\Phi) = 0$: $\phi \propto \operatorname{Im}(-T_1 + T_2)$

$$V_{\text{axion}}(\phi) \simeq 6\widehat{A}m_{3/2}\left[1 - \cos\left(\frac{\phi}{f_1}\right)\right] + 6\widehat{B}m_{3/2}\left[1 - \cos\left(\frac{\phi}{f_2} + \theta\right)\right]$$

Large decay constant $\propto N_{brane}$:

$$f_1 = n_1 \frac{\sqrt{2}f}{\pi}, \quad f_2 = n_2 \frac{\sqrt{2}f}{\pi}; \quad f_1 \sim 50f \text{ for } n_1 = 100.$$

$$f_1 \sim 5M_{\text{Pl}} \text{ for } f \sim 0.1M_{\text{Pl}}.$$

 $\theta = \operatorname{Arg}(1/\hat{B})$

2. Alignment mechanism with axions

hep-ph/0409138: Kim-Nilles-Peloso

- Two axion: Large decay constant for ψ

 ϕ_2

2. Alignment mechanism with axions

hep-ph/0409138: Kim-Nilles-Peloso

- Two axion: Large decay constant for ψ

2. Model with wrapping branes

• Effective action on CY with 2 holes:

$$K = -2\log(t_0 - t_1^{3/2} - t_2^{3/2}) \qquad t_i = (T_i + T_i^{\dagger})$$
$$W = W_0 - Ce^{-\frac{2\pi}{N}T_0} - Be^{-\frac{2\pi}{M}(T_1 + 10T_2)} + Ae^{-\frac{2\pi}{10}(T_1 + 11T_2)}$$

2. Model with wrapping branes

• Effective action on CY with 2 holes

Inflaton potential

2. Many times wrapping branes

• Natural inflation: $\phi \propto \text{Im}(-10T_1 + T_2)$

$$V_{\text{axion}}(\phi) \simeq 6\widehat{A}m_{3/2}\left[1 - \cos\left(\frac{\phi}{f_1}\right)\right]$$

$$f_1 \sim 227 f \sim rac{n_{ ext{brane}}}{\Delta} f \sim rac{10}{rac{1}{10}} f.$$

$$\begin{split} f_1 &\sim 5M_{\text{Pl}} & \text{for } f \sim 0.02M_{\text{Pl}}. \\ f &\sim \frac{1}{\mathcal{V}^{1/2}}, \quad \hat{A} \sim A e^{-\frac{111\pi}{505} \langle T \rangle} \ll m_{3/2}. \\ & \mathcal{V} \sim t_0^{3/2}, \quad T = T_1 + 10T_2 \end{split}$$

3. Model with two cycle Kähler moduli

1404.7852: Long, McAllister, McGuirk

• 2 volumes T_{1,2} + 2 two-cycle moduli G_{1,2}:

$$K = -2\log\left[t_0^{3/2} - (t_1 + g_1^2 + 3g_2^2/4)^{3/2}\right] \quad t_i = T_i + T_i^{\dagger}, \ g_i = (G_i + G_i^{\dagger}).$$

$$W \supset W_0 + Ae^{-\frac{2\pi}{35}(T_1 + 4G_1 - 9G_2)} + Be^{-\frac{2\pi}{40}(T_1 + 5G_1 - \frac{21}{2}G_2)}.$$

Swiss cheese CY with 2 two-cycle on a four-cycle

$\mathcal{F}_A \neq 0$ $\mathcal{F}_B \neq 0$

2 stacks of (35 + 40) magnetized

(+ 1 stack of unmagnetized branes; also D-terms stabilizing T_0 , T_1)

3. Model with two cycle Kähler moduli

1404.7852: Long, McAllister, McGuirk

Low energy model after volume T_{1.2} decoupled

$$K_L = f^2 (G_1 + G_1^{\dagger})^2 + f^2 \frac{3}{4} (G_2 + G_2^{\dagger})^2,$$

$$W_L = W_0 + A e^{-\frac{8\pi}{35} (G_1 - \frac{9}{4} G_2)} + B e^{-\frac{2\pi}{8} (G_1 - \frac{21}{10} G_2)}.$$

$$f^2 = 3 \frac{t_1^{1/2}}{\mathcal{V}} \simeq M_{\text{wind}}^2 \sim M_{\text{string}}^2$$

 $\mathcal{V} = (t_0^{3/2} - t_1^{3/2})/6.$

2 stacks of (35 + 40) magnetized (+ 1 stack of unmagnetized branes; also D-terms stabilizing T₀, T₁) Swiss cheese CY with 2 two-cycle on a four-cycle

3. Model with two cycle Kähler moduli

1404.7852: Long, McAllister, McGuirk

Low energy model after volume T_{1,2} decoupled

$$K_{L} = f^{2}(G_{1} + G_{1}^{\dagger})^{2} + f^{2}\frac{3}{4}(G_{2} + G_{2}^{\dagger})^{2},$$

$$W_{L} = W_{0} + Ae^{-\frac{8\pi}{35}G_{1} - \frac{9}{4}G_{2}} + Be^{-\frac{2\pi}{8}G_{1} - \frac{21}{10}G_{2}},$$

$$f^{2} = 3\frac{t_{1}^{1/2}}{\mathcal{V}} \simeq M_{\text{wind}}^{2} \sim M_{\text{string}}^{2},$$

$$\nu = (t_{0}^{3/2} - t_{1}^{3/2})/6.$$

$$f_{1} \sim \frac{N}{\Delta}f \sim \frac{10}{\frac{1}{10}}f \sim 100f: \text{ Aligned gauge flux}$$
3. Model with two cycle Kähler moduli

1404.7852: Long, McAllister, McGuirk

• Multi-natural inflation: $\phi \sim \text{Im}(G_1 - 2.5G_2)$.

$$V \sim C - \Lambda^4 \left[\cos \left(\frac{\phi}{f_1} \right) + 0.1 \cdot \cos \left(\frac{\phi}{f_2} \right) \right]$$

 $C \sim \Lambda^4 \sim 10^{-8}, \ f_1 \sim 100 M_{\text{Pl}}, \ f_2 \sim M_{\text{Pl}}.$

Volume :
$$t_0 = 49$$
, $t_1 = 9$.

• Might be possible condition

$$\sum_{i} N_{\text{D7}} w = Q^{\text{O7}} = \mathcal{O}(10).$$
16 for toroidal cases

$$\sum_{\text{brane+brane'}} \mathcal{F}_i = 0$$

$$N_{\text{D3}} + N_{\text{flux}} = \frac{\chi(CY_4)}{24} = \mathcal{O}(10 - 10^4)$$

16 for toroidal cases

• Might be possible condition

Model 1: N_{D7} = O(10-100) : Too many branes?

$$\sum_{i} N_{\mathsf{D7}} w = Q^{\mathsf{O7}} = \mathcal{O}(10).$$

16 for toroidal cases

$$\sum_{\text{brane+brane'}} \mathcal{F}_i = 0$$

$$N_{\text{D3}} + \frac{N_{\text{flux}}}{24} = \mathcal{O}(10 - 10^4)$$

16 for toroidal cases

• Might be possible condition

Model 2: $N_{D7} = O(10)$; w = O(10): Too many charge?

$$\sum_{i} N_{\mathsf{D7}} w = Q^{\mathsf{O7}} = \mathcal{O}(10).$$

16 for toroidal cases

$$\sum_{\text{brane+brane'}} \mathcal{F}_i = 0$$

$$N_{\text{D3}} + \frac{N_{\text{flux}}}{24} = \mathcal{O}(10 - 10^4)$$

16 for toroidal cases

• Might be possible condition

Model 3: $N_{D7} = O(10)$; F = O(10): Marginally possible?

6. Conclusion

Summary

Natural inflation: Large tensor mode generated

 $V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$: Under good control and f > M_{Pl}

- String natural inflation: Many brane charges needed
 - Large decay constant:

$$f \sim rac{N_{ extsf{brane}}}{\Delta} M_{ extsf{string}}$$

 N_{brane} : # of D-branes, $\Delta < 1$: Alignment of winding/fluxes.

– Two cycle axion = inflaton via severe tadpole condition?

Two form axion = inflation?

$$\phi(x) = \int C_2^{\mathsf{R}\mathsf{R}} \quad ?$$

Discussion

- Explicit model?
 - Non-perturbative effects, flux, The SM, consistency,...

Light Axion mass protected by shift symmetry
 ⇔

Stability of our brane universe (RR-charge) protected by gauge symmetry?

Wait for Planck polarization data

Backups

Figures

Moduli and parameters

Heavy moduli: Flux potential in IIB

• Mass term for dilaton and complex structure:

 $\begin{aligned}
\Omega: \text{holomorphic 3-form} \\
= f_0 + f_1 U + f_2 U^2 + f_3 U^3 + S(h_0 + h_1 U + h_2 U^2 + h_3 S U^3)
\end{aligned}$

• Constant term in W at low scales via DW = 0

$$\langle W_{\rm flux} \rangle \equiv W_0$$

Kähler potential = No scale

• Single modulus case:

$$K = -2\log(\mathcal{V}) = -3\log(T + T^{\dagger}),$$

• Moduli : Free volume deformation = No-potential

$$K = -3\log(T + T^{\dagger}), \quad W = W_0$$

$$V \equiv 0$$

Moduli stabilization in model 1

Model with O(100) D7-branes

• Moduli stabilization with $V_{up} = \hat{\epsilon} e^{2K/3}$; $\hat{\epsilon} = \mathcal{O}(W_0^2)$,

$$\frac{2\pi}{N}T_0 \simeq \frac{2\pi}{M}T \simeq \log\left[\log(1/W_0)/W_0\right] \gg 1, \quad \operatorname{Re}[\Phi] = 0.$$

 $T = T_1 + T_2, \quad \Phi = -T_1 + T_2 = \sigma + i\phi.$

Moduli masses: W₀ ~ gravitino mass m_{3/2}

$$m_{T_0} \simeq m_T \simeq \log(M_{\rm Pl}/m_{3/2}) m_{3/2},$$

$$m_{\sigma} \simeq \sqrt{2} m_{3/2},$$

$$\begin{aligned}
m_{3/2} &= W_0 / \mathcal{V}, \\
\mathcal{V} &= t_0^{3/2} - \frac{t^{3/2}}{\sqrt{2}},
\end{aligned}$$

Saxion σ decoupled from inflation

• Decoupling condition for successful inflation:

$$AW_0 \ll W_0^2 \implies H_{\inf} \ll m_\sigma$$

$$m_{\sigma} \sim W_0, \quad H_{\text{inf}} \sim \sqrt{V_{\text{inf}}} \sim \sqrt{AW_0};$$

$$\sim \frac{\sqrt{100}}{f_1} \lesssim H_{\inf} \ll m_\sigma.$$

 m_{ϕ}

No decompactification

• Moduli decoupled from inflation:

$$H_{\text{inf}} \sim m_{3/2} \cdot (m_{3/2})^{(M-2n_1)/4n_1} \ll m_{3/2}.$$

$$m_\phi \sim rac{H_{\mathrm{inf}}}{f_1}, \quad m_{\mathrm{moduli}} \gtrsim m_{\mathrm{3/2}}.$$

for $M > 2n_1 \gtrsim 2n_2$, where $n_1 = O(10 - 100)$.

KNP with many axions

f >> 1 with multiple-axions alignment

1404.6923: TH, Takahashi

Many axions supporting a large decay constant

$$V(\phi_i) = \sum_{i=1}^{N_{\text{source}}} \Lambda_i^4 \cos\left(\sum_{j=1}^{N_{\text{axion}}} a_{ij} \frac{\phi_j}{f_j} + \theta_i\right) + V_0$$

 $N_{axion} = N_{source}$

 a_{ij} Random integers with $|a_{ij}| \leq 2$

Probablity to obtain $f_{eff} > f$.

$$\mathcal{P}(f_{\rm eff}/f_i) \sim N_{\rm axion}\left(\frac{f_i}{f_{\rm eff}}\right)$$

See also 1404.6209: Choi et al

Reheating

Reheating via axion coupling to A_{μ}

• Reheating temperature estimated:

$$T_R \sim 4 \times 10^{10} \,\mathrm{GeV} \cdot \left(\frac{m_{\phi}}{10^{13} \,\mathrm{GeV}}\right)^{3/2} \left(\frac{f_a/c}{10^{17} \,\mathrm{GeV}}\right)^{-1}$$

$$\mathcal{L} = c \frac{\phi}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Leptonegesis possible if $m_{\phi} > 2M_{RHv}$

Dark matter?

• No light neutralino: H_{inf} < m_{3/2} for decompactification

(depends on uplifting (SUSY-breaking))

• Mirror dark matter: "DM-genesis" via mirror RHv'

